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A B S T R A C T   

The Great Unconformity at the Precambrian-Cambrian boundary marks a global erosion surface, and a time gap 
which in places exceeded a billion years. The weathered sub-Cambrian rocks include abundant granites and 
pegmatites. These rocks and others were mineralized in several regions. The basal Cambrian sediments show that 
rare commodities including gold and rare earth elements (REEs) were concentrated from sub-Cambrian sources 
by both chemical and physical processes. The clay-rich unconformity in Europe demonstrates the weathering of 
Palaeoproterozoic pegmatites (~1.2 billion years older) and liberation of strontium and REEs to reprecipitate as 
authigenic phosphate minerals. This is consistent with a global strontium isotope excursion at the Precambrian- 
Cambrian boundary. The global extent of sub-Cambrian granites and pegmatites indicates a possible exploration 
play for REEs. More generally, the abundance of ores exposed on the surface globally, and examples of early 
Cambrian enrichment, indicate that the surface has high potential for exploration of rare elements.   

1. Introduction 

The Precambrian–Cambrian boundary represents one of the most 
globally significant episodes of change in the geological record. It was a 
time of both geochemical change and faunal evolution, which were 
probably linked to at least some degree (Wille et al., 2008; Peters and 
Gaines, 2012; Parnell et al., 2014; Medaris et al., 2018). The episode 
involved marine transgression across intensely weathered surfaces, 
which show extensive alteration and related planation to a degree 
unique in geological history. The altered surface can be traced across the 
Pan-African Orogen for 6000 km from Morocco to Oman (Avigad et al., 
2005), across much of the Baltic region (Nielsen and Schovsbo, 2011), 
and over much of North America (Ambrose, 1964). 

A previous investigation showed that there was a relatively high 
abundance of ore deposits on the sub-Cambrian surface, and that many 
of these deposits were weathered and even enriched before the subse-
quent peneplanation and transgression (Parnell et al., 2014). The wide 
variety of ore deposits exposed on the surface included gold, iron, 
copper and platinum group element (PGE) deposits (Fig. 1). The for-
mation of palaeoplacers, and the supergene enrichment of ore bodies, 
both led to economic concentrations of metals, documented by Parnell 
et al. (2014). In addition to the direct evidence from metalliferous de-
posits on the sub-Cambrian surface, there is an implication of metal 
contribution from older deposits where they are truncated by the sur-
face. For example, PGE-bearing deposits at Stillwater, Montana 

(Jackson, 1968) and Platinum City, Wyoming (Hausel, 1989) are both 
truncated by basal Cambrian sediments (Fig. 2), which indicates that 
PGEs were eroded and liberated into the surface environment. Similarly, 
banded iron formation in many countries is truncated by the sub- 
Cambrian surface (Fig. 3). Subsequently, further examples of minerali-
zation of the unconformity have been described, including 
iron‑manganese on the surface in Norway (Gabrielsen et al., 2015), and 
gold-bearing palaeoplacers in southern Sinai, Egypt (Saber, 2020). 
Other examples of gold-bearing palaeoplacer deposits in Cambrian 
sandstones occur in Saskatchewan (Rogers, 2011), South Dakota 
(Paterson et al., 1988), Wyoming (Hausel and Graves, 1996), Texas 
(Heylmun, 2001), the Siberian Platform (Konstantinovskii, 2001) and 
Spain (Pérez-García et al., 2000). As the exploration for pegmatites in-
creases globally (Linnen et al., 2012; Steiner, 2019), more palaeoplacers 
are likely to be found (Fig. 4). 

Given the evidence for diverse mineralization at the sub-Cambrian 
surface, it may be supposed that this setting may also be prospective 
for deposits of rare elements required for future technologies. Among 
the elements targeted to support the growth of future technologies, REEs 
are very highly valued (Liu and Chen, 2021; Balaram, 2023; Liu et al., 
2023). This study seeks to:  

(i) Assess if there is evidence for the concentration of REE deposits at 
the Precambrian-Cambrian boundary. 
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(ii) Deduce whether these deposits indicate viable strategies for the 
exploration of REEs.  

(iii) Test if a known example of the palaeo-weathered sub-Cambrian 
surface holds evidence for REE weathering and/or concentration 
in the detailed mineralogy. The rock has a robust Ar–Ar age of 
542.6 ± 0.4 Ma (i.e, precisely the Precambrian-Cambrian 
boundary), so the alteration is not overprinted by younger 
events (Parnell et al., 2014). 

2. Methodology 

Phyllosilicate-rich rock was collected from the sub-Cambrian surface 
in Scotland (Ceannabeinne; United Kingdom national grid reference NC 
437662), where the Lewisian rock below Cambrian sandstone was 
substantially altered. A petrographic study was made in support of un-
derstanding the processes that occurred at the Precambrian-Cambrian 
boundary. The rock sampled in Scotland represents a style of alter-
ation at the boundary that is found globally, including in North America 
(Buckwalter, 1963; Simpson et al., 2002) and Asia (Kim and Lee, 2003). 
Measurements were performed at the University of Aberdeen ACEMAC 
Facility using a Zeiss Gemini field emission gun scanning electron mi-
croscope (FEG-SEM) on polished blocks of the phyllosilicate-rich rock. 

Samples were carbon coated and analysed at 20 kv, with a working 
distance of 10.5 mm. Mineral phases identified in samples were analysed 
using Oxford Instruments EDS X-ray analysis, focussing on phases that 
contained REEs and strontium. The standards used were a mixture of 
natural minerals, metal oxides and pure metals, as calibrated by the 
factory. Oxygen contents were determined by stoichiometry. 

3. Results and discussion 

3.1. REE and strontium deposition on the Precambrian-Cambrian surface, 
Scotland 

Evidence for the mobility and concentration of REEs and strontium at 
the Precambrian-Cambrian boundary peneplain is recorded in Scotland. 
The unconformity surface is marked by a concentration of phyllosilicate 
(pinite, a massive variety of muscovite, probably metamorphosed from 
illite), coloured variably green, yellow and pink (Figs. 5, 6). The 
mineralized unconformity can be traced over a strike length exceeding 
40 km (Peach et al., 1907). The layer of phyllosilicate occurs between 

Fig. 1. Cross-section through Ontario gold-bearing deposit, showing supergene 
enrichment below sub-Cambrian surface (after Di Prisco and Springer, 1991). 
(For interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.) 

Fig. 2. Exposure of ore deposits on sub-Cambrian surface. Platinum-bearing ore deposits, truncated by sub-Cambrian surface and overlain by basal Cambrian 
sediments, imply erosion and liberation of PGEs into surface environment. (A) Stillwater ore deposit, Montana, where PGE-rich zones are truncated by Cambrian 
sediments (after Jackson, 1968); (B) Platinum-Iridium-Gold deposits, Platinum City district, Wyoming (after Hausel, 1989). (For interpretation of the references to 
colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 3. Exposure of banded iron formation on sub-Cambrian surface, 
Mauritania (after Baldwin and Gross, 1967). 
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Archean Lewisian gneisses with abundant Palaeoproterozoic pegmatites 
and Lower Cambrian sandstones (Russell and Allison, 1985; Allison 
et al., 1992; Ferguson et al., 1998; Parnell et al., 2014). Regional 
geochemical mapping shows the imprint of the pegmatites in the base-
ment in stream sediment samples (Institute of Geological Sciences, 
1982). The pegmatites include a range of rare elements, including REEs 
(Shaw et al., 2016). The pinite forms a layer on the peneplain surface, 
rarely exceeding 1.0 m, but also penetrates downwards into the under-
lying pegmatites to a depth over 2.0 m, which were therefore altered to 
at least this depth. Abundant feldspar in the pegmatite is extensively 
altered to pinite, predominantly coloured green (Fig. 5). Only quartz 
survives from the original mineralogy in the most altered pegmatite. The 
pinite is dated at 542 Ma (Parnell et al., 2014), i.e., precisely at the 
Precambrian-Cambrian boundary (Fig. 7). The high precision date in-
dicates that the pinite has not been altered by subsequent alteration; and 
pinitized clasts are also found as clasts in the overlying Cambrian 
sandstone. Detailed petrographic study by electron microscopy shows 
that REEs and strontium were concentrated as authigenic phosphates. 

The phosphates occur in clusters within the pinite. Most phosphate 
crystals measure 10 to 50 μm, but some reach 100 μm size. They have a 
variable chemistry, in particular the presence/absence of REEs and 
exhibiting a wide range of strontium contents (8.7 to 19.4 wt% SrO). 
They are attributable to the family of APS (aluminium phosphate sul-
phate) minerals, i.e. they represent a concentration of phosphorus, 
sulphur, and variable amounts of strontium and REEs. The major vari-
ations in the APS solid solution series are in the relative proportions of 
the end members svanbergite (SrAl3[PO4,SO4]OH6), florencite 
(REEAl3(PO4)2OH6) and goyazite (SrAl3(PO3⋅(O0.5(OH)0.5))2(OH)6). 
They are commonly associated with calcium- and barium-bearing 
equivalents woodhouseite CaAl3(PO4)(SO4)(OH)6, crandallite 
CaAl3(PO4)(PO3OH)(OH)6 and gorceixite BaAl3(PO4)(PO3OH)(OH)6. 
The REE-bearing crystals in the Scottish pinite have similar strontium 
and total REE contents (Table 1), and are intermediate in composition 
between svanbergite and florencite, but additionally have some calcium 
substitution. In many cases the crystals are zoned, and have a REE- 
bearing core, followed by zones of increasing strontium content but 
without REEs (Figs. 8, 9). The REEs identified are praseodymium, neo-
dymium, samarium and gadolinium, which are present at a concentra-
tion that could be resolved by the analytical system. It is likely that lower 
concentrations of other REEs are also present. Most analyses of the non- 
REE phases include high levels of sulphur and at least some calcium, 
placing them intermediate between svanbergite and woodhouseite 
(Table 1). The evolution of mineralogy implies not just that strontium 
was available and mobile, but there was a progressive increase in 
strontium availability. 

In some cases, the APS minerals are associated with authigenic 
bladed masses of the aluminium oxy-hydroxide mineral diaspore 
(Fig. 8). Diaspore typically occurs in weathering horizons (Mordberg, 
1999; Cloutis and Bell, 2000), and the association of strontium-rich APS 
minerals with diaspore is recorded in numerous alteration profiles 

elsewhere (Mordberg, 1999; Milu et al., 2004; Voudouris and Melfos, 
2012; Hikov and Velinova, 2018). Another alteration profile of similar 
age (late Neoproterozoic) on apatite-rich basement in the Baltic region 
contains APS minerals like the example in Scotland (Vircava et al., 
2015). 

Additionally, the pinite contains sub-millimetre size aggregates of 
tourmaline (Fig. 8). The tourmaline is described by Ferguson et al. 
(1998), who suggested that the boron required for tourmaline formation 

Fig. 4. Schematic evolution of REEs at sub-Cambrian surface. Exposed REE-bearing pegmatites weathered to form (1) monazite placers, (2) weathered supergene 
ores, followed by Cambrian transgression and (3) enrichment of REEs in earliest Cambrian sediments. 

Fig. 5. Field images of alteration profile at Precambrian-Cambrian boundary, 
Scotland. A, Coloured phyllosilicate layer on Lewisian gneiss basement, over-
lain by Cambrian sediments. B, Pegmatite (pink, feldspathic), impregnated by 
alteration phyllosilicates (green). (For interpretation of the references to colour 
in this figure legend, the reader is referred to the web version of this article.) 
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was introduced from seawater during the post-unconformity Cambrian 
transgression. If the strontium and REEs were derived from weathering 
of the sub-Cambrian basement, it is likely that this was also the source of 
the boron. Regardless of the origin of the boron, the diverse mineralogy 
emphasizes that a range of trace elements was concentrated at the 
Precambrian-Cambrian boundary. 

3.2. REE concentration: weathered granites and pegmatites 

The rocks below the surface include many outcrops of granite, and 
particularly pegmatite, at the surface (Fig. 4). Commonly, granites are 
relatively resistant, and are the rocks at which downward erosion ter-
minates or is slowed down, which increases their proportional outcrop. 
They also form topographic highs above peneplains (inselbergs). Gran-
ites and pegmatites at the sub-Cambrian surface were exposed to pro-
longed alteration. The fate of granites during weathering varies with 
climatic conditions, which control the relative importance of mechani-
cal erosion and chemical alteration. Mechanical erosion favours the 
formation of placer deposits, while leaching favours the formation of 
new minerals by remobilization. Rare earth elements could be concen-
trated by either process, described in an ore deposit model (Dill, 2017). 

Fig. 6. Slab of altered Precambrian gneiss at Precambrian-Cambrian boundary, 
Scotland, coloured green by chromium-rich fuchsite. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web 
version of this article.) 

Fig. 7. Schematic section of alteration profile at Precambrian-Cambrian boundary, Scotland. Archean gneiss and Proterozoic pegmatite were altered to phyllosi-
licates at 542 Ma before transgression by Cambrian sandstone. 

Table 1 
Sample analyses for zoned mineral (Fig. 9) in altered phyllosilicate, Precambrian-Cambrian boundary, Scotland. Core is intermediate florencite-svanbergite, inner zone 
is intermediate woodhouseite-svanbergite, and outer zone is closest to svanbergite. Proportion of strontium increases progressively outwards.   

Core    Inner    Outer     

1 2 3 4 5 6 7 8 9 10 11 12 

F 0.96 1.11 1.25 0.43         
Al2O3 33.08 32.98 33.75 33.50 34.90 35.45 35.13 35.40 34.54 34.45 35.28 35.22 
P2O5 26.07 25.77 26.59 24.13 17.59 17.44 17.87 17.91 17.22 16.95 17.34 17.56 
SO3 5.85 5.63 5.69 7.85 17.64 18.31 16.88 17.99 18.31 18.29 18.59 18.58 
CaO 3.35 3.52 3.36 2.64 5.63 5.42 5.67 4.98 2.43 2.28 2.14 2.22 
SrO 8.85 8.71 9.73 9.81 12.80 13.07 12.24 14.05 18.57 18.76 19.26 19.35 
BaO 0.00 0.00 0.00 0.00 0.00 0.28 0.83 0.00 0.00 0.00 0.00 0.00 

La2O3 1.01 1.10 1.18 2.15         
Ce2O3 2.45 2.35 2.84 3.75         
Pr2O3 0.56 0.70 0.76 0.72         
Nd2O3 4.80 4.80 4.17 3.74         
Sm2O3 1.55 1.46 1.03 0.84         
Gd2O3 0.00 0.56 0.54 0.00         
-O ≡ F − 0.40 − 0.47 − 0.53 − 0.18         
Total 88.13 88.22 90.36 89.38 88.55 89.97 88.62 90.33 91.07 90.74 92.62 92.93  
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Studies in numerous parts of the world show that rare earth elements 
become concentrated and/or fractionated during weathering processes 
in granites (e.g., Sanematsu et al., 2009; Foley and Ayuso, 2015; Pa-
drones et al., 2017; Fu et al., 2019; Sababa et al., 2021). The vein-like 
morphology of pegmatites makes them pathways for the penetration 
of weathering (Dill et al., 2015; Dill, 2017), which could lead to their 
preferential alteration. 

Three examples reviewed from recent literature demonstrate the 
potential of the Precambrian-Cambrian boundary for the concentration 
of REEs. 

In the southern Sinai, Egypt, recent discoveries of gold in basal 
Cambrian sandstones have been attributed to derivation from the un-
derlying basement (Alshami, 2019; Surour et al., 2003; Saber, 2020). 
The gold is accompanied by monazite, and an abundance of Neo-
proterozoic pegmatites immediately beneath the sandstone-basement 
unconformity (Abdelfadil et al., 2016) suggests the potential for REE 
resources. Monazite from these rocks is a known source of REEs and 
radio-elements in modern placers (Surour et al., 2003; El Ghaffar, 2018), 
so they were probably an equally fertile source during the early 
Cambrian. 

The Damaran Orogen, Namibia, includes valuable mineralized peg-
matites of late Neoproterozoic age (Fuchsloch et al., 2018; Ashworth 
et al., 2020). The basement surface was conspicuously incised before 
infill by Lower Cambrian sediments (Saylor and Grotzinger, 1996). 
Cambrian sediments derived from the orogen contain beds rich in heavy 
minerals with an order of magnitude greater REE content than other 
beds (Blanco et al., 2014). 

In addition to the gold accumulations in the Cambrian Flathead 
Formation, Wyoming, occurrences of the sandstone contain major re-
sources of monazite, up to 20 lb./ton (about 10 kg/t) (McKinney and 
Horst, 1953). The underlying Archean basement is rich in granites and 
pegmatites. The deposits in the Bald Mountain region were originally 
evaluated as a thorium resource, but they have since been re-evaluated 
for their REE concentration (Sutherland et al., 2013). 

Fig. 8. Backscattered electron images of altered phyllosilicate layer, 
Precambrian-Cambrian boundary, Scotland. A, Phyllosilicate containing crys-
tals of APS mineral (A), pyrophyllite (P) and diaspore (D); B, Radiating crystals 
of authigenic tourmaline. 

Fig. 9. Combined multi-layer electron image of APS mineral grain in altered phyllosilicate, Precambrian-Cambrian boundary, Rispond, Scotland. Grain is zoned from 
REE-rich phosphate core, outwards to zones with increasing strontium content. 
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3.3. REE concentration: weathered iron formation 

Another distinct Precambrian rock type that is commonly REE-rich is 
magnetite iron ore. Banded iron formation is widely distributed in the 
Precambrian (Klein, 2005), and it has been mined on most continents. 
The magnetite is commonly accompanied by apatite, which makes the 
ore rich in phosphorus, strontium and REEs. Large bodies of the iron ore 
form prominent hills on the sub-Cambrian surface, like granites (Chan 
et al., 1991). Ores in three regions show that the REE contents reach 
economic importance. 

In Missouri, the Pea Ridge iron ore deposit is high in apatite, and has 
been assessed for reworking of tailings to extract REEs (Whitten and 
Yancey, 1990; Nuelle et al., 1991; Seeger, 2000). Boulders of ore in 
unconformably overlying basal Cambrian sediments show that the ore 
metals were released at the surface. 

In the Adirondack Mountains, New York, and adjacent Ontario, 
Precambrian iron ores are widespread, and again tailings have been 
assessed as a source of REEs (Lupulescu et al., 2015; Taylor et al., 2019; 
Shah et al., 2021). The Adirondacks formed a topographic high during 
Cambrian sedimentation, and there is a prominent planar Precambrian- 
Cambrian unconformity which implies exposure of the REE-bearing ores 
at the Cambrian surface. So much iron was released that iron ore de-
posits were deposited and exploited within the Cambrian sandstone in 
Ontario (Ells, 1904) and occur in depressions on the unconformity sur-
face in New York (Chamberlain et al., 2019). 

In Sweden, two of the biggest REE prospects in Europe, at Kiruna 
(north Sweden) and in the Bergslagen ore field (south Sweden) are 
associated with Precambrian iron ores (Jonsson and Högdahl, 2013; 
Guthrie, 2023). Sporadic exposures of basal Cambrian sediments in 
these regions (Wickström and Stephens, 2020) suggest that the sub- 
Cambrian surface would have exposed them. 

3.4. Exploration strategy 

The examples of heavy mineral concentrations and iron formation 
cited above indicate that strategies for the exploration for REEs are 
applicable to Precambrian-Cambrian boundary sections where they are 
likely to be exposed. The rapid depletion of high-grade REE deposits 
means that future resources could eventually become dominated by low- 
grade ores and tailings, as cut-off grades fall. In this scenario, heavy 
mineral concentrations and iron ore tailings will become increasingly 
valuable. 

Among the numerous instances of heavy mineral concentrations on 
the sub-Cambrian surface (Parnell et al., 2014) are several examples of 
‘black sands’. Deposits of black sands occur in the Cambrian of Namibia 
(Blanco et al., 2014), Quebec (Gauthier et al., 1994), Korea (Kim and 
Lee, 2006) and Antarctica (Laird, 1981). Modern black sands are 
regarded as potential sources of REEs (Bartlett et al., 1992; Saini, 2012; 
Abdel-Karim et al., 2016; Peristeridou et al., 2022), and fossil equiva-
lents like those on the sub-Cambrian surface may be similarly REE-rich. 
The REEs in modern black sands reside particularly in monazite, which 
is attributed especially to the weathering and erosion of granites and 
pegmatites (Dawood and Abd El-Naby, 2007; Peristeridou et al., 2022; 
Khedr et al., 2023), as we propose here for mineral concentrations on the 
sub-Cambrian surface. 

There is a substantial effort to find pegmatite deposits, by companies 
exploring for lithium, niobium, tantalum and other elements (Linnen 
et al., 2012; Steiner, 2019). The exploration for pegmatites could be 
supplemented by exploration for pegmatite weathering residues rich in 
REEs, which would reduce the economic and other resource costs. 

Technology development for the exploitation of iron ore tailings for 
REEs is already at an advanced stage (Moran-Palacios et al., 2019; 
Abaka-Wood et al., 2022). World-class iron ore deposits, i.e., on a scale 
of billions tonnes of iron ore, with REE contents attracting prospectors, 
were exposed at the Precambrian-Cambrian boundary in Australia 
(Cook et al., 2022), USA (Grauch et al., 2010) and Sweden (Wanhainen 

et al., 2017). The sub-Cambrian surface is therefore a good target for 
further exploration. 

3.5. Accompanying strontium 

The petrographic evidence for alteration and denudation at the 
Precambrian-Cambrian boundary is matched by a global positive 
(heavy) strontium isotope excursion, recorded in marine carbonates, 
which is interpreted to be a result of enhanced continental weathering 
(Sawaki et al., 2008; Halverson et al., 2010; Li et al., 2013; Stammeier 
et al., 2019; Zhang et al., 2020). The weathering of granites and peg-
matites releases strontium, especially from micas and feldspars (Bain 
and Bacon, 1994; Ma and Liu, 2001), so exposure of these rocks on the 
sub-Cambrian surface would have made strontium available, possibly at 
anomalous levels. Modern weathering of a Precambrian granite- 
greenstone terrane in North America, similar to what was exposed on 
the sub-Cambrian surface, yields water with a heavy strontium isotope 
composition (Stevenson et al., 2018). The strontium isotope composi-
tion of the alteration phyllosilicate (pinite) on the sub-Cambrian surface 
in Scotland is also markedly heavy, consistent with the weathering of 
continental crustal rocks (Parnell et al., 2014). The increased weath-
ering is in turn linked to the delivery of nutrients to the ocean, which 
may have supported the Cambrian Explosion (Zhang et al., 2014; 
Stammeier et al., 2019). The weathering also delivered calcium, which 
could be used for biocalcification by the Cambrian biota (Brennan et al., 
2004; Berner, 2004; Bengtson, 2004). 

3.6. Global sub-Cambrian alteration 

The altered surface in Scotland represents alteration and denudation 
recorded globally in the sub-Cambrian section. Even pinite is recorded 
elsewhere below the unconformity, in North America (Simpson et al., 
2002) and Asia (Kim and Lee, 2003). The large number of exposures of 
the sub-Cambrian unconformity globally show alteration to a depth 
exceeding 10 m, and even 100 m in ore deposits (e.g., Di Prisco and 
Springer, 1991; May and Dinkowitz, 1996; Avigad et al., 2005). Previous 
calculations (Parnell et al., 2014) assuming a conservative mean denu-
dation depth of 1 m suggest a yield of over 7 × 1016 kg rock. The crustal 
mean value for REEs in that rock would represent 100 times the current 
content dissolved in the world’s oceans. However, considering the 
exceptional thicknesses of Lower Cambrian quartz sandstone derived by 
erosion of the sub-Cambrian surface (Avigad et al., 2005; Peters and 
Gaines, 2012; Poursoltani, 2020), the denudation could well have been 
an order of magnitude greater, and the REE release into the oceans 
would have been correspondingly greater. The early Cambrian oceans 
were highly metalliferous, notably in REEs (Schröder and Grotzinger, 
2007, Pi et al. 2013, Abedini and Calagari, 2017), which implies a direct 
link between erosion and ocean chemistry. 

4. Conclusions 

The Precambrian-Cambrian boundary is marked, globally, by the 
intense weathering of Precambrian rocks followed by widespread 
peneplanation. This resulted in heavy mineral (placer) and authigenic 
ore deposits. The link between weathering and deposit formation at this 
particular time implies that the sub-Cambrian surface is a valuable 
vector in mineral exploration. Petrographic study of the Precambrian- 
Cambrian boundary section in Scotland shows that:  

(i) Alteration conspicuously affected the Precambrian substrate, 
including pegmatite veins, below the boundary, indicating a 
mechanism for the availability of critical elements.  

(ii) The alteration pinite extends down the pegmatites further than in 
other rocks, which therefore contributed disproportionately to 
the rock solute. 
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(iii) The alteration pinite layer can be traced for tens of kilometres, 
which together with records from other continents indicates a 
globally significant delivery of rock solute into the oceans.  

(iv) The alteration pinite layer contains authigenic strontium/rare 
earth-bearing phosphates, indicating the mobility of strontium 
and REEs during the alteration event.  

(v) The authigenic strontium-rich phases in the alteration pinite 
layer represent a signature of continental weathering. 
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