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ABSTRACT Where traditional genetic algorithms tend to prematurely converge on local optima,
adaptive strategies aim to maintain a healthy level of population diversity by introducing randomness
to the population. Often times this is done through adjusting control parameters according to diversity
measurements. While these approaches introduce diversity, they do not aid in focusing or directing the
search effort. Meanwhile, other works in the literature propose creating individuals designed to improve
the population’s health and quality but their effectiveness is limited outside of general problems. This article
proposes novel sequence-wise approach to designing and editing genotypes for ordered problems. AMarkov
model based similarity guide matrix (MSGM) is used to determine the relationships between gene nodes in
order to produce new genotypes that focus on improving fitness and increasing population diversity. The
proposed MSGM based approach is implemented in a balanced-evolution genetic algorithm framework in
order to investigate its characteristics with encouraging results demonstrating its effectiveness when solving
combinatorial ordered optimisation problems.

INDEX TERMS Adaptive optimisation, balanced-evolution genetic algorithms, Markov model, ordered
problems.

I. INTRODUCTION
In the field of biotechnology, genetic engineering is used
to directly manipulate an organism’s genes. This can be
done through isolating and copying genetic material or by
artificially synthesising the DNA itself. As genetic algo-
rithms (GAs) are inspired by natural evolution, many studies
have investigated concepts borrowed from biotechnology to
improve its various operators and strategies. One research
problem that stands to gain from this is the ability to direct
a GA’s search in a direction to improve its diversity, solution
quality, or both. While a number of studies propose the
creation of individuals from known qualities, these studies are
largely limited to general optimisation problems [1]. Many
of these approaches are incompatible or inappropriate for
optimising ordered problems due to their constraints and their
sequential nature of the encoded solution [2]–[4].

Combinatorial optimisation problems are often generalised
forms of problems frequently encountered in the fields of
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operations and manufacturing. The process of solving these
problems involves finding an optimal solution in a countably
infinite set of possible solutions. Problems such as the
Travelling Salesman Problem (TSP) and the Capacitated
Vehicle Routing Problem (CVRP) are generalisations of
problems in operations and logistics where the order in
which the salesman visits the cities or a vehicle makes
deliveries directly impact the cost of the operation [5]. These
ordered problems are also often found in operations [6]
and robotics [7]. Given a combinatorial ordered optimisation
problem with N nodes, there are N ! solutions, thus finding
the sequences and the relationship between each node in the
different combinations is an NP-hard problem. Studies into
the fitness landscape of problems like the TSP highlight the
difficulties in solving these problems [8]–[10].

Given the difficulty of finding the optimal solution, heuris-
tic approaches are often used to find high quality solutions
within a reasonable time-frame. Innovations to adaptive GAs
have enabled GAs to introduce a sense of intelligence in
order to improve the efficiency and effectiveness of the
search process. Continual improvements to these techniques
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FIGURE 1. Generalised framework for adaptive genetic algorithms, where population is a set of solutions for a problem which
evolves through crossover and mutation. Common adaptive strategies include parameter tuning for the tournament size (tsize),
crossover probability (pc ) and mutation probability (pm).

enable GAs to further improve their abilities in finding
optimal solutions to NP-hard ordered problems. Originally
theorised as being a hill-valley landscape, recent studies
into the fitness landscape of combinatorial optimisation
problems have identified clusters or funnels in the fitness
landscape [11], [12]. These clusters of local optima can be
found throughout the fitness landscape with the difficulty
of finding the global optima being related to the number
of clusters in the fitness landscape and the size of the
cluster that the global optima resides in [13], [14]. As
understanding of the fitness landscape improves, more
advanced techniques to direct the search of GAs are
introduced. While several frameworks introduce techniques
inspired by genetic engineering to help direct an adaptive
GA’s search pattern, the constraints and the characteristics
of ordered problems have not been taken into consideration.
In particular, the relationships between nodes, how these
relationships contribute to both fitness and diversity, and the
sequential nature of the problems themselves. With existing
works demonstrating how a Markov model can effectively
establish the relationships between gene nodes [15], [16],
the following research questions can be raised:
RQ1 How can we use Markov chains to introduce genome

editing to direct the search?
RQ2 What balance between fitness and diversity is needed

to maintain a healthy level of diversity?
With the success of driving genotype editing through

the similarity guide matrix (SGM) in existing works [1],
RQ1 aims to investigate the appropriateness of a Markov
model in comparison to traditional approaches, such as mea-
suring the Hamming distance. Bymeasuring the likelihood of
a node proceeding another node, a genotype can be generated
according to the likelihood of its sequence rather than the
likelihood of gene values appearing at each gene position.
However, when considering directing the GA’s search and
population diversity, a purely diversity focused approach may
not be the most appropriate. As the GA should aim to search

for the clusters of local optima, RQ2 aims to investigate
different strategies to discover and investigate the multiple
funnels of the fitness landscape.

In this article, we present a method for generating
new genotype solutions that balance between introducing
diversity and improving fitness using a Markov model based
similarity guide matrix (MSGM). The proposed method
is implemented into an existing balanced-evolution genetic
algorithm (BEGA) framework to demonstrate its effective-
ness for optimising ordered problems and compared against
the original framework for a range of ordered problems from
the TSP and CVRP benchmark instances.

The remainder of this article is organised as follows:
Section II highlights the existing works in the litera-
ture for adaptive GAs with Section III discussing the
balanced-evolution genetic algorithm (BEGA) framework
and the limitations of current methods. Section IV describes
our proposed approach to adapting the similarity guide
matrix (SGM) to generate new genotypes for the TSP
and CVRP problems. A discussion and analysis of the
results are included in Section V with concluding remarks
in Section VI.

II. RELATED WORKS
Adaptive GAs aim to prevent premature convergence on
sub-optimal solutions by introducing a degree of intelligence
to the search process. These approaches often utilise feedback
from population diversity measurements to adjust parameters
in on online manner [17]. In doing so, adaptive GAs attempt
to manage their focus between exploring the solution space
and exploiting known solutions according to whether the
population has converged too much or has too much diversity.
A generalised approach to implementing an adaptive GA is
shown in Fig. 1. Adaptive tuning for the tournament size (tsize)
enables the GA to apply an appropriate amount of selective
pressure while the crossover (pc) and mutation (pm) proba-
bilities enable adaptive GAs to manage a balance between
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FIGURE 2. Different approaches to measuring the genotypic similarity between a pair of genotypes.

local (exploitation) and global (exploration) search. The
works in adaptive GAs can be classified as techniques and
strategies for measuring the similarity between individuals,
measuring the diversity of the population andmechanisms for
controlling the amount of diversity [17]–[19].

A. GENOTYPIC SIMILARITY
Gene-wise measures generally consider the similarities and
differences between genotypes according to the absolute
positions of the genes. The two most common approaches
are the Euclidean and Hamming distances [18], [19].
While several works have applied these to solving ordered
problems [20], [21], they do not consider the relationship
between genes when measuring population diversity. The
limitations of these approaches are further highlighted
by works implementing approaches that focus on these
relationship between nodes as shown in Fig. 2a.

The broken pairs [22] approach (Fig. 2d) considers
the relationships between each pair of neighbouring genes
and measures the differences between two genotypes as
the number of pairs that have been separated. Numerous
works [23], [24] demonstrate the effectiveness and improve-
ments that this approach introduces in comparison to a
gene-wise approach. However, the considerations of the
sequence-wise nature of the problem is limited to pairs of
genes.

In order to consider the relationship between a wider
range of genes, Nagata and Kobayashi [25] proposed the
use of a Markov model to measure the similarity between
genotypes in the population and demonstrates how increasing
the scope of the relationship between genes can improve
on a GA’s ability to maintain diversity. This is further
demonstrated with the variable-order Marokov model [15],
[16]. Another method for measuring the sequence-wise
diversity of a population is the use of the longest common
subsequence length (LCS) distance [2]–[4]. Similar to the
Hamming distance, it measures the number of gene nodes
that share a common non-contiguous subsequence between
two genotypes as shown in Fig. 2c. This is more effective
than measuring the contiguous subsequence (Fig. 2b) as a
non-contiguous measurement would also include contiguous
subsequences [2].

While there are different approaches to measuring the
similarities and differences between two genotypes, each one
has different costs and benefits when applied to ordered
problems. How they are applied to measuring population
diversity greatly affects their contribution to an adaptive GA’s
overall performance.

B. POPULATION DIVERSITY MEASUREMENTS
While research into determining the similarities and differ-
ences between genotypes is an active and ongoing field,
a wide range of strategies for applying these measurements
to maintain population diversity exists in the literature [17].
Early works aimed to measure the Hamming best and
worst performing solutions [26] in order to minimise the
computational costs. However, it was limited in that it could
not provide feedback on the state of the population.

While hardware was a limiting factor to the practicality in
measuring the diversity from all individuals in the population,
Shimodaira [27] proposed a compromise by measuring the
Hamming distance between the best, worst and a selection
of the population. While this increased its scope, it was still
limited by design with later works [28], [29] measuring the
distance between all individuals. Another common strategy
is to measure the distance between a reference individual and
the population. These methods would compute a solution that
represents a central point in the code space. While this often
leads to solutions that are not valid within the solution space,
they still demonstrate a utility in measuring diversity.

Mc Ginley et al. [30] uses a genotype consisting of average
values at each position as a reference point to measure the
Euclidean distance of the population. As this results in a
non-integer value, approaches that measure the Hamming
distances [1] or LCS distance [2]–[4] must come up with
other methods such as the use of a mode or median genotype.
Another method includes measuring the entropy rate of the
population [15] that measured the probability of a sequence
of nodes occurring in the population. With many strategies
available for measuring population diversity, how diversity
is introduced into the population is an active and on-going
research area.

C. DIVERSITY CONTROL MECHANISMS
Once feedback on the amount of diversity has been received,
an adaptive GA must then activate its mechanisms for
introducing and controlling diversity. Early methods included
re-initialising the population [31] to reboot the population as
well as adaptive parameter controls [32]–[34].

Other approaches included adaptive population sizes [35],
[36] and fixed populations with dynamic subpopulations [30].
The latter allowed for an adaptive GA to balance its focus
between exploration and exploitation without increasing
the computational effort. Where these works focused on
general, unordered problems, their performance was limited
when applied to solving within the constraints of ordered
problems [2], [3].
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FIGURE 3. BEGA process for generating new candidate individuals from the SGM with duplicated genes in the
candidate solutions being highlighted.

Zhang et al. [1] proposed a method for generating
new individuals that either converged or diverged from
the current population in their Balanced-Evolution Genetic
Algorithm (BEGA) framework. Using the Hamming distance
to measure the population’s diversity allows for BEGA to
determine how much the population needs to converge or
diverge. Positive and negative perturbations of the similarity
guide matrix (SGM) were used to generate individuals for
exploitation and exploration subpopulations. This approach
was novel in that it influenced the direction of the search
area but was limited in its application due to its gene-wise
approach to both measuring and maintaining diversity. While
works have demonstrated how adaptive GAs can improve
their performance by adapting to sequence-based approaches
to diversity maintenance [2], [4], developing sequence-based
approaches to directing the search using sequence-based
genetic engineering approaches is an open research
problem.

III. BEGA FRAMEWORK
The balanced-evolution genetic algorithm (BEGA) frame-
work [1] was originally proposed for solving unordered
problems such as the Knapsack problem and general
mathematical problems. The framework balances the explo-
ration and exploitation responsibilities of its search through
two subpopulations. These subpopulations follow similar
mechanics to one another but with one crucial difference.
Unlike traditional GAs, the BEGA framework does not
select two individuals for crossover but creates a temporary
population of candidate individuals that are used to crossover
with the real population. These candidate individuals are
designed specifically to either encourage convergence or
introduce diversity depending on which subpopulation they

are designed for. This mechanism is controlled by the
similarity guide matrix (SGM) and the linear diversity index
(LDI).

Table 1 summarises the symbols used in this article.

TABLE 1. Symbols and their meaning.

A. SIMILARITY GUIDE MATRIX AND LINEAR
DIVERSITY INDEX
The SGM creates a two dimensional matrix that expresses
the probability distribution of the gene values at each gene
position. This can be seen in Fig. 3a. In the case of an ordered
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problem such as the TSP, the matrix is a size of N 2 and can
be expressed as Eqs. 1-2.

S = {Sv1, . . . , Svj, . . . , SvN } 1 ≤ j ≤ N (1)

Svj = [s1j, . . . , sij, . . . , sNj] 1 ≤ i ≤ N (2)

The two axis of the SGM (S) corresponds to the gene
positions (Eq. 1) and gene values or nodes (Eq. 2). Each
element in the matrix (sij) represents the proportion of
individuals in the population that has the node value i in the
jth position.

From the SGM, negative and positive perturbations are
computed for the exploitation and exploration subpopula-
tions. The differences in these perturbations are demonstrated
in Fig. 3b. The control amplitude (CA) determines the degree
of change in the perturbations. This is calculated using the
LDI which is calculated as the average Hamming distance
between a mode genotype and the rest of the population.
This mode genotype can be computed from the SGM as the
gene values at each position with the highest probability. The
process for calculating the LDI is demonstrated in Eqs. 3-4.

Dl =
|P |∑
p=1

Dp
|P|

(3)

Dp =
Hamdis(Xp,Xr )

N
(4)

The normalised diversity of each individual (Dp) is calcu-
lated as the Hamming distance between individuals in the
population (Xp) and the mode geneotype reference point (Xr )
normalised against the genotype length (N ). The LDI (Dl) is
then calculated as the average, normalised Hamming distance
of the population (P). The Dl is used in conjunction with
the diversity shift limit (Dsl) to determine what stage of the
evolution BEGA is in and the level of diversity that to be
injected into the population. During the first stage where
Dl > Dsl , Dl is used as the CA value as shown in Eq. 5.

CA =

{
Dl Dl > Dsl
Dsl Dsl ≥ Dl

(5)

However, as BEGA converges on a optima, the popula-
tion’s diversity (Dl) can become a very small value which
prevents the GA from being able to effectively maintain
diversity. Dsl is designed to provide a minimum degree
of diversity maintenance even in a maximally converged
population with the authors recommending a value of 0.075.

B. COMPUTATION OF PERTURBATIONS
With both S and Dl , the perturbations for the exploration and
exploitation subpopulations can be computed. The process
for computing the negative perturbation is demonstrated in
Algorithm 1. After the control amplitude (CA) is calculated,
the new perturbation matrix (M ) must be populated with new
values. For each vector (j) in S, the vector has a chance to
be inherited directly from S without any changes. This is
dependent on the state of the population’s search process.

Algorithm 1 Computing Negative Perturbation
Input: S: SGM, N : Genotype length, CA: Control

amplitude
Output: M : Perturbation matrix
Initialization: M [N ][N ];
foreach j ∈ 1, . . . ,N do

if rand() < CA then
k ← max(Svj) ; // Index of maximum
vector
l ← rand(1,N ) ; // Random index
number
while l = k do

l ← rand(1,N ) ; // l 6= k
r ← CA× rand()× Skj ; // Perturbation
value
M [k][j]← S[k][j]− r ;
M [l][j]← S[l][j]+ r ;
foreach i ∈ 1, . . . ,N do

if i 6= k & i 6= j then
M [i][j]← S[i][j];

else
M [j]← S[j];

returnM ;

If vector j is selected to undergo changes in its perturbation,
then the index (k) of the maximum value (skj) of the vector
Svj is selected. A randomly selected index (l) from Svj is
selected as a pair for the the perturbation where k 6= l. The
negative perturbation of S reduces the maximum Svj value by
r and increases the value of the randomly selected member
by the same amount with all other members of Svj are directly
inherited by M . This spreads the probability distribution for
values at each gene position to decrease the likelihood of a
common genotype being generated.

The positive perturbation for exploitation works similarly
but with k being the index of the minimum value of the vector
Svj. Once the positive and negative perturbations of S are
computed, candidate individuals can be generated according
to the probability of values at each gene position (Fig. 3c).

C. EXPLORATION AND EXPLOITATION
The first step in generating new individuals is to produce
a set of candidate individuals for both the exploration and
exploitation subpopulations. Candidates for both methods are
generated from their respective perturbation matrix and is
demonstrated in Alg. 2. M is the SGM with negative or
positive perturbations applied. T is the computed threshold
matrix that allows for a uniformly random number (rand())
between 0 and 1 to select node i for the jth position in the
candidate genotype Q.
The goal of the exploration subpopulation is to inject

diversity into the population in order to explore new areas
of the fitness landscape. Creating new genotypes for the
exploration subpopulation is outlined in Alg. 3. The SGM
with negative perturbations (M ) is used to generate a new
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FIGURE 4. The BEGA framework for balancing exploration and exploitation searches of the fitness landscape. This
component replaces the highlighted ‘‘Adaptive Evolution’’ component of adaptive genetic algorithms illustrated
in Fig. 1.

Algorithm 2Generating New Individuals Based on SGM
Input: M : Perturbation matrix, N : Genotype length
Output: Q: Candidate genotype
Initialization: Q[N ], T [N ][N ]: Threshold matrix
foreach i ∈ 1, . . . ,N do

foreach j ∈ 1, . . . ,N do

T [i][j]←

{
M [i][j] i = 0
T [i− 1][j]+M [i][j] i 6= 0

foreach i ∈ 1, . . . ,N do
foreach j ∈ 1, . . . ,N do

Q[j]←

{
0 rand() ≤ T [0][j]
i T [i− 1][j] < rand() ≤ T [i][j]

return Q;

candidate genotype Q. For crossover, the original BEGA
framework uses uniform crossover between the candidate
genotype and the reference genotype. Uniform mutation is
applied to the new genotype with a probability pm = (1.0 +
ms × CA)/N . The exploitation method is similar to the
exploration method except the positive perturbation matrix is
used to generate Q and constant mutation probability is used
(pm = 1/N ).

D. FRAMEWORK: PUTTING IT ALL TOGETHER
The BEGA framework manages two sub-populations in
order to balance between exploration and exploitation
and is demonstrated in Fig. 4. A sub-population of elite
individuals (Pe) is selected with a minimum Hamming
distance (md ) between each individual as the exploitation
sub-population. Individuals that are not selected for the

Algorithm 3 Exploration Method
Input: M : Perturbation matrix, X : Reference genotype,

CA: Control amplitude, ms: Mutation multiplier
Output: O: New genotype
Initialization: O[N ]: New genotype
Q← NewGenotype(M ); // Candidate
genotype (Alg. 2)
O← Crossover(Q,X );
pm← (1.0+ ms × CA)/N ; // Mutation
probability
O← Mutate(O, pm);
return O;

exploitation sub-population become part of the exploration
sub-population. The positive and negative perturbations of
the SGM are computed (Alg. 1) which is then used in the
exploration and exploitation methods (Alg. 3).

E. LIMITATIONS
As BEGA relies on a gene-wise approaches for the SGM,
LDI, the positive and negative perturbations, and generating
the candidate individuals, there are significant limitations
when applied to ordered problems such as the TSP. This can
immediately be seen in the candidate individuals themselves
where the perturbation matrices can result in solutions that do
not adhere to the problems’ constraints.

While duplicate gene values can be replaced with missing
gene values after the individuals are created, this can
reduce the effectiveness of the diversity balance mechanisms
introduced by BEGA [2]. Another limitation is its focus
on absolute gene positions rather than the relationships
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between gene values and their positions in the sequence.
This limits the ability of both the SGM and LDI to express
the diversity to a position-by-position approach. Without
being able to accurately measure and monitor the state
of the population in its evolutionary process, BEGA is
unable to effectively determine when diversity is needed
or by how much. These two limitations results in BEGA
having difficulty bothmonitoring andmaintaining population
diversity in an effective manner when solving ordered
problems.

IV. OUR APPROACH
To generate effective candidate genotypes for ordered
problems, the following constraints must be maintained:

C1 Each node in the problem must appear in the sequence
and cannot be repeated, and

C2 A route can start at any node but must return to
its original node or depot for the TSP and CVRP
respectively.

C1 requires genotypes to be generated where there are N
unique nodes in the sequence where the values range from
[1, . . . ,N ], inclusively. The similarity guide matrix used
by the BEGA framework can result in invalid genotypes
where the duplicated nodes must be replaced with missing
nodes retrospectively. A strategy for producing genotypes for
these ordered problems must prevent duplicated or missing
nodes in order to produce meaningful sequence-based
genotypes. C2 describes the cyclical nature of ordered
problems where the sequence of nodes is more important than
their absolute positions. Thus, a method for designing and
producing new genotypes must consider the ordered nature
of sequence-based problems.

To model the above constraints of the ordered problems
in the similarity guide matrix (SGM), we propose three
new approaches to compute the SGM based on the Markov
model, called the Markov model based Similarity Guide
Matrix (MSGM). The first method uses the Markov model’s
transitionmatrix as theMSGM. The secondmethodmeasures
the average fitness of the subsequence of genes and can be
considered as the contribution of a subsequence of nodes to a
genotype’s fitness. The final method is a hybrid approach that
considers both the probability of a subsequence occurring and
its contribution to a genotype’s fitness.

Where the original BEGA framework uses a gene-wise
approach (Hamming distance) to measure diversity in
Eq. 4, in our approach we use the LCS distance based
genotypic similarity measurement explored in our previous
works [2]–[4] to measure diversity as shown in Eq. 6.

Dp =
LCS(Xp,Xr )

N
(6)

A. MARKOV MODEL BASED SGM
The BEGA framework utilises the SGM to express the
distribution of a population or subpopulation in the solution
space. This is then used as a reference point in the coding

space order to measure the density of the solutions around
that point and to produce candidate individuals. However,
as highlighted in Fig. 3, this gene-wise approach can result
in individuals being produced that do not consider the
constraints and characteristics of ordered problems.

To address the aforementioned issues, we propose the use
of a Markov model’s transition matrix as the Markov model
based SGM (MSGM). Where the original SGM had axes
of coding position and value, a sequence-based approach
considers the matrix axes as nodes from and to. If we consider
the likelihood of a node preceding another node in a solution
as a Markov chain with one order, the relationship can be
modelled as in Eq. 7.

Pr (q1, q2, . . . , qN )

= Pr (q1)× Pr (q2|q1)× . . .× Pr (qN |qq−1) (7)

= Pr (q1)×
N∏
i=2

Pr (qi|aq−1) (8)

Pr denotes the probability of the nodes appearing in a
given sequence. However, this does not accurately portray
the relationships between solution sequences and the fitness
landscape in ordered problems. As a population begins to
converge on clusters of optima, each cluster will being to
show characteristics in its genotype sequence that are shared
with nearby solutions.

When computing the MSGM, we can calculate the
probability of a node proceeding another node to build a
sequence-wise similarity guide matrix. We can express the
MSGM (SM ) as a two dimensional matrix shown in Eq. 9.
However, each member of SMvj represents the probability of
node i following node j as shown in Eq. 10.

SM = {SMv1 , . . . , S
M
vj , . . . , S

M
vN } 1 < j < N (9)

SMvj = [Pr (1, j), . . . ,Pr (i, j), . . . ,Pr (N , j)] 1 < (10)

Where the original SGM expresses on the absolute
positions of each gene node, the MSGM expresses on the
probability of transition between nodes. This allows the
MSGM to describe the sequence of nodes rather than their
positions. The sum for each SMvj will always be 1 in ordered
problems like the TSP and CVRP as each node must appear
once in the sequence. Furthermore, for these problems,
sequences can wrap around the genotype and remain similar
to one another. For example, a sequence of [1, 2, 3, 4] should
be considered similar to [3, 4, 1, 2] where both have the same
Pr (4, 1) and Pr (2, 3). Thus SM = {sMij } where s

M
ij is defined

in Eq. 11.

sMij = Pr (qt = SMj |qt−1 = SMi ) 1 ≤ i, j ≤ N , i 6= j (11)

aij represents the probability that node i follows node j
given the assumptions that the i and j are the values from
N nodes and that it is a steady state system. Further more,
as sMij ≥ 0 and the genotype cannot repeat nodes in its
sequence, it must eliminate the probability of j following i
if j already appears in the genotype sequence. This can result
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FIGURE 5. Process for creating a genotype from the MSGM involves eliminating the possibility of the sequence transitioning to a node that already exists
in its sequence.

FIGURE 6. Expressing the transition probability of a sequence using a Markov model.

Algorithm 4 Computing MSGM
Input: P: current population, N : genotype length
Output: SM : Markov based SGM
Initialization: SM [N ][N ]; SC [N ][N ];
foreach x ∈ 1, . . . , |P| do

X ← Px ; // Genotype integer array
foreach k ∈ 2, . . . ,N do

j← Xk−1 ; // From node
i← Xk ; // To node
SC [i][j]← SC [i][j]+ 1 ; // Transition
count matrix

foreach i ∈ 1, . . . ,N do
foreach j ∈ 1, . . . ,N do

SM [i][j]← SC [i][j]
N ;

return SM

in cases where the only options available for j are cases where
sMij = 0. The sum of all the probabilities of nodes proceeding
i must be

∑N
j=1 s

M
ij = 1.

SM can be considered as a two dimensional matrix that
expresses the distribution of the sequence of gene nodes.
This can be seen in Fig. 6 where a first order Markov
model can be used to calculate the subsequences of the
population in Fig. 6a into the SM (Fig. 6b). The vertical
axis represents the current gene node while the horizontal
axis represents the probabilities of the nodes that follow.

The process of creating a new genotype from the SM is
demonstrated in Fig. 5. An initial gene node can be selected
according to its probability as a starting point with the
proceeding node being selected according to its probability.
Once a node has been added to the genotype, it is removed
from the possible options in the vertical axis. This ensures that
the constraints of the ordered problem are maintained. With
the MSGM, the transition matrix can be used as the similarity
guide and is shown in Algorithm 4.

For each individual in the population P , the integer
genotype sequence is expressed as vector X . SC is the
transition count matrix to store the number of genotypes
in P where node i following node j. Thus, for each node
in X , we increment the count at SC [i][j]. Once the sum of
transitions between all nodes for all individuals in P have
been added to SC , each value in the matrix is normalised
by N to give a value ranging from 0 to 1. This is stored in
the Markov Guide matrix (SM ) and returned as the transition
matrix.

As the transition matrix describes the probabilities of
one node following another, producing new genotypes is a
stochastic process. As the population converges on a set of
solutions, common subsequences in the population increases
the probability of these subsequences appearing in genotypes
produced by the MSGM. However, the stochastic nature of
the Markov chains allows for the MSGM to introduce minor
mutations to the overall sequence and can assist in the process
for local search.
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Algorithm 5 Computing Fitness Based MSGM
Input: P: current population, N : genotype length
Output: SF : Fitness based MSGM
Initialization: SF [N ][N ]; SF [N ][N ]; f ← 0
foreach x ∈ 1, . . . , |P| do

X ← Px ; // Genotype integer array
f ← f + fitness(X ) ; // Fitness sum
foreach k ∈ 2, . . . ,N do

j← Xk−1 ; // From node
i← Xk ; // To node
SF [i][j]← SF [i][j]+ fitness(X ); // Fitness
sum matrix

foreach i ∈ 1, . . . ,N do
foreach j ∈ 1, . . . ,N do

SF [i][j]← SF [i][j]
f ;

return SF

B. FITNESS BASED MSGM
Where the MSGM approach considers areas of interests in
the solution space as where the solutions are converging,
it does not directly consider the fitness of the solutions. This
is particularly important when taking into consideration the
complexities in navigating a fitness landscape with many
clusters of local optima.

The fitness-based MSGM computes the average fitness
contribution of the gene sequence [i, j] from the population
which results in candidate genotypes more likely to inherit
the fittest subsequences instead of the most common. This
process is demonstrated in Algorithm 5 where SF is a two
dimensional matrix which contains the fitness distribution
of node i following node j as opposed to the transition
probabilities in SM .
Similar to Algorithm 4, for each solution in P , the geno-

type sequence is stored as X . As this is a fitness based
transition matrix, the summation of the fitness is required
later and is stored in f . For each node in the genotype X ,
the fitness of X is added to the matrix SF [i][j] where the
sequence transitions from node j to i. Where the SM in
Algorithm 4 is the summation of transitions between nodes,
SF is the summation of the fitness of genotypes where a
transition between nodes j and i exists. The fitness guide
matrix (SF ) consists of the values of SF normalised against
the fitness sum of the individuals inP to give a value between
0 and 1 and illustrates the contribution of each pair of nodes
to the average fitness.

C. BALANCED MSGM
A limitation of SF is that it considers a lower fitness
individual as being more diverse than an individual with a
higher fitness and can be considered as being similar to a
phenotypic approach to measuring diversity. Where as the
limitation of SM is its difficulty in conducting intensive search
inmultiple areas of interest. This highlights the necessity for a

Algorithm 6 Computing Balanced MSGM
Input: P: current population, N : genotype length
Output: SB: Balanced MSGM
Initialization: SB[N ][N ]; SF [N ][N ]; SC [N ][N ];
foreach x ∈ 1, . . . , |P| do

X ← Px ; // Genotype integer array
f ← f + fitness(X ) ; // Fitness sum
foreach k ∈ 2, . . . ,N do

j← Xk−1 ; // From node
i← Xk ; // To node
SF [i][j]← SF [i][j]+ fitness(X ); // Fitness
sum matrix
SC [i][j]← SC [i][j]+ 1; // Transition
count matrix

foreach i ∈ 1, . . . ,N do
foreach j ∈ 1, . . . ,N do

SB[i][j]← 1
2 × ( SF [i][j]f +

SC [i][j]
N );

return SB

strategy that balances both converging towards good solutions
and exploring new areas of the solution space. We propose
a hybrid approach, called balanced MSGM that balances
between genotypic diversity and fitness contribution. This
allows BEGA to quickly converge on areas where known,
highly fit solutions exists while also explore new areas of the
solution space.

The balanced MSGM is given in Algorithm 6. Similar to
Algorithms 4 and 5, the process iterates for all individuals x
in P with the genotype sequence of x being expressed as X .
For each node in the genotype, the transition from node j
to i is added to the count matrix SC [i][j] while the fitness
of the individual is added to the fitness sum matrix SF [i][j].
Once SF has accounted for all individuals in the population,
the balanced guide matrix (SB) is calculated as the average
value of the normalised SF and SM values.

V. EXPERIMENTS
Here, we evaluate the effectiveness of our proposed Markov
model based similarity guide matrix (MSGM) in opti-
mising ordered problems by balanced-evolution genetic
algorithms.

A. SETUP, ALGORITHMS AND PARAMETERS
This section describes the setup, algorithms, their parameters
and evaluation metrics used in our experiments.

1) ENVIRONMENTAL SETUP
All algorithms are implemented using C#/.NET Core with
experiments run on Windows 10 machines with AMD Ryzen
2600x CPU and 32GB of main memory. Each framework
algorithm ran each instance until 20,000 generations with
no improvements in the solution quality was reached. This
was repeated for 20 runs. The C# implementations of the
algorithms are made available online [37].
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2) BENCHMARK ORDERED PROBLEMS AND OPERATORS
Instances of ordered problems were selected from the TSP
benchmark library1 according to their range in problem
size. The new set of benchmark instances2 proposed by
Uchoa et al. [5] were selected for the CVRP tests. Due
to the ordered nature of these problems, the modified
ordered crossover operator and partially shuffled mutation
operator were selected for their performance demonstrated in
empirical tests [38].

3) ALGORITHMS AND THEIR PARAMETERS
The following algorithms have been implemented to conduct
experiments in this article.
• GA: This is a standard genetic algorithm with no
adaptive features.

• BEGA: The original BEGA framework (as described
in Section III) is implemented in C# according to
the authors’ work [1]. This ensures for consistent
comparisons between each implementation.

• BEGA MSGM: BEGA framework with LCS distance
being used to calculate population diversity (Dp) as in
Eq. 6. We also use MSGM (Alg. 4) instead of SGM.

• BEGA MSGM Fitness: BEGA framework with LCS
distance being used to calculate population diversity
(Dp) as in Eq. 6. We also use MSGM Fitness (Alg. 5)
instead of SGM.

• BEGAMSGMBalanced: BEGA framework with LCS
distance being used to calculate population diversity
(Dp) as in Eq. 6. We also use the MSGM Balanced
(Alg. 6) instead of SGM.

The BEGA framework parameter settings were kept
consistent between each variant as recommended by
Zhang et al. [1]. The original BEGA framework was imple-
mented with its original operators. The GA, BEGA MSGM,
BEGA MSGM Fitness and BEGA MSGM Balanced were
implemented with the Modified Ordered Crossover (MOX)
operator and the Partially Shuffled Mutation (PSM) operator
due to their performance in ordered problems [38].

Population size (|P|) for each algorithm is set to 90. The
size of the elite sub-population |Pe| = 15 with a minimum
Hamming distance between individuals being md = 3 for
the original BEGA. The BEGA MSGM variants require a
minimum LCS distance md = 3, shift limit of diversity
Dsl = 0.075. For BEGA and all of its variants, the multiplier
factor for the mutation operator ms = 5.

4) EVALUATION METRICS
To evaluate the algorithms, the best known solution (BKS)
and problem size (N ) has been included in the problem
instance descriptions. To indicate the relative difference
between each GA approach, the average error (Avg. Err)
between the BKS and the solution found is reported with the
coefficient of variation (Cv) demonstrating its consistency.

1http://www.math.uwaterloo.ca/tsp/data/index.html
2http://vrp.atd-lab.inf.puc-rio.br/index.php/en/

BKS Found is reported to indicate the number of runs in
which the GA approach found the BKS (out of 20 runs).
The average diversity (Avg. Diversity) is reported as the
average of the diversity of the last generation for each run.
The diversity of the final population is measured as the
average LCS distance normalised against the length of the
genotype.

B. PERFORMANCE EVALUATION
Tables 2-3 demonstrate the abilities of each of the GAs. The
fitness is represented as the cost of the solutionswhere a lower
value indicates a higher quality solution.

1) EFFECT OF PROBLEM SIZE
While the benchmarkGA performswell on smaller problems,
it can be seen to quickly converge on local optima as the
problem size increases. The original BEGA implementation,
while a significant improvement over the GA, also prema-
turely converges. However, applying a sequence-wiseMSGM
greatly improves the performance of BEGA in its ability
to find better quality solutions for both smaller and larger
problems. This improvement is also demonstrated whenmore
constraints are introduced as the CVRP (Table 3). The fitness
based MSGM (BEGA MSGM Fitness) appears perform
worse than BEGA MSGM in both solution quality and
consistency. While MSGM Fitness is effective at exploiting
its found solutions, it can be seen to struggle with effectively
searching the solution space for other peaks in the fitness
landscape. However, by combining both of these approaches,
the hybrid approach (MSGM Balanced) increases BEGA’s
ability to find better quality solutions and improve on its
consistency in finding these solutions.

2) EXPLORATION VS EXPLOITATION
The three BEGA variants with sequence-wise approaches
offer very significant improvements over the GA and
many improvements over the original BEGA. However,
the improvements of the MSGM Balanced approach over
both the BEGA MSGM and BEGA MSGM Fitness offer
more insight into the contributions of the two. The charac-
teristics of each of the BEGA MSGM variants can be seen
in Fig. 7.

While BEGA MSGM Fitness variant performs better in
earlier generations, BEGA MSGM is capable of finding
better solutions for more generations. This pattern is
made clearer in the Figs. 7c-7d with the CVRP instance
X-n10001-k43. With further constraints added by the CVRP,
both BEGA MSGM Fitness and BEGA MSGM Balanced
reach their completion criteria before BEGA MSGM. While
BEGA MSGM can be seen to evolve for longer than
BEGA MSGM Fitness, Tables 2-3 demonstrate that having
the highest diversity does not directly result in the best
solution. BEGA MSGM Balanced maintains a healthy level
of diversity to evolve for longer and produces better solution
quality.
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TABLE 2. Performance for TSP instances highlighting the average error, coefficient of variation (Cv ) in solution quality, the number of runs a GA
framework found the best known solution, and the average diversity of the last population of each run.

C. DIVERSITY MAINTENANCE
In Tables 2-3, the average diversity highlights each GA
framework’s ability to maintain sequence-wise diversity. It is
measured as the average LCS distance of the population at the
completion of the run. As the value is normalised against the
genotype length, a maximally diverse population approaches
a value of 1 while 0 indicates maximal convergence.
The capabilities for each GA framework in maintaining
sequence-wise diversity is further highlighted in Fig. 8.

1) EFFECT OF PROBLEM SIZE AND CONSTRAINTS
In the TSP instances, the basic GA and original BEGA
implementations can be seen to struggle to maintain a diverse
population with a trend towards greater convergence with
larger problem sizes. This suggests that while BEGA focuses
onmaintaining gene-wise diversity, almost half the sequences
are common to all the solutions in the population.

BEGA MSGM maintains a higher level of diversity
regardless of the problem size. The BEGA framework
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TABLE 3. Performance of Uchoa et al. [5] set from CVRP-Lib with instances grouped by N size highlighting the average error, average coefficient of
variation (Cv ), number of instances where the GA framework found the best known solution in its run and the average diversity of the final population
for each run.

FIGURE 7. The performance of each GA framework as demonstrated on the TSP sw24978 and CVRP X-n1001-k43 instances.

supports exploitation and exploration subpopulations where
the exploitation subpopulation naturally converges on similar
solutions. The higher levels of diversity in the BEGAMSGM
Balanced variant suggests that while the exploration subpop-
ulation is sufficiently diverse, the exploitation subpopulation
also has a higher level of diversity allowing it to exploit
multiple known peaks in the fitness landscape.

In Table 3, the effects of the additional constraints of the
CVRP can be seen on the diminished population diversity.
In particular, the ability to maintain population diversity
is reduced in the BEGA MSGM Fitness variant as the
problem size increases while both the BEGA MSGM and
BEGA MSGM Balanced variant are able to maintain a more
consistent level of population diversity.
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FIGURE 8. The relative sequence-wise population diversity of each GA framework as demonstrated with a typical run of the TSP
sw24978 and CVRP X-n1001-k43 instances.

2) EXPLORATION VS EXPLOITATION
In Fig. 8a both the basic GA and BEGA can be seen to
converge very early in the search process. While the basic
GA has no diversity maintenance processes, the original
BEGA framework uses a gene-wise approach to measuring
and maintaining diversity. This can result in a higher level of
sequence-wise similarity in the population.

BEGA MSGM has the highest level of overall diversity
due to its bias towards exploration as seen in Fig. 8b. As
the framework aims to generate sequences that maximises
the differences in sequences, this can naturally lead to an
effective exploration process. The BEGA MSGM Fitness
approach focuses on the exploitation of the fittest individuals.
This is done through the fitness based guide matrix where
the fitness of each sequence influences the likelihood of a
subsequence appearing in a genotype. This results in the
population converging on certain subsequences and lowering
the overall sequence-wise diversity. Furthermore, the three
BEGA MSGM variants can be seen to have a high level
of fluctuation in population diversity in the early stages
of their evolution. As the population begins to converge,
the fluctuations in diversity significantly reduces. This can be
seen as the second stage where the shift limit (Dsl) is used to
maintain diversity as the LDI (Dl) is too small due to the level
of convergence. What should be noted here is the degree of

the fluctuations in diversity, particularly with the constraints
of the CVRP in Figs. 8c-8d. BEGA MSGM and BEGA
MSGM Balanced both display similar fluctuations between
the peaks and valleys in diversity that suggests that diversity
is introduced in a very acute and effective manner. However,
the BEGA MSGM Fitness variant is not as effective.

While the BEGA MSGM Balanced variant has less
diversity than the BEGAMSGM, it maintains diversity levels
closer to that of the BEGA MSGM. This suggests that
the mechanisms for managing the subpopulations are better
equipped to maintain a high level of diversity for exploration
but a smaller, more intense subpopulation for exploitation.
When this is applied to solving ordered problems, BEGA
MSGM Balanced is able to maintain a healthy level of
diversity while also being able to effectively find good quality
solutions. These characteristics are what likely enable the
BEGA MSGM Balanced variant to outperform the other
benchmark GAs.

D. DISCUSSION
The main objective of the BEGA framework is to balance
between intensive local search (exploitation) and diverse
global search (exploration). By a novel implementation of
the similarity guide matrix, BEGA designs and produces
genotypes to encourage convergence for the local search
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TABLE 4. Statistical significance of solution quality of BEGA MSGM Balanced. ‘‘++’’ and ‘‘+’’ indicates a very significant improvement and significant
improvement while ‘‘*’’ indicates no statistically significant difference.

subpopulation and introduces diversity to the global search
to improve coverage of the fitness landscape.

In order to determine the statistical significance of
any improvements demonstrated by the proposed methods,
two-sample z-tests were conducted between a benchmark
GA, the original BEGA implementation, as well as the
MSGM, MSGM Fitness and MSGM Balanced implemen-
tations. The p values for the z-tests were 0.05 or less
being considered a significant difference and 0.01 or less
indicating a very significant difference. Table 4 highlights
the statistical significance of the solutions found by BEGA
MSGM Balanced.

In general, the MSGM approaches demonstrate a signifi-
cant improvement in the BEGA framework’s ability to find
good quality solutions by adapting the gene-wise approaches
to sequence-wise approaches. By implementing a Markov
model to measure the probability of node transitions, BEGA
is able to produce genotypes that better reflect the solution
space and also reflect the ordered nature of the problems.
By balancing between sequence-wise diversity and fitness
contribution, our experiments demonstrate how our MSGM
approaches are able to engineer genotypes for ordered
problems and outperform the original BEGA framework.

VI. CONCLUSION AND FUTURE WORK
In this study we propose three methods for computing a
Markov model based similarity guide matrix (MSGM) that
takes into consideration the sequence of nodes for opti-
mising ordered problems by the balanced-evolution genetic
algorithms (BEGAs). We demonstrate how the MSGM can
be used to genetically design and engineer genotypes to
encourage convergence on good performing subsequences or
encourage search in unexplored areas of the fitness landscape
when implemented in an existing BEGA framework. Our
experimental results highlights how a sequence basedMSGM
can introduce bias towards exploration while a fitness based
MSGM biases towards exploitation. A balance between
these two MSGM approaches demonstrated the ability to
produce the best candidates for maintaining a healthy level

of population diversity. Future research into improving
the balance between exploration and exploitation for new
genotypes should consider monitoring and maintaining this
balance in an online manner.
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