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Pseudo-Hermitian field theories possess a global continuous “similarity” symmetry, interconnecting the
theories with the same physical particle content and an identical mass spectrum. In their regimes with real
spectra, within this family of similarity transformations, there is a map from the non-Hermitian theory to its
Hermitian similarity partner. We promote the similarity transformation to a local symmetry, which requires
the introduction of a new vector similarity field as a connection in the similarity space of non-Hermitian
theories. In the case of non-Hermitian two-flavor scalar or fermion mixing and by virtue of a novel IR/UV
mixing effect, the effect of inhomogeneous non-Hermiticity then reveals itself via anomalous dispersion,
instabilities, and superluminal group velocities at very high momenta, thus setting an upper bound on the
particle momentum propagating through inhomogeneous backgrounds characterized by Lagrangians with
non-Hermitian mass matrices. Such a non-Hermitian extension of the Standard Model of particle physics,
encoded in a weak inhomogeneity of the non-Hermitian part of the fermion mass matrix, may nevertheless
provide us with a low-energy particle spectrum consistent with experimentally observed properties.

DOI: 10.1103/PhysRevD.109.105006

I. INTRODUCTION

Owing to its wide applicability in experimental physics
(see Refs. [1–6] for reviews), pseudo-Hermitian quantum
mechanics [7–9], wherein Hermiticity of the Hamiltonian
is superseded by an antilinear symmetry such as parity-time
(PT ) reversal [10–12] has inspired growing interest
in viable quantum field theories (QFTs) with non-
Hermitian Hamiltonians/Lagrangians. Examples include
non-Hermitian deformations of the Dirac Lagrangian with
a parity-odd, anti-Hermitian mass term [13–18] (see also
Ref. [19]); theories of massive second-order fermions
[20,21]; scalar [16,17,22–24], and fermionic [14,23,25]
field theories with non-Hermitian mass mixing matrices;
non-Hermitian Yukawa theories [14,26–29]; scalar theories
with complex [30–37] or wrong-sign [38–40] self-
interactions; theories exhibiting spontaneous symmetry

breaking [41–47] and topological defects [48–52]; holo-
graphic settings [53,54]; and non-Hermitian Dirac materi-
als in the context of condensed matter physics [55].
The attractiveness of non-Hermitian QFTs, whose spec-

tra are nevertheless real and whose evolution is nevertheless
unitary in regions of unbroken antilinear symmetry, stems
from the unique phenomenology that they can exhibit.
This unique phenomenology originates in part from the
existence of so-called exceptional points, which mark the
boundaries between regimes of broken and unbroken
antilinear symmetry and which cannot be reproduced by
Hermitian theories.
In this work, we study one such unique phenomenology,

which we previously identified in the scalar QFT composed
of two complex scalar fields with a non-Hermitian mass
mixing [56]: that non-Hermitian QFTs with local
Lagrangian parameters naturally lead to the emergence
of a so-called similarity gauge field, momentum-dependent
exceptional points, a new type of high-energy instability,
and a novel IR/UV mixing. Our aim here is to revisit these
effects in scalar and fermionic theories with local non-
Hermitian mass mixing matrices and to describe the
associated phenomena of superluminal, negative, or vani-
shing group velocities, and anomalous dispersion. We note
that time-dependent non-Hermitian quantum mechanical
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Hamiltonians have attracted significant attention [57–59].
The phenomena described in this work, however, are
unique to the case of relativistic field theories.
We focus on a model with two scalars and another with

two fermions that have in common a similar non-Hermitian
mass mixing and highlight essential differences in the
properties of these two models compared to one composed
of a single Dirac fermion with a parity-odd, anti-Hermitian
mass term. We consider local similarity transformations of
the models and assume that the mass matrix has the same
eigenvalues at every point in spacetime, thereby implying
that the local “low-energy”measurements provide the same
physical masses regardless of the time (spatial coordinate)
when (where) this measurement is performed. Here, the
term low energy means that this statement is true for
energies lower than the energy of typical ultrahigh-energy
cosmic rays (1018 eV), thereby encompassing most obser-
vations to date. As in Ref. [56], we assume a spacetime
dependence of the mass matrix which, together with
the fixed mass eigenvalues, corresponds to a spacetime-
dependent rotation of the model in the “similarity” space.
While we find that the ground state of the single Dirac

fermion can become unstable, the low-energy modes,
including the ground state, of the two-scalar and two-
fermion models with non-Hermitian mass mixing are
stable. The instability appears instead in the high-energy
regime, which has potentially interesting implications
for the propagation of ultrahigh-energy cosmic rays or
for neutrino models with time- and space-varying mass
matrices [60].
This article is structured as follows. We start our

discussion in Sec. II with a review and further update of
the properties of the non-Hermitian model that describes a
two-component complex-valued scalar field characterized
by spatially inhomogeneous parameters. The local nature of
the similarity map in this benchmark model allows us to
introduce a novel kind of gauge field, dubbed the “sim-
ilarity gauge field” in Ref. [56]. In Sec. III, we then follow
the same strategy of introducing the similarity gauge field
to a non-Hermitian fermionic model with a single flavor,
finding that this single-flavor model gives us phenomeno-
logically unacceptable results. In detail, we describe the
theory of a single massive fermion with an anti-Hermitian,
parity-odd mass term, involving the fifth gamma matrix.
We promote its mass parameters to local functions and
show that this straightforward generalization leads to an
unstable spectrum in the would-be PT unbroken regime.
In Sec. IV, we generalize the one-fermion model of

Sec. III to two fermion flavors following the strategy that
is successfully tested for the two-component scalar model
in Sec. II. We promote the mass parameters to local
functions in Sec. IV B and derive the dispersion relations
for physical excitations in Sec. V, where we identify the
high-momenta instabilities, anomalous dispersion, and
superluminal regimes, similar to the case of the doublet

scalar model discussed at the beginning of the paper.
The potential phenomenological relevance of our con-
struction is described in Sec. VI. Section VII outlines our
conclusions, and additional technical details are provided
in the Appendixes.

II. TWO-FLAVOR SCALAR MODEL

In this section, we revisit the scalar model with local
mass parameters, which was previously analyzed in
Ref. [56]. Our aim is to show that, aside from the novel
IR/UV mixing effect and resulting instabilities described in
Ref. [56], certain modes also exhibit anomalous dispersion
and superluminal propagation.
The Lagrangian of the model (originally introduced in

Ref. [16]) is

LΦ ¼ ∂μΦ̃†
∂
μΦ − Φ̃†M2Φ; ð1Þ

where Φ ¼ ðϕ1;ϕ2Þ and

M2 ¼
 

m2
1 m2

5

−m2
5 m2

2

!
≠ M2† ð2Þ

is pseudo-Hermitian with

PM2P ¼ M2†; P ¼ P−1 ¼
�
1 0

0 −1

�
: ð3Þ

We take m2
1 > m2

2 > 0 and m2
5 > 0. The conjugate doublet

Φ̃† ¼ ðϕ̃†
1; ϕ̃

†
2Þ is defined via [24]

Φ̃†ðxÞ ¼ η−1Φ†ðxηÞηπ; ð4Þ

where, for example, we can take η ¼ P to be the parity
operator and π ¼ P ¼ diagð1;−1Þ to be the parity matrix,
such that the complex field ϕ1 transforms as a scalar and the
complex field ϕ2 as a pseudoscalar.1 This choice matches
Ref. [22], but it has the disadvantage that the momentum
operator is no longer Hermitian and the operator η is not
sufficient for constructing a positive-definite inner product
[24]. Alternatively, we can take η ¼ PA and π ¼ PA [24],
where A is the additional discrete symmetry of the
Lagrangian with

1Since the field and its usual Hermitian conjugate evolve with
the Hamiltonian H and its Hermitian conjugate H† ≠ H, re-
spectively, a Lagrangian formulated in terms of these variables
would lead to inconsistent Euler-Lagrange equations [16]. The
discrepancy between the generator of time translations [56] for
the two fields would lead to further inconsistencies. Most notably,
such a Lagrangian would not transform properly under the
Poincaré group [24].
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A−1M2A ¼ M2: ð5Þ

Either way, since the equations of motion of this theory
are linear, the exact choice does not impact the arguments
presented in this work.
The squared mass eigenvalues are

M2
� ¼ m2

1 þm2
2

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
m2

1 −m2
2

2

�
2

−m4
5

s
; ð6Þ

and these are real when the parameter

ζ ≡ 2m2
5

m2
1 −m2

2

≤ 1: ð7Þ

With these definitions, the matrix A is given by [22]

A¼ 1ffiffiffiffiffiffiffiffiffiffiffi
1−ζ2

p �
1 ζ

−ζ −1

�
; PA¼ 1ffiffiffiffiffiffiffiffiffiffiffi

1−ζ2
p �

1 ζ

ζ 1

�
: ð8Þ

Note that PAP ¼ AT and A−1 ¼ A.
The eigenvectors of the mass matrix are given by [16]

eþ ¼
�

cosh ξH
− sinh ξH

�
; e− ¼

�
sinh ξH

− cosh ξH

�
; ð9Þ

where ξH ¼ 1
2
arctanhζ. We can readily confirm that these

eigenvectors are orthonormal with respect to the inner
product,

ha; biAPT ¼ aAPT · b ¼ a� · P · A · b; ð10Þ

viz.,

heþ; eþiAPT ¼ he−; e−iAPT ¼ 1; ð11Þ

heþ; e−iAPT ¼ he−; eþiAPT ¼ 0: ð12Þ

Since the squared mass matrix is non-Hermitian, it is
diagonalized by a similarity transformation of the form

M2
diag ¼ S−1H M2SH; ð13Þ

where

SH ¼
�

cosh ξH − sinh ξH
− sinh ξH cosh ξH

�
: ð14Þ

Note that the similarity matrix (14) is related to the
matrices (3) and (8) as follows:

S2H ¼ AP: ð15Þ

In this way, the Hermitian Lagrangian

LΦ;diag ¼ ∂μΦ†
∂
μΦ −Φ†M2

diagΦ ð16Þ

corresponds to one of an infinite one-parameter family of
isospectral Hamiltonians related via similarity transforma-
tions effected by the transformation

Φ → SΦ; ð17Þ

Φ̃† → Φ̃†S−1; ð18Þ

with

S ¼
�

cosh ξ − sinh ξ

− sinh ξ cosh ξ

�
: ð19Þ

That Φ̃† is not the Hermitian conjugate of Φ, except in the
mass eigenbasis, is then manifested in the observation
that S−1 ≠ S†.
The central idea of Ref. [56] was to make the parameters

m2
1 ¼ m2

1ðxÞ, m2
2 ¼ m2

2ðxÞ, and m2
5 ¼ m2

5ðxÞ spacetime
dependent, and to generalize the global similarity trans-
formation S to a local similarity transformation with
ξ ¼ ξðxÞ. It is then apparent that the kinetic term is not
invariant under this local similarity transformation, but
following the minimal coupling procedure, it is possible to
restore invariance of the kinetic term by promoting the
partial derivatives to covariant derivatives involving a
similarity gauge field Cμ, i.e.,

∂μ → Dμ ¼ ∂μ − Cμ ¼ 1∂μ þ σ1Cμ ≡
�
∂μ Cμ

Cμ ∂μ

�
: ð20Þ

Under the similarity transformation, we have

Cμ → SCμS−1 − S∂μS−1: ð21Þ

Recalling, however, that the tilde-conjugate field Φ̃ trans-
forms with S−1, we also require the tilde-conjugate covar-
iant derivative

D̃μ ¼ ∂μ þ Cμ ¼ 1∂μ − σ1Cμ ≡
�

∂μ −Cμ

−Cμ ∂μ

�
: ð22Þ

The similarity-invariant Lagrangian then takes the form

LΦ;C ¼ D̃μΦ̃†DμΦ − Φ̃†M2Φ: ð23Þ

We note that the diagonalization of the coordinate-
dependent mass matrix, effected by a coordinate-dependent
similarity transformation that does not commute with the
kinetic term, leads to the emergence of a nonvanishing
similarity gauge field. Since the terms depending on the
similarity gauge field are non-Hermitian, we there-
fore conclude that the non-Hermitian theory with local
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parameters cannot be mapped to a Hermitian theory, and it
will consequently exhibit genuine non-Hermitian phenom-
ena that a Hermitian theory cannot reproduce.
Following Ref. [56], we now consider the particular case

in which the coordinate-dependent mass parameters m2
1,

m2
2, and m2

5 lead to coordinate-independent mass eigen-
values M2

�. For a constant but nonvanishing similarity
gauge field, the spectrum of the theory is then governed by

ðp2−C2−m2
1Þðp2−C2−m2

2Þþ4ðC ·pÞ2þm4
5¼0; ð24Þ

where we have considered solutions to the Klein-Gordon
equation of the form

ΦðxÞ ¼ φðpÞe−ip·x: ð25Þ

We adopt the standard conventions for the four-vector
product p · x ¼ pμxμ ¼ ωt − p · x, where pμ ¼ ðω; pÞ is
the four-momentum and xμ ¼ ðt; xÞ is the spacetime
coordinate. We work with the mostly minus Minkowski
signature. We have also introduced the following scalar
Lorentz invariants: p2 ≡ pμpμ ¼ ω2 − p2, C · p≡ Cμpμ ¼
C0ω − C · p, and C2 ≡ C · C≡ CμCμ ≡ C2

0 − C2.
A generic dispersion relation corresponds to a solution of

Eq. (24) for a global, coordinate-independent vector Cμ,
which is given by a root of an algebraic equation of the
fourth order. While such a solution is definitely possible to
obtain in an analytical form, its rather complicated structure
makes further analytical analysis difficult. Therefore, we
proceed below by considering two cases of strictly tem-
poral or strictly spatial perturbations, where analytical
solutions are provided by much simpler expressions.
Moreover, these cases cover all possible variants for Cμ,
since a timelike or spacelike vector can be made, respec-
tively, strictly temporal or strictly spatial with the help of
Lorentz transformations.
For the case of a timelike similarity field Cμ ¼ ðC0; 0Þ,

the spectrum is given by

ω2
�;p ¼ p2 − C2

0 þ
m2

1 þm2
2

2

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
m2

1 −m2
2

2

�
2

−m4
5 − 2C2

0ðm2
1 þm2

2 þ 2p2Þ
s

:

ð26Þ

Noting that

m2
1 þm2

2 ¼ M2þ þM2
−; ð27Þ

�
m2

1 −m2
2

2

�
2

−m4
5 ¼

�
M2þ −M2

−

2

�
2

; ð28Þ

we can readily confirm that the energies ω�;p are coordinate
independent. The modification to the eigenfrequencies

leads to a corresponding modification of the positive-
definite inner product. This is described in Appendix A.
For sufficiently high momenta, the argument of the

square root can become negative, such that the energy
eigenvalues are real for momenta below some critical
momentum pc, and they come in complex-conjugate pairs
for momenta above this critical momentum. In this way, the
theory exhibits momentum-dependent exceptional points
occurring at the critical momentum [56], which is given by

p2
c ¼

ðM2þ −M2
−Þ2

16C2
0

−
M2þ þM2

−

2
: ð29Þ

Proceeding similarly for a purely spacelike similarity
field Cμ ¼ ð0;CÞ, the spectrum is given by

ω2
�;p ¼ p2 − C2 þm2

1 þm2
2

2

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
m2

1 −m2
2

2

�
2

−m4
5 − 4ð p · CÞ2

s
: ð30Þ

In this case, the instability arises for modes with a
component pk parallel to C of magnitude greater than
the critical momentum pk;c, which is given by

p2
k;c ¼

ðM2þ −M2
−Þ2

16C2
: ð31Þ

Having defined the critical momenta above, the timelike
and spacelike cases can be expressed in the following
convenient forms

ω2
�;p¼p2þM̄2−

8<
:
C2
0∓2jC0j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
c−p2

p
timelike;

C2∓2jCj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
k;c−p2k

q
spacelike;

ð32Þ

where

M̄2 ¼ M2þ þM2
−

2
ð33Þ

is the average squared mass. Taking C0 ¼ C and Ci ¼ Cδi3
(along the z direction), the group velocities take the form

ðv�;pÞi ¼
1

ω�;p

2
64pi ∓ C

8<
:

piffiffiffiffiffiffiffiffiffi
p2
c−p2

p timelike

p3δi3ffiffiffiffiffiffiffiffiffiffi
p2
c−p2

3

p spacelike

3
75: ð34Þ

For modes propagating in the z direction, i.e., p ¼ ð0; 0; pÞ,
the group velocities take the same form for the timelike and
spacelike cases:

v�;p ¼ p
ω�;p

�
1 ∓ Cffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2
c − p2

p �
: ð35Þ
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There is another set of critical momenta pstop and pk;stop
at which the group velocity of the ωþ mode vanishes. These
critical momenta are given by

p2
ðk;Þstop ¼ p2

ðk;Þc − C2: ð36Þ

Moreover, for modes with momenta in the intermediate
range, p2

ðk;Þstop < p2ðkÞ < p2
ðk;Þc, the group velocity of the ωþ

mode is negative.
In standard optical materials, the index of refraction n

increases with increasing frequency ω (so that ∂n=∂ω > 0).
This corresponds to “normal” dispersion. The latter is
responsible, e.g., for the usual ordering of the colors in a
rainbow, from red at the top to violet at the bottom. In the
case of anomalous refractive index, ∂n=∂ω < 0, the order
of colors would get reversed, from violet at the top to red at
the bottom.
Since the “�” modes possess different dispersions, they

will have different refractive indices n�;p that are deter-
mined with respect to the corresponding phase velocities
u�;p ¼ ω�;p=p as follows:

n�;p ¼ 1

u�;p
≡ p

ω�;p
: ð37Þ

(We set the velocity of light to unity, c ¼ 1.) The condition
for the anomalous refractive index then reads

∂n�;p

∂p
≡ ∂

∂p
p

ω�;p
< 0 ðanomalous dispersionÞ: ð38Þ

The dispersion of the “þ” mode is always normal.
However, the dispersion of the “−” mode becomes anoma-
lous at a scale pa below both pc and pstop. For complete-
ness, the scale pa is given by

p2
a ¼ 2p2

c þ M̄2 −
C2

2
−

M̄4

2C2

þ M̄2 − C2

2C2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðM̄2 − C2Þ2 − 4C2p2

c

q
; ð39Þ

where we have assumed that C2 < M2, which is needed to
preserve the real valuedness of the dispersion for the
“−” mode at vanishing momentum p ¼ 0, as follows from
Eq. (32).
The classical relation between the dispersion n of a

medium and the group and phase velocities

v ¼ 1

nþ ω ∂n
∂ω

; n ¼ 1

u
¼ p

ω
; ð40Þ

implies that the group velocity may exceed the speed of
light if the anomalous dispersion becomes too extreme,
with nþ ω∂n=∂ω < 1. Indeed, both modes ω� exhibit

superluminal propagation for momenta above the corre-
sponding scales

p2
SL;� ¼ p2

c

M̄4

h
M̄4 � 2C2pc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
c þ M̄2

q
− C2ð2p2

c þ M̄2Þ
i
;

ð41Þ
where pSL < pc. Note that the superluminal region for the
mode ωþ occurs when its group velocity is negative, such
that pstop < pSL;þ < pc.
In Sec. IV, we will see that a fermionic model with non-

Hermitian two-flavor mixing exhibits analogous behaviors,
where we provide a more comprehensive exposition of
these uniquely non-Hermitian phenomena. A complete
description of the analogous phase diagram and the critical
points is given for this phenomenologically interesting
model in Sec. V.

III. ONE-FLAVOR FERMIONIC MODEL

Before considering the fermionic analog of the two-
flavor scalar model of the previous section, we focus on a
simple non-Hermitian extension of the Dirac Lagrangian
[13–18] with the following form:

Lψ ¼ ψ̄ði=∂ −m −m5γ
5Þψ ; ð42Þ

where m corresponds to the Hermitian mass term for the
fermion field ψ , andm5 provides us with the anti-Hermitian
mass term. Note that the pseudo-Hermiticity of the
Lagrangian necessitates a redefinition of the dual field
ψ̄ , which is therefore not the usual Dirac conjugate
ψ̄ ≠ ψ†γ0 (see Refs. [18,24]; cf. Refs. [20,21] in the case
of second-order fermions).2

The Lagrangian (42) gives the following classical
equations of motion:

ði=∂ −m −m5γ
5Þψ ¼ 0; ð43Þ

ψ̄ði =⃖∂þmþm5γ
5Þ ¼ 0: ð44Þ

By inspection, we see that the dual spinor is defined in
terms of the spinor ψ̃† and not ψ†, where they differ by
m5 → −m5 (see Ref. [18]).
The positive-frequency solutions of the Dirac equation

ψðxÞ ¼ uðpÞe−ip·x ð45Þ
are expressed via the spinor uðpÞ,3 which satisfies

ð=p −m −m5γ
5ÞuðpÞ ¼ 0: ð46Þ

2As noted in the scalar case, we remark that the precise
definition of ψ̄ has no impact on the dispersion relations relevant
to this work, since the fermionic theory is linear.

3The explicit form of the four spinor can be found in Ref. [18].
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The self-consistency of Eq. (46) requires p2 ¼ M2 and
determines the energy spectrum (p0 ≡ Ep) via

ω2
p ¼ p2 þM2; ð47Þ

in which the squared mass of the fermionic excitation is

M2 ¼ m2 −m2
5: ð48Þ

If jmj ≥ jm5j, the mass M is a real quantity. This range of
parameters corresponds to the “PT -symmetric” phase, in
which the theory is stable. If the Hermitian mass jmj is
smaller than the non-Hermitian mass jm5j, then the system
resides in the “PT -broken” phase, which is characterized
by paired complex branches of fermionic energies that
make the vacuum unstable.
This theory, in fact, belongs to a one-parameter family of

similar theories. This can be expressed conveniently by
writing

mþm5γ
5 ¼ Me2γ

5θ; ð49Þ

with

m ¼ M cosh 2θ and m5 ¼ M sinh 2θ; ð50Þ

where θ is a real parameter and the mass of the fermionic
excitationsM is given in Eq. (48). This family is connected
by a corresponding nonunitary and noncompact similarity
transformation that takes the form

ψ → eω5γ
5

ψ and ψ̄ → ψ̄eω5γ
5

: ð51Þ

Applying the similarity transformation (51) with the
constant parameter ω5 ¼ −θ to the original non-Hermitian
Lagrangian (42), we obtain the corresponding Hermitian
Hamiltonian,

Lψ ;H ¼ ψ̄ði=∂ −MÞψ : ð52Þ

Notice that the kinetic term of the Dirac Lagrangian is
invariant under the similarity transformation (51).
We now assume that both the Hermitian and non-

Hermitian masses in the original Lagrangian (42) are
functions of the spacetime coordinate xμ, i.e., m ¼ mðxÞ
and m5 ¼ m5ðxÞ, such that

mðxÞ þm5ðxÞγ5 ¼ Me2γ
5θðxÞ: ð53Þ

In this way, the mass of the fermionic excitation (48)
remains a coordinate-independent quantity. Still, the origi-
nal non-Hermitian Lagrangian (42) can no longer be
mapped to its Hermitian analog (52), as we will see below.
In order to incorporate the coordinate dependence of the

mass parameters m and m5, we need to promote the global

similarity transformation (51) to a local transformation. To
this end, we introduce the new axial vector similarity gauge
field Cμ and promote the Lagrangian to

Lψ ;C ¼ ψ̄ði=∂þ i=Cγ5 −m −m5γ
5Þψ : ð54Þ

Under the local version of the similarity transformation in
Eq. (51), the similarity gauge field transforms as

Cμ → Cμ − ∂μω5: ð55Þ

The parameter ω5 originates from a noncompact gauge
group. The similarity gauge field Cμ is therefore a non-
compact gauge field, which, e.g., will not contain Abelian
monopolelike singularities.
We now turn to the case of a constant similarity

gauge field. For a purely spacelike field Cμ ¼ ð0;CÞ, the
spectrum is

ω2
�;p ¼ m2 −m2

5 þ p2 − C2

� 2i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm2 −m2

5ÞC2 þ ðp · CÞ2
q

: ð56Þ

While this spectrum functionally resembles the phenom-
enologically interesting energy dispersion of the scalar
doublet model (32), it possesses unstable modes in most of
momentum space (see below). This statement applies even
for the PT -unbroken regime with m2 −m2

5 > 0. The
complex valuedness of the energy spectrum renders this
model of less interest for particle phenomenology.
Unexpectedly, the spectrum (56) nevertheless contains

extended “islands of stability” in momentum space in the
would-be PT -broken regime for which m2 −m2

5 < 0. In
this case, the spectrum always has an unstable low-
momentum region, as both � branches of the squared
energy dispersion (56) are negative at vanishing momen-
tum, i.e., ω2

�ðp ¼ 0Þ < 0. However, higher-momentum
modes become stable at higher momenta. To illustrate
these properties, we take a PT -broken set of masses, i.e.,
m2

5 −m2 ¼ C2
3 > 0, with the vector similarity field point-

ing along the z axis, such that C ¼ ð0; 0; C3Þ. The stability
region is given by the overlap of the two shaded regions of
Fig. 1, which correspond to the stable domains for the ωþ
and ω− modes, respectively. In this way, we find that this
model exhibits momentum-dependent exceptional points,
occurring along the boundaries of these regions of stability,
as were found in the case of the non-Hermitian scalar field
theory with local mass parameters [56], which is reviewed
in Sec. II.
For a purely timelike field Cμ ¼ ðC0; 0Þ, the spectrum is

instead

ω2
�;p ¼ m2 −m2

5 þ ðjpj � iC0Þ2: ð57Þ
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For mass parameters in the physical PT -unbroken regime
(m2 > m2

5), these spectra share the same property: they
include four complex eigenmodes, which are pairwise
related to each other by complex conjugation. In both
cases, the energy branches at nonzero momentum, p2 > 0,
always correspond to unstable modes, which is an unac-
ceptable feature for a phenomenologically appropriate
model. There are no islands of stability for the timelike
case. (The modes are stable only in the PT -unbroken
regime at p ¼ 0.).
Summarizing this section, we stress that the IR insta-

bilities of the one-flavor fermionic model equipped with the
similarity gauge field seriously limit its phenomenological
viability. In the next section, however, we will show that the
two-flavor generalization of the single-fermion model does
not exhibit the same problems at low momenta and there-
fore can be useful in non-Hermitian extensions of the
Standard Model of particle physics.

IV. TWO-FLAVOR FERMIONIC MODEL

In this section, we consider the following two-flavor
generalization of the non-Hermitian Dirac Lagrangian:

LΨ ¼
X2
a¼1

ψ̄aði=∂ −maÞψa −m5ðψ̄1γ
5ψ2 þ ψ̄2γ

5ψ1Þ; ð58Þ

where, as in the single fermion case of Sec. III, the
conjugate field ψ̄ is not the usual Dirac conjugate. We
take m1 > m2 > 0 and m5 > 0 without loss of generality.

The model (58) closely mimics its bosonic counterpart with
two species [16]; in fact, the two systems can be considered
supersymmetric partners [23].
If we take ψ1 to be right chiral and ψ2 to be left chiral,

such that γ5ψ1 ¼ þψ1 and γ5ψ2 ¼ −ψ2, the Lagrangian
can be written in the more convenient form

LΨ ¼ Ψ̄ði=∂ − M̂ÞΨ; ð59Þ

where Ψ ¼ ðψ1;ψ2ÞT is the doublet of the fermionic fields,
and the mass matrix takes the form

M̂ ¼
�

m1 m5

−m5 m2

�
: ð60Þ

Its eigenvalues are

M� ¼ 1

2

�
m1 þm2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm1 −m2Þ2 − 4m2

5

q �
; ð61Þ

and the energy dispersion relations take the standard
relativistic form

ω2
�;p ¼ p2 þM2

�; ð62Þ

implying that Eq. (61) represents the physical masses of the
excitations in the system. The PT -unbroken domain of the
model (59) occurs when the mass parameters satisfy

4m2
5 < ðm1 −m2Þ2; ð63Þ

which is illustrated in Fig. 2.4

As in the two-scalar case, it is convenient to introduce the
non-Hermiticity parameter,

ζ ≡ 2m5

m1 −m2

; ð64Þ

which determines the deviation of the model from the
Hermitian point. Exactly at a vanishing value ζ ¼ 0, the
two fermionic flavors decouple, and the model becomes
Hermitian. For 0 < jζj < 1, the model is non-Hermitian but
resides in the domain of unbroken PT symmetry, where
the mass eigenvalues are real. For jζj > 1, the mass
eigenvalues (61) are complex, and the PT symmetry is
broken. At the points ζ ¼ �1, the squared mass eigenval-
ues merge, and the mass matrix becomes defective. At this
exceptional point, which occurs at the boundary between
the regimes of broken and unbroken PT symmetry, the

FIG. 1. An example of the stability regions of the one-fermion
spectrum (56) in the plane of longitudinal pk ≡ p3 and transverse
p⊥ ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
1 þ p2

2

p
components of momenta for m2

5 −m2 ¼
C2
3 > 0. The stability island of the ωþ mode (shown in green)

lies within a more extended region of stability for the ω− mode
(shown in blue). In the uncolored region, both modes are
unstable.

4Notice that a negative value of a fermionic (as well as
bosonic) mass does not have any physical consequences, because
the fermions (bosons) with the masses m and −m have the same
energy dispersions (62).
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fermions become degenerate, and the model acquires a
global Uð2Þ symmetry.

A. Global similarity transformation

In the PT -unbroken regime, the two-fermion model (59)
with spacetime-independent mass matrix can be mapped,
via a global similarity transformation, to a Hermitian
model. In order to demonstrate this property, it is conven-
ient to consider the following parametrization of the mass
matrix (60):

m1 ¼ M þm cosh 2ϰ; ð65aÞ

m2 ¼ M −m cosh 2ϰ; ð65bÞ

m5 ¼ m sinh 2ϰ; ð65cÞ

which reduces Eq. (60) to

M̂ ¼ M

�
1 0

0 1

�
þm

�
cosh 2ϰ sinh 2ϰ

− sinh 2ϰ cosh 2ϰ

�
: ð66Þ

In this parametrization, the physical eigenmasses (61) take
the following simple form:

M� ¼ M �m; ð67Þ

where, according to Eq. (61),

M ¼ m1 þm2

2
and m ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm1 −m2Þ2 − 4m2

5

q
: ð68Þ

It is important to notice that the physical spectrum (67) does
not depend on the parameter ϰ that labels the similarity

degeneracy of the non-Hermitian model. In the PT -
unbroken regime, the mass parameter m is a real-valued
quantity, whereas in the broken phase m acquires an
imaginary contribution. Notice that the standard non-
Hermiticity parameter ζ defined in Eq. (64) is related to
the parameter ϰ as ζ ¼ tanh 2ϰ. The exceptional points
ζ ¼ �1 correspond to the asymptotic limits ϰ → �∞,
respectively.
Notice that the model (59) becomes Hermitian for purely

imaginary ϰ ¼ �ijϰj (with M and m real), since the off-
diagonal terms become iðψ̄1ψ2 − ψ̄2ψ1Þ. Consequently, the
mass eigenvalues

MðHermÞ
� ¼ 1

2

�
m1 þm2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm1 −m2Þ2 þ 4jm5j2

q �
ð69Þ

are real valued for all values of the mass parameters, in
contrast to their non-Hermitian counterparts (61).
We now turn our attention to the global similarity

transformation

Global similarity transform∶
�Ψ → SΨ
Ψ̄ → Ψ̄S−1

; ð70Þ

which maps the non-Hermitian Lagrangian (59) into a
Hermitian one of the form

LΨ;diag ¼ Ψ̄ði=∂ − M̂diagÞΨ; ð71Þ

containing the diagonalized mass matrix

M̂diag ≡ diagðMþ;M−Þ ¼ S−1M̂S: ð72Þ

The similarity transformation is represented by an SUð1; 1Þ
matrix S, which operates in the isospace diagonal in the
spinor space. It takes the explicit form

S≡ SðϰÞ ¼ e−ϰσ1 ≡
�

cosh ϰ − sinh ϰ

− sinh ϰ cosh ϰ

�
: ð73Þ

Notice that for a real-valued parameter ϰ (i.e., in the
PT -unbroken regime), S is Hermitian but not unitary, i.e.,
S† ≡ S and S† ≠ S−1, with

S−1 ≡ Sð−ϰÞ ¼ eϰσ1 ≡
�
cosh ϰ sinh ϰ

sinh ϰ cosh ϰ

�
: ð74Þ

The multiplication rule

Sðϰ1Þ · Sðϰ2Þ ¼ Sðϰ1 þ ϰ2Þ ð75Þ

implies that S belongs to an Abelian (Cartan) subgroup of
the SUð1; 1Þ group.

FIG. 2. The PT -unbroken regions (shown in green) for the
model (59) with the mass matrix (60) at m5 ≠ 0.
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The eigenvectors of the mass matrix e� satisfying

M̂e� ¼ M�e� ð76Þ

are equivalent to their bosonic analogs [16] (see Sec. II);
namely,

eþ ¼
�

cosh ϰ

− sinh ϰ

�
; e− ¼

�
sinh ϰ

− cosh ϰ

�
: ð77Þ

Given that they are the eigenvectors of a non-Hermitian
matrix, these vectors are not mutually orthogonal with
respect to the ordinary Dirac inner product. Therefore, we
introduce the auxiliary matrix

A ¼
�

cosh 2ϰ sinh 2ϰ

− sinh 2ϰ − cosh 2ϰ

�
; ð78Þ

with A2 ¼ 1. This allows us to identify an APT inner
product that mirrors the scalar case in Sec. II, where the
matrix

P≡ P−1 ¼ σ3 ≡
�
1 0

0 −1

�
ð79Þ

is used to fulfill the analogous pseudo-Hermiticity condition

P M̂ P ¼ M̂T ð80Þ
for the skew-symmetric mass matrix (60). Here, the operator
T denotes the matrix transpose.
In the next section, as was done for the scalar model in

Sec. II and the single Dirac model in Sec. III, we will make
the mass parameters of this two-flavor model coordinate
dependent and gauge the corresponding similarity trans-
formation (70).

B. Local similarity transformation

To gauge the similarity group, we promote the global
parameter ϰ, entering the similarity matrix (73), to a local,
spacetime-dependent quantity, ϰ ¼ ϰðxÞ. The similarity
transformation becomes a local transformation S ¼ SðxÞ≡
S½ϰðxÞ�, which requires, in analogy with the usual gauge
invariance, the appearance of a new vector matrix-valued
similarity gauge field Cμ.
The usual derivative is promoted to the covariant one,

∂μ → Dμ, with

Dμ ¼ 1∂μ − Cμ ≡ 1∂μ þ σ1Cμ ≡
�

∂μ Cμ

Cμ ∂μ

�
: ð81Þ

The similarity gauge field Cμ ≡ −σ1Cμ transforms under
the local gauge similarity transformation as follows:

Cμ → SCμS−1 − S∂μS−1: ð82Þ

The vector field Cμ that enters the covariant derivative (81)
transforms under the local similarity transformation (82) as
a Uð1Þ Cartan gauge field,

Cμ → Cμ þ ∂μϰ; ð83Þ

where we have used the relation S−1∂μS ¼ −σ1∂μϰ.
The similarity-gauged fermionic model (59) then

acquires the following form:

LΨ;C ¼ Ψ̄ði=D − M̂ÞΨ; ð84Þ

where the superscript C indicates that the model is
similarity gauged. The covariant derivative is given in
Eq. (81), and =D ¼ γμDμ. Written explicitly, the Lagrangian
(84) is

LΨ;C ¼
X2
a¼1

ψ̄aði=∂ −maÞψa

þ ψ̄1ðm5 þ =CÞψ2 − ψ̄2ðm5 − =CÞψ1; ð85Þ

wherein we see that the similarity gauge field is associated
with the off-diagonal terms.
The local similarity transformation can be summarized

as follows:

Local similarity transform∶

8>><
>>:

ΨðxÞ → SðxÞΨðxÞ
Ψ̄ðxÞ → Ψ̄ðsÞS−1ðxÞ
CμðxÞ → CμðxÞ þ ∂μϰðxÞ

;

ð86Þ

where SðxÞ≡ S½ϰðxÞ� is the local similarity transformation
that depends on the arbitrary similarity parameter ϰ ¼ ϰðxÞ
and the SUð1; 1Þ matrix S is given in Eq. (73). The
similarity transformation law (86) is strikingly similar to
the usual electromagnetic Uð1Þ gauge transformation—
cf. Eq. (B1) with the “similarity field” Cμ playing the role
of the gauge field.
It is not difficult to realize that the coupling of the

similarity gauge field Cμ to the fermion doublet in the
action (84)—or, in the explicit form, in Eq. (85)—is given
by a non-Hermitian term. This property implies that even in
the absence of the off-diagonal non-Hermitian mass, viz.,
m5 ¼ 0, the action (85) corresponds to a non-Hermitian
theory, provided that the vector similarity field is non-
vanishing, i.e., Cμ ≠ 0.

C. Similarity gauge field and similarity current

Before delving into the consequences of the presence of
the similarity gauge field, it is appropriate to ask whether
this field can be treated as an independent gauge field with
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its own kinetic term or if it must be considered a non-
dynamical background.
The existence of the similarity gauge invariance (83)

of the fermionic action implies that the similarity gauge
field Cμ transforms as the usual Uð1Þ gauge field (86),
thus suggesting that the fermionic action (85) can be
supplemented with the gauge-invariant kinetic term for
the gauge field

LΨ;C ⊃
?
−

1

4g2
fμνfμν; fμν ¼ ∂μCν − ∂νCμ; ð87Þ

where g is a new gauge coupling. This observation seems to
support the idea that the gauge field Cμ can be quantized.
However, as we show below, the appearance of the kinetic
term (87) makes the theory inconsistent, thus forcing us to
abandon the idea of a dynamical similarity gauge field
and consider the field Cμ only as a background (classical)
gauge field.
The similarity gauge field couples to the similarity

current JðSÞμ in the same way that the usual Uð1Þ photon
gauge field couples to the electric current. The similarity
current is given by a variation of the non-Hermitian matter
action (84) with respect to the similarity gauge field Cμ

with the result

JðSÞμ ¼ Ψ̄γμσ1Ψ≡ ψ̄1γ
μψ2 þ ψ̄2γ

μψ1: ð88Þ

Using the classical equations of motion for non-
Hermitian fermions (84)

ði=⃗D − M̂ÞΨ ¼ 0; ð89aÞ

Ψ̄ði=⃖D − M̂Þ ¼ 0; ð89bÞ

one can easily verify that the similarity current, contrary to
the electric current, is not conserved; namely,

∂
μJðSÞμ ¼ Ψ̄½2im5σ3 þ ðm1 −m2Þσ2�Ψ: ð90Þ

Notice that this current is also not conserved in the
Hermitian limit m5 → 0. The nonconservation property
implies that the similarity gauge field Cμ must necessarily
be made nonpropagating so that the kinetic term (87) does
not appear in the action. Otherwise, a variation of the action
with respect to the gauge field would produce an incon-

sistent Maxwell-like equation ∂
νfμν ¼ JðSÞμ in which the

left-hand side would have a zero divergence while the right-
hand side would not. Notice that the conservation of the
similarity current (90) is achieved in a trivial limit when and
only when the mass matrix (60) becomes diagonal with
equal eigenvalues.
Thus, the gauge similarity field Cμ should be considered

as parametrizing some classical background, and could not

provide, e.g., a candidate dark photon (for a review,
see Ref. [61]).

D. Constant physical masses and
varying similarity backgrounds

Proceeding as we did for the two-flavor scalar model in
Sec. II and the single Dirac fermion in Sec. III, we consider
the nonuniform non-Hermitian mass matrix

M̂ðxÞ ¼
�

m1ðxÞ m5ðxÞ
−m5ðxÞ m2ðxÞ

�
: ð91Þ

The eigenvalues of this mass matrix can then be obtained
with the help of a local similarity transformation,

M�ðxÞ ¼ MðxÞ �mðxÞ; ð92Þ

M̂diagðxÞ ¼ diagðMþðxÞ;M−ðxÞÞ; ð93Þ

where we have used the parametrization (66) with
M ¼ MðxÞ, m ¼ mðxÞ, and ϰ ¼ ϰðxÞ.
In general, the physical masses (93) are also spacetime-

inhomogeneous quantities. Motivated by experimental and
observational constraints on the spacetime variation of
fundamental parameters (see, e.g., Refs. [62,63]), we again
consider the case in which the physical masses are
spacetime independent. This is implemented straightfor-
wardly in the parametrization (66) by setting the mass
parameters M and m to be constant quantities (M0 and m0,
respectively), thus endowing only the similarity scalar field
ϰ with a coordinate dependence, i.e., ϰ ¼ ϰðxÞ. The mass
matrix (91) can then be written in the following form:

M̂ðxÞ ¼
�
M0 0

0 M0

�

þm0

�
cosh 2ϰðxÞ sinh 2ϰðxÞ

− sinh 2ϰðxÞ − cosh 2ϰðxÞ

�

≡M01þm0½σ3 cosh 2ϰðxÞ þ iσ2 sinh 2ϰðxÞ�: ð94Þ

As we have already noticed, despite the spatial inhomo-
geneity of the mass matrix (94), the eigenvalues [cf. (67)]

Mð�Þ
0 ¼ M0 �m0 ð95Þ

are then constant quantities. Alternatively, in units of the
entries of the mass matrix (91), the parametrization (94)
implies that the following mass combinations are constant:

m1ðxÞ þm2ðxÞ ¼ 2M0; ð96Þ

½m1ðxÞ −m2ðxÞ�2 − 4m2
5ðxÞ ¼ 4m2

0: ð97Þ

Without loss of generality, we take M0 > 0 and m0 > 0.
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The non-Hermitian mass matrix (94) can be readily
diagonalized, leading us to the Lagrangian

LΨ;C;diag ¼ Ψ̄ði=̂D − M̂diagðxÞÞΨ≡ Ψ̄ K̂Ψ; ð98Þ
where

K̂ ¼
�
i=∂ −Mþ −i=∂ϰ
−i=∂ϰ i=∂ −M−

�
; ð99Þ

and where we recognize the similarity field Cμ ¼ ∂μϰðxÞ.
The structure (99) represents a non-Hermitian operator in
which the violation of Hermiticity is determined by the
magnitude of the off-diagonal terms.
In order to proceed further, it is convenient to work in a

linear approximation with a slowly varying scalar similarity
parameter,

ϰðxÞ ¼ ϰ0 þ Cμxμ; ð100Þ
where ϰ0 is a background (coordinate-independent) quan-
tity and the linear variation of the scalar similarity field is
given by the vector Cμ.
In terms of the masses (94), the inhomogeneous back-

ground (100) corresponds to the following mass matrix:

M̂ðxÞ ¼
�
M0 þm0 cosh 2ϰ0 m0 sinh 2ϰ0

−m0 sinh 2ϰ0 M0 −m0 cosh 2ϰ0

�

þm0

�
sinh 2ϰ0 cosh 2ϰ0

− cosh 2ϰ0 − sinh 2ϰ0

�
Cμxμ þOðx2Þ:

ð101Þ
We will work mostly with a slight non-Hermitian pertur-
bation of Hermitian theories corresponding to ϰ0 ¼ 0
because the constant (spacetime-independent) non-
Hermitian background can always be reduced to a
Hermitian theory by an inverse similarity transformation.
In this case, the mass matrix (101) simplifies further to

M̂ðxÞ ¼
�
M0 þm0 −m0Cμxμ

m0Cμxμ M0 −m0

�
þOðx2Þ: ð102Þ

In the phenomenologically interesting limit of weak
inhomogeneity, one gets from Eqs. (91) and (101) the
following relation of the mass matrix elements and the
similarity gauge field:

Cμ ¼ −
∂

∂xμ
m5

m
þ…≡ −

2

Mþ −M−

∂m5

∂xμ
þ…: ð103Þ

This is to say that we assume the background field to
develop a small, weakly inhomogeneous off-diagonal non-
Hermitian mass, which, in turn, can be treated as the
emergence of a weak similarity gauge field Cμ. This is
connected to the inhomogeneity of the off-diagonal mass
via Eq. (103) with jCμxμj ≪ 1 at the length scale of the

inhomogeneities of Cμ. Moreover, we assume that the
strength of the similarity field Cμ is much smaller than the
mean values M0 ¼ ðMþ;0 þM−;0Þ=2 and the splitting
m0 ¼ ðMþ;0 −M−;0Þ=2 of the physical masses M�;0 at
Cμ ¼ 0, given by Eqs. (67) and (68), i.e.,

jC0j; jCj ≪ M0; m0: ð104Þ

The operator (99), applied to a spinor plane wave
eigenstate ΨðxÞ ¼ e−ip·xΨ0 with a constant spinor doublet
Ψ0, becomes

K̂ ¼
�
=pþMþ −i=C
−i=C =pþM−

�
: ð105Þ

The condition for the eigenvalues (89) transforms to the
compatibility equation det K̂ ¼ 0, which implies, in turn,
the following relation:

ðp2 −M2þ þ C2Þðp2 −M2
− þ C2Þ

− C2½4p2 − ðMþ þM−Þ2� þ 4ðC · pÞ2 ¼ 0: ð106Þ

Equation (106) determines the energy dispersion rela-
tions for the fermions. In the absence of the similarity
gauge background, i.e., Cμ ¼ 0, this equation gives us two
standard excitation branches,

ω2
�;p ¼ p2 þM2

� for Cμ ¼ 0; ð107Þ

where the physical real-valued masses M� are given in
Eq. (61). The positive-definite inner product for these mass
eigenstates (generalizing the construction in Sec. IVA) is
described in Appendix A.

V. INHOMOGENEOUS SIMILARITY
BACKGROUND: ENERGY DISPERSIONS

As for the scalar case in Sec. II, the energy eigenvalues
are roots of an algebraic equation of the fourth order, given
by Eq. (106). It is therefore convenient to again consider the
cases of purely timelike or purely spacelike similarity
gauge fields.

A. Temporal similarity field

A time-varying and spatially homogeneous mass matrix
provides us with a strictly temporal background similarity
field Cμ ¼ ðC0; 0Þ, with C0 ≡ C0. Equation (106) then
gives us the following energy dispersion relations:

ω2
�;p ¼ M2

0 þm2
0 þ p2 − C2

0

� 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

0ðm2
0 − C2

0Þ − C2
0p

2

q
for Cμ ¼ ðC0; 0Þ: ð108Þ
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We describe the solutions in terms of the unperturbed,
coordinate-independent masses M0 and m0 in the absence
of the background similarity field (Cμ ¼ 0). Their relation
to the unperturbed mass matrix (60) can be read
from Eq. (68).
The energy dispersion relation (108) has the following

notable features:
Mass shift. The masses M�;C ≡ ω�ðp ¼ 0Þ are affected

by the presence of the similarity gauge field, as is readily
visible from Eq. (108). Specifically,

M�;C ¼
�
M2

0 þm2
0 − C2

0 � 2M0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

0 − C2
0

q �
1=2

¼ M�;0 ∓ C2
0

Mþ;0 −M−;0
þ…; ð109Þ

where the ellipsis denotesOðC4
0Þ terms and the unperturbed

masses are M�;0 ¼ M0 �m0, which is consistent with
Eq. (67). In the leading, quadratic order, the weak field C0

slightly contributes to the shift between the M�;C masses
while leaving their mean value unchanged.
High-momentum instability. The dispersion relation (108)

develops an imaginary part at a certain spatial momentum

p ¼ jpj, which is restricted by the higher cutoff pðtÞ
c

defined via

p > pðtÞ
c ¼ M0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

0

C2
0

− 1

s
: ð110Þ

Given the weakness of the similarity gauge field (104),
the limiting momentum at which the particle propagation
becomes unstable is much higher than the mean mass of the

particles, viz., pðtÞ
c ≫ M0.

At large momentum p ≫ pðtÞ
c , one gets the following

asymptotic form of the energy dispersion:

ω�;p ¼ p� ijC0j þ
M2

0 þm2
0

2p
þOðp−2Þ: ð111Þ

In the selected parameter region (104), the instability given
by the imaginary term in the dispersion (111) is very small.
Examples of the dispersion relation are illustrated in Fig. 3
for a suitable set of parameters. Notice that, according to

Eqs. (109) and (111), in the unstable region, p > pðtÞ
c ,

the particle with the lower mass M− has a diffusive nature
(the mode decays since Reω− < 0), whereas the higher-
mass Mþ particle is unstable (the mode grows because
Reωþ > 0).
Given the similarities in the form of their dispersion

relations, the instability of the fermion modes at high
momentum is analogous to the instability found for the
two-scalar model in Sec. II; see Ref. [56]. Even so, from a
general point of view, this is an unexpected feature of the

presence of the timelike similarity field. A similar bound
to Eq. (110) is obtained for the counterpart bosonic
model [56]; see Sec. II. As noted earlier for both the
scalar and single Dirac fermion models, these instabi-
lities represent momentum-dependent exceptional points,
beyond which we obtain complex-conjugate pairs of
eigenfrequencies.
Superluminal propagation. In the unstable region, the

group propagation velocities of both modes

v�;p ¼
∂ω�;p

∂p
; ð112Þ

defined by the slope of the real part of the dispersion (111),
always remain smaller than the speed of light, i.e.,
jv�;pj < 1. However, for high momenta of the order of

pðtÞ
c (with the condition that they are still lower than the

instability threshold, p < pðtÞ
c ), the velocity of particle

propagation (112) for both “�” modes exceeds the speed
of light in a certain region of parameter space. This property
is apparent in the inset of Fig. 3, which zooms in on the
dispersions (108) in a small region around the critical
momentum (110). The cusps originating from the square
root of the dispersions (108) show that the velocity of both

ω� modes becomes singular at p ¼ pðtÞ
c .

The superluminal propagation is an unanticipated prop-
erty of the non-Hermitian model. This peculiar feature
suggests that fast-moving particles, coupled with other
dynamical fields like the photon field, would emit
Cherenkov radiation. This radiation, in turn, would act
as a decelerating force on the particles, effectively

FIG. 3. Real and imaginary parts of the energy dispersions ω�
for the timelike similarity field C0 ≠ 0 and C ¼ 0 shown for the
illustrative set of parameters m0 ¼ M0=2 and C0 ¼ M0=10. The
imaginary parts, multiplied by a factor of 100 to increase their

visibility, appear at the critical momentum (110) pðtÞ
c ≃ 4.90,

which is identified with the green arrow. Inset: real part of the

dispersions close to the critical point p ≃ pðtÞ
c (at the location

indicated by the orange arrows).
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impeding their advancement toward the point of instability
for all modes.
The group velocities for both “�” modes are illustrated

in Fig. 4, in which the parameters of Fig. 3 are adopted. For
the “−” mode, the superluminal propagation arises at high

momenta p > pðt;−Þ
SL , where

pðt;�Þ
SL ¼ M0

jC0j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

0 − C2
0

p
M2

0 þm2
0

�
C2
0ðM2

0 −m2
0Þ þM4

0 þm4
0

� 2m0M0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm2

0 − C2
0ÞðM2

0 þ C2
0Þ

q �
1=2

: ð113Þ

As was the case for the scalar model, the superluminality
(SL) threshold momentum (113) for the “−” mode is of
the order of, but noticeably lower than, the critical
momentum (110) at which the instability sets in. In the

lower-momentum region, p < pðtÞ
SL, the propagation of this

mode is characterized by subluminal velocities.
Stopped propagation. The “þ” mode has a richer

structure. As the momentum p increases, the group velocity
of this mode reaches a maximum in the subluminal region
(which is about 90% of the speed of light for our choice of
parameters) before the velocity of the particle then drops
again. When the momentum reaches a particular value,

pðtÞ
stop ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

0m
2
0 −M2

0C
2
0 − C4

0

p
jC0j

; ð114Þ

the “þ” mode stops propagating as the group velocity
vanishes, i.e.,

vþ
�
pðtÞ
stop

	
¼ 0: ð115Þ

Notice that for weak similarity fields (104), the stopping
momentum (114) is very close to the instability point (110).

As the momentum increases further, the (negative) group
velocity exceeds the speed of light and diverges. The
superluminal thresholds for both “�” modes can be
expressed via the following single expression:

v�
�
pðt;�Þ
SL

	
¼∓1; ð116Þ

where the velocities v� are given by Eq. (112) using the
corresponding frequencies (108).
Negative group velocity. As the momentum increases

above the “stopping point” p ¼ pðtÞ
stop, the “þ” mode starts

to propagate in a backward direction because the group
velocity takes a negative value, i.e.,

vþðpÞ < 0 for pðtÞ
stop < p < pðtÞ

c : ð117Þ

This effect persists in a narrow region close to the critical
momentum (110), beyond which both “�” modes develop
a complex part.
The emergence of a negative group velocity for wave

propagation is an interesting phenomenon that often
appears in optics [64]. The negative group velocity, as
well as the superluminal propagation, is also a character-
istic feature of media with anomalous dispersion [65],
which we discuss below.
Anomalous dispersion. The non-Hermitian two-fermion

model in the background of a nonvanishing similarity
gauge field also features anomalous dispersion. One
can readily verify that the “þ” mode of our dispersion
relation (108) is always normal with ∂nþ=∂p > 0 in the
whole range of frequencies. However, the “−” mode
exhibits anomalous dispersion in a wide region of the
phase diagram.
It is worth mentioning that properties such as super-

luminality (with the group velocity exceeding the speed of
light) and negative group velocity (directed opposite to the
wave vector) often appear in homogeneous media charac-
terized by anomalous dispersion (38). The consequences of
anomalous dispersion on the shape of a Gaussian light
pulse as it propagates through such a medium were studied
in Ref. [65], where it was found that the pulse remains
of the Gaussian shape with the peak moving in space with a
velocity determined by the classical group-velocity expres-
sion (40).
Amusingly, in the anomalously dispersive medium,

the classical group velocity can become greater than the
velocity of light in a vacuum or negative, provided that the
medium has an absorption line near the optical frequencies
of the waves that make up the pulse. The absorption
property is a characteristic of a non-Hermitian system,
which points out that non-Hermiticity is responsible for the
unification of all three phenomena.
These would-be contradictory statements made in the

classical context do not mean that the system necessarily

FIG. 4. Velocities of the “�” modes of Fig. 3 for the timelike
similarity field. Inset: a wider region in the momentum p space
narrowed along the v axis around the speed of light, v ¼ 1.
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violates causality. The mechanism beyond the superluminal
propagation in anomalous dispersive media is associated
with pulse shape distortion, even though in their studies, the
pulse does not appear to be visually distorted [65].
Causality is also not violated in such an anomalous medium
since the absorption destroys the relation between the group
velocity and the velocity of energy propagation. While we
expect that a similar phenomenon could also happen in the
present non-Hermitian model, we leave a more detailed
study for future work.
We finish this subsection with Fig. 5, which illustrates all

the described particularities of the propagation of the “�”
fermionic modes for two inhomogeneity parameters cor-
responding to relatively weak (C0 ¼ 0.1M0) and moderate
(C0 ¼ 0.5M0) similarity fields.

B. Spatial similarity field

A strictly spatial perturbation of the mass matrix is
equivalent to introducing the similarity field Cμ ¼ ð0;CÞ.
In this case, Eq. (106) gives us the following dispersion:

ω2
�;p ¼ M2

0 þm2
0 þ p2 − C2

� 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

0ðM2
0 − C2Þ − ðC · pÞ2

q
for Cμ ¼ ð0;CÞ; ð118Þ

which is naturally anisotropic due to the presence of
the spatial vector C. Notice again that the fermionic
dispersions are functionally similar, up to redefinitions
of the masses, to their bosonic counterparts discussed in
Sec. II; see Ref. [56].

The resemblance between the dispersions (118) and
Eq. (108) implies that the spacelike similarity field has
exactly the same features as the timelike field considered
earlier. In particular, the shift of the fermion masses in the
presence of the spatial similarity field is given by Eq. (109)
for the temporal similarity field with the replacements
m0 ↔ M0 and C0 → C3. The same statement also applies
to the critical momenta (110), (113), and (114) that
characterize the upper bound on stability modes, the
superluminal momentum threshold, and the stopping
momentum, respectively.
The high-momentum instability appears if the momen-

tum of a fermion tangential to the similarity field C exceeds
the following threshold:

jp3j > pðsÞ
c ¼ m0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

0

C2
3

− 1

s
: ð119Þ

Here, we took C along the third axis, Cμ ¼ δμ3C3. An
increasing momentum in the direction normal to the
similarity field C does not lead to instabilities.

At large momentum pk ≡ p3 ≫ pðsÞ
c , one gets the

asymptotic form of the energy dispersion similar to
Eq. (111),

ω�ðp⊥;p3Þ¼p� ijC3jþ
M2

0þm2
0þp2⊥

2p3

þOðp−2
3 Þ; ð120Þ

whereas in the limit p⊥ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
1 þ p2

2

p
→ ∞ (and in the

stable region jpkj < pðsÞ
c ), we arrive at the expected

dispersion ω�ðp⊥; p3Þ ¼ pþOðp−1Þ, which does not

FIG. 5. Regions in the ðp;m0Þ plane at C0 ¼ 0.1M0 (left panel) and C0 ¼ 0.5M5 (middle panel) of the high-momentum instability
(yellow for both modes), superluminal propagation (red for the “−” mode and magenta for the “þ” mode), anomalous dispersion of the
“−”mode (green), the line of immobility of the “þ”mode (blue), the negative group velocity of the “þ”-mode (blue). An enlargement of
a region around p ¼ M0 for C0 ¼ 0.5M5 (right panel) also shows the region where the “þ” mode becomes superluminal with negative
group velocity (magenta). The blue and yellow regions are separated by the critical momentum (110).

MAXIM N. CHERNODUB and PETER MILLINGTON PHYS. REV. D 109, 105006 (2024)

105006-14



contain an imaginary part. The behaviors of the real and
imaginary parts of the dispersion relation (118) for the
spacelike similarity field are illustrated in Fig. 6.
The superluminal propagation, negative group velocity

and anomalous dispersion are also evident from the
similarity of the dispersions of fermions in the background
of the spatial (118) and temporal (108) similarity fields.
Both of them contain a square-root term, which leads to the
characteristic cusps of the dispersion at the critical momen-
tum, which, in turn, implies the divergent group velocity of
the modes.
Interestingly, the dispersion relations for the two-flavor

fermionic non-Hermitian model with temporal (108) and
spatial (118) similarity gauge fields coincide with the
corresponding dispersion relations for the non-Hermitian
model with the doublet scalar field (32) with obvious
redefinitions of the critical momenta. Therefore, the phase
diagrams for both models share the features represented
in Fig. 5.
Finally, it is appropriate to ask whether these unusual

features of the non-Hermitian model appear due to the non-
Hermiticity or if they can also be found in a Hermitian
version of the model. The model can be turned to its
Hermitian version by making the off-diagonal term in the
mass matrix (91) a purely imaginary quantity m5 → im5

(with a real non-Hermitian mass m5). This change implies,
according to Eq. (94), that the scalar similarity parameter ϰ
also becomes a purely imaginary quantity, which also
provokes, following Eq. (100), the corresponding replace-
ment of the similarity gauge field, Cμ → iAμ, where Aμ is a
real-valued vector field. Thus, in the Hermitian version of
the model, the dispersion relations are given by Eqs. (108)
and (118) with the replacement Cμ → iCμ. One can readily
see that the Hermitian version of the model has an

unremarkable monotonically rising behavior as a function
of momenta, devoid of any exotic properties.

VI. INSTABILITY, IR/UV MIXING AND
PHENOMENOLOGY

The models described exhibit momentum-dependent
exceptional points. In the case of the two-scalar and
two-fermion models, the low-momentum modes reside
in the PT -unbroken domain such that the low-lying
physical excitations have a real-valued spectrum and are
stable. On the other hand, at sufficiently high momenta, the
modes reside in a PT -broken regime. The lower-mass
branch ω− develops a negative imaginary part, implying
that the amplitude of the mode decays. The higher-mass
branch ωþ develops a positive imaginary part signaling the
growth of this mode.
The spacetime inhomogeneity of the mass matrix in

realistic models is expected to result from the inhomoge-
neity of an underlying scalar condensate. In the fermion
case, this condensate would couple to the fermion bilinear
via a Yukawa term and contribute to the fermion mass
terms. The instabilities of the high-momentum fermion
modes can therefore be understood as a result of the
interaction between the inhomogeneous scalar condensate
and a propagating fermionic particle: the particle scatters
inelastically at the condensate creating or absorbing scalar
quanta. One can expect that the fluxes of highly energetic
fermionic particles propagating with momenta above the
thresholds (110) and (119) through the scalar condensate
will result in the homogenization of the condensate. The
translationally invariant condensate, corresponding to the
true ground state of the model, would then be the ultimate
outcome of these interactions. In our paper, we do not

FIG. 6. Real (left panel) and imaginary (right panel) parts of the energy dispersions ωþ (blue, upper surfaces) and ω− (yellow, lower
surfaces) for the spacelike similarity field Cμ ≡ ð0; 0; 0; C3Þ ≠ 0 for the same set of parameters as in Fig. 5. The imaginary parts develop

when the longitudinal momentum pk ≡ p3 exceeds the critical momentum pðsÞ
c [see Eq. (119)]. The plots are shown in the ðpk; p⊥Þ

plane, where p⊥ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
1 þ p2

2

p
is the transverse momentum.
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consider this homogenizing backreaction of the propagat-
ing fermionic modes on the non-Hermitian background.
For phenomenologically relevant weak similarity

fields (104), the stability zones for the two-flavor fermion
model, defined for the temporal (110) and spatial (119)
cases, determine the single critical momentum

pc ¼
M0m0

C
; ð121Þ

where C > 0 stands for either C0 or jCj and we have
neglected the subleading terms in Eq. (121). The above
equation implies that a weak similarity field Cμ, corre-
sponding to a slowly varying mass matrix and a low (IR)
momentum, leads to an instability of the propagating
modes at high (UV) momentum. This IR/UV mixing
was found in Ref. [56], and it is a particular feature of
these non-Hermitian field theories.
An estimation of the critical momentum (121) can be

made with the help of Eq. (103),

pc ¼
1

8
ðMþ þM−ÞðMþ −M−Þ2

�
∂m5

∂xμ

�
−1
; ð122Þ

where we have omitted subleading corrections of the order
Oðð∂m5=∂xμÞ=m2

1;2Þ. For this, let us use the physical lepton
masses M− ¼ me ≃ 0.5 MeV and Mþ¼mμ≃105.7MeV.
(We note that if, indeed, we were to associate the fermion
doublet with electrically charged degrees of freedom,
conservation of the electromagnetic current for the non-
Hermitian theory would require the components of the
fermionic doublet to carry equal electric charge; see
Appendix B.) If we assume that the non-Hermitian mass
m5 varies by one MeV at a distance of 1 m, the critical
momentum (122) then acquires the value

pc ≃ 1.6 × 1028 MeV: ð123Þ

For these conditions, the similarity field (103) is extremely
small, with

jCj ≃ 3.8 × 10−15 MeV; ð124Þ

so that the assumption of the weakness of the similarity
field is satisfied (104). In other words, for the negligibly
tiny inhomogeneity of the non-Hermitian masses encoded
in the experimentally unobservable value of the similarity
field (124), the fermionic modes become unstable as soon
as the momentum of the fermionic particle exceeds the
extremely high energy critical value (123).
It is important to stress again that it is possible to vary the

non-Hermitian mass parameters without affecting the
physical masses M�. Therefore, even if the values of these
parameters vary from one spacetime region to another,
the physical masses remain the same within a tiny,

experimentally inaccessible correction of the order of the
strength of the similarity vector field (124).

VII. CONCLUSIONS

In this article, we have extended the proposal of Ref. [56]
to non-Hermitian fermionic theories with local Lagrangian
parameters, namely, the parameters of the mass matrix.
This leads automatically to the appearance of an associated
vector field, the similarity gauge field Cμ, which acts as a
new connection in the space of similar non-Hermitian
theories.
We have argued that the similarity gauge field Cμ cannot

be a dynamical propagating field similar, e.g., to the
electromagnetic gauge field. However, the similarity field
can still appear in the model as a nondynamical, back-
ground field.
The spacetime-dependent contributions to the mass

matrix can be viewed as a result of the inhomogeneity
of a condensate of a scalar field coupled to the fermion
doublet via, e.g., a Yukawa coupling. Such contributions
can be of either a Hermitian or a non-Hermitian nature.
Assuming a weak inhomogeneity of the scalar background,
one can show, following the bosonic case studied in detail
in Ref. [56], that inhomogeneity of a Hermitian mass
matrix leads to a rather trivial effect, resulting in a shift in
(or a redefinition of) the fermionic masses. On the other
hand, going beyond Ref. [56], we have shown that the
inhomogeneity of a non-Hermitian mass mixing matrix
leads to nontrivial effects for both two-flavor scalar and
two-flavor fermion models: anomalous dispersion, super-
luminality, and instabilities above certain high-momentum
(UV) thresholds, determined by the IR scale of the
inhomogeneity. More precisely, the longer the wavelength
of the inhomogeneity, the higher the critical value of the
momentum above which the instability arises. This IR/UV
mixing effect was observed for the scalar case in Ref. [56].
Thus, weak variations of the mass parameters on cosmo-
logical scales would correspond to instabilities at scales
beyond current experimental or observational reach.
An unexpected feature of the two-flavor models is that

the group velocity of the particle propagation exceeds the
speed of light at sufficiently high momenta, which are of
the same (high) magnitude as the critical momenta that
mark the onset of the instability. This feature implies that
the particles, depending on their couplings to other degrees
of freedom, would produce Cherenkov radiation, which
would decelerate the particles, thus preventing them from
reaching the instability point.
The inhomogeneous, similarity-gauged non-Hermitian

models also possess, again at sufficiently high momenta,
negative group velocities, and anomalous dispersion
relations. Moreover, at a certain momentum, the group
velocity of one of the modes vanishes. All such exotic
effects (apparent superluminality, negative group velocity,
and anomalous dispersion) found for the two-flavor
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non-Hermitian field theories analyzed in this work have
their classical counterparts in allowed propagation through
an absorbing medium [65], which calls for future inves-
tigation of the parallels between these physical systems.
Despite the non-Hermitian nature of the effect brought

by inhomogeneities, and notwithstanding the exotic fea-
tures of the system at high energies, the propagating modes
reside in the PT -unbroken domain at low energies. In
particular, the physical excitations at low momenta have a
real-valued spectrum, implying that the non-Hermitian
modifications do not manifest in the experimentally acces-
sible low-energy domain. We leave detailed phenomeno-
logical studies for future work.

No data were created or analyzed in this study.
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APPENDIX A: MOMENTUM-DEPENDENT
INNER PRODUCTS

In this appendix, we describe the momentum depend-
ence of the positive-definiteAPT inner product induced by
a nonvanishing similarity gauge field Cμ. For simplicity, we
will consider a constant Cμ.
The momentum dependence is most straightforwardly

studied at the level of the 2 × 2 flavor space. There, the
effective squared Hamiltonians for the two-flavor scalar
and fermion models both take the following general form:

H2ðpÞ ¼
�

p2 þm2
1 − C2 m2

3 − im2
CðpÞ

−m2
3 − im2

CðpÞ p2 þm2
2 − C2

�
; ðA1Þ

where m2
3 and m2

CðpÞ are, in general, functions of the
similarity gauge field Cμ. The dependence of m2

CðpÞ on the
three-momentum p is induced by the first-order spatial
derivatives in the equations of motion.
We proceed as in the main text by separately treating the

timelike Cμ ¼ ðC0; 0Þ and spacelike Cμ ¼ ð0;CÞ cases and
make the following correspondences for the two scalar
(upper element of the braces) and two fermion models
(lower element of the braces):

timelike case∶ C ¼ C0;

m2
1 ¼

�
m2

1

M2
0 þm2

0



;

m2
2 ¼

�
m2

2

M2
0 −m2

0



;

m2
3 ¼

� ½m4
5 þ 2C2

0ðm2
1 þm2

2Þ�1=2
½m4

0 þM2
0ðC2

0 − 4m2
0Þ�1=2



;

m2
CðpÞ ¼ 2C0jpj;

spacelike case∶ C ¼ jCj;

m2
1 ¼

�
m2

1

M2
0 þm2

0



;

m2
2 ¼

�
m2

2

M2
0 −m2

0



;

m2
3 ¼

�
m2

5

½m4
0 þ 4m2

0ðjCj2 −M2
0Þ�1=2



;

m2
CðpÞ ¼ 2C · p:

The parity matrix P ¼ diagð1;−1Þ is unchanged from
the case of the vanishing similarity gauge field. However,
the non-Hermitian parameter is given by

ζ ≡ ζCðpÞ ¼
2½m2

3 − im2
CðpÞ�

m2
1 −m2

2

∈C; ðA2Þ

and the eigenvectors are now complex, taking the form

eþ ¼ N

 
ζ

−1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − jζj2

p
!
; ðA3aÞ

e− ¼ N

 
−1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − jζj2

p
ζ�

!
; ðA3bÞ

with a normalization

N ¼
�
2

�
jζj2 − 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − jζj2

q ��
−1=2

: ðA4Þ

Notice that the normalization N remains real valued in the
PT -symmetric regime. We also see that the non-Hermitian
parameter is momentum dependent for a nonvanishing
similarity gauge field, as we might expect from the
presence of the momentum-dependent exceptional points
identified in the main text.
The matrix A appearing in the APT inner product

becomes

A ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − jζj2

p �
1 ζ

−ζ� −1

�
; ðA5Þ
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and the product

P · A ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − jζj2

p �
1 ζ

ζ� 1

�
ðA6Þ

gives a Hermitian matrix, as it should to form the relevant
positive-definite inner product for this non-Hermitian
theory.
It can be readily confirmed that the eigenvectors are

orthonormal with respect to this inner product,

e�� · P · A · e� ¼ 1; ðA7aÞ

e�� · P · A · e∓ ¼ 0: ðA7bÞ

Moreover, we can also confirm that

e�� · P · A ·H2ðpÞ · e� ¼ ω2
�;p: ðA8Þ

Naively, we might expect the momentum dependence of
the matrix A to give rise to subtleties with respect to the
calculation of the group velocity. However, we find that this
is not the case, since

v�;p ¼
1

2ω�;p
∇pω

2
�;p

¼ 1

2ω�;p
e�� · P · A · ½∇pH2ðpÞ� · e�; ðA9Þ

and we are justified in focusing our attention on the
dispersion relation derived in the main text.

APPENDIX B: NON-HERMICITY AND THE
ELECTROMAGNETIC SECTOR

The group of similarity transformations, both global and
local ones, commutes with the group of electromagnetic
gauge transformations given by

ElectromagneticUe:m: ð1Þ gauge transformation∶8>><
>>:

ΨðxÞ → eieαðxÞΨðxÞ
Ψ̄ðxÞ → e−ieαðxÞΨ̄ðxÞ
AμðxÞ → AμðxÞ þ ∂μαðxÞ

; ðB1Þ

provided that the electric charges of both components ψ1

and ψ2 of the fermion doublet Ψ ¼ ðψ1;ψ2ÞT possess the
same electric charges, e1 ¼ e2 ≡ e.
The covariant derivative (81) in the non-Hermitian

model (84) can be extended to also include the electro-
magnetic gauge field Aμ as follows:

Dμ ¼ 1∂μ þ σ1Cμ → Dμ ¼ 1ð∂μ − ieAμÞ þ σ1Cμ: ðB2Þ

The electric current corresponding to the variation of the
action with respect to the gauge field Aμ is given by the
following standard expression:

jμe:m: ¼ eΨ̄γμΨ≡ e
X2
a¼1

ψ̄aγ
μψa ðe1 ¼ e2 ¼ eÞ: ðB3Þ

According to the classical equation of motion (89), the
electric current (B3) is a classically conserved quantity in
both the original (59) and similarity-gauged (84) versions
of the non-Hermitian model, i.e.,

∂μj
μ
e:m: ¼ 0: ðB4Þ

If the charges of the two components differ, i.e., e1 ≠ e2,
then either the global or the local SUð1; 1Þ group of
similarity transformations (73) becomes broken explicitly
by the Maxwell Uð1Þ group of the electromagnetic gauge
transformations:

U ¼ eieÎe:m:α; Îe:m: ¼
e1 þ e2
2e

1þ e1 − e2
2e

σ3: ðB5Þ

If e1 ≠ e2, then the generator of the electromagnetic group
Îe:m: does not commute with the σ1 generator of the Cartan
subgroup of the SUð1; 1Þ similarity group, ½Îe:m:; σ1� ≠ 0,
and the similarity group is explicitly broken by the differ-
ence in the electromagnetic charges. The covariant deriva-
tive (B2) then reads as follows:

Dμ ¼ 1∂μ − ieÎe:m:Aμ þ σ1Cμ: ðB6Þ

For the gauge invariance of this theory to be maintained,
the massm5 should be promoted to a field (condensate), ϕ5,
in the off-diagonal mass term in Eq. (85):

m5ψ̄1ψ2 → ψ̄1ϕ5ψ2; m5ψ̄2ψ1 → ψ̄2ϕ
�
5ψ1: ðB7Þ

The field ϕ5 should transform under the Uð1Þ electromag-
netic group as follows:

Ue:m:ð1Þ; ϕ5 → e−iðe1−e2Þαϕ5; ðB8Þ

where the gauge transformation parameter α is the same as
in Eq. (B1). The diagonal masses m1 and m2 remain gauge
invariant. However, in this case, the electric current, which
can be read off from the expression for the covariant
derivative (B6),

jμe:m: ¼ eΨ̄γμÎe:m:Ψ ðe1 ≠ e2Þ; ðB9Þ

becomes a nonconserved quantity,
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∂μj
μ
e:m: ¼ ðe2 − e1Þ½ψ̄1ðm5 þ =CÞψ2 þ ψ̄2ðm5 − =CÞψ1�

≡ ðe2 − e1ÞΨ̄ðm5 − iσ2=CÞΨ: ðB10Þ
Notice that the source of the nonconservation, which is
given on the right-hand side of this expression, is a

Hermitian quantity. The nonconservation of the electric
charge (B10) makes the fermionic non-Hermitian models
with unequal charges (e1 ≠ e2) phenomenologically ques-
tionable, thereby forcing us to consider the fermionic
doublets with equal charges (e1 ¼ e2).
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