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Hard sphere (HS) shear, longitudinal, cross and bulk viscosities and the thermal conductivity
are obtained by molecular dynamics (MD) simulations, covering the entire density range from the
dilute fluid to the solid crystal near close packing. The transport coefficient data for the HS crystal
are largely new and display, unlike for the fluid, a surprisingly simple behavior in that they can be
represented well by a simple function of the density compressibility factor.

In contrast to the other four transport coefficients (which diverge), the bulk viscosity in the solid
is quite small and decreases rapidly with increasing density, tending to zero in the close packed limit.
The so-called cross viscosity exhibits a different behavior to the other viscosities, in being negative
over the entire solid range, and changes sign from negative to positive on increasing the density in
the fluid phase.

The extent to which the viscosity tensor and thermal conductivity of the HS crystal can be
represented by Revised Enskog Theory (RET) is investigated. The RET expressions are sums of an
instantaneous (I), a kinetic (K) and a so-called ‘α’ part. The I part of the transport coefficients
evaluated directly by MD are statistically indistinguishable from those of the corresponding kinetic
theory (Enskog and RET) expressions. For the K part the integral over the spatial two-particle
distribution function at contact was determined and the α part was estimated using the direct
correlation function and density functional theory approximations.

All three parts were determined in this work which allowed the accuracy of RET for solid systems
to be assessed rigorously. It is found that in the case of the thermal conductivity the predictions of
RET are in excellent agreement with the MD results. Also, for the shear viscosity the agreement
over the entire solid phase is quite good, but is considerably worse for the three remaining viscosities
in the solid phase.

I. INTRODUCTION

When various regions of a system translate with differ-
ent velocities a viscous stress arises which is proportional
to the rate of change of deformation over time (strain
rate). The viscosity tensor is the proportionality coeffi-
cient, which characterizes the internal friction or rate of
momentum dissipation occurring in a system in response
to the velocity gradients. In addition, the presence in
the medium of a temperature gradient induces the trans-
port of energy or a heat flux, which can be described by
Fourier’s linear relation qi = λij∇jT , where λij is the
thermal conductivity tensor, which measures the rate of
energy transfer in the medium.

The transport coefficients (TC) characterizing viscos-
ity and thermal conductivity are the primary physical
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quantities of fundamental interest and practical impor-
tance in non-equilibrium studies. Kinetic theory based
on the Boltzmann transport equation provides consider-
able insight into these TC [1]. The Boltzmann equation
describes the time evolution of the single-particle veloc-
ity and position distribution function for a dilute system.
The method of its solution, proposed by Chapman and
Enskog, provides a basis for the computation of the vis-
cosities, the thermal conductivities and diffusion coeffi-
cients for both simple gases and gas mixtures [1–3].

The Boltzmann equation has, however, a number of as-
sumptions, for example, that the state of the system is de-
scribed by a single-particle distribution function, and the
particles move freely for most of the time and collisions
between particle pairs are instantaneous. In addition it is
assumed that the number of collisions which take place in
small regions of space over short intervals of time can be
estimated with a probabilistic assumption, the colliding
particles are uncorrelated before their collision, and that
no excluded volume effects are included. Consequently,
Boltzmann’s equation and the methods used to solve it
are basically only applicable for dilute systems.

For particle systems at higher densities additional fea-
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tures such as finite particle-size effects become relevant
and should be taken into account in any realistic descrip-
tion. Such a generalization of Boltzmann’s approach has
been made for hard sphere (HS) systems and this exten-
sion is known as Enskog theory [1, 2]. The HS system
aspect of this generalization means that all collisions be-
tween particles are instantaneous and binary, and the
difference in location of the centers of the two colliding
particles is well defined. The fact that this analytic de-
velopment can be made successfully is noteworthy. The
essence of Enskog’s theory is to assume that there is
a velocity-independent spatial correlation between par-
ticles which is specified by the spatial pair correlation
function for an equilibrium system with a uniform den-
sity. The Enskog method was used to derive formulas for
the density dependence of the shear and bulk viscosi-
ties, thermal conductivity and self-diffusion coefficient
[1, 2, 4]. A comparison with ‘exact’ molecular dynamics
simulation results has demonstrated that Enskog’s for-
mulas describe the transport properties of the HS fluid
very well and the observed differences at higher fluid den-
sities can be ascribed mainly to the fact that Enskog the-
ory, like the Boltzmann approach, ignores velocity corre-
lations between the colliding particles.

A more general approach known as ’Revised Enskog
Theory’ (RET) was proposed by van Beijeren and Ernst
[5] in which the original Enskog equation was replaced
by one in which a spatially dependent pair distribution
function for the particles was used. With RET a more
accurate description of the transport coefficients of gas
mixtures was obtained [5–7].

In 1990 Kirkpatrick et al. [8] used the RET approach
to derive the dissipative linear equations of elasticity and
obtained expressions for the corresponding transport co-
efficients. It is expected that these expressions may be
exploited to describe a hard sphere crystal. These for-
mulas are however, given in terms of integrals involving
a multidimensional, anisotropic pair correlation function
and thus are somewhat formal and the practicalities of
evaluating them were not considered.

This possible extension of kinetic theory to a crystal
has yet to be tested, as far as we are aware, mainly due
to the lack of a molecular dynamics (MD) simulation
data for the HS crystal TC and problems with obtaining
reliable results for the solid pair correlation function and
the components of the elastic moduli tensor required in
the theory.

This work addresses these issues by achieving two main
goals. First, ‘exact’ simulation data for the viscosity
tensor and thermal conductivity over the entire density
range of the HS system (with a focus on the crystal) is
determined by MD here. Secondly, the corresponding
RET expressions for the transport coefficients and their
various parts are calculated. It is by accomplishing these
two steps that the extent to which transport in the HS
solid can be described by RET can be assessed.

This study is organized as follows. In Section II the
MD calculation details of the TC of the hard sphere sys-

tem are described. The revised Enskog theory is dis-
cussed in Section III. In Section IV the main results for
the hard sphere fluid and solid are presented, also in this
section the revised Enskog theory is checked for accuracy
for the various elements of the viscosity tensor. The main
conclusions of the analysis are summarized in Section V.

II. MD CALCULATIONS OF THE TC

The solid HS structure is the fcc crystal for which the
viscosity tensor can be written as the general formula
[8, 9]

ηijkl = η1(δikδjl +δilδjk−δijδkl)+η2δijδkl +η3δ
(4)
ijkl, (1)

where ηp, (p = 1, 2, 3) are scalars which we will be re-
ferred to as the p-viscosities or just ‘viscosities’, δij is the

Kronecker symbol, δ
(4)
ijkl is a cubic invariant tensor which

is equal to unity if all indices are the same and otherwise
is zero. Each index represents here a Cartesian compo-
nent e.g., i = x, or y, or z. There are therefore for cubic
symmetry three nonzero independent components: (a)
ηxxxx = ηyyyy = ηzzzz, (b) ηxxyy = ηxxzz = ... = ηyyzz
and (c) ηxyxy = ... which in the Voigt notation [10] are,

η11 = ηxxxx = η1 + η2 + η3, (2a)

η12 = ηxxyy = η2 − η1, (2b)

η44 = ηxyxy = η1. (2c)

The viscosity, η12, does not appear to have a name in the
literature, and we refer to it here as the ‘cross’ viscosity.

The definitions of the p-viscosities in terms of the quan-
tities in Eq. (2) are,

η1 = η44, (3a)

η2 = η12 + η44, (3b)

η3 = η11 − η12 − 2η44. (3c)

For a fluid, the customary notation ηS = η44 for the
shear viscosity and ηL = η11 for the longitudinal viscosity
will also be used.

In isotropic liquid systems only two components are
independent and these are sufficient to characterize the
viscosity tensor [9, 11]. These can be any pair of the
ηij viscosities (where the index ij denotes the case of
11, 12 or 44 viscosity) but the most frequently employed
are those used with the Navier-Stokes equations i.e., the
shear viscosity ηS , and the bulk viscosity ηB which can
be expressed in terms of the other viscosity tensor com-
ponents. It is noteworthy that in a fluid because of the
isotropic condition, η11 − η12 − 2η44 = 0 (which follows
directly from Eq. (3c) for η3 = 0 in fluid) and conse-
quently the bulk viscosity can be defined in three ways:
ηB = η11 − 4η44/3 = η12 + 2η44/3 = (η11 + 2η12)/3. The
first equality is often used, probably because the cross-
viscosity is more difficult to determine by experiment,
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and it has to be obtained indirectly from the other mea-
surable viscosities (i.e., the shear and bulk) anyway. For
the crystal where the isotropic condition does not arise,
the expression for the bulk viscosity [9] is,

ηB =
1

3
(η11 + 2η12) =

1

3
(−η1 + 3η2 + η3) . (4)

Also due to the cubic symmetry, the thermal conduc-
tivity λij = λδij i.e., is described by a scalar.

Both the viscosities and thermal conductivity can be
evaluated with the molecular dynamics simulation meth-
ods [12, 13]. Because of the non-analytic nature of the
HS interaction, the transport coefficients of the HS sys-
tem are determined through the Einstein-Kubo-Helfand
(EKH) approach [9, 14, 15], instead of the conventional
Green-Kubo method [12]. The EKH expressions are for-
mulated in terms of averages of the Helfand moments,

Lα,β(∆t) = A⟨Gα(t0 + ∆t)Gβ(t0 + ∆t)⟩t0 , (5)

where ∆t is the correlation time, A = 1/2V kBT
2∆t for

the thermal conductivity and A = 1/2V kBT∆t for the
viscosities. The volume of the system is V , kB is the
Boltzmann constant, and T = 1 is the temperature. The
angular brackets ⟨. . . ⟩t0 denote an average over time ori-
gin, t0. The Helfand moment is defined as the integral of
the microscopic flux over a number of collisions, and is
composed of kinetic and potential terms Gα(t0 + ∆t) =

G
(k)
α (t0 + ∆t) +G

(c)
α (t0 + ∆t) collected in Table I for the

considered transport coefficients, from which the kinetic
kk, interaction cc, and cross kc parts of the transport
coefficients can be obtained: ηkkij , ηccij , ηkcij and λkk, λcc,

λkc. The index, α, β, refer to the calculated quantity
(first column in Table I). For example shear viscosity can
be calculated as follows η44 = ηxyxy = Lηxy,ηxy

, where

Lηxy,ηxy = 1/2V kBT∆t
〈
Gηxy (t0 + ∆t)Gηxy (t0 + ∆t)

〉
t0

and Gηxy (t0 + ∆t) = G
(k)
ηxy (t0 + ∆t) +G

(c)
ηxy (t0 + ∆t). The

thermal conductivity can be defined in the same way.
The transport coefficients of the HS system can also be

decomposed into the sum of a singular and non-singular
part, which is a unique feature of hard sphere and other
discontinuous hard core potential systems [16–19]. The
singular or ‘instantaneous’ part of the transport coeffi-
cient represents contributions to G at the time (t → 0)
when the first collision takes place and in this work the
latter name will be used because it more clearly indi-
cates the physical origin of the term. Exact formulas for
the instantaneous part of the viscosities which can be
computed directly in the simulations, have been derived
recently [16, 20],

η
(I)
S =

m2

2V kBT∆t

〈
b20
rij,xrij,y

rij

rij,xrij,y
rij

〉
, (6a)

η
(I)
12 =

m2

2V kBT∆t

〈
b20
rij,xrij,x

rij

rij,yrij,y
rij

〉
, (6b)

TABLE I. The terms in the EKH formulas in Eq. (5) for

the viscous stress and heat flux terms. The sum
∑coll

i,j is
over all interacting ij pairs of particles in the time interval
[t0, t0 +∆t], coll is the number of collisions, ei is the internal
energy of i-th particle, ∆vi,x is the x Cartesian component
of the velocity change of i-th particle, and ∆ei is the internal
energy change after and before a collision of i-th particle.
The α in the column headings represents in a generic way
the component of the thermal conductivity or viscosities for
different combinations of the Cartesian components.

α G
(k)
α (t0 +∆t) G

(c)
α (t0 +∆t)

λxx

∫ t0+∆t

t0

∑N
i vi,xeidt

∑coll
i,j rij,x∆ei

ηxx
∫ t0+∆t

t0

∑N
i mivi,xvi,xdt

∑coll
i,j rij,xmi∆vi,x

ηxy
∫ t0+∆t

t0

∑N
i mivi,xvi,ydt

∑coll
i,j rij,xmi∆vi,y

η
(I)
L =

m2

2V kBT∆t

〈
b20
rij,xrij,x

rij

rij,xrij,x
rij

〉
, (6c)

η
(I)
B =

m2

18V kBT∆t

〈
b20σ

2
〉
, (6d)

where m is the mass of the particle, and b0 = vij · r̂ij .
For thermal conductivity the instantaneous part is

λ(I) =
1

6V kBT 2∆t

〈
3∑

a=1

[rij,a∆ei]
2

〉
, (6e)

where the internal energy of i-th particle is ei =∑3
a=1 p

2
i,a/2m, and ∆ei = e+i − e−i where + and −

indicate after and before the collision, respectively. In
the calculations, r̂ij = rij/rij is the unit vector, where
rij = ri − rj is the vector between the HS i and j par-
ticle positions, and rij,x, rij,y, rij,z are the distances be-
tween ij particles in cartesian coordinates on collision.
vij = vi − vj is the velocity difference between HS par-
ticles.

As will be shown below the ability now to evaluate
these instantaneous viscous quantities is crucial to de-
scribe fully transport properties in the HS crystal.

The transport coefficient calculations were performed
mainly using the DynamO program [21] employing differ-
ent system sizes, N = 2048, 4000, 8788, 16384, 37044 and
131072 particles in a cubic simulation box, under periodic
boundary conditions [12]. In these simulations the sys-
tem was equilibrated for 105 collisions per particle, and
then production data were collected over the following
1.5 × 106 collisions per particle (which means 1.64 × 109

equilibrated collisions, and 2.46 × 1010 collisions in total
in the case of N=16384). The chosen equilibration time
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is sufficient to ensure that the considered transport quan-
tities are free from the influence of the initial parameters.
Each simulation was conducted at least 10 − 20 times to
improve the statistics, and each density was started with
a different set of initial random velocities. Statistical er-
rors in all simulation property averages were estimated by
the block average method [12]. Some calculations were
performed also with a home-made code, e.g., to compute
the instantaneous parts of viscosities and thermal con-
ductivity.

In the case of the transport coefficients the N -
dependence may be quite significant even for quite large
systems e.g., in the case of the self-diffusion coefficient
(D) the dependence is ∼ N−1/3 [22–25]. Thus, a care-
ful check of the system size dependence of viscosities is
needed to determine the thermodynamic limit values, es-
pecially as an oscillatory behavior at smaller N in the
value of the shear viscosity has been observed [26]. The
present MD calculations indicate that the HS viscosi-
ties, ηij , approach the thermodynamic limit as ∼ N−1.
In the case of thermal conductivity, this dependence is
∼ N−2/3, as was shown previously [27]. The present
calculations show that this slower convergence comes
from the non-singular part of thermal conductivity as
the instantaneous part has an N−dependence of the type
∼ N−1, typical of thermodynamic and mechanical prop-
erties [13]. Details of the system size dependence of the
studied quantities are given in the Appendix A. All of
the MD HS transport coefficients for the fluid and solid
presented in this work are the values obtained by extrap-
olating to the thermodynamic limit.

III. RET DESCRIPTION OF THE TRANSPORT
PROPERTIES OF A HARD SPHERE CRYSTAL

The revised Enskog equation is an extension of the
Enskog kinetic equation by considering the special corre-
lation between particles through the position dependent
two-particle distribution function [5]. It is expected that
with this approach a nonuniform system may be approxi-
mately described. Kirkpatrick et al. [8] derived from the
linearized revised Enskog kinetic equations, the dissipa-
tive linearized equations of elasticity for the displacement
and temperature fields. With these equations a number
of expressions for the TC of the ideal (fcc) hard sphere
crystal were derived in terms of the (solid state) equilib-
rium two-particle distribution function at contact, which
are presented below.

In the case of the thermal conductivity, the derived
expression is shown to consist of two parts: the instan-
taneous (‘I’) contribution,

λ(I) = λ00b2
32

25π
ρZ, (7)

where

λ00 =
75kB
64σ2

(
kBT

mπ

)1/2

, (8)

b2 = 2πσ3/3 is the second virial coefficient of the hard
sphere system, ρ = N/V is the number density, and σ is
the sphere diameter; and the kinetic (‘K’) contribution,

λ(K) = λ0b2ρZ
[

1

Z2
+

6

5Z
+

9

25

−
(

1

3Z2
+

2

5Z
+

3

25

)
X +

(
8

15Z
+

32

75

)
X2

]
×
(

1 − X

3
− 2X2

3

)−1

, (9)

where λ0 = 1.02522λ00, and 1.02522 is the Sonine poly-
nomial correction factor [2, 28]. The ‘normalized’ func-
tion X = F ′/Z is used in the above equation. Note we
use Z (i.e., the nonideal gas part of the equation of state
compressibility factor of the HS crystal) for the symbol
F1 in Ref. 8.

The F ′ function has the following definition [8],

F ′ =
σ3

4ρV

∫
dr1dσ̂(5σ̂4

x−1)ϱ(r1)ϱ(r1−σσ̂)G2(r1, r1−σσ̂),

(10)
where ϱ(r1) is the one-particle density distribution func-
tion and ϱ(r1)ϱ(r1 − σσ̂)G2(r1, r1 − σσ̂) is related to the
equilibrium spatial two-particle distribution function at
contact. For the isotropic liquid, F ′ = 0 (X = 0), and the
sum of the above expressions in Eqs. (7) - (9) reduces to
the Enskog formula given in Eq. (25e) below. Thus, F ′

can be considered to be a measure of the structural and
indirectly the dynamical anisotropy in the HS crystal.

It is worth recalling [1] that RET theory, like the ki-
netic theory of gases, ignores the effects of correlated
motion e.g., it assumes no velocity correlation between
particles before the collision takes place (the recollision
is absent). Consequently, the true or exact expression for
λ is

λ = λRET + λ(Q) = λ(I) + λ(K) + λ(Q), (11)

where the residual part, denoted by a ‘Q’ superscript,
λ(Q), represents all contributions not included in the
RET expression (such as contributions which comes from
any effects due to velocity correlations between particles
that exist before their collision, recollisions or cyclic col-
lisions and many-particle collisions [1]). When the ratio,
λ/λRET ≈ 1 the contribution of λ(Q) is either small or
the various effects mutually cancel out, in which case the
revised kinetic theory description is then adequate. This
is the situation observed for the HS fluid where the rep-
resentation of λ by λE (in Eq. (25e)) is within 5 % even
in the dense fluid region [27, 29]. In the case of the HS
solid the contribution of λ(Q) is unknown and will be
considered in Section IV.

An assessment of this residual part will enable conclu-
sions to be made about the performance of the RET in
the case of the thermal conductivity of the HS crystal.
Also, note that the key to achieving such an assessment
is the determination of F ′ defined in Eq. (10).
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In the case of the viscosity tensor,

ηp = ηRET
p + η(Q)

p , (12)

where p = 1, 2, 3 and each RET p-viscosity component is
a sum of three parts [8],

ηRET
p = η(I)p + η(K)

p + η(α)p . (13)

The instantaneous part of the viscosities is,

η
(I)
1 = η00b2

48

25π
ρ(Z − F ′)

= η00b2
48

25π
ρZ(1 −X), (14a)

η
(I)
2 = 2η

(I)
1 , (14b)

η
(I)
3 = η00b2

96

10π
ρF ′ = η00b2

96

10π
ρZX, (14c)

where

η00 =
5

16σ2

(
mkBT

π

)1/2

. (15)

The kinetic part is

η
(K)
1 = η0b2ρ

1 + 4
5 (Z − F ′) + 4

25 (Z − F ′)2

Z + 2
3F

′

= η0b2ρZ
1
Z2 + 4

5Z (1 −X) + 4
25 (1 −X)2

1 + 2
3X

,(16a)

η
(K)
2 =

η
(K)
1 − η

(K)
3

3
, (16b)

η
(K)
3 = 2η0b2ρ

(
1 + 2

5Z + 3
5F

′)2
Z − F ′ − 2η

(K)
1

= 2η0b2ρZ
(
1
Z + 2

5 + 3
5X

)2
1 −X

− 2η
(K)
1 , (16c)

where η0 = 1.016η00.
Note, that just as for the thermal conductivity case the

instantaneous and kinetic parts of viscosities are func-

tions of Z and F ′ (or X) only. The third part, η
(α)
p in

Eq. (13) is the most complex contribution to determine.
It occurs only in the solid state (in the isotropic fluid

η
(α)
p = 0) where density fluctuations on a molecular scale

become a relevant macroscopic variable. The expressions
derived in Ref. 8 for this part can be written in the
following compact form,

η
(α)
1 = ρZE1F1, (17a)

η
(α)
2 = η

(α)
1 + ρZE2F2 − ρZE3F3, (17b)

η
(α)
3 = −2η

(α)
1 + 3ρZE3F3, (17c)

where the Ep represent the elastic terms and Fp are
mainly from the dissipative part calculations. Note that

η
(α)
p , just as for the instantaneous and kinetic parts are

proportional to the factor ρZ. The pure elastic terms
E1 = Cuα

44 /Cαα
44 , E2 = (Cuα

11 + 2Cuα
12 )/(Cαα

11 + 2Cαα
12 ) and

E3 = (Cuα
11 − Cuα

12 )/(Cαα
11 − Cαα

12 ), are the combinations
of the density functional theory (DFT) components of the
elastic moduli tensor. The elastic terms can be expressed
in terms of the equilibrium solid state two-particle direct
correlation function (DCF) (see Appendix B in Ref. 8) or
by the approximate DFT expressions [30]. The first ap-
proach is largely formal as for the crystal the two-particle
DCF is a structural quantity which is very difficult to
obtain in practice and only recently, in Ref. 31 has the
possibility of determining it been attempted. Some dis-
cussion on estimating the elastic terms from the DCF
approach in the dense crystal limit is given in Appendix
D. The second approach based on the DFT approxima-
tion is more feasible but less accurate, and limited to a
specific density range which is discussed in Appendix C.

The Fp functions in Eqs. (17) are,

F1 = η00
16

5
W

[
1

5

(
1 − X̄

)
− π

16

(
1

Z
+

2

5
(1 −X)

) 3
2 + X̄
3
2 + X

]
, (18a)

F2 = η00
16

15
W, (18b)

F3 = η00
16

15
W

[(
2

5
+

3

5
X̄

)
−π

8

1 − X̄

1 −X

(
1

Z
+

2

5
+

3

5
X

)]
, (18c)

where, as above, X = F ′/Z and X̄ = F̄ ′/Z̄, and W =
Z̄/Z are defined in terms of the Z̄, and F̄ ′.

The function Z̄ is defined in Eq. (4.21a) in Ref. 8 and
is,

Z̄ =
a2σ2

6ρV

∫
dr1dσ̂[σ̂ · ∇1ϱ(r1)]

×ϱ(r1 − σσ̂)G2(r1, r1 − σσ̂). (19)

Taking into account the fact that ϱ(r) is rep-
resented well by the N Gaussian distributions
π−3/2α−3/2a−3 exp(−(R − r)2/a2α) where α de-
scribes here the (dimensionless) width of the local
density distribution and a = (4/ρ)1/3 is the real-space
lattice-constant, the above quantity in Eq. (19) is,

Z̄ = −σ2

3α

∫
dr1dσ̂[r1 · σ̂]

×ϱ(r1)ϱ(r1 − σσ̂)G2(r1, r1 − σσ̂). (20)
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In the same way, Eq. (4.21b) in Ref. 8 for F̄ ′ can be
expressed as,

F̄ ′ = −σ2

2α

∫
dr1dσ̂[r1 · σ̂](5σ̂4

x − 1)

×ϱ(r1)ϱ(r1 − σσ̂)G2(r1, r1 − σσ̂). (21)

Therefore, the evaluation of the Fp terms requires cal-
culations of the quantities, F ′, Z̄, F̄ ′, and this issue is
considered in Section IV C.

The expressions in Eqs. (14) (16) and (17) are summa-
rized below in the Voigt notation. For the instantaneous
parts of the viscosities these are,

η
(I)
44 = η00b2ρZ

48

25π
(1 −X), (22a)

η
(I)
12 = η

(I)
44 , (22b)

η
(I)
11 = 3η

(I)
44 + η00b2ρZ

96

10π
X, (22c)

η
(I)
B =

5

3
η
(I)
44 + η00b2ρZ

96

30π
X, (22d)

for the kinetic parts

η
(K)
44

ρZ
= η0b2

1
Z2 + 4

5Z (1 −X) + 4
25 (1 −X)2

1 + 2
3X

, (23a)

η
(K)
12

ρZ
= −η0b2

2

3

(
1
Z + 2

5 + 3
5X

)2
1 −X

, (23b)

η
(K)
11

ρZ
= η0b2

4

3

(
1
Z + 2

5 + 3
5X

)2
1 −X

, (23c)

η
(K)
B

ρZ
=

1

3

(
η
(K)
11 + 2η

(K)
12

)
= 0, (23d)

and for the α parts there are

η
(α)
44

ρZ
= E1F1, (24a)

η
(α)
12

ρZ
= E2F2 − E3F3, (24b)

η
(α)
11

ρZ
= E2F2 + 2E3F3, (24c)

η
(α)
B

ρZ
= E2F2. (24d)

The expressions presented above are used to obtain the
RET results for TC in the Section IV C.

IV. RESULTS AND DISCUSSION

In this section the main results for the hard sphere fluid
and solid are presented. This section also focuses on the
assessment of the accuracy of the Revised Enskog Theory
by comparison with the ‘exact’ MD quantity values. First
the fluid phase is considered.

A. FLUID

In this work the equation of state, Z, is considered to
be a known function of density and given by the mKLM
formula for the fluid and the S2 formula for the solid from
our previous studies [22].

In this section the results of an analysis of the transport
coefficients of the HS fluid are presented. This region has
been the subject of a number of intensive investigations
in the past [22, 27, 29, 33–37]. Here some viscosities are
reported at state points not given previously. Also the
different parts of the TC are presented separately, includ-
ing the instantaneous contribution. All three components
of the viscosity tensor are determined in order to com-
pare with those for the solid, and to consider the different
bulk viscosity formulations. These data are given in Ta-
bles IV - VIII in Appendix A. Some of the total ηS and
λ values were given in our previous studies [22, 27] and
are included here for completeness, together with their
kk, kc, cc, and I separated contributions which were not
always presented in those original publications.

In Figs. 1 - 2 the total, and kk, kc, cc and I parts of the
viscosities and thermal conductivity are presented, and
show a number of already known types of behavior. For
example, the low density region is dominated by the kk
part and the dense region by the cc part in all cases. The
low density limiting values agree with those from kinetic
theory [2]. In the freezing region the cc part increases
considerably with density and the kk part becomes neg-
ligible. The bulk viscosity originates from the cc part
only.

As all parts of ηL, ηS and ηB are non-negative it follows
from the definition in Eq. (4) that the kk, kc parts of η12
must be negative in a HS fluid below a certain density.
Consequently in the low density region dominated by the
kk part the cross viscosity η12 is negative below ρ ∼ 0.44
(see Fig. 1b). Additionally, due to the fact that ηkkB =
ηkcB = 0 a number of relations for the kk and kc parts are
met, i.e., ηkkL = −2ηkk12 , ηkkS = −3ηkk12 /2, ηkkL = 4ηkkS /3,
ηkcL = −2ηkc12 , ηkcS = −3ηkc12/2 and ηkcL = 4ηkcS /3. All
these relations are seen to be obeyed well in the data
presented in Fig. 1 and Tables IV - VIII, and are fulfilled
by the Enskog relations below. These relations can be
considered to be a useful cross check for the viscosity
calculations.

For the single component HS fluid the RET theory
gives the same expressions as Enskog theory (compare
Eqs. (7)-(9) and (22)-(24) with F ′ = 0 or X = 0, and
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FIG. 1. The values of the transport coefficients (a) ηL, (b) η12, (c) ηS and (d) ηB , and their components (kk, kc, cc, I) are shown
as a function of density for the HS fluid and in its metastable fluid region. The red solid circles are the total MD transport
coefficient values of this work (see Tables IV - VIII in Appendix A). All of the sets of data are values obtained by extrapolation
to the thermodynamic limit. The red crosses, black right-triangles and blue open squares are the kk, kc, cc components of the
viscosities, respectively. The open black circles are the instantaneous (singular) part of the presented transport coefficients,
calculated from MD. In frame (d) the acronym ’Smith’ refers to data from Ref. 32 and ’SH’ from Ref. 29. The solid green lines
are the Enskog formulas from Eqs. (25) for the total and kk, kc, cc components. The solid magenta line is the instantaneous
(singular) part of Enskog prediction. The vertical thin dashed line indicates the freezing density, ρfr = 0.9392.

η3 = 0) and the corresponding expressions are [2, 36],

ηES = η00
b2ρ

Z

[
1.016

(
1 +

2

5
Z
)2

+
48

25π
Z2

]

= η00
b2ρ

Z
[
1.016 + 0.8128Z + 0.7737Z2

]
,(25a)

ηE12 = −η00
b2ρ

Z

[
1.016

2

3

(
1 +

2

5
Z
)2

− 48

25π
Z2

]

= −η00
b2ρ

Z
[
0.6773 + 0.5419Z − 0.5028Z2

]
,(25b)

ηEL = η00
b2ρ

Z

[
1.016

4

3

(
1 +

2

5
Z
)2

+
144

25π
Z2

]

= η00
b2ρ

Z
[
1.3547 + 1.0837Z + 2.0502Z2

]
,(25c)

ηEB = η00b2ρ
16

5π
Z, (25d)

λE = λ00
b2ρ

Z

[
1.02522

(
1 +

3

5
Z
)2

+
32

25π
Z2

]

= λ00
b2ρ

Z
[
1.02522 + 1.2303Z + 0.7765Z2

]
.(25e)
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FIG. 2. As for Fig. 1, except that in this instance the thermal
conductivity, λ, is presented.
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FIG. 3. The ratio of total ηij/η
E
ij (for shear, longitudinal and

bulk viscosities), and λ/λE for fluid states is presented. In
the case of the cross viscosity the difference, η12 − ηE

12 rather
than their ratio is shown in the inset. The Enskog formulas
for viscosities and thermal conductivity are from Eqs. (25).
The solid colored thin lines are only meant to guide the eye.

The two terms in the first line in the above equations
represent the non-singular and instantaneous (singular)
parts, respectively. In the second lines, the three terms
represent the kinetic (kk), cross (kc) and collisional (cc)
parts, respectively. In the case of the bulk viscosity in
Eq. (25d) only the instantaneous part is present.

In Figs. 1 and 2 the computed values of different trans-
port coefficients are compared with the Enskog theory
predictions in Eqs. (25) (the solid green lines). Figure
3 shows that the agreement up to ca. 0.7 is very good
in the cases of ηS , ηL, ηB while noticeable deviations
become visible for these viscosities in the dense region.
The behavior of η12 is different to the other viscosities

0 0.2 0.4 0.6 0.8
0.95

1

1.05

1.1

1.15

1.2

FIG. 4. The ratio ηS/η
E
S for the total value and individual

kk, kc and cc terms are presented as a function of density for
the fluid region. The Enskog formula for the shear viscosity
is defined in Eq. (25a). The solid colored thin lines are only
to guide the eye.

when compared with the Enskog formula values, in that
a reasonable agreement is also observed for the dense
fluid. Due to the sign change near 0.4, the difference,
η12− ηE12, instead of the ratio, is presented in the inset of
Fig. 3.

For λ the agreement is better than 5 % over the entire
fluid phase. This is evident in figure 3 where the ratio
TC/TCE for the various transport coefficients and their
Enskog predictions are shown.

It is noteworthy that in Fig. 3 and 4 there is a non-
monotonic increase of this ratio for shear viscosity and
where a small ‘hump’ at ρ ≈ 0.25 is evident. There is a
very good representation of this viscosity by the Enskog
equation in the density range, ρ ≈ 0.5 where ηS ∼= ηE

is observed. This feature is a result of a competition
between the kk and kc, cc parts (see Fig. 4) which means
that a low order polynomial cannot be used to describe
this behavior well.

All the calculated instantaneous parts made with the
formulas in Eqs. (6) implemented in MD are in excellent
agreement with the Enskog prediction for I-parts in Eqs.

(25). This confirms that the Enskog predictions for η
(I)
S ,

η
(I)
B , η

(I)
L and λ(I) are exact for all fluid densities as was

shown in [17] and [11].

Furthermore, because for an isotropic system η
(I)
3 = 0

the following relationship holds,

η
(I)
11 − η

(I)
12 − 2η

(I)
44 = 0. (26)

This equation can be considered to serve as a simple indi-
cator of the transition between isotropic and anisotropic
phases, which may be a useful condition as the instanta-
neous parts are not computationally demanding to obtain
and can be evaluated with considerable accuracy by MD.
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TABLE II. The constants ai, bi used in linear representation
of each TC for the solid as function of ρZ in Eq. (27).

Ai ai bi

η11 −0.1452 0.4266

η12 0.0451 −0.1764

η44 −0.0859 0.5058

ηB −0.0046 0.0066

λ −0.5012 1.8192

TABLE III. The constants ai, bi, and ci used in the second-
order polynomial representation of each TC for the solid as
function of ρZ which is given in Eq. (28).

Ai ai bi ci

η11 0.5116 −1.4438 1.2470

η12 0.2112 −0.4918 0.1634

η44 −0.0767 0.1073 0.3846

ηB 0.0220 −0.0622 0.0440

λ 0.1155 −0.7841 1.9908

In the next two subsections IV B and IV C the HS solid
state and its RET description are analyzed.

B. SOLID

The density dependence of the total, and kk, kc, cc
parts of the transport coefficients η11, η12, η44, ηB , and
λ in the solid region are presented, in Figs. 5 - 6 and in
Tables IV - VIII given in Appendix A. The figures show
that for all TC in the solid phase only the cc part is signif-
icant, and the kk, kc components are negligible and are
zero in the case of ηB . The η12 viscosity is negative over
the entire solid phase. All transport coefficients diverge
in the close packing (cp) limit apart from ηB which goes
to zero. In the figures 5 - 6 the MD calculated instanta-
neous part is also presented, and as may be seen, for all
the TC (including ηB) the I component monotonically
increases strongly with density.

The assessment of the results simplifies considerably
if the data are presented as the ratio Ai/ρZ, where Ai

stands for η11, η12, η44, ηB or λ, and i = 1, ..., 5. As may
be seen in Figs. 7 - 8 this ratio can be approximated
well by the simple linear function of the form, aiρ + bi,
where the constants, ai and bi are given for each TC in
Table II. Therefore, to a good approximation, in the solid
all the TC are well represented by the form (aρ + b)ρZ.
If it is further observed that 1/Z is represented well by
the linear formula ≈ 0.2547(ρcp − ρ) (a similar feature
was noted for the dense fluid branch by Le Fevre [38]) an
explicit approximate generic density dependent formula
for the solid HS transport coefficients is,

Ai ≈ (aiρ + bi)ρZ ≈ (aiρ + bi)
3.93ρ

ρcp − ρ
. (27)

The existence of such a simple and at the same time
relatively accurate representation of the TC in the HS
solid we consider to be a significant result. This obser-
vation could facilitate the discovery of interrelationships
between different TC, which have been the subject of a
number of previous theoretical studies of fluids [34, 35].
For example, the ratio, η44/η12 is approximately constant
because the magnitude of the parameter ai (or slope with
density) for both quantities is small. From the above for-
mula in Eq. (27) it may be concluded that the asymptotic
behavior of Ai(ρ → ρcp) follows that of Z and is the same
for all of the transport coefficients.

Almost perfect agreement can be obtained, even close
to melting, by replacing the above linear approximation
by a second-order polynomial,

Ai ≈ (aiρ
2 + biρ + ci)ρZ, (28)

where the values of ai, bi, and ci are given for each TC in
Table III. As the TC of the solid is represented almost en-
tirely by the cc part, the above approximate description
is to a large extent a description of the cc part.

In the case of the I part of the TC, several features may
be identified. For each Ai the I part is always positive
and becomes a quite relevant contribution on increasing
density. As already mentioned, in the fluid the calculated
values follow exactly from the I parts of the formulas in
Eqs. (25) which is visible as the magenta dots forming
horizontal lines in the graphs in Figs. 7 and 8. For λ
and ηB the horizontal line is exactly continued from the
fluid into the solid phase, until ρ → ρcp without any
change in the transition region. This indicates that Eqs.
(6) describe the I part of the HS system over the entire
density range of the system. The situation is different
for the I parts of the other three TC (η11, η12, and η44).
As may be seen in Fig. 7 there is a jump or discontinuity
which takes place in the freezing-to-melting metastable

transition region. The difference ∆i = A
(I)
i (ρf )/ρfZ −

A
(I)
i (ρm)/ρmZ (where ρf and ρm are the freezing and

melting densities, respectively) is positive in the case of
η11 and negative for η12 and η44. Moreover, the jump
is the same for the shear and cross parts, i.e., ∆2

∼=
∆3, and ∆1

∼= −2∆3. Also, the density dependence of
the equation of state-scaled I part of TC, in the solid
phase, can be approximated well by a straight line with
a slight nonzero slope. These features of the I part will
be discussed within the context of the RET in the next
subsection IV C.

C. RET

Instantaneous and kinetic part of the TC

The importance of the quantity, F ′, is that it allows us
to obtain the kinetic contribution to the RET viscosities
and thermal conductivity from Eqs. (9) and (23). Also,
in the case of the thermal conductivity knowledge of F ′,
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FIG. 5. The values of the hard sphere solid transport coefficients (a) η11, (b) η12, (c) η44, (d) ηB and their components (kk, kc,
cc and I) are shown as a function of density. The red solid circles are the MD results (total value) of this work (see Tables IV -
VIII in Appendix A). All of the sets of data were obtained by extrapolating the N− dependent MD data to the thermodynamic
limit. The red crosses, black right-triangles and blue squares are the kk, kc, cc components of viscosities, respectively. The
open black circles are the instantaneous (singular) part of the presented transport coefficients (from MD). The vertical thin
dashed lines indicate from the left the melting (ρm = 1.0376) and close packing (ρcp =

√
2) densities.

allows us to determine λRET = λ(I)+λ(K), and therefore
to assess the relationship, λ(Q) = λ − λRET , and hence
the RET prediction of the thermal conductivity.

Thus, the function F ′ is a key quantity for the
RET treatment and it was calculated directly from its
definition in Eq. (10) and also from the I part of the
viscosities in Eqs. (14). In the first case, the calculations
consisted of building a two-dimensional histogram (or
surface) of the collisions of molecules. In the solid, each
collision was described in spherical coordinates by two
angles. The F ′ function is the integral of the histogram
surface for each density. The results of these calculations
are given in Fig. 9a, where the function X = F ′/Z
is presented. As is visible in the figure the values of
X obtained by the three approaches specified in the
caption (presented as solid black point, black crosses
and red pluses) are in good mutual agreement. This

is an important result as Fig. 9a indicates that, just
as for the Enskog expressions for the fluid, the RET
formulas describe exactly the I part of the TC in the
solid. Consequently, the behavior of the I part obtained
from MD in Figs. 7 and 8 can be explained with the
RET expressions in Eqs. (7) and (22). This includes the
observed jumps at the freezing-melting transition which
are ∆2 = ∆3 = −∆1/2 ∼= 0.2222X(ρm) ∼= −0.0499.
The X function is negative and weakly density depen-
dent and decreases to −0.25 in the close packing limit.
The characteristic extrapolated value, X(ρcp) = −0.25
can also be inferred by heuristic considerations which are
given in Appendix B. With the known F ′ or X and Eqs.
(9) and (23), the kinetic part of the RET contributions
to all TC can be obtained, and they are shown (as green
dots) in Figs. 7 - 8. The K parts divided by ρZ can be
seen to be well represented by a straight line for all the
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FIG. 6. As for Fig. 5, except that the thermal conductivity,
λ, data are presented.

TC.

For λ, there are at least two points to observe in Fig.
8: a) the K part is larger than the I part and both
contributions become almost equal at close packing, b)
the λ(Q) contribution is very small and almost constant
(i.e., it only very slightly decreases with rising density)
and is negative. The agreement with the simulation
data is within 2% over the entire solid phase, and it may
be concluded that in the solid phase the RET describes
the thermal conductivity almost exactly. In Ref. 27,
the relation λ = λRET (i.e., λ(Q) = 0) was taken as an
assumption which led to two solutions for X(ρ) which
represent this quantity well over the entire density range,
and has an almost constant value, i.e., X ≈ 0.2 and −0.2
(in approximation both solutions yield the same value
of λRET ). As is shown in this work the values of X and
F ′ are negative, and λ(Q) is very small, which makes the
assumption made in Ref. 27 quite plausible and justified.

In the case of the viscosities, as seen in Fig. 7, the K
part is lower in magnitude than the I part. The viscosity

components, η
(K)
11 and η

(K)
12 are weakly density dependent

and quite small (no larger than 20 % of the total value of
η11 and η12 near melting). The calculation of the kinetic
contribution to the bulk viscosity leads to the conclusion

that η
(K)
B is exactly zero, just as for the fluid. This means

that the sum η
(Q)
B +η

(α)
B is negative and well-represented

by −η
(I)
B = −(η

(I)
11 + 2η

(I)
12 )/3. Only in the case of the

shear viscosity is the K contribution substantial (and
about 37% of ηS).

In regard to the viscosity tensor, unlike for λ, knowl-
edge of the I and K parts is not sufficient to assess the

performance of the RET, some knowledge of the η
(α)
ij part

is also necessary.

α-part of the TC

This third part of the p-viscosities is much more de-
manding to assess than the other contributions. As de-

scribed in Eq. (24) of Sec. III the η
(α)
ij part can be

expressed as the product of ρZ and the elastic Ep and
dissipative Fp terms.

The Fp terms in η(α)

To obtain the Fp term, evaluations of the Z̄ and F̄ ′

functions in Eqs. (20) and (21) were carried out in the
same way as for calculations of F ′ in Eq. (10). The Z̄
quantity is a strongly increasing function with density
and F̄ ′ is negative and a strongly decreasing one. Both
vary as ∼ 1/α (where α is the dimensionless width of
the one-particle density distribution) as was indicated in
Ref. 8. The resultant ratios, X̄ and W together with
X are given as a function of density in Fig. 9a. In the
figure we observe that X and X̄ are very similar over
the density entire range although the functions F ′, F̄ ′,
Z and Z̄ differ significantly from each other. Also, the
considerations as for the X in the Appendix B, give the
same limiting value X̄(ρcp) = −0.25.

A noteworthy result seen in Fig. 9a is the quasi-linear
behavior of αW in particular its zero value in the close
packing limit. This is mainly due to the almost linear
density dependence of 1/Z in the solid and that αZ̄ is
small and weakly density dependent. Consequently Fig.
9b demonstrates that all of the αFp terms display an al-
most linear dependence with density and become exactly
zero at close packing. This trend indicates that at densi-

ties near to close packing the contribution of η
(α)
ij might

be negligible. Also, due to the fact that X(ρ) ∼= X̄(ρ) and
that X(ρ) has an almost constant value, the expressions
in Eqs. (18) can be represented well by the following
simplified forms,

F1 = η00
16

5

(
1

5
(1 −X) − π

16

(
1

Z
+

2

5
(1 −X)

))
W

∼= (0.03395ρ + 0.03847)W, (29a)

F2 = η00
16

15
W = 0.18806W, (29b)

F3 = η00
16

15

((
2

5
+

3

5
X

)
− π

8

(
1

Z
+

2

5
+

3

5
X

))
W

∼= (0.01516ρ + 0.00670)W. (29c)

Consequently the following approximate relations hold,
F1 ≈ 2

5F2 ≈ 4F3 ≈ η00(32/75)W = 0.0752W .

As mentioned above (see Eqs. (24)) the η
(α)
ij part di-

vided by ρZ is a product of the Fp term and the elastic Ep
term. Therefore, to obtain the contribution of this part,
basically, both of these terms are necessary. As has been
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FIG. 7. The ratios: (a) η11/ρZ, (b) η12/ρZ, (c) η44/ρZ, (d) ηB/ρZ and its RET components (I, K, α+Q) for hard spheres
are shown as a function of density for the dense fluid and solid phase (including the fluid metastable and solid metastable
regions). The red solid circles are the MD results (total value) of this work (see Tables IV - VIII in Appendix A). The open
black circles are the MD data for the instantaneous part. All of the sets of MD data were extrapolated to the thermodynamic
limit, whose values are presented on the figures. The magenta and green solid points are the I and K components of the
viscosities in RET, respectively. The open triangles are the sum of these instantaneous and kinetic parts (I +K) from RET.

The blue solid points are the (α+Q) component obtained as ηij − η
(I+K)
ij . The vertical thin dashed lines indicate from left the

freezing (ρfr = 0.9392), melting (ρm = 1.0376) and close packing (ρcp =
√
2) densities.

shown in Fig. 9b, the αFp term is relatively small (the
largest value is within 0.02 at the melting), decreases lin-
early with density and becomes practically zero at high
densities.

The Ep terms in ηα

The elastic terms (Ep) are functions of Cαu
ij , Cαα

ij i.e.,
the DFT components of the elastic modulus tensor, and
their estimation is not straightforward. A possible ap-
proach is to evaluate these elastic terms with the ap-
proximate DFT model based on an expansion around
reference liquid state [8, 30]. Such calculations were con-
ducted previously (not only for the HS system) mainly

in order to locate the freezing-melting transition. As is
known [30, 39] the DFT approach can provide only an
approximate description of the elastic coefficients even
if some higher order terms are included into the scheme
[40]. Also, as the crystal density increases, the calcu-
lated DFT elastic components become increasingly less
reliable and the calculated elastic constants deviate from
the known values of the elastic HS constants (see Ref.
40). Also, it is physically reasonable to expect that be-
cause an expansion about the liquid is performed such
an approach can be applied at solid densities not too far
from melting.

The results obtained for the elastic terms using the
approximate DFT approach are shown in Fig. 14 and
the details of the calculations are given in Appendix C.
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FIG. 8. As for Fig. 7, except that the thermal conductivity,
λ/ρZ, data are presented.

The DFT calculations show that all elastic terms Ep are
rather small in the density region considered. This gives
the magnitude of Ep/α to be of order 20 or less. Com-
bining these results for elastic terms with the results ob-
tained above for the Fp terms makes it possible to esti-
mate the third α part of the RET viscosity tensor, which
is shown in Fig. 10. These results indicate, that all vis-
cosities (apart from the shear viscosity) may not be well

described by the RET or that the η
(Q)
ij part is relevant

for them.
To summarize the situation, at moderate crystal

densities which are not too far from the melting density,
the order of magnitude estimates of the elastic com-
ponents obtained from the DFT approximation can be
considered to be reliable.

The question is, therefore, do the above conclusions
remain valid for the more dense solid, in particular at
densities close to ρcp? Note, because αFp goes to zero

in the ρ → ρcp limit, the η
(α)
ij part should also go to

zero if Ep/α were to be bounded in this limit. Therefore,
some estimation of the behavior of Ep/α at densities
close to ρcp is desirable. The approach which may be
helpful here, and not limited to the melting density
region, is that mentioned above based on Appendix B
in Ref. 8. This method requires calculations of so-called
H-functions which are integrals involving the pair
direct correlation functions (DCF) of the solid, c(r1, r2).
It should be appreciated that the DCF function is
multidimensional and directionally-dependent, which
is in practice a hardly accessible physical property. In
general the evaluation of the DCF and consequently also
the H-functions is a formidable task, and only recently
have some calculations of the DCF of a hard sphere
crystal been undertaken, which showed its appearance
in some special cases [31, 41]. In that work, [31] it was
demonstrated that the DCF of the crystal, like in the
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FIG. 9. In the top frame (a) the density dependence of the X,
X̄ and αW functions are presented. The blue solid squares,
black solid points, green solid triangles are the values calcu-
lated directly from MD simulation (using the equation of state
Z, Eqs. (10), (21) and (20)). The black crosses and red pluses
are the values obtained only from the instantaneous parts of
MD data (using Eqs. (14a) and (14c)). The magenta line rep-
resents the fit, αW = 0.05949(ρ−ρcp)

2−0.23993(ρ−ρcp). In
the bottom frame (b) the αFp vs ρ are shown. The points are
the values calculated from the simulations (from Eqs. (18)),
and the lines are obtained from the formulas in Eqs. (29).
The vertical thin dashed lines indicate from the left to right,
the melting (ρm = 1.0376) and close packing (ρcp =

√
2) den-

sities.

fluid, is a short ranged function which goes quickly to
zero for distances of about the size of the particle. This
means that the contribution to the integrals defining the
H-functions is negligible from distances larger than σ.
It can also be inferred that for small distances the DCF
function is almost linear or constant and to a large extent
isotropic (and weakly depends on direction). At larger
distances (but less than σ) the function is anisotropic,
changes significantly with distance and presumably is
also strongly density-dependent. Probably, for such
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0

FIG. 10. The ratios η
(α)
ij /ρZ estimated from the DFT ap-

proach, which are given by the colored solid points, are pre-
sented. The solid magenta diamond at the close packed den-
sity is the result estimated from theH integral approach given
in Appendix D. The solid thin lines are the fits to the data.
The vertical thin dashed lines indicate from left to right the
melting (ρm = 1.0376) and close packing (ρcp =

√
2) densi-

ties.

distances no general behavior can be established.
Taking into account these established general features

of the DCF and making some plausible assumptions
about the relevant contributions to the integrals some
estimation of the H-functions is possible, at least in
the high density region. This procedure is followed in
Appendix D where a simplified formula for the DCF
is considered. The main conclusion is that Ep/α is a
bounded quantity or (like αFp) even goes to zero in the

ρ → ρcp limit. Consequently, the η
(α)
ij /ρZ part of the

viscosities become negligible at high densities. This is
consistent with the trend in the DFT results seen in Fig.
10.

RET assessment

Finally, having ηij , the evaluated η
(I)
ij , η

(K)
ij and es-

timated η
(α)
ij an assessment of the accuracy of RET is

now possible. This is shown in Fig. 11, where the ratio
ηij/η

RET
ij is given for shear, longitudinal and bulk viscosi-

ties, and λ/λRET is also shown. In the case of the cross
viscosity, due to the sign change (which would result in
division by zero), the inverse ratio ηRET

12 /η12 is shown.
Several conclusions from Fig. 11 can be discerned. First,
for practically the entire crystal region this ratio for λ
and η44 is almost density independent, which contrasts
starkly with their behavior in the fluid, where a consider-
able density dependence is observed for ca. ρ > 0.7. For
densities ρ < 0.7 the transport coefficients in the fluid

1.1 1.2 1.3 1.4

-1

-0.5

0

0.5

1

1.5

FIG. 11. The ratios, ηij/η
RET
ij and λ/λRET for the solid

densities are presented. In the case of the cross viscosity the
inverse ratio divided by 3 is shown. The solid colored lines are
only meant to guide the eye. The vertical thin dashed lines
indicate from the left the melting (ρm = 1.0376) and close
packing (ρcp =

√
2) densities.

(as shown also previously in Fig. 3) are described well
by the Enskog expressions given in Eqs. (25) with an
accuracy better than 5%. In the solid the situation is
different. The thermal conductivity and shear viscosity
are represented well by the RET expressions covering the
entire phase from melting to close packing density and in
the case of the remaining three viscosities, η11, η12 and
ηB , we observe significant deviations from the RET pre-
dictions. A common feature of these viscosities is the
smallness of the K part (which is zero in the case ηB , see
Fig. 7d). Combining this observation with the negligi-
bility of the α part at high densities, a simple relation is
obtained for these three viscosities i.e., η ∼= ηI + ηQ for
the dense HS crystal. We also note that in the case of
the bulk viscosity the relation ηQ ∼= −ηI is well obeyed
not only for ρ → ρcp but for most of the solid phase.

V. SUMMARY AND CONCLUDING REMARKS

In this work a comprehensive study of the viscosity
tensor components and thermal conductivity of the HS
system in both fluid and solid phases has been performed.
The transport properties and their component parts were
determined by MD simulations to an extent and accuracy
not reported previously in the literature. The results
for the crystal are largely new and display, unlike in the
fluid, a surprisingly simple behavior e.g., all transport co-
efficients considered can be represented well by a simple
function of density multiplied by the factor ρZ, as given
in Eq. (27).

The instantaneous part of the transport coefficients
have been evaluated directly by molecular dynamics sim-
ulations and compared with the kinetic theory (Enskog
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and RET) predictions demonstrating their total mutual
agreement, implying that short time dynamics in RET is
exact [5, 8].

The (total) cross viscosity exhibits a different behav-
ior to the other viscosities, in being negative in the entire
solid phase and changes sign on increasing the density in
the fluid phase (from negative to positive). Its negative
value in the fluid results from the dominant role of the
negative kk part in the dilute region. In the solid the be-
havior of the transport coefficients is determined almost
completely by their cc part and the negative value results
from a competition between the positive instantaneous I
part, which is the contribution from the first collision
in the Einstein-Kubo-Helfand formula, and a negative Q
part, which represents all contributions not included in
the RET formulation.

In contrast to the other transport coefficients, values
of the bulk viscosity in the solid are quite small and de-
crease rapidly on increasing density, and go to zero in the
close packing limit. Thus, an almost perfect cancellation
between η11 and 2η12 exists in the HS crystal.

The observed perfect representation of the shear
viscosity by the Enskog formula at moderate fluid
densities (close to ρ ≈ 0.5) is rather accidental, caused
by the density dependence of the kk, kc, cc parts.

The results obtained for the transport coefficients of
the HS system allowed us to review the performance of
the RET description of the solid phase. To do such an
analysis all parts of the RET expressions for the TC were
determined i.e. I, K for λ and I, K, α for the viscosi-
ties. The α (the most complex) part has been estimated
to an extent which enables this examination to be car-
ried out effectively. Its dissipation term was calculated
accurately and the elastic term was estimated with an
approximate DFT approach, and from the H-functions
method applied to the high density limit. In the case of
the thermal conductivity the agreement between ‘exact’
MD and predicted RET results is excellent, better than
2% over the entire crystal phase. The prediction is better
than for the fluid, which is itself known to be very good.
Similarly the agreement is quite good in the case of the
shear viscosity (i.e., η44). In these cases the dynamic
effects not included in the kinetic theory are negligible
or mutually cancel out, making their contributions λ(Q),

η
(Q)
44 very small.
In the case of the other viscosities the agreement is not

so good, predictions of the RET differ considerably from
the simulation results. For η11, η12 and ηB the corre-
sponding Q parts are substantial.

A summary of the performance of the kinetic theory
predictions is shown in Fig. 11. The noteworthy fea-
ture of this figure is the almost constant (or density in-
dependent) behavior of the presented ratios for λ and
η44 in the solid phase. Also, in the case of the bulk vis-
cosity an unexpected and very simple description of the
complex dynamic contribution not included in RET, i.e.,
η(Q) ∼= −η(I) is found for almost the entire solid phase.

The performed studies of the α part indicate that more
results for its elastic term are required and that this may
be achieved with the H-function approach along with the
recently proposed DCF calculations.

The RET kinetic theory method like the original En-
skog formulation is based on a solution of the classical
dynamics of individual particles, albeit with assump-
tions about correlations (or lack thereof) between suc-
cessive collisions. A relatively unambiguous comparison
can then be made with explicit particle-based MD sim-
ulations. Nevertheless, it is worth exploring other al-
ternative approaches which could potentially be used to
model the behavior of the system properties covered in
this work. For example, a stochastic mean-field differ-
ential equation time stepping meth-od has recently been
developed which is not based on kinetic theory, [42], and
has been applied to hard sphere liquids in infinite di-
mension. This method shows promise for highly viscous
systems, and it would be interesting to discover if it could
be extended to apply to solids in which the particles have
anisotropic spatial correlations.

The additional characterization and understanding
obtained in this work on hard sphere fluid and solid
transport coefficients can be useful in general for the
development of microscopic theories of transport prop-
erties in condensed matter. In particular, the present
results may contribute to a further development of the
RET approach for the current mono component hard
sphere system and for other dense systems e.g., binary
HS mixtures for which I, K parts may be sufficient to
determine the thermal conductivity. It would be inter-
esting to investigate if some aspects of the residual or
Q-part could be included in a revised RET formulation,
as this term has been shown to contribute significantly
to the viscosity components (for example, including the
effects due to correlations between successive particle
collisions at a mean field level). Also this work provides
a considerable body of new hard sphere data for this key
reference system. The work fills a gap in the numerical
determination and understanding of the transport
properties of one of the most investigated model systems
in condensed matter physics.
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Appendix A: MD data and size dependence

The MD data indicate that the system size dependence
of the all viscosities considered (including their kk, kc,
cc and I parts) can be represented well by the follow-

ing expression η
(∞)
ij = η

(N)
ij + Aij/N , where Aij is a

positive constant at a given density. In the case of the
thermal conductivity the N -dependence is different [27].
A detailed study indicates that λ(∞) = λ(N) + B/N2/3,
while its instantaneous part is represented by λ(∞) =
λ(N)+B∗/N . Here B and B∗ also are positive density de-

pendent constants. In this work the identities, ηij ≡ η
(∞)
ij

and λ ≡ λ(∞), are employed.
The N -dependence for two selected transport coeffi-

cients (η11 and λ) is shown in Fig. 12 for the instanta-
neous part and in Fig. 13 for the total value of them.
Data for a fluid (at ρ = 0.4) and a solid (at ρ = 1.1)
state points are presented. Other viscosities considered
in this work show a similar N -dependence to that of the
longitudinal viscosity.

The total values of the TC and their kk, kc, cc and
I part in the thermodynamic limit are collected in the
Tables IV - VIII and Supplemental Material [43] for the
fluid and solid phases.

Appendix B: F ′ function in the limit of the close
packing

In this appendix the close packing limiting value of the
F ′ function is considered. Note that its definition in Eq.
(10) can be written as follows:

F ′ =

∫
dσ̂(5σ̂4

x)Φ(σ̂) −
∫

dσ̂Φ(σ̂), (B1)

where

Φ(σ̂) =
σ3

4ρV

∫
dr1ϱ(r1)ϱ(r1−σσ̂)G2(r1, r1−σσ̂), (B2)

and in terms of Φ(σ̂),

Z =
2

3

∫
dσ̂Φ(σ̂). (B3)

In the close packing limit the contribution to the integral
over dσ̂ comes basically from the 12 directions on which
nearest neighbors (nn) HS particles are placed in the fcc
lattice. For the four nn in the yz plane, σx = 0 and for the
remaining eight nn, σx =

√
2/2. This means that in this

limit the first term in Eq. (B1) is 8 ·5 · (
√

2/2)4/12 = 5/6
of the second term, which gives

F ′ =

(
5

6
− 1

)∫
dσ̂Φ(σ̂) = −Z

4
, (B4)

or X(ρcp) = F ′/Z = −0.25.

Appendix C: Estimation of the elastic terms at
moderate crystal densities from the DFT method

In the calculations of the elastic terms the DFT
method described in Refs. 30, 40, and 44 is used. The
following formulas are exploited for these calculations,

C̃ϵα
11 = −η + 1

2α
− a2

4
ρL

∑
{G}

ξ2G
c
′(2)
L (|G|)
|G|

G4
1, (C1a)

C̃αα
11 =

η + 1

2α2
− a4

8
ρL

∑
{G}

ξ2Gc
(2)
L (|G|)G4

1, (C1b)

C̃ϵα
12 = −η + 1

2α
− a2

4
ρL

∑
{G}

ξ2G
c
′(2)
L (|G|)
|G|

G2
1G

2
2,(C1c)

C̃αα
12 = −a4

8
ρL

∑
{G}

ξ2Gc
(2)
L (|G|)G2

1G
2
2, (C1d)

C̃ϵα
44 = −a2

4
ρL

∑
{G}

ξ2G
c
′(2)
L (|G|)
|G|

G2
1G

2
2, (C1e)

C̃αα
44 =

η + 1

4α2
− a4

8
ρL

∑
{G}

ξ2Gc
(2)
L (|G|)G2

1G
2
2, (C1f)

where ρL is the density of the reference liquid, α describes
the dimensionless width of the one-particle density dis-
tribution, a is the real space lattice-constant parameter
(from which the solid density, ρS , can be obtained) and
η = (ρS −ρL)/ρL. In the above equations G is the set of

reciprocal lattice vectors, c
(2)
L (|G|) is the liquid pair di-

rect correlation function (DCF) and c
′(2)
L (|G|), c

′′(2)
L (|G|)

are their first and second derivatives, respectively. The
DCF and their derivatives were calculated analytically
from the Percus-Yevick approximation.

In the Eqs. (C1) the quantity,

ξG = (η + 1) exp

(
−1

4
|G|2a2α

)
, (C2)

is included, which is a Fourier transform of the one-
particle density distribution (represented by the Gaus-
sian distribution).

In the presented DFT method the isothermal elastic
moduli are computed by minimizing the grand thermo-
dynamic potential of the unstrained solid [40, 44], with
respect to the density of the reference liquid ρL, the equi-
librium width α and the lattice-constant parameter a. As
demonstrated in Ref. 40 it is necessary in these calcu-
lations to take a very large number of reciprocal wave
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TABLE IV. Longitudinal viscosity, η11, and its components from MD computations as a function of density for fluid and solid
phase (in units of σ−2(mkBT )

1/2)

ρ η11 ηkk
11 ηkc

11 ηcc
11 η

(I)
11

0.050 0.249(1) 0.2250(7) 0.0200(1) 0.00419(1) 0.003788(1)

0.100 0.271(1) 0.2128(9) 0.0398(2) 0.01791(4) 0.016231(1)

0.150 0.305(1) 0.2020(9) 0.0597(5) 0.0434(2) 0.039195(1)

0.200 0.354(1) 0.1910(9) 0.0796(6) 0.0833(3) 0.074961(3)

0.250 0.420(2) 0.1802(9) 0.0990(9) 0.1411(9) 0.126308(8)

0.300 0.507(2) 0.1696(9) 0.118(1) 0.220(1) 0.196659(4)

0.350 0.623(3) 0.1588(9) 0.138(1) 0.326(2) 0.290175(6)

0.400 0.769(3) 0.1475(9) 0.157(2) 0.465(2) 0.41208(2)

0.450 0.958(4) 0.1367(7) 0.176(2) 0.646(3) 0.56872(1)

0.500 1.191(6) 0.1260(9) 0.192(2) 0.873(4) 0.76823(3)

0.550 1.488(7) 0.1152(6) 0.208(2) 1.165(6) 1.02060(5)

0.600 1.869(9) 0.1052(6) 0.224(2) 1.540(8) 1.33851(1)

0.650 2.35(1) 0.0949(6) 0.236(3) 2.02(1) 1.73807(3)

0.700 3.00(1) 0.0851(5) 0.243(3) 2.67(1) 2.24021(1)

0.750 3.86(2) 0.0763(4) 0.247(4) 3.54(2) 2.8712(2)

0.800 5.13(3) 0.0676(4) 0.244(4) 4.82(2) 3.6671(1)

0.850 7.17(4) 0.0595(3) 0.239(4) 6.87(4) 4.6717(1)

0.860 7.72(3) 0.0579(3) 0.234(3) 7.43(2) 4.9035(1)

0.870 8.37(4) 0.0562(3) 0.234(3) 8.08(4) 5.1461(1)

0.880 9.09(4) 0.0548(3) 0.229(5) 8.80(4) 5.4008(2)

0.890 9.97(4) 0.0535(2) 0.227(4) 9.69(4) 5.6677(1)

0.900 10.98(6) 0.0519(3) 0.223(5) 10.71(5) 5.9487(1)

0.910 12.15(6) 0.0506(3) 0.221(3) 11.88(6) 6.2434(1)

0.920 13.50(4) 0.0493(3) 0.216(4) 13.23(4) 6.5531(1)

0.930 15.19(7) 0.0480(4) 0.209(5) 14.93(7) 6.8796(3)

0.940 17.2(1) 0.0466(2) 0.208(6) 17.00(9) 7.2221(4)

0.950 19.6(1) 0.0456(3) 0.201(6) 19.34(9) 7.5841(4)

0.960 22.5(1) 0.0442(2) 0.196(4) 22.3(1) 7.9643(4)

0.970 26.0(1) 0.0431(3) 0.190(6) 25.8(1) 8.3659(1)

0.980 30.8(2) 0.0419(3) 0.186(5) 30.5(2) 8.790(1)

0.990 36.2(3) 0.0406(2) 0.181(7) 36.0(3) 9.239(1)

1.000 43.4(3) 0.0397(3) 0.179(6) 43.2(3) 9.714(1)

1.010 52.2(3) 0.0386(2) 0.170(9) 52.0(3) 10.215(1)

- solid below -

1.000 4.0(2) 0.0485(3) 0.112(3) 3.8(2) 5.36960(7)

1.025 3.27(1) 0.0464(3) 0.136(2) 3.09(1) 5.81004(7)

1.050 3.31(2) 0.0441(2) 0.158(3) 3.11(1) 6.33799(1)

1.075 3.48(2) 0.0416(2) 0.179(2) 3.26(2) 6.96382(3)

1.100 3.71(2) 0.0392(2) 0.198(4) 3.48(2) 7.70516(1)

1.125 4.03(3) 0.0364(2) 0.217(3) 3.77(3) 8.58848(2)

1.150 4.42(1) 0.0338(2) 0.236(3) 4.15(1) 9.6515(1)

1.175 4.93(3) 0.0309(2) 0.251(2) 4.65(3) 10.9484(1)

1.200 5.56(3) 0.0280(1) 0.269(3) 5.26(3) 12.5601(1)

1.225 6.38(4) 0.0250(1) 0.286(3) 6.07(4) 14.6099(1)

1.250 7.44(4) 0.0219(1) 0.304(3) 7.11(4) 17.2968(2)

1.275 8.90(5) 0.0187(1) 0.320(4) 8.56(5) 20.9630(2)

1.300 10.99(5) 0.01550(8) 0.335(4) 10.64(5) 26.2509(1)

1.325 14.3(1) 0.01222(7) 0.354(4) 13.9(1) 34.5223(2)

1.350 20.2(1) 0.00886(5) 0.369(3) 19.8(1) 49.2618(5)

1.375 33.5(2) 0.00546(3) 0.385(3) 33.1(2) 82.8379(1)

1.400 93.8(3) 0.00200(1) 0.403(3) 93.4(3) 234.642(1)
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TABLE V. Cross viscosity, η12, and its components from the MD simulation as a function of density for the fluid and the solid
phase (in units of σ−2(mkBT )

1/2)

ρ η12 ηkk
12 ηkc

12 ηcc
12 η

(I)
12

0.050 -0.1215(4) -0.1125(3) -0.0100(1) 0.0010(1) 0.001263(1)

0.100 -0.1219(5) -0.1064(5) -0.0199(1) 0.0044(1) 0.005410(1)

0.150 -0.1199(7) -0.1009(5) -0.0298(3) 0.0109(1) 0.013065(1)

0.200 -0.1139(7) -0.0955(4) -0.0398(3) 0.0213(3) 0.024986(1)

0.250 -0.103(1) -0.0901(4) -0.0495(4) 0.0370(7) 0.042104(1)

0.300 -0.086(1) -0.0848(4) -0.0589(5) 0.0580(9) 0.065556(1)

0.350 -0.061(2) -0.0794(4) -0.0689(6) 0.087(2) 0.096728(1)

0.400 -0.028(3) -0.0737(5) -0.0785(8) 0.124(2) 0.13735(1)

0.450 0.016(4) -0.0683(3) -0.0880(9) 0.173(3) 0.18957(1)

0.500 0.073(5) -0.0629(5) -0.096(1) 0.232(4) 0.25608(1)

0.550 0.144(5) -0.0576(3) -0.104(1) 0.305(5) 0.34022(1)

0.600 0.227(7) -0.0526(3) -0.112(1) 0.392(7) 0.44619(1)

0.650 0.33(1) -0.0474(3) -0.118(1) 0.49(1) 0.57936(2)

0.700 0.45(1) -0.0426(3) -0.122(1) 0.62(1) 0.74670(2)

0.750 0.61(2) -0.0382(2) -0.124(2) 0.78(2) 0.95706(9)

0.800 0.83(2) -0.0338(2) -0.122(2) 0.99(2) 1.22227(1)

0.850 1.20(3) -0.0298(2) -0.120(2) 1.35(3) 1.55705(6)

0.860 1.29(2) -0.0290(2) -0.117(1) 1.44(2) 1.63420(9)

0.870 1.44(3) -0.0281(1) -0.117(2) 1.58(3) 1.71494(5)

0.880 1.58(4) -0.0274(2) -0.114(2) 1.72(4) 1.79975(1)

0.890 1.80(3) -0.0267(1) -0.114(2) 1.94(3) 1.88848(2)

0.900 2.04(5) -0.0260(2) -0.112(3) 2.18(5) 1.98208(4)

0.910 2.36(5) -0.0253(2) -0.110(2) 2.50(5) 2.08002(1)

0.920 2.73(5) -0.0247(1) -0.108(2) 2.87(5) 2.18318(2)

0.930 3.24(6) -0.0240(2) -0.104(3) 3.37(6) 2.29170(7)

0.940 3.89(8) -0.0233(1) -0.104(3) 4.02(8) 2.4061(2)

0.950 4.70(8) -0.0228(2) -0.101(3) 4.83(8) 2.5267(1)

0.960 5.68(7) -0.0221(1) -0.098(2) 5.80(7) 2.6540(1)

0.970 7.0(1) -0.0215(1) -0.095(3) 7.1(1) 2.7881(1)

0.980 8.8(2) -0.0209(1) -0.093(3) 8.9(2) 2.9300(1)

0.990 10.9(2) -0.0203(1) -0.091(3) 11.0(2) 3.0800(5)

1.000 14.0(2) -0.0198(1) -0.089(3) 14.1(2) 3.2378(1)

1.010 18.0(2) -0.0193(1) -0.087(5) 18.1(2) 3.4050(5)

- solid below -

1.000 -0.1(2) -0.0242(1) -0.056(1) -0.1(2) 2.53350(2)

1.025 -1.040(9) -0.0232(1) -0.068(1) -0.949(8) 2.77338(3)

1.050 -1.283(8) -0.0220(1) -0.079(2) -1.182(7) 3.05281(1)

1.075 -1.486(9) -0.0208(1) -0.089(1) -1.376(9) 3.37861(1)

1.100 -1.67(1) -0.0196(1) -0.099(2) -1.56(1) 3.76047(1)

1.125 -1.88(2) -0.0182(1) -0.108(2) -1.75(2) 4.21214(2)

1.150 -2.11(1) -0.0169(1) -0.118(1) -1.97(1) 4.75279(6)

1.175 -2.38(2) -0.0155(1) -0.125(1) -2.24(1) 5.40974(3)

1.200 -2.72(1) -0.01401(6) -0.135(2) -2.57(1) 6.22354(1)

1.225 -3.14(2) -0.01249(7) -0.143(2) -2.99(2) 7.25596(5)

1.250 -3.68(2) -0.01096(6) -0.152(2) -3.52(2) 8.60658(7)

1.275 -4.42(3) -0.00937(5) -0.160(2) -4.25(2) 10.44660(8)

1.300 -5.47(3) -0.00775(4) -0.168(2) -5.30(3) 13.09722(1)

1.325 -7.13(5) -0.00611(4) -0.177(2) -6.95(5) 17.2394(1)

1.350 -10.06(5) -0.00443(2) -0.185(2) -9.87(5) 24.6154(2)

1.375 -16.75(8) -0.00273(1) -0.192(1) -16.55(8) 41.4096(1)

1.400 -46.9(1) -0.000997(4) -0.202(2) -46.7(1) 117.3176(7)
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TABLE VI. Shear viscosity, η44, and its components obtained by MD as a function of density for the fluid and the solid phase
(in units of σ−2(mkBT )

1/2)

ρ η44 ηkk
44 ηkc

44 ηcc
44 η

(I)
44

0.050 0.1854(3) 0.1688(3) 0.0150(1) 0.00159(1) 0.001263(1)

0.100 0.1965(5) 0.1598(5) 0.0299(1) 0.00676(2) 0.005410(1)

0.150 0.2121(6) 0.1511(5) 0.0447(3) 0.01624(5) 0.013065(1)

0.200 0.234(1) 0.1430(6) 0.0596(5) 0.0310(1) 0.024986(1)

0.250 0.261(1) 0.1352(6) 0.0741(4) 0.0521(2) 0.042104(1)

0.300 0.297(1) 0.1271(5) 0.0889(7) 0.0811(4) 0.065556(1)

0.350 0.341(2) 0.1189(6) 0.1030(9) 0.1194(5) 0.096728(1)

0.400 0.398(2) 0.1106(4) 0.1170(9) 0.1701(9) 0.13735(1)

0.450 0.469(3) 0.1027(5) 0.131(1) 0.235(1) 0.18957(1)

0.500 0.559(3) 0.0941(4) 0.144(1) 0.321(2) 0.25608(1)

0.550 0.673(3) 0.0864(4) 0.157(1) 0.430(2) 0.34022(1)

0.600 0.818(4) 0.0785(4) 0.167(2) 0.572(3) 0.44619(1)

0.650 1.011(5) 0.0711(4) 0.176(2) 0.764(4) 0.57936(2)

0.700 1.274(7) 0.0640(3) 0.184(2) 1.026(5) 0.74670(2)

0.750 1.628(6) 0.0571(2) 0.186(2) 1.386(6) 0.95706(9)

0.800 2.15(1) 0.0508(3) 0.185(2) 1.92(1) 1.22227(1)

0.850 2.99(2) 0.0448(2) 0.178(2) 2.77(1) 1.55705(6)

0.860 3.23(1) 0.0431(2) 0.177(2) 3.00(1) 1.63420(9)

0.870 3.47(2) 0.0420(2) 0.174(2) 3.26(1) 1.71494(5)

0.880 3.76(2) 0.0410(2) 0.173(3) 3.55(2) 1.79975(1)

0.890 4.10(2) 0.0399(2) 0.171(2) 3.89(2) 1.88848(2)

0.900 4.44(2) 0.0389(2) 0.166(3) 4.24(2) 1.98208(4)

0.910 4.89(2) 0.0379(2) 0.164(2) 4.69(2) 2.08002(1)

0.920 5.37(3) 0.0369(2) 0.160(4) 5.18(3) 2.18318(2)

0.930 5.96(2) 0.0359(2) 0.159(3) 5.77(2) 2.29170(7)

0.940 6.64(4) 0.0350(2) 0.153(4) 6.45(4) 2.4061(2)

0.950 7.44(3) 0.0340(2) 0.151(4) 7.26(3) 2.5267(1)

0.960 8.42(4) 0.0331(2) 0.147(4) 8.24(4) 2.6540(1)

0.970 9.54(5) 0.0321(2) 0.144(3) 9.36(4) 2.7881(1)

0.980 10.91(5) 0.0313(1) 0.141(5) 10.74(5) 2.9300(1)

0.990 12.60(7) 0.0304(1) 0.136(5) 12.44(7) 3.0800(5)

1.000 14.62(8) 0.0297(2) 0.135(5) 14.45(8) 3.2378(5)

1.010 17.08(9) 0.0288(2) 0.133(6) 16.91(9) 3.4050(5)

- solid below -

1.000 3.83(2) 0.0501(2) 0.555(3) 3.23(1) 2.53350(2)

1.025 4.16(2) 0.0485(2) 0.583(2) 3.53(1) 2.77338(3)

1.050 4.55(2) 0.0465(2) 0.609(3) 3.89(2) 3.05281(1)

1.075 5.00(2) 0.0442(2) 0.631(3) 4.32(2) 3.37861(1)

1.100 5.54(2) 0.0418(2) 0.658(4) 4.84(2) 3.76047(1)

1.125 6.15(4) 0.0391(2) 0.679(4) 5.44(4) 4.21214(2)

1.150 6.90(4) 0.0363(1) 0.703(3) 6.16(4) 4.75279(6)

1.175 7.82(6) 0.0333(2) 0.726(6) 7.06(6) 5.40974(3)

1.200 8.93(4) 0.0303(2) 0.747(4) 8.15(3) 6.22354(1)

1.225 10.37(3) 0.0271(1) 0.772(3) 9.57(3) 7.25596(5)

1.250 12.20(5) 0.0238(1) 0.793(4) 11.39(5) 8.60658(7)

1.275 14.71(6) 0.0204(1) 0.814(5) 13.87(6) 10.44660(8)

1.300 18.31(7) 0.01697(7) 0.837(3) 17.46(7) 13.09722(1)

1.325 24.0(1) 0.01341(6) 0.859(6) 23.1(1) 17.2394(1)

1.350 34.0(1) 0.00973(3) 0.880(3) 33.1(1) 24.6154(2)

1.375 56.8(2) 0.00601(2) 0.902(3) 55.9(2) 41.4096(1)

1.400 160.2(7) 0.00220(1) 0.926(4) 159.2(7) 117.3176(7)
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FIG. 12. The N -dependence of the instantaneous (I) part of η11 and λ for fluid ρ = 0.4 (left figures) and solid ρ = 1.1 (right
figures) densities. The solid red points are the MD values for N = 864, 1372, 2048, 4000, 8788, 16384, 37044 and 131072. The
solid black lines are the linear fits to the data. The solid blue diamond represents the value of each transport coefficient in the
thermodynamic limit.
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FIG. 13. Same as in Fig. 12, except that in this instance the total value of transport coefficients are presented.

vectors G in the summations and the three-body direct
correlation function.

The resultant elastic terms, Ep,

E1 =
Cuα

44

Cαα
44

, (C3a)

E2 =
Cuα

11 + 2Cuα
12

Cαα
11 + 2Cαα

12

, (C3b)

E3 =
Cuα

11 − Cuα
12

Cαα
11 − Cαα

12

, (C3c)

are presented in Figure 14.

Appendix D: Estimation of the elastic terms at high
densities from the H integrals

The DFT elastic coefficients necessary to determine the
Ep are as follows in terms of the H-functions (for more
details see Appendix B in Ref. 8),

Cuα
ijkl =

ρa2

4kBT

[
δijH

(2)
kl + H

(3)
ijkl

]
, (D1)

Cαα
ijkl =

ρa4

16kBT

[
H

(5)
ijkl −H

(6)
ijkl

]
, (D2)

where,

H
(2)
ij =

1

ρV

∫
dr1dr2c(r1, r2)ϱ(r1)

∂2ϱ(r2)

∂r2i∂r2j
, (D3)
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TABLE VII. Bulk viscosity, ηB , and its I part obtained by
MD as a function of density for the fluid and the solid phase
(in units of σ−2(mkBT )

1/2)

ρ ηB η
(I)
B

0.050 0.00208(1) 0.002105(1)

0.100 0.00890(4) 0.009017(1)

0.150 0.0217(1) 0.021775(1)

0.200 0.0420(2) 0.041645(2)

0.250 0.0717(7) 0.070172(2)

0.300 0.1119(9) 0.109257(1)

0.350 0.167(2) 0.161210(3)

0.400 0.238(2) 0.22893(1)

0.450 0.330(3) 0.31596(1)

0.500 0.446(4) 0.42680(1)

0.550 0.592(5) 0.56701(2)

0.600 0.774(7) 0.74363(1)

0.650 1.00(1) 0.96559(2)

0.700 1.30(1) 1.24453(1)

0.750 1.70(2) 1.59510(9)

0.800 2.26(2) 2.03722(1)

0.850 3.19(3) 2.59528(1)

0.860 3.43(2) 2.72395(9)

0.870 3.75(3) 2.85867(7)

0.880 4.08(3) 3.00008(5)

0.890 4.52(3) 3.14822(2)

0.900 5.02(5) 3.30430(9)

0.910 5.62(5) 3.46782(5)

0.920 6.32(4) 3.63982(4)

0.930 7.22(5) 3.8210(1)

0.940 8.34(8) 4.0114(2)

0.950 9.66(8) 4.2123(1)

0.960 11.29(7) 4.4240(1)

0.970 13.3(1) 4.6475(1)

0.980 16.1(2) 4.8836(5)

0.990 19.3(2) 5.1333(6)

1.000 23.8(2) 5.3964(5)

1.010 29.4(2) 5.6751(6)

- solid below -

1.000 1.2(2) 3.47887(4)

1.025 0.397(3) 3.78560(5)

1.050 0.249(2) 4.14787(2)

1.075 0.170(2) 4.57367(2)

1.100 0.121(1) 5.07536(1)

1.125 0.090(1) 5.67092(2)

1.150 0.0689(7) 6.38569(8)

1.175 0.0535(8) 7.25597(4)

1.200 0.0417(7) 8.33573(3)

1.225 0.0327(3) 9.70727(7)

1.250 0.0250(4) 11.50333(7)

1.275 0.0194(4) 13.95210(9)

1.300 0.0150(6) 17.48176(4)

1.325 0.0105(5) 23.0004(1)

1.350 0.0082(8) 32.8309(3)

1.375 0.0036(9) 55.2190(1)

1.400 0.005(3) 156.4257(9)
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FIG. 14. The density dependence of the elastic terms Ei cal-
culated from the DFT approach using Eq. (C3) are presented
for densities up to ρ ∼ 1.15. The vertical thin dashed line in-
dicates the melting (ρm = 1.0376) density.

H
(3)
ijkl =

1

2ρV

∫
dr1dr2c(r1, r2) (r12j

× ∂ϱ(r1)

∂r1i
+ r12i

∂ϱ(r1)

∂r1j

)
∂2ϱ(r2)

∂r2k∂r2l
, (D4)

H
(5)
ijkl =

1

ρV

∫
dr1

∂2ϱ(r1)

∂r1i∂r1j
[ϱ(r1)]

−1 ∂2ϱ(r1)

∂r1k∂r1l
,(D5)

H
(6)
ijkl =

1

ρV

∫
dr1dr2c(r1, r2)

× ∂2ϱ(r1)

∂r1i∂r1j

∂2ϱ(r2)

∂r2k∂r2l
. (D6)

With the Gaussian approximation for the one-particle
density distribution ϱ(r) = π−3/2α−3/2a−3 exp(−(R −
r)2/a2α) the functions H

(5)
ijkl can be calculated exactly

but other H-functions require the DCF of a hard sphere
crystal.

At high densities each particle is strongly localized near
its average lattice site position, R, which means, taking
into account the short-ranged nature of the DCF, that
the product ϱ(r1)ϱ(r2)c(r1, r2) is practically nonzero only
for small deviations from one site (δr1, δr2) and for small
distances from near-neighbor two-sites (δr1,R12 + δr2).
These two situations represent, to a large extent, the
main contributions to each H-function at high densities
and thus can be formulated by the following approxima-
tion,

c(r1, r2) = C1(δr1, δr2)N + C2(δr1,R12 + δr2)NNs,
(D7)

where N , Ns are the number of particles and number of
nearest neighbors (12 in an fcc crystal).
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TABLE VIII. The thermal conductivity, λ, and its components (in units of kBσ
−2(kBT/m)1/2) of the HS fluid and solid

obtained by extrapolating the MD data to the thermodynamic limit. The three points at very low density for the cc part of
the thermal conductivity have been corrected compared to the same values in Table 1 in Ref. 27.

ρ λ λkk λkc λcc λI

0.050 0.730(1) 0.639(1) 0.0849(2) 0.00602(1) 0.003157(1)

0.100 0.798(2) 0.602(2) 0.1694(6) 0.02582(8) 0.013526(1)

0.150 0.882(2) 0.567(2) 0.2531(8) 0.0623(2) 0.032665(2)

0.200 0.994(5) 0.535(2) 0.339(2) 0.1197(6) 0.062463(7)

0.250 1.128(4) 0.502(2) 0.424(2) 0.2020(8) 0.105261(8)

0.300 1.298(5) 0.470(2) 0.512(2) 0.316(1) 0.163886(5)

0.350 1.493(5) 0.434(1) 0.594(2) 0.466(2) 0.241815(8)

0.400 1.748(7) 0.402(2) 0.682(3) 0.664(3) 0.34346(3)

0.450 2.061(9) 0.371(2) 0.770(5) 0.920(4) 0.47403(1)

0.500 2.44(1) 0.340(2) 0.858(6) 1.246(7) 0.64015(3)

0.550 2.91(1) 0.308(2) 0.942(6) 1.660(8) 0.8506(1)

0.600 3.50(2) 0.280(1) 1.032(6) 2.19(1) 1.1154(1)

0.650 4.23(3) 0.253(2) 1.122(8) 2.85(2) 1.4483(2)

0.700 5.12(2) 0.226(1) 1.206(7) 3.69(2) 1.8667(2)

0.750 6.23(3) 0.200(1) 1.290(9) 4.74(2) 2.3928(1)

0.800 7.64(4) 0.1776(9) 1.380(9) 6.08(3) 3.0557(2)

0.850 9.39(4) 0.1551(7) 1.472(8) 7.77(4) 3.8925(1)

0.860 9.79(5) 0.1505(6) 1.490(8) 8.15(4) 4.0857(1)

0.870 10.22(4) 0.1466(7) 1.509(6) 8.56(4) 4.2879(1)

0.880 10.64(5) 0.1426(7) 1.526(9) 8.97(4) 4.5000(1)

0.890 11.14(6) 0.1390(7) 1.548(9) 9.45(5) 4.7220(1)

0.900 11.58(5) 0.1349(6) 1.562(9) 9.89(4) 4.9563(1)

0.910 12.08(6) 0.1318(6) 1.58(1) 10.36(5) 5.2012(5)

0.920 12.59(7) 0.1274(8) 1.60(1) 10.87(6) 5.4598(2)

0.930 13.19(6) 0.1240(7) 1.62(1) 11.44(5) 5.7313(1)

0.940 13.78(8) 0.1205(7) 1.64(1) 12.02(7) 6.0174(6)

0.950 14.29(7) 0.1167(7) 1.65(1) 12.52(6) 6.3184(2)

0.960 14.96(7) 0.1133(5) 1.67(1) 13.17(6) 6.6370(9)

0.970 15.6(1) 0.1094(7) 1.69(1) 13.84(9) 6.9733(1)

0.980 16.3(1) 0.1068(7) 1.72(2) 14.5(1) 7.3248(9)

0.990 17.0(1) 0.1030(9) 1.72(1) 15.1(1) 7.6980(8)

1.000 17.7(1) 0.0992(8) 1.73(2) 15.8(1) 8.0946(9)

1.010 18.6(1) 0.0962(5) 1.76(1) 16.7(1) 8.5126(8)

- solid below -

1.000 12.23(4) 0.1412(6) 1.931(7) 10.16(3) 5.2182(1)

1.025 13.14(5) 0.1349(6) 1.983(9) 11.03(4) 5.6787(1)

1.050 14.28(8) 0.1291(6) 2.05(1) 12.10(7) 6.2216(1)

1.075 15.55(5) 0.1218(4) 2.10(1) 13.33(5) 6.8607(1)

1.100 17.11(8) 0.1148(5) 2.16(1) 14.83(7) 7.6129(2)

1.125 19.0(1) 0.1071(7) 2.22(2) 16.7(1) 8.5064(5)

1.150 21.1(1) 0.0987(3) 2.27(1) 18.7(1) 9.5784(2)

1.175 23.7(2) 0.0908(5) 2.33(2) 21.3(1) 10.8841(6)

1.200 27.0(2) 0.0823(4) 2.38(1) 24.5(1) 12.5040(3)

1.225 31.1(1) 0.0735(2) 2.44(1) 28.6(1) 14.5615(2)

1.250 36.3(2) 0.0643(4) 2.49(1) 33.8(2) 17.2541(2)

1.275 43.8(2) 0.0551(3) 2.55(1) 41.2(1) 20.9280(5)

1.300 54.2(3) 0.0456(2) 2.61(1) 51.6(3) 26.2205(7)

1.325 70.5(4) 0.0359(2) 2.66(1) 67.8(4) 34.5016(1)

1.350 99.8(5) 0.0262(1) 2.72(1) 97.0(5) 49.246(2)

1.375 166.1(7) 0.01606(9) 2.77(1) 163.3(7) 82.833(4)

1.400 466(2) 0.00589(2) 2.83(1) 464(2) 234.64(2)
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From the work in Ref. 31 it follows that for small de-
viations from any site the DCF is almost constant and to
a good approximation, isotropic. This observation may
be cast into an approximation formula for the one-site
contribution,

C1(δr1, δr2) = C1(0, 0) + w1|δr1| + w2|δr1||δr2|, (D8)

where w1, w2 represents the first and second derivatives
of the DCF at the site position. For high densities the
departures from the site position are very small and for
small departures or distances the DCF is almost con-
stant. The DCF is a function which hardly changes with
distance [31], which means that the slopes w1 and w2 can
be expected to be small or moderate numbers which we
assume are (considerably) less than 1/α.

For the two-site contribution a second order Taylor ex-
pansion is used,

C2(δr1,R12 + δr2) = C2(0,R12) +
6∑

i=1

K
(1)
i δXi

+

6∑
i=1

6∑
j=1

K
(2)
ij δXiδXj , (D9)

where δX1, δX2, ... δX6 stands here for the Carte-
sian increment δx1, δy1, δz1, δx2, δy2, δz2. K(1), K(2)

denote the corresponding first and second order deriva-
tives and are considered here to be unknown constants
of magnitude less than 1/α (like w1, w2). For exam-

ple, the K-derivatives are K
(1)
1 = ∂c(r1, r2)/∂δx1 and

K
(2)
11 = ∂c(r1, r2)/∂δx1∂δx1.
For the model in Eqs. (D7) - (D9) and the Gaussian

approximation for the one-particle distribution, ϱ(r1),
the H-functions can be calculated, and the results for
the required function are as follows,

H
(2)
11 =

8w2

3π
+ 16K

(2)
44 , (D10)

H
(2)
11 =

8w2

3π
+ 16K

(2)
55 , (D11)

H
(3)
1111 = −32w2

9π
+ 16

(
K

(2)
14 + K

(2)
41 −K

(2)
44

)
,(D12)

H
(3)
1122 = −32w2

9π
− 16K

(2)
55 , (D13)

H
(3)
1212 = 4

(
K

(2)
14 + K

(2)
41 + K

(2)
25 + K

(2)
52

)
, (D14)

H
(5)
1111 =

8

a4α2
, H

(5)
1122 = 0, H

(5)
1212 =

4

a4α2
,(D15)

H
(6)
1111 =

16w2

9πa2α
, H

(6)
1122 =

16w2

9πa2α
, H

(6)
1212 = 0.(D16)

From the above H-functions the elastic components in
Eqs. (D1) and (D2) are calculated and the Ep functions
from the expressions in Eqs. (C3) are obtained,

E1 = 4a2α2
(
K

(2)
14 + K

(2)
41 + K

(2)
25 + K

(2)
52

)
,(D17a)

E2 = 4a2α2w2 − 6π(K
(2)
14 + K

(2)
41 )

2a2αw2 − 3π

=
4a2α2

3π

(
6π(K

(2)
14 + K

(2)
41 ) − w2

)
, (D17b)

E3 = 8a2α2
(
K

(2)
14 + K

(2)
41

)
, (D17c)

where the second equality in Eq. (D17b) is from the
assumed relation w2 ≪ 1/α. Thus, in the dense HS solid
the elastic components Ep/α are estimated to be ∼ α or
at least a bounded quantity.
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