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ABSTRACT
Rationale  Lung function in early adulthood is 
associated with subsequent adverse health outcomes.
Objectives  To ascertain whether stable and 
reproducible lung function trajectories can be derived in 
different populations and investigate their association 
with objective measures of cardiovascular structure and 
function.
Methods  Using latent profile modelling, we studied 
three population-based birth cohorts with repeat 
spirometry data from childhood into early adulthood 
to identify trajectories of forced expiratory volume 
in 1 s (FEV1)/forced vital capacity (FVC). We used 
multinomial logistic regression models to investigate 
early-life predictors of the derived trajectories. We then 
ascertained the extent of the association between the 
derived FEV1/FVC trajectories and blood pressure and 
echocardiographic markers of increased cardiovascular 
risk and stroke in ~3200 participants at age 24 years in 
one of our cohorts.
Results  We identified four FEV1/FVC trajectories with 
strikingly similar latent profiles across cohorts (pooled 
N=6377): above average (49.5%); average (38.3%); 
below average (10.6%); and persistently low (1.7%). 
Male sex, wheeze, asthma diagnosis/medication and 
allergic sensitisation were associated with trajectories with 
diminished lung function in all cohorts. We found evidence 
of an increase in cardiovascular risk markers ascertained by 
echocardiography (including left ventricular mass indexed to 
height and carotid intima-media thickness) with decreasing 
FEV1/FVC (with p values for the mean crude effects per-
trajectory ranging from 0.10 to p<0.001). In this analysis, we 
considered trajectories as a pseudo-continuous variable; we 
confirmed the assumption of linearity in all the regression 
models.
Conclusions  Childhood lung function trajectories may 
serve as predictors in the development of not only future 
lung disease, but also the cardiovascular disease and 
multimorbidity in adulthood.

INTRODUCTION
Spirometry is the most commonly used pulmonary 
function test for identifying patterns of physiolog-
ical abnormalities. Spirometric impairments (both 
airflow obstruction and restrictive ventilatory 

defect) are related to adverse health outcomes.1 For 
example, diminished forced expiratory volume in 
1 s (FEV1)/forced vital capacity (FVC), which is a 
hallmark of chronic obstructive pulmonary disease 
(COPD), is also associated with cardiovascular 
morbidity and mortality.2 Low FEV1 is associated 
with contemporaneous cardiovascular disease in 
adults, and similar relationships have been observed 
for FVC.

WHAT IS ALREADY KNOWN ON THIS TOPIC
	⇒ In utero and early-life factors have been shown 
to influence lung function trajectory through 
childhood and can influence the lung function 
attained at the physiological peak in early 
adulthood.

WHAT THIS STUDY ADDS
	⇒ Little is known about the relationship between 
lung function development during childhood 
and preclinical markers of cardiovascular and 
metabolic disease risk. We ascertained the 
association of lung function trajectories from 
childhood to early adulthood derived using 
data-driven methods with objective measures 
of cardiovascular structure and function 
ascertained using echocardiogram data and 
carotid artery scans (which are markers of 
preclinical cardiovascular risk and can predict 
subsequent cardiovascular disease).

HOW THIS STUDY MIGHT AFFECT RESEARCH, 
PRACTICE OR POLICY

	⇒ Our study highlights the importance of lung 
growth and its association with adverse 
respiratory, cardiovascular and metabolic 
outcomes, and the importance of identifying 
early life risk factors. Our findings draw 
attention to the potential importance of 
measuring lung function from early school 
age as a marker of future risk, since early lung 
function optimisation to alter trajectories may 
help in preventing adverse health outcomes in 
adulthood.

    1Granell R, et al. Thorax 2024;0:1–8. doi:10.1136/thorax-2023-220485
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Respiratory epidemiology

In recent years, a substantial effort has been devoted to iden-
tifying lifetime lung function trajectories based on different 
spirometry measures and their associations with early-life risk 
factors and subsequent health outcomes (reviewed in Okyere 
et al3). Potential implementation of this knowledge in clinical 
practice to detect poor lung health early is attracting increasing 
attention.4 Due to limited availability of repeated spirometry 
measurement in children, relatively few studies extended the 
modelling of trajectories to childhood lung function (online 
supplemental table S1).3 In such studies, in utero and early-
life factors have been shown to influence trajectory through 
childhood and have an important impact on the lung function 
attained at the physiological peak in early adulthood. Early 
life factors associated with diminished lung function in early 
adulthood include preterm birth, respiratory infections, allergic 
sensitisation, childhood asthma and persistent wheezing, and 
exposure to tobacco smoke in utero. Poor intrauterine growth 
and nutritional deficits during pregnancy and childhood precede 
and predict the development of spirometric restriction in adult-
hood.5 6 Importantly, diminished lung function at physiological 
peak is an independent marker of not only respiratory disease 
in later adulthood, but also cardiovascular morbidity and early 
all-cause mortality.1 7–9 However, little is known about the rela-
tionship between lung function development during childhood 
and preclinical markers of cardiovascular and metabolic disease 
risk, and whether assessment of spirometry in childhood may be 
informative about the future cardio-metabolic health.

We hypothesise that diminished childhood lung function 
trajectories are associated with preclinical markers of cardio-
vascular and metabolic disease. To address our hypothesis, we 
first modelled lung function from early school age to physio-
logical peak in the third decade in three UK birth cohorts with 
repeated spirometry through childhood to ascertain whether 
stable and reproducible trajectories can be derived in different 
populations. We focused on modelling FEV1/FVC as a marker 
of airway obstruction to facilitate comparison of our findings 
with previous studies such as TCRS,10 PELOTAS11 and RAINE.12 
We then capitalised on the availability of the ultrasound scans 
of carotid arteries and echocardiograms including carotid artery 
intima-media thickness (cIMT) and the measurement of pulse 
wave velocity (PWV), (blood pressure and blood triglycerides) 
at age 24 years in subjects in the Avon Longitudinal Study of 
Parents and Children (ALSPAC) without overt clinical cardio-
vascular and metabolic disease.13 We ascertained the association 
of the derived lung function trajectories with these objective 
measures of cardiovascular structure and function, which are 
markers of preclinical cardiovascular risk and which predict 
subsequent cardiovascular disease.14–16

METHODS
Detailed description of cohorts, methods and analyses is 
presented in online supplemental file.

Study design, setting and participants
We used data from three UK population-based birth cohorts in 
the STELAR/UNICORN consortium: ALSPAC,17 Isle of Wight 
(IOW)18 and Manchester Asthma and Allergy Study (MAAS).19 
Data were integrated in a web-based knowledge management 
platform to facilitate joint analyses.20

Data sources/measurements
Spirometry was available at ages 8, 11, 16 and 20 years in 
MAAS; 8, 15 and 24 years in ALSPAC; and 10, 18 and 26 years 

in IOW. Details of clinical follow-up and definitions of outcomes 
including asthma, wheeze phenotypes from birth to early adult-
hood,21 severe asthma exacerbations, lower respiratory tract 
infections (LRTIs) and environmental exposures are provided in 
online supplemental file.

Assessment of cardiovascular risk in ALSPAC
Left ventricular (LV) mass indexed to height2.7 (LVMI, g/m2.7), 
LV posterior wall (PW) systolic thickness average (LVPW, cm), 
carotid femoral PWV (m/s), pulse pressure (mm Hg), average 
cIMT mean (mm), systolic and diastolic blood pressure (BP) 
(mm Hg), triglycerides (log-transformed) and high-density lipo-
protein (HDL, mmol/L) were measured at research clinics at age 
25 years.13

Ultrasound scans of the left and right common carotid arteries 
were performed using a CardioHealth Panasonic system with 
a 13–5 MHz linear array broadband transducer according to a 
standardised protocol to measure cIMT. Echocardiography was 
performed using a Philips EPIQ 7G Ultrasound in accordance 
with American Society of Echocardiography guidelines. PWV 
was measured using a Vicorder device validated in adolescents.22 
Three PWV measurements were taken with an interval of 1 min 
between measurements, acceptable PWV measurements were 
within ≤0.5 m/s of each other. Results were averaged to give a 
measurement of arterial stiffness. In MAAS, blood pressure was 
measured at age 20 years.

Statistical analysis
We used latent profile modelling to derive trajectory classes 
based on the development of FEV1/FVC over time in three 
cohorts independently. We analysed data from participants who 
had spirometry on at least two occasions under the assumption 
that data were missing at random. Briefly, we used two-level 
random intercept regression models to assign children to their 
most likely trajectory profile. The models were compared for 
goodness-of-fit using the Bayesian Information Criterion (BIC). 
For each child, the posterior probability of belonging to each of 
the classes was estimated, and children were classified to each 
trajectory profile based on their maximum posterior probability.

All analyses were repeated for those with complete spirometry 
data to test the sensitivity and confirm robustness of the derived 
trajectories.

We used weighted multinomial logistic regression models to 
ascertain early-life risk factors associated with each lung func-
tion trajectory. The posterior probability of membership for each 
trajectory class was used as weights to reflect uncertainty of class 
assignment; results are reported as relative risk ratios (RRR) 
with 95% CIs.

We used linear regression models to assess the associations 
between lung function trajectories between 8 and 24 years and 
markers of cardiovascular and metabolic disease risk at 24 years. 
We report both individual trajectory effects and per-trajectory 
effects; in this analysis, we considered trajectories as a pseudo-
continuous variable; we confirmed the assumption of linearity 
in all the regression models. All models were weighted by class 
membership probabilities. Additionally, we performed sex-
stratified analyses and further adjustment by low birth weight 
and tobacco smoke exposure. When considering complete cases 
in both crude and adjusted analyses, the persistent low trajectory 
was most affected, with numbers of individuals dropping from 
80 to as low as 20–22 in the associations with cardiovascular 
outcomes.
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RESULTS
We included 4874 participants from ALSPAC, 809 from IOW 
and 801 from MAAS, who had completed spirometry on at least 
two occasions during the follow-up. Characteristics of the study 
populations and comparisons between subjects included and 
excluded from the analyses are shown in online supplemental 
table S2. In MAAS and IOW, there was a lower prevalence of 
parental smoking at recruitment and a higher prevalence of 
breast feeding among included participants. There was a lower 
proportion of males in the analysed sample in IOW.

FEV1/FVC trajectories from early school-age to young 
adulthood
The best-fitting model was selected as four FEV1/FVC trajec-
tories in all three cohorts (online supplemental table S3 and 
figure 1). BIC was marginally lower for the 5-class model for 
MAAS, but we opted for a more parsimonious solution. Based on 
the developmental pattern of FEV1/FVC, these trajectories were 
labelled as: (1) above average; (2) average; (3) below average; 
and (4) persistently low (figure  1). Study participants within 
the four trajectories had stable lung function that tracked from 
early school age to adulthood, with no overlap in FEV1/FVC 
between the trajectories at any time (figure 1A–C). The highest 
within-class variability in the individual FEV1/FVC trajectories 
was observed in the persistently low trajectory. Importantly, the 
proportion of allocated participants and the mean FEV1/FVC 
values over time in each of the trajectories were consistent across 
the cohorts (table 1).

The posterior probability of class membership was high in all 
cohorts (>0.7), indicating high confidence in class assignment 
(online supplemental table S4). Class assignments were robust 
to the presence of missing data, with the proportion of children 
assigned to the same class in samples with complete and >2 
observations exceeding 75% (online supplemental table S5).

Sex, demographic and environmental characteristics of FEV1/
FVC trajectories
Online supplemental table S6 shows results of multinomial 
logistic regression models weighted for the probability of each 
individual belonging to each trajectory, using the average class as 
the reference. Males had a higher risk of being in the persistently 
low trajectory (MAAS and ALSPAC). Low birth weight was asso-
ciated with persistently low trajectory in ALSPAC (RRR 2.30, 
95% CI 1.05 to 5.06, p=0.038). Maternal smoking during 
pregnancy and/or the child’s first year of life increased the risk 
of below average (1.30, 1.01 to 1.67, p=0.04) and persistently 
low (1.60, 0.93 to 2.76, p=0.09) trajectories in ALSPAC, with 
similar estimates in IOW. Paternal asthma increased the risk of 
below average in MAAS (2.02, 1.14 to 3.59, p=0.017) and 
maternal asthma increased the risk of persistently low in ALSPAC 
(1.88, 1.07 to 3.30, p=0.027). Increasing preschool age body 
mass index (BMI) was associated with increased risk of below 
average trajectory in MAAS (1.23, 1.09 to 1.4, p=0.001), while 
decreasing childhood BMI increased the risk of above average 
trajectory in MAAS (0.95, 0.89 to 1.02, p=0.03) and ALSPAC 
(0.92, 0.89 to 0.95, p=1.11E-06), with a similar trend in IOW.

Figure 1  Mean FEV1/FVC over time in the four trajectory classes. ALSPAC, Avon Longitudinal Study of Parents and Children; FEV1, forced expiratory 
volume in 1 s; FVC, forced vital capacity; IOW, Isle of Wight; MAAS, Manchester Asthma and Allergy Study.

Table 1  The assigned number of children and the mean FEV1/FVC during the follow-up (with 95% CI) per FEV1/FVC trajectory

Trajectories 8–26 years

MAAS IOW ALSPAC

N (%)

FEV1/FVC

N (%)

FEV1/FVC

N (%)

FEV1/FVC

Mean (95% CI) Mean (95% CI) Mean (95% CI)

Above average 309 92.21 320 91.02 2355 91.81

38.60% (91.98 to 92.44) 39.60% (90.68 to 91.37) 49.40% (91.68 to 91.94)

Average 379 85.78 368 84.61 1816 85.06

47.30% (85.53 to 86.03) 45.50% (84.26 to 84.97) 38.10% (84.91 to 85.21)

Below average 100 78.01 97 77.53 516 77.94

12.50% (77.40 to 78.62) 12.00% (76.85 to 78.21) 10.80% (77.61 to 78.27)

Persistently low 13 67.77 24 69.76 80 69.11

1.60% (64.28 to 71.35) 3.00% (67.98 to 71.54) 1.70% (67.88 to 70.34)

ALSPAC, Avon Longitudinal Study of Pregnancy and Childhood; FEV1, forced expiratory volume in 1 s; FVC, forced vital capacity; IOW, Isle of Wight; MAAS, Manchester Asthma 
and Allergy Study.
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Association between FEV1/FVC trajectories, asthma diagnosis, 
wheeze and sensitisation
The persistently low FEV1/FVC trajectory was associated with 
current wheeze and current asthma diagnosis in all cohorts 
(online supplemental table S7). For example, current asthma in 
ALSPAC was strongly associated with persistently low trajectory 
(RRR 3.62, 95% CI 2.14 to 6.11, p=1.5×10−6), and in general, 
the likelihood of asthma diagnosis increased with decreasing 
trajectory.

We capitalised on the availability of data from healthcare 
records in MAAS to show evidence of an association between 
diminished lung function trajectories and LRTIs and asthma/
wheeze hospital admissions by age 3 years, with markedly 
increased risks for below average and persistently low trajecto-
ries (online supplemental table S7). Respiratory syncytial virus-
confirmed bronchiolitis was one of the strongest associates of 
persistently low trajectory (RRR 6.7, 95% CI 1.30 to 34.88, 
p=0.023).

We found strong evidence of an association between trajectory 
membership and allergic sensitisation in all cohorts. Sensitisation 
in preschool and early school age increased the risk of member-
ship of the persistently low trajectory (ALSPAC age 7, RRR 2.41, 
95% CI 1.44 to 4.03, p<0.0001; IOW age 4, RRR 3.84, 95% 
CI 1.44 to 10.21, p=0.007). In MAAS, children in the Above 
average lung function trajectory were less likely to be sensitised 
after age 3 years.

Association between FEV1/FVC trajectories and wheeze 
phenotypes
The proportion of participants in the persistent wheeze cluster 
increased with decreasing lung function trajectory, although it 
is of note that 5%–6% of those in the above average trajectory 
had persistent wheeze (figure 2, online supplemental table S8).21

Lung function trajectories and cardiovascular and metabolic 
outcomes in ALSPAC
Table  2 shows the crude and adjusted risk of cardiovascular 
outcomes at 24 years per-FEV1/FVC trajectory increase (ie, with 
decreasing lung function). These analyses were performed on 
1422–2759 individuals with data available in ALSPAC.

We found an increase in LVMI (mean 1.14 g/m2.7, 95% CI 
0.68 to 1.60 per FEV1/FVC trajectory; p=1.30×10−6), increase 
in LVPW systolic thickness average (mean 0.03 cm, 95% CI 0.02 
to 0.05; p=2.0×10−7), increase in average cIMT mean (mean 
0.005 mm, 95% CI 0.001 to 0.008; p=0.008) and increase 
in pulse pressure (mean 1.10 mm Hg, 95% CI 0.65 to 1.55; 
p=1.82×10−6), with decreasing lung function. Furthermore, 
we observed an increase in systolic BP (mean 1.44 mm Hg, 95% 
CI 0.87 to 2.02 per-lung function trajectory; p=8.4×10−7), 
higher serum triglycerides (mean 0.03 mmol/L, 95% CI 0.01 to 
0.06 per-lung function trajectory; p=0.006), and lower HDL 
(mean −0.04 mmol/L, 95% CI −0.06 to −0.01, p=0.003), 

Figure 2  Distribution of partition-around-medoids (PAM) wheeze phenotypes (ETW, INT, LOW, NWZ, PEW) membership21 by FEV1/FVC assigned 
classes. ALSPAC, Avon Longitudinal Study of Parents and Children; ETW, early-transient; FEV1, forced expiratory volume in 1 s; FVC, forced vital 
capacity; INT, intermittent; IOW, Isle of Wight; LOW, late-onset; MAAS, Manchester Asthma and Allergy Study; NWZ, never; PEW, persistent wheeze.

4 Granell R, et al. Thorax 2024;0:1–8. doi:10.1136/thorax-2023-220485
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with decreasing lung function. After adjustment by sex, maternal 
education level and child’s BMI, the only remaining associations 
were for LVMI (mean 0.58 g/m2.7, p=0.009) and LVPW systolic 
thickness average (mean 0.01 cm, p=0.02); with small evidence 
for residual associations for average cIMT mean.

We observed similar effect in relation to systolic BP in MAAS, 
with an increase in BP with decreasing lung function (mean 
2.05 mm Hg, 95% CI 0.63 to 3.47 per trajectory; p=0.005) 
(online supplemental table S9). This difference was completely 
attenuated after adjustment for sex and BMI.

Results for individual effects for each lung function trajectory 
(average as reference category) are reported in online supple-
mental tables S10–S12. Sex-stratified analyses (online supple-
mental table S13) show similar effects for LVMI (males: mean 
0.79 g/m2.7 per-lung function trajectory, p=0.03; females: mean 
0.59 g/m2.7, p=0.06) but an attenuation of the effect for LVPW 
systolic thickness average in females (males: mean 0.02 cm, 
p=0.08; females: mean 0.01 cm, p=0.17).

Online supplemental table S14 compares associations using 
predicted FEV1/FVC trajectories (which are adjusted by age, 
ethnicity, height and gender) vs raw FEV1/FVC adjusted by sex, 
maternal education level and child’s BMI in ALSPAC. While 
some of the associations between trajectories and CV markers 
failed to reach formal statistical significance, this was not the 
case for all of them (associations with LVMI and LVPW, with a 
trend for cIMT remained significant).

DISCUSSION
In this study, we used data-driven analyses in three independent 
birth cohorts to identify four FEV1/FVC trajectories extending 
from early school age into early adulthood (above average, 
average, below average and persistently low). Results were highly 
consistent across the populations, with no overlap in FEV1/
FVC at any follow-up time in all cohorts. Membership of the 
persistently low trajectory was associated with male sex, wheeze 

and allergic sensitisation in all cohorts. Individuals assigned to 
the persistently low trajectory were at an increased risk of having 
an asthma diagnosis through childhood, adolescence and early 
adulthood. Decreasing BMI in preschool and early school age 
was associated with increasing probability of allocation to above 
average trajectory. Importantly, our results provide evidence of 
the association of diminished lung function trajectories with 
objective echocardiographic markers of the propensity to cardio-
vascular diseases (including heart failure and stroke). Our results 
add weight to the emerging concept in the field of assessing lung 
function in childhood (eg, at school) as a marker of subsequent 
risk of respiratory, cardiovascular and metabolic diseases.4

LVMI and cIMT are indicators of future cardiovascular 
disease risk. For example, cIMT has been extensively validated 
as a predictor of cardiovascular disease-risk in adults, and LVMI 
is a measure that independently predicts adverse cardiovascular 
events and premature death.13 16 We observed a relationship 
between decreasing lung function trajectory and an increase 
in both markers. Coronary Artery Risk Development in Young 
Adults (CARDIA) study was the first to investigate the interplay 
between early adulthood lung function and late cardiac changes 
demonstrated on an echocardiogram.23 A decline in FEV1/FVC 
was associated with decreased left heart chamber size and lower 
cardiac output, whereas a decline in FVC with a preserved FEV1/
FVC (a precursor to a restrictive pathology) was associated with 
left heart hypertrophy, increased cardiac output, and diastolic 
dysfunction, irrespective of race, sex, age, height, cigarette 
smoking, diabetes or BMI.23 Although FEV1 and FVC are highly 
correlated, the fact that the pattern of airway pathology in young 
adulthood seems to differently influence future cardiovascular 
phenotypes could suggest an underlying mechanism which is 
independent of a systemic inflammatory response. However, 
while CARDIA aimed to identify factors in young adulthood 
that contribute to the development of cardiovascular disease, 
our studies followed participants from the antenatal period, 

Table 2  Associations between FEV1/FVC trajectories (8–24 years) and markers of cardiovascular disease risk at 24 years in 1700–3200 individuals 
in Avon Longitudinal Study of Parents and Children

N

Mean 95% CI
Per-FEV1/FVC trajectory 
8–24 years
Crude effect P value

Mean 95% CI
Per-FEV1/FVC trajectory 
8–24 years
Adjusted effect† P value

Attenuating 
confounders

Cardiovascular outcomes at 24 years

 � Left ventricular mass indexed to height 2.7 (g/m2.7) 1460 1.14 (0.68 to 1.60) <0.001 0.58 (0.14 to 1.02) 0.009 Sex and BMI

 � Left ventricle posterior wall systolic thickness average (cm) 1422 0.033 (0.020 to 0.045) <0.001 0.014 (0.002 to 0.025) 0.02 Sex

 � Carotid femoral pulse wave velocity (m/s) 1702 0.058 (−0.011 to 0.13) 0.10 −0.012 (−0.079 to 0.056) 0.73 Sex

 � Pulse pressure (mm Hg) 2759 1.10 (0.65 to 1.55) <0.001 0.005 (−0.38 to 0.39) 0.98 Sex

 � Average carotid intima-media thickness-mean (mm) 1451 0.005 (0.001 to 0.008) 0.008 0.003 (−0.001 to 0.006) 0.12 Sex and BMI

Blood pressure measures at 24 years

 � Systolic (mm Hg) 2759 1.44 (0.87 to 2.02) <0.001 0.07 (−0.43 to 0.58) 0.77 Sex

 � Diastolic (mm Hg) 2759 0.34 (−0.06 to 0.74) 0.09 0.07 (−0.33 to 0.47) 0.73 Sex, BMI

Fasting lipids at 24 years

 � Triglycerides (mmol/L, log) 2269 0.032 (0.009 to 0.056) 0.006 0.016 (−0.007 to 0.039) 0.18 Sex, BMI

 � HDL (mmol/L) 2269 −0.035 (−0.059 to –0.012) 0.003 −0.006 (−0.029 to 0.016) 0.58 Sex

Lung function trajectories treated as continuous: (1) above average (49.5%); (2) average (38.3%); (3) below average (10.6%); and (4) persistently low (1.7%). Linear regression 
crude and adjusted analyses weighted by class membership probabilities. We tested the assumption of linearity in all the regression models using lrtest command in Stata. P 
values from likelihood ratio tests were ≥0.05.
*Adjusted by sex, maternal lower education level (educated to the General Certificate of Education level ‘school-leaving certificate’ or lower) and child’s BMI at 7 years. Note: 
‘per-class increase’ is equivalent to ‘with decreasing lung function’.
BMI, body mass index; FEV1, forced expiratory volume in 1 s; FVC, forced vital capacity; HDL, high-density lipoprotein.
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allowing for more precise assessment of early-life risk factors, 
and the association with childhood lung function patterns.

The association between lung and cardiac disease has been 
long established in patients with COPD.24 There is a reduction 
in both cardiac chamber size and the left atrial and ventricular 
filling in those with severe COPD, with the degree of hyperinfla-
tion showing the strongest correlation with heart size. The mech-
anism behind this is unknown, but few studies have postulated 
that lung hyperinflation increases intrathoracic pressure, which 
decreases venous return,24 or increases LV wall stress leading to 
increased LV stroke work and eventual increased LV mass and 
LV remodelling.25 Indeed, the Multi-Ethnic Study of Atheroscle-
rosis study found that an increase in LV mass-to-volume ratio 
as well as end-diastolic volume was associated with an increase 
in cardiovascular events, which is consistent with a load effect 
that induces chamber remodelling and hypertrophy.26 Other 
studies discussed a possible role of haemodynamic effects of 
hypoxia and vascular remodelling leading to pulmonary hyper-
tension with subsequent effect on RV and LV interdependence 
as a cause of altered cardiac chamber size.27 Using CT scans, 
findings suggestive of ‘early emphysema’ in an otherwise healthy 
population were associated with lower LV end-diastolic volume, 
stroke volume and cardiac output, implying that the interaction 
between heart and lung seen in advanced disease initiates earlier 
in life and at subclinical levels of disease,28 likely prior to any of 
the proposed mechanisms in those with severe lung disease like 
COPD. This is supported by our findings. However, the above 
data come from cross-sectional studies in older populations, and 
our results take this one step further by identifying that lung 
function patterns starting in school age predict cardiac effect in 
adulthood.

Other major risk factors for cardiovascular disease include 
dyslipidaemia (defined as either high triglycerides, high low-
density lipoprotein or low HDL). Of note, such metabolic 
abnormalities have also been associated with asthma29–31 and 
airway obstruction in children32.

Several studies have shown that poorer lung function in early 
adulthood is associated with stroke and hypertension in later 
adulthood. Lung function in young adulthood in CARDIA was 
independently associated with cardiovascular and cerebrovas-
cular events into middle age,33 and within-individual change 
in lung function (including low normal and deterioration from 
peak health) was independently associated with a greater inci-
dence of hypertension and blood pressure variability.34

In our study, low birth weight and maternal asthma were asso-
ciated with persistently low FEV1/FVC trajectory. Similarly, we 
have previously demonstrated that low birth weight identified 
children with a persistently low FEV1 trajectory,35 as well as the 
restrictive phenotype.6 Both the IOW36 and the Pelotas cohorts11 
showed that low birth weight was associated with low FEV1 and 
FEV1/FVC trajectories. Exact pathophysiological mechanisms 
have not been ascertained, but it has been suggested that adverse 
early life risk factors such as maternal smoking,37 poor maternal 
nutrition,38 restricted intrauterine growth39 and gestational 
age40 could contribute to this. This adds to the evidence that 
low birth weight acts as a proxy for adult health and that it is 
associated with chronic disease including coronary artery disease 
and hypertension.

Our study has several limitations. One limitation which is 
common to most analyses of longitudinal data which involve 
multiple follow-up measurements over a long period of time is 
missing values due to drop-out. Both analyses (complete dataset 
and at least two spirometry measures) gave consistent optimal 
goodness-of-fit using the BIC, and the child class assignments 

were stable across the two analyses. This suggests that the 
missing-at-random assumption was plausible, given that if chil-
dren with missing datapoints were not missing at random, we 
would have observed a higher mismatch between classes.

A further limitation of our study is the heterogeneity between 
cohorts (minor differences in data collection ages, wording of 
questions, etc). However, the lung function trajectories were 
remarkably consistent across the cohorts. Another limitation is 
that missing data limits assessment of risk factors. Given a rela-
tively small sample size in the persistently low trajectory, we may 
not have enough power to detect clinically important effects and 
may lack precision. Strengths of our study include the longi-
tudinal nature of the data coming from multiple sources and 
covering different age ranges and screening intervals, the long 
duration of the follow-up (up to 26 years of age) and similar 
methodology applied for determining participants’ health status.

Our study highlights the importance of lung growth in general 
as the associate of adverse respiratory, cardiovascular and meta-
bolic outcomes, and the importance of early life factors, partic-
ularly deprivation. Childhood lung function trajectories may 
serve as important predictors in the development of not only 
future lung disease, but also the interplay and multimorbidity of 
lung, cardiovascular and metabolic diseases. Our findings draw 
attention to the potential importance of measuring lung function 
from early school age as a marker of future risk, since early lung 
function optimisation to alter trajectories may help in preventing 
adverse health outcomes in adulthood. However, being able to 
identify a potential problem does not automatically extend to 
actionable interventions to address it. The question remains 
as to whether the age at which the majority of children in the 
community can perform reliable forced expiratory manoeuvres 
(usually around age 6 years) is already too late to intervene to 
improve lung growth.41 However, we have previously shown 
in ALSPAC that catch-up growth in FEV1 and FVC is possible 
around puberty, and that later onset and higher velocity of 
pubertal growth are associated with higher maximally attained 
lung function at age 24 years.42 Given the global trends towards 
earlier puberty43 and a significant relationship between the early 
onset of puberty with child’s obesity44 and maternal obesity and 
gestational weight gain,45 a combination of intervention tackling 
childhood obesity to protect current generations, and obesity 
in pregnancy to protect future generations (particularly among 
women with impaired lung function),41 may have substantial 
impact on overall health. This should be coupled with measures 
to minimise exposure to tobacco smoke, air pollution and other 
adverse environmental exposures. Among children with recur-
rent wheeze, every effort should be made to reduce the number 
of severe exacerbations. However, all these measures must be 
paralleled with societal efforts to reduce inequalities and social 
deprivation if the nation’s health is to be improved.
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