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THREE ESSAYS ON ORGANIC AGRICULTURE 

 

 

Abstract 

by Hyunjin Lim, Ph.D. 

Washington State University 

May 2021 

 

 

Chair: Michael P. Brady 

This dissertation contains three pieces of empirical research in organic agricultural 

economics. The first essay examines the factors that influence farmers to direct market their product, 

rather than sell into the wholesale market, and estimates the impact of direct marketing on farm 

performance, considering farms’ locational environment and spatial interaction between farmers’ choice 

of marketing strategy. Results from the endogenous treatment model show that variables of geographic 

location and spatial interaction have significant influence on marketing strategy choice, and some of 

geographic variables are associated with farm sales. Also, it is found that a direct marketing penalty exists 

on the average, while for the smaller farms, the amount of the difference in expected sales is not 

significant across the marketing strategies, implying that direct marketing may be a viable strategy for 

some smaller farms.  

The second essay investigates a number of scenarios that represent pest or disease 

outbreak due to climate change. I constructed a dynamic model of the U.S. apple industry that is 

separated into organic and conventional industries to better measure the impacts on producers 

and consumers. Findings in this study suggest that there would be heterogenous impacts of the 

outbreaks between organic and conventional industries and by type of shock since production 

systems and growers and consumers’ responses to shock could differ widely across industry. 
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The third essay investigates the supply response of organic apples to price. This study 

estimates an econometric model of land adjustment and yields to determine how the elasticity of 

supply depends on the market-level organic premium versus farm-level prices. To my 

knowledge, it is the first paper in the partial adjustment literature to measure supply response 

with farm-level crop prices. The aggregate-level results show that supply responses to price 

premiums and/or own prices are positive as expected, while the long-run production and yield 

elasticities are inelastic relative to acreage responses. The farm-level results suggest that a farm’s 

yield responds to the average market price more than the prices they received, and that organic 

apple producers depend on the organic premiums rather than organic prices when they invest in 

organic apple acres. 
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CHAPTER ONE 

Spatial effects, marketing strategies, and farm success: evidence from farms growing 

organic products 

 

1.1 Introduction 

One of key policy questions in the field of applied microeconomics (agricultural 

economics) centers on the determinants of success of firms (farms). As some firms continue to 

grow and account for a larger share of total production, whereas others remain small and struggle 

to survive. Understanding the determinants of success is beneficial for firms to identify pathways 

to profitability and enhance the chance of success. Nowadays, it is widely acknowledged that 

spatial aspects should be regarded as having an influence on the performance of firm as well as 

firms’ characteristics, following the theories dating back to Marshall (1890) that point out the 

advantage of location of firms within a geographically concentrated area. Glaeser et al. (1992) 

also suggest that location and proximity matter for firms since knowledge spillovers take place 

within a spatially bounded region. As the impacts of geographic location have gained 

prominence, some empirical studies have provided evidence for the existence of knowledge 

spillover in a geographically bounded region (Jaffe, 1989; Jaffe et al., 1993; Audretsch and 

Feldman, 1996). The relationship between locational impacts and firm performance, in terms of 

firm employment growth, has also been paid attention by Audretsch and Dohse (2007) and 

Hoogstra and Van Dijk (2004). In the field of agricultural economics, most studies have 

employed regional dummy variables as a location variable (Park, 2015; Uematsu and Mishra, 

2011; Detre et al., 2011), while there has been less attention on the impact of detailed geographic 

location on farm performance and growth.  
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Theoretically a firm would choose its location to maximize profits (Ellison and Glaeser, 

1997), but the optimal location may change over time due to the dynamics in the economic 

environment. However, firms cannot move frequently as the optimal location shifts, since 

relocation may be more expensive than staying. Therefore, firms will stay in sub-optimal 

locations until they approach the spatial margins of profitability (Van Dijk and Pellenbarg, 

2000). Meanwhile, firms would continue to make decisions in order to maximize profits at their 

locations. In agricultural economics, one such strategy for farmers is the choice of marketing 

channel to sell their products. The locations of farms would influence the decisions of marketing 

strategy, which affects the performance of individual farms accordingly. Location would affect 

firm’s performance through the choice of marketing strategy. Direct marketing can generate 

much higher prices for farms than selling into the wholesale market, although demand is 

potentially more limited and uncertain, and prices may be more volatile. Previous studies, 

however, looking at the choice of marketing channel have only considered the characteristics of 

farm and farmers as the significant factors that drive the marketing strategy selection, while they 

have overlooked the impacts of spatial factors on marketing strategy choice. There are a few 

studies in which they used the distance to paved highway and the distance to the nearest city in 

order to account for specific locational effects on direct marketing channel choices (Hernandez et 

al.; 2007, Uematsu and Mishra, 2011; Park et al., 2018).  

When farms who are located close to each other make their decisions on marketing 

strategy, it may be affected by the same unobserved factors and/or influenced by the behavior 

and opinions of their neighbors. The former represents spatial heterogeneity that can be 

estimated by locational variables, such as spatial dummy variables (Park et al., 2018) or distance 

to city (Hernandez et al., 2007; Park et al., 2018), while the latter depicts spatial dependence 
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between farms. Ignoring this dependence will lead to biased or inconsistent estimates when 

spatial interdependence really exists. Although the literature in agricultural economics 

quantifying spatial dependence in discrete choice models is growing in technology adoption 

(Case, 1992; Langyintuo and Mekuria, 2008), the choice of agricultural system (Seo, 2011), the 

adoption of management practices for water protection (Yang and Sharp, 2017), adoption 

decisions of organic farming (Wollni and Andersson, 2014; Läpple and Kelley, 2014; 

Schmidtner et al., 2011; Lewis et al. 2011), and land use choice. (Li et al., 2013; Munroe et al. 

2002; Robertson et al. 2009), it has yet to be explored in the area of marketing strategy. This 

study will build on the growing literature quantifying spatial dependence in discrete choice 

models by explicitly taking into account the neighborhood effects in the decisions of farms to 

marketing strategies as well as the influences of geographic locations of farms.  

The objective of this study is to identify the factors that influence farmers to choose 

direct marketing and estimate the impacts of direct marketing on farm performance, considering 

farms’ locational environment and spatial interaction between farmers’ choice of marketing 

strategy. This paper departs from previous studies in two ways. First, none of the previous 

studies have focused on the impact of the spatial environment on both marketing strategy and 

farm success. We use georeferenced data of certified organic farms in Washington State which 

are able to capture spatial heterogeneity in socioeconomic and environmental conditions and 

spatial interaction between farms, and thus it will allow us to estimate the direct impacts of 

spatial aspects on farms’ performance and the indirect impacts through marketing strategy. Also, 

we explicitly address self-selection problems for the empirical analysis in order to account for 

selection bias and endogeneity that are likely to be caused by correlations between farms’ 
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outcomes and the decisions on marketing channels, which allows us to get unbiased and accurate 

estimates of determinants of the decision of marketing strategy.  

This paper is organized as follows: The next section starts with the discussion on 

marketing channels of farms in the U.S. and a literature review in which the relationship between 

marketing strategies and farm success and why spatial effects are important in this relationship 

are discussed. Section 3 describes the data set and discusses the variables used in the estimations. 

Section 4 explains the empirical methods to test the impact of spatial aspects and marketing 

strategies on farm success. In Section 5, the results of empirical analysis are presented. Finally, 

this paper concludes with Section 6 in which the main findings and policy implications are 

suggested. 

 

1.2 Marketing strategy and farm success  

The marketing channel is one of the most important strategies that firms (farms) choose 

to maximize their profits and manage business risks. Following Gilg and Battershill (2000), it 

could enhance the sustainability of farm systems to precisely evaluate the economic impacts of 

marketing practices. The marketing strategies are divided by two main channels, traditional 

wholesale channel and direct sales channel. Wholesale channels typically have the ability to 

move large quantities of produce quickly and at a lower price, while direct channels not only 

allow consumers to have access to locally grown fresh products, but also enable farmers to have 

the opportunity to develop their competitiveness by reducing marketing costs. Producers are 

faced with the decision on marketing channel with different advantages of each strategy. 

In the United states, direct marketing channels increasingly have been recognized as a 

viable strategy. According to the 2017 Census of Agriculture, 130,056 farms sold $2.8 billion 
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fresh edible agricultural products directly to consumers in 2017, which account for 6.4 percent 

and 0.7 percent of total number of farms and total sales, respectively. The value of direct sales is 

growing, up from $1.2 billion dollars in 2007, but it remains to be a small portion of the total 

sales in the U.S. This is in large part due to the fact that the majority of farms selling fresh edible 

products directly to consumers are small. Within the category of fresh fruit and vegetables, as 

well as organic, the percent of sales would be much higher, although USDA does not break-out 

this specific categorization. They do report a separate number for small farms. According to the 

USDA, a small farm is defined as an operation with gross cash farm income under $250,000, and 

these small farms represent a large share of farms that sell directly – around 90 percent of farms 

selling directly to consumer were small operations in 2017.  

Farmers sell products directly to consumers in a variety of ways – through farmers 

markets, roadside stands, pick-your-own operations, community supported agriculture (CSA) 

arrangements, and other efforts (USDA, 2014). Direct marketing of farm products through 

farmers’ markets also continues to be an important sales outlet for agricultural producers 

nationwide in the U.S, mostly due to the growing consumer interest in obtaining fresh products 

directly from the farm. According to USDA’s Agricultural Marketing Service, 8,687 farmers’ 

markets operated in 2017, up from 2,746 in 1998.  

Along with the growth of the direct sales market, direct marketing has turned into a 

survival strategy for a large number of small farms that cannot compete with the large farm 

conglomerates in the market. While most U.S. farms are small (less than $250,000 of annual 

sales)– 69 percent of farms according to the Census of Agriculture in 2017, large farms 

($250,000 and above) account for about 89 percent of the market value of agricultural production 

in 2017. Moreover, the number of small farms, as well as their share of sales, has shrunk over 
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time. Production is shifting to larger farms because economies of scale reduce costs in 

production system, and thus small farms may need different marketing channels, such as direct 

marketing through local retailers and markets, that may be typically not something that makes 

sense for really large farms whose production far outstrips local demand. For these reasons, 

agricultural policy makers have promoted for small farmers to adopt direct marketing strategy, 

suggesting that it allows farmers to develop their competitiveness and the likelihood of survival. 

Also, consumers are increasingly interested in buying products directly from farmers. Some 

consumers are driven towards direct marketing not only for the fresh products directly from the 

farm but to support small farmers. Chang and Lusk (2009) shows that consumers exhibit 

altruistic preferences toward small farms. Therefore, examining the impacts of adopting a direct 

marketing strategy, and whether the direct marketing strategy really improves the likelihood of 

farms’ success and survival, has become an important research question. 

In the past, most studies on direct marketing mainly focused on the consumer side rather 

than the producer side. Some of them have examined the characteristics of consumers who 

purchase products through direct marketing channels (Eastwood et al., 1987; Schatzer et al., 

1989; Govindasamy and Nayga, 1997; Wolf, 1997; Kezis et al., 1998).  

There are some recent studies that have focused on the producer side from two different 

perspectives. One is the factors that influence marketing strategy choice (Brown et al., 2006; 

Monson et al., 2008; Adanacioglu, 2017; Capt and Pierre, 2014; Park et al., 2014; Park et al., 

2018; Uematsu and Mishra, 2011; Detre et al. 2011; Corsi et al., 2014), and the other is the 

impacts of marketing strategy on firms’ performance (Park, 2015; Park et al., 2014; Park et al., 

2018; Uematsu and Mishra, 2011; Hernandez et al., 2007; USDA, 2015; Detre et al. 2011). 
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There is often a perception that direct marketing is not feasible on a larger scale, and thus 

large farms do not need to rely on the direct marketing channel. However, according to Ostrom 

and Jussaume (2007), when the effects of location and farm type are taken into account, farm 

size becomes a less significant factor. They show that while a greater percentage of farms that 

have less than $25,000 per year in sales market directly than do farms that have more than 

$250,000 a year in sales, these differences are not statistically significant and that the 

characteristics that best explain whether a farm utilized direct marketing are the type of farm 

product and the location of farm. Some other studies have also tried to find the factors affecting 

the choice of marketing strategies. Brown et al. (2006) identifies that factors such as median 

housing value, population density, and proximity to D.C. have a positive impact on direct 

marketing sales, but their study is limited to county-level analysis. Monson et al. (2008) and 

Adanacioglu (2017) conclude that farm characteristics such as farm size, farming experience, 

and types of production are significant determinants of direct marketing outlets. On the other 

hand, Capt and Pierre (2014) focus on external factors (local market characteristics) that 

influence the propensity to sell directly to consumers as well as farms’ internal factors. Also, 

Park et al. (2014) and Park et al. (2018) employ management and marketing skills and the use of 

internet access as key variables influencing on the choice of marketing channel, respectively. In 

order to test the hypothesis that small farms are obligated to rely on the direct marketing, while it 

is not feasible for large farms and identify the factors affecting the marketing strategy choice, 

this study also employ various independent variables including locational, spatial dependence 

variables.  

In addition to identifying the factors affecting the choice of marketing channel, some 

studies have assessed the impact of marketing channel strategies — results are mixed. Detre et 
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al. (2011) show that farmers who have adopted a direct marketing strategy while growing 

organic crops can increase gross sales. USDA (2015) analyzes the impacts of direct sales on farm 

survival, and suggests that farms selling local food through DTC (Direct-To-Consumer) 

marketing channels were more likely to remain in business over 2007-12 than farms not using 

DTC marketing channels. While some studies show the positive relationships between direct 

marketing strategy and the outcome of farms, the others suggest the negative impacts of direct 

marketing efforts. Uematsu and Mishra (2011) point out that the intensity of direct marketing 

strategy adoption has no significant impact on farm income and that participation in farmers’ 

markets is negatively correlated with farm income. Park et al. (2014) and Park et al. (2018) 

confirm that there exists the direct marketing penalty, suggesting that direct marketing is 

associated with farm sales declines. Park (2015) employ the unconditional quantile regression 

model and show that the impacts of direct marketing are uniformly negative across all the 

quantiles. Also, according to Ostrom and Jussaume (2007), many small- to mid-sized (farm 

receipts of less than $250,000) Washington vegetable growers employ a combination of 

marketing strategies as a way of capturing added value and reducing risk, while Park (2015) 

suggests that smaller farms are more severely impacted when they participate in direct marketing 

and the declines in sales tend to grow smaller as sales increase. These conflicting results from 

previous studies suggest that farms could either benefit from direct sales or face a direct sales 

penalty, and the impacts of marketing strategy may be different across the size of farms (e.g. 

small vs. large farms). This motivates our empirical approach to consider whether direct 

marketing benefits or hurts producers, and to assess whether the impacts vary across different 

sizes of farms. 
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As discussed previously, spatial effects, including both spatial heterogeneity and spatial 

dependence, have been proven to have a significant influence on firm performance. However, 

studies on the relationship between marketing strategy and farm performance have up to now 

paid little attention to the possible impact of spatial aspects. Only a few studies have focused on 

the influence of geographic location on marketing channel choice and the outcome of farms. 

Corsi et al. (2014) and Detre et al. (2011) use regional dummy variables to estimate the effects of 

location on the adoption of marketing strategy, while Hernandez et al. (2007), Uematsu and 

Mishra (2011), and Park et al. (2018) employ more specific locational variable such as distance 

to paved highway or the nearest city. Also, some research estimates the impacts of location on 

farms’ performance with regional dummies (Park, 2015; Uematsu and Mishra, 2011; Detre et al., 

2011). Although some studies have considered geographic location as a determinant of 

marketing strategy choice and farm success, none of the previous studies have focused on the 

spatial dependence between individual farms.  

Including spatial aspect variables in our analysis would develop the predictive power of 

estimation in two ways. First, locational variables would represent the unobserved factors which 

cannot be explicitly included in the model. We will include variables of detailed geographic 

location in order to estimate the impacts of location on marketing strategy choice and farm 

performance. Another point is to consider spatial interaction between farms over the choice of 

marketing channel. Spatial dependence considers whether there is positive spatial interaction 

between farmers’ choice. By evaluating this possibility, we will be able to confirm whether 

direct marketing can benefit or hurt farmers and how different the impacts are across different 

sizes of farms, which will be useful for policy makers or agricultural experts to properly suggest 

to initiate or expand direct marketing activities to farmers. 
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1.3 Data and Variables 

This study analyzes data of certified organic farms in Washington state – the second 

largest producer of organic products in the U.S.; earning $515 million in 2014 (USDA 2014 

Organic survey), which are derived from the database of all WSDA certified organic farms and 

the renewal forms covering the 2009–2012 production years. Our farm-level data also include a 

breakout of sales by direct marketing versus wholesale for each year for most farms, which lead 

to two types of marketing strategies from which farmers can choose.  

   There are 588 unique farms, combined over the four years (2009-2012). An 

observation in the underlying data set specifies farm-year, and there are a total of 1,767 

observations. By year, there are 400, 437, 463, and 467 farms, respectively. We specify farms as 

direct sales farms if they sell equal to or more than half of their products directly to consumers in 

terms of total sales. Since most of the farms only choose either direct sale or wholesale channel, 

and the others, 483 observations, are evenly distributed over the proportion of direct sales, our 

classification may not have a great influence on the analysis. Of all observations, 591 and 1,176 

observations choose direct marketing channel and wholesale channel to sell their crop products, 

respectively. By year, 121, 161, 156, and 153 farms employ direct marketing strategy, 

respectively. Descriptive statistics of key variables used in the analysis are presented in Table 1. 

Table 2 compares descriptive statistics by marketing channel – direct and wholesale sales 

channels.  

The variables of farm acres, farm age, and owner’s gender are used to represent farm’s 

characteristics. To account for the impacts of the degree of diversification, we also include a 

version of the Herfindahl index of farm diversification as an explanatory variable. We use 

specified grouping of crops including tree fruits, berry, grape, other fruits, vegetables, mixed 
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horticulture, herbs, lavender, mint, hay, hops, corn, cereal, nut, pasture, pulse, and seed other 

than herb. The index proposed by Gollop and Monahan (1991) is used as: 

𝑑 = (1 −
1

𝑛
) +∑(

1

𝑛2
− 𝑠𝑖

2)

𝑖

 

where n is the number of crops, and si is the share of the crop i in total sales. The first 

term is the number property which increases as the number of crops marketed grows. The second 

term represents the distribution component. It takes a zero value when the n products are equally 

distributed, whereas it takes increasingly negative values as the distribution of sales across crops 

becomes more unequal.  

To represent urban proximity variables, we include an urban dummy variable. Also, we 

employ the georeferenced data which allows us to derive spatial heterogeneity based on the 

driving distances from each farm to nearby cities with a population of 50,000 or more. Two 

variables, distance to nearest city and average distance to 3 nearest cities, are included to 

measure the effects of location of farms. Since many farms with direct marketing rely on 

farmers’ markets1, we also include the number of farmer’s markets around each farm as an 

explanatory variable. 

 

 
1 In the U.S., of the $3 billion in direct-to-consumer sales, farmers’ markets accounted for $711 million, or 23 

percent in 2015, and the number of farms utilizing farmers’ market outlet was 41,156, about 36 percent of total 

number of farms selling directly to consumer. 
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1.4 Empirical method 

1.4.1 Endogenous treatment model 

This section outlines the endogenous treatment model used in the article. Following Trost 

and Lee (1984), the estimation is likely to be underestimated when a selectivity problem is 

neglected. Farmers may endogenously self-select marketing channel, and thus decisions are 

likely to be influenced by unobserved factors that may be correlated with the outcomes of 

interest such as the value of farm sales and farm growth. Using the endogenous treatment model, 

we explicitly address self-selection problems for the empirical analysis in order to address 

selection bias and endogeneity that are likely to be caused by correlations between farms’ 

outcomes and the decisions on marketing channels, which allows to us to get unbiased and 

accurate estimates of outcomes of marketing strategies.  

The endogenous treatment regression model is composed of an equation for the outcome 

𝑦𝑗 (the value of farm sales and growth rates of sales) and an equation for the endogenous 

treatment 𝑡𝑗 (the marketing strategy choice of farms). It allows for a specific correlation 

structure between the unobservables that affect the treatment (decision on marketing strategy) 

and the unobservables that affect the potential outcomes (the value of farm sales and farm 

growth). If the error term of treatment equation and that of outcome equation are not 

independent, the estimates of OLS regression may be biased due to self-selection problem. In 

this case, the endogenous treatment regression model enables us to get consistent and efficient 

estimates while controlling for selection bias. The endogenous treatment model is divided by two 

different models, constrained and unconstrained treatment models. 
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1.4.1.1 Constrained model 

The constrained form of the model is given by: 

𝑦𝑗 = 𝑋𝑗𝛽 + 𝛿𝑡𝑗 + 𝜖𝑗 

𝑡𝑗
∗ = 𝑤𝑗𝛾 + 𝑢𝑗 

𝑡𝑗 = {
1,          𝑖𝑓     𝑡𝑗

∗ > 0

0,         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 
 

where 𝑦𝑗 is the outcome variable (e.g. the values of farm sales), 𝑋𝑗 are the covariates used to 

model the outcome equation, representing farm characteristics and geographical variables. The 

variable of 𝑡𝑗 is a binary-treatment variable that is assumed to stem from an unobservable latent 

variable, 𝑡𝑗
∗, and 𝑤𝑗 = {𝑧𝑗 , 𝜔𝑡𝑗} are the covariates used to model treatment assignment, where 

𝑧𝑗 represents the variables of farm characteristics and location, 𝜔 is the spatial weight matrix 

based on the distances between farms. We assign the weights by use of an inverse distance 

function, where 𝑑𝑗𝑖 equals the distance between farm i and j. Beyond some distance, the effect 

of marketing strategy choice of other farms might no longer affect farm’s decision making. An 

upper distance is chosen as a point beyond which all weights equal zero. Following the results of 

Moran’s I statistics in Table 3, we set a spatial weights matrix with an upper distance of 30km 

since it shows the largest positive relationship between farms’ choice, although the results are 

quite robust to the particular weights matrix chosen. The error terms 𝜖𝑗 and 𝑢𝑗  are bivariate 

normal with mean zero and covariance matrix as: 

[
𝜎2 𝜎𝜌
𝜎𝜌 1

] . 

The treatment is exogenous if 𝜌 = 0, in this case, therefore, endogenous treatment model 

may not be appropriate, and the standard OLS regression may be more preferable. On the other 
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hand, when 𝜌 ≠ 0, ignoring the correlation between error terms may lead to biased estimates, 

and it would be reasonable to have the endogenous treatment model be applied.  

The likelihood function for this model is given by Maddala (1986). The following is the 

log likelihood for observation j: 

𝑙𝑛𝐿𝑗 =

{
 
 

 
 𝑙𝑛𝛷 {

𝑤𝑗𝛾 + (𝑦𝑗 − 𝑋𝑗𝛽 − 𝛿)𝜌/𝜎

√1 − 𝜌2
} −

1

2
(
𝑦𝑗 − 𝑋𝑗𝛽 − 𝛿

𝜎
)

2

− 𝑙𝑛(√2𝜋𝜎)    𝑖𝑓 𝑡𝑗 = 1

𝑙𝑛𝛷 {
𝑤𝑗𝛾 + (𝑦𝑗 − 𝑋𝑗𝛽)𝜌/𝜎

√1 − 𝜌2
} −

1

2
(
𝑦𝑗 − 𝑋𝑗𝛽

𝜎
)

2

− 𝑙𝑛(√2𝜋𝜎)             𝑖𝑓 𝑡𝑗 = 0

 

where 𝛷(∙) is the cumulative distribution function of the standard normal distribution. 

 

1.4.1.2 Unconstrained model 

Unlike the constrained model, the unconstrained model does not explicitly include 

treatment effects as an explanatory variable, but it allows for individuals with different treatment 

selections to have different coefficient estimates for outcome equations. Here, farms engaging in 

direct sales have different outcome equations from farms with a wholesale strategy. The 

unconstrained form of the endogenous treatment model is represented by: 

𝑦0𝑗 = 𝑋𝑗𝛽0 + 𝜖0𝑗    𝑖𝑓  𝑡𝑗 = 0 

𝑦1𝑗 = 𝑋𝑗𝛽1 + 𝜖1𝑗    𝑖𝑓  𝑡𝑗 = 1 

𝑡𝑗
∗ = 𝑤𝑗𝛾 + 𝑢𝑗 

𝑡𝑗 = {
1,          𝑖𝑓     𝑡𝑗

∗ > 0

0,         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 
 

where 𝑦0𝑗 is the outcome that individual j obtains if treatment 0 (wholesales strategy) is 

selected, while 𝑦1𝑗 is the outcome that individual j obtains if treatment 1 (direct sales strategy) 
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is selected. We never observe both 𝑦0𝑗 and 𝑦1𝑗, only one or the other. Therefore, we can 

observe: 

𝑦𝑗 = 𝑡𝑗𝑦1𝑗 + (1 − 𝑡𝑗)𝑦0𝑗 . 

In the unconstrained model, the vector of error terms (𝜖0𝑗, 𝜖1𝑗, 𝑢𝑗)
′ is a mean zero 

trivariate normal distribution with covariance matrix as: 

[

𝜎0
2 𝜎01 𝜎0𝜌0

𝜎01 𝜎1
2 𝜎1𝜌1

𝜎0𝜌0 𝜎1𝜌1 1

]. 

The likelihood function for this model is given by Maddala (1986) as: 

𝑙𝑛𝐿𝑗 =

{
 
 

 
 𝑙𝑛𝛷 {

𝑤𝑗𝛾 + (𝑦1𝑗 − 𝑋𝑗𝛽1)𝜌1/𝜎1

√1 − 𝜌12
} −

1

2
(
𝑦1𝑗 − 𝑋𝑗𝛽1

𝜎1
)

2

− 𝑙𝑛(√2𝜋𝜎1)    𝑖𝑓 𝑡𝑗 = 1

𝑙𝑛𝛷 {
𝑤𝑗𝛾 + (𝑦0𝑗 − 𝑋𝑗𝛽0)𝜌0/𝜎0

√1 − 𝜌02
} −

1

2
(
𝑦0𝑗 − 𝑋𝑗𝛽0

𝜎0
)

2

− 𝑙𝑛(√2𝜋𝜎0)    𝑖𝑓 𝑡𝑗 = 0

 

where 𝛷(∙) is the cumulative distribution function of the standard normal distribution. 

 

1.4.2 Average treatment effect on the treated (ATET) 

Unlike the constrained model, in the unconstrained model, the treatment effects are not 

explicitly estimated. Rather, we can estimate average treatment effect on the treated (ATET) 

which is the average difference of the treatment potential outcomes and the control potential 

outcomes on the treated population. We compare expected values of outcomes of direct 

marketing strategy adopters (𝑡𝑗 = 1) and nonadopters (𝑡𝑗 = 0) in actual and counterfactual 

scenarios. The conditional means of potential outcomes of adopters with adoption is: 

𝐸(𝑦1𝑗|𝑡𝑗 = 1) = 𝑋𝑗𝛽1 + 𝜌1𝜎1𝜙(𝑤𝑗𝛾)/𝛷(𝑤𝑗𝛾). 



16 

 

The conditional means of potential outcomes of direct marketing adopters had they 

decided not to adopt (counterfactual) is given by: 

𝐸(𝑦0𝑗|𝑡𝑗 = 1) = 𝑋𝑗𝛽0 + 𝜌0𝜎0𝜙(𝑤𝑗𝛾)/𝛷(𝑤𝑗𝛾). 

Finally, the ATET is calculated by: 

𝐸(𝑦1𝑗 − 𝑦0𝑗|𝑡𝑗 = 1) = 𝐸{𝐸(𝑦1𝑗 − 𝑦0𝑗|𝑋𝑗, 𝑤𝑗, 𝑡𝑗 = 1)}

= 𝐸(𝑋𝑗(𝛽1 − 𝛽0) + (𝜌1𝜎1  − 𝜌0𝜎0)𝜙(𝑤𝑗𝛾)/𝛷(𝑤𝑗𝛾) | 𝑡𝑗 = 1) 

 

1.4.3 Model specification 

When using the selection models including the endogenous treatment model, one of the 

important questions might be the selection of variables that can be included in selection and 

outcome equations, including the question of which variables included in the treatment 

assignment should also be included in the outcome equation. In order to determine the 

specification of endogenous treatment model, we refer to the following results of simple probit 

and OLS regression and then employ the significant variables as explanatory variables in the 

endogenous treatment model.  

 

1.5 Analysis 

1.5.1 Spatial autocorrelation between marketing strategy selection  

To confirm the existence of the pattern of spatial autocorrelation between marketing 

strategy selection, we first check global spatial autocorrelation with the statistics of Moran’s I 

and Geary’s C. Table 3 shows that there is positive spatial autocorrelation between marketing 

channel selections of farms. For distance-based spatial weight matrix, upper distances are set to 
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30km, 40km, and 50km. An upper distance is chosen as a point beyond which all weights equal 

zero. We also use 15, 25, and 35 nearest neighbors for K-nearest neighbor criteria. The statistics 

confirm the existence of significant spatial dependence between farms’ decisions on marketing 

channel selection with various criteria. Also, the spatial correlation is represented to be positive 

as Moran’s I statistics are positive and Geary’s C statistics are less than 1.  

In addition to the statistics of global spatial autocorrelation, we also estimate bivariate 

𝐾𝑑 function in order to show the distributional pattern of the two types of marketing channel. 

Bivariate 𝐾𝑑 is calculated for r between 0 and 70 kilometers. The calculated function is shown 

in Figure 1, analyzing 

the locations of farms with direct marketing in a neighborhood of r meters of farms with 

wholesale sales channel. The result shows that the observed 𝐾𝑑 values lie below the lower 

confidence band, representing that a repulsion would be detected between direct marketing farms 

and wholesale farms at all distance. 

Taken together, therefore, we hypothesize that there may exist positive spatial interaction 

and social network effects between farms’ choice of sales outlets rather than spatial competition, 

and thereby account for the influence of neighborhood’s marketing strategy decisions to estimate 

the propensity to participate in direct marketing in the following estimation.  

 

1.5.2 Choice of direct marketing strategy 

Table 4 reports estimated coefficients from the probit model of marketing channel 

selection. Note that the base group for comparison is the farmers with wholesale marketing 

outlet. The results are presented with and without spatial lagged variable of dependent variable. 

By distinguishing between the two models, we can explore the effects of including and ignoring 
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spatial interdependence on the influence of explanatory variables on the adoption of direct 

marketing strategy as well as estimate the neighborhood effects on the choice of marketing 

strategy.  

Since it is more convenient to interpret the marginal effects on the choice of marketing 

strategy, we focus on average marginal effects which are presented in Table 5. Note that the 

marginal effects of all explanatory variables differ only slightly between the two specifications, 

but all the effects are smaller except for the interaction term, Urban*distance to nearest city, 

when controlling for neighborhood effects of spatial lagged variable.  

In the results of spatial model of column (2), all of the explanatory variables are highly 

statistically significant. Results indicate that gender affects the choice of marketing outlet. 

Female farmers are more likely to direct market than male farmers by 13%. According to USDA 

(2013), about 61 percent of women principal operators have education beyond high school, 

compared with only 47 percent of male principal operators in 2007. A plausible explanation in 

female farmers with higher likelihood of adoption of direct marketing may be that women farm 

operators are more highly educated, and thereby allowing them to keep better understanding of 

consumer preferences and to easily extract benefits from direct marketing. Another explanation 

is that knowledge spillovers between female farmers are stronger than male farmers, and thus 

neighboring female-owned farms may be more likely to share information and strategies that are 

much more important in direct marketing than wholesale marketing. 

Farm size, as measured by acres, is negatively related with the adoption of direct sales. A 

1% increase in farm size in terms of total farm acres reduces the probability of adopting direct 

marketing channel by 4%. The finding here is consistent with the general understanding that 

compared to large farms, smaller farms tend to rely more on direct marketing strategies, and also 
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consistent with the results from previous literatures (Monson et al. 2008; Detre et al. 2011; 

Uematsu and Mishra, 2011). It would be beneficial for small farms since even if competition 

exists in the field of direct marketing, it is often among farms of the same size, rather than 

between large-scale and small-scale farms (ATTRA, 2016). Also, direct marketing through local 

retailers and markets may not be typically something that makes sense for really large farms 

whose production far outstrips local demand. Thus, the strategy of direct marketing of certified 

organic food may fits smaller farms well. 

On the other hand, the marginal effect of diversification on adoption of direct marketing 

strategy is found to be positive, indicating that farms with more diversified crops are more likely 

to direct market. Diversified farms, usually coupled with smaller farm size, get benefits from 

economies of scope rather than economies of scale that larger and non-diversified farms can 

achieve. It may be difficult for diversified farms to compete with larger and non-diversified 

farms in wholesale market outlet since they are less likely to be competitive in production costs 

and the prices of products. For these reasons, farmers with a greater diversity of crops may tend 

to choose direct marketing strategy. 

The coefficients that are related to the farm age show a negative relationship, but with a 

decreasing rate, between farm experience and the probability of adopting direct marketing. Some 

studies have suggested that beginning farmers are more likely to choose direct marketing outlet 

(Park et al., 2014; Detre et al., 2011). On the other hand, our results show that farms with longer 

experiences are less likely to choose direct sales strategy until 9.38 years of farm experiences, 

while the experience of farms has a positive effect on the adoption of direct marketing strategy 

after operating farms for 9.38 years. This finding suggests that very beginning farmers may be 

more educated and are more likely to be innovative, which lead them to engage in direct market 
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outlet that needs better understanding of the system of direct marketing and consumer 

preferences. On the other hand, the reason that more experienced farms over 9.38 years are likely 

to adopt direct sales strategy may be due to skills and abilities needed for direct marketing, 

which is developed by their work experiences. This supports the argument of Uva (2002) that a 

direct marketing strategy requires a special set of skills and abilities. 

Geographic attributes also have statistically significant effects on the probability of 

adoption of direct sales channel. An interesting finding is in the driving distances to nearest city 

and the average distance to three nearest cities. Results in Table 5 show that the coefficient of 

distance to nearest city is negative while that of average distance to three nearest cities is 

positive, which has robust results when we use average distance to five nearest cities instead of 

three nearest cities and Euclidean distances instead of driving distances. A 10 km decrease in 

distance to nearest city increases the likelihood of adopting direct marketing strategy by 1.6%, 

while A 10 km decrease in average distance to 3 nearest cities associated with decreasing 

probability of adoption by 2.9%. This suggests that the likelihood of adoption of direct marketing 

increases with better accessibility to one big city rather than multiple cities. In Figure 2, for 

example, consider two different farms who are located different locations. The distances from 

Farm (a) to Seattle, Tacoma, and Vancouver are 180, 150, and 250 km, respectively, and thus the 

distance to nearest city is 150 km and the average distance to three cities is 193km, while the 

distances from Farm (b) are 300, 250, and 70 km, respectively, and the distance to nearest city is 

70 km and the average distance to three cities is 206 km. In this example, Farm (b) is more likely 

to choose direct sales strategy than Farm (a), even if Farm (a) has better accessibilities to two 

cities, Seattle and Tacoma, than Farm (b). Taken together with the estimated coefficients, Farm 
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(b) may be more likely to adopt direct marketing strategy by 16.57 percent 

(0.16*80+0.29*13=16.57) than Farm (a) due to distances to cities.  

We also included urban dummy variable and the interaction term, Urban*distance to 

nearest city, in the model. The variable of Urban*distance to nearest city is included to capture 

the different influences of proximity to big city on marketing strategy between urban and rural 

areas. Results show that farms located in urban county tend to choose direct sales strategy by 8 

percent, and their decisions on marketing strategy are more influenced by distance to nearest city 

compared to those located in rural county. When a farm locates in urban county, a 10 km 

decrease in distance to nearest city increases the probability of adoption by 1.8%, while, for a 

farm in rural county, 10 km decrease increases the probability by 1.6%. 

Results from urban proximity variables suggest that farms located near an urbanized city 

are more likely to participate in direct marketing. It would be easier for farmers to reflect the 

preferences of local consumers on the types and prices of crops they grow if they are located 

near big city. Also, when farms’ operation can take place literally in the customer’s backyards, 

this high visibility in a populated area can attract customers. Therefore, customers living in urban 

cities may more rely on local products produced near their living area, and their propensity to 

consume local products through direct market outlet may grow with shorter distance from farm 

to city. For these reasons, farms located near urban area may tend to take opportunities of direct 

marketing. 

As we expected, another geographic variable, the number of farmer’s markets within 200 

km from each farm, is also positively related to the probability of adoption of direct sales. An 

increase in the number of farmers’ markets is associated with increasing probability of adoption 

by 0.6%. Selling directly to consumers through farmers’ market is one of the most popular form 
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of direct marketing, and moreover it is growing and accounted for 23 percent of direct-to-

consumer sales in 2015 (USDA, 2015). Therefore, it stands to reason that farmers having more 

farmers’ markets around their farms have a lot of access to them and therefore more likely to 

engage in direct marketing through farmers’ markets. 

Finally, the coefficient of spatially lagged dependent variable (𝜙) is positive after 

controlling for various important geographic variables, which confirms the existence of spatial 

dependence in marketing channel selection among farmers. Results are quite robust when using 

different spatial lagged variable with different criteria. The result in Table 5 suggests that for 

each farm, adoption of direct sales strategy is positively influenced by the adoption of the same 

strategy of near farms within 30 km, which is consistent with the results from global 

autocorrelation tests represented by Moran’s I and Geary’s C in Table 3. Result implies that there 

may be positive spatial dependence and social network effect on the selection of sales outlet 

between farms rather than spatial competition in the same marketing outlet. Farms interested in 

direct marketing strategy may readily get the information about direct sales from neighboring 

farms having engaged in it, and therefore it might be easier for them to start direct sales than 

other farms. 

Following the significant effects of the variables on the marketing strategy choice, we 

include all of the variables used in the probit model in the selection equation of the endogenous 

treatment model. 

 

1.5.3 Impacts of marketing choices on farm sales 

Table 6 shows estimation results of OLS regression with the natural logarithm of the 

value of sales per acre as a dependent variable. Results represent that there exists negative 
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impacts of direct marketing adoption and urban proximity on the farm sales. To confirm the 

robustness of the results when considering the endogeneity, we use the endogenous treatment 

model with the significant variables in Table 6 as explanatory variables. We also employ the 

significant variables used in the probit model (Table 4) for selection equation in the endogenous 

treatment model.  

Table 7 compares the estimation results of the constrained and unconstrained treatment 

regression models with the natural logarithm of the value of sales per acre as a dependent 

variable. In the constrained model, all farms have the same estimated coefficients regardless their 

choice of marketing strategy, while farms with different marketing strategies have different 

coefficients in the unconstrained model. First, note that the correlations between error terms in 

the selection equation and outcome equation (ρ and ρ1) are significant in the constrained and 

unconstrained treatment models, implying that the estimates from OLS regression may be biased 

due to self-selection problem. In this case, therefore, treatment regression models may be more 

reliable and preferable than standard OLS regression to estimate the impacts of marketing 

strategies and other covariate variables. However, the results of the endogenous treatment model 

are not much different from the estimation results of the OLS regression reported in Table 6. We 

also confirm that the estimates for the marketing strategy in Table 7 have similar coefficients to 

those of marketing strategy choice equation using the standard probit model in Table 4, thereby 

we focus on the results of outcome equation of the endogenous treatment model in this part. 

Our key findings for the analysis are in the estimated coefficients on direct marketing 

strategy. In the constrained model, farms that adopt direct marketing have farm sales per acre 

that are 75.74 percent (exp(-1.4162)=0.2426) lower. Although, in the unconstrained model, the 

impact of direct marketing strategy is not directly estimated, we can estimate average treatment 
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effect on the treated (ATET) which is the average difference of the treatment potential outcomes 

and the control potential outcomes on the treated population. The average effect of a direct 

marketing strategy on farm sales per acre estimated by ATET is -1.2562 (0.2952). Following the 

result of unconstrained model, if farms choose direct marketing outlet, their farm sales per acre 

would be reduced by 71.53 percent (exp(-1.2562)=0.2847), which is lower than the estimates 

from the constrained model. The OLS regression model assumes that marketing strategy decision 

is exogenous and predicts that sales decline due to direct marketing outlet is smaller than 

treatment regression models as 65.05 percent (exp(-1.0513)=0.3495). Results present that there is 

a statistically significant sales decline when farmers choose direct sales outlet, which is robust to 

inclusion of geographic variables and is consistent with the previous empirical results (Park et al. 

2014; Park, 2015; Park et al. 2018). 

However, this effect is not constant for every farm. Figure 3 shows the expected value of 

farm sales per acre by sales strategy, and farm acres. For very small farms, in terms of farm 

acres, there is not a significant difference in the expected values of sales between farms with 

different marketing channels, while the effects of marketing strategy become bigger as farms size 

increases. It is also presented by negative coefficients of farm acre variable, indicating that an 

increase in farm acres exacerbates the farm sales decline due to direct marketing strategy. In the 

unconstrained model, the negative effects of farm acres on sales are larger for the direct sales 

farms than those with wholesale channel. Still, the impacts of direct marketing adoption are 

negative for farms regardless their farm size. Farms may continue to participate in direct markets 

despite its negative impact. One possible explanation would be that direct marketing strategy is 

used as a risk management tool rather than strategy for higher outcome. Direct marketing may 

allow farms to make product changes faster reflecting consumer preferences and get to market 
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faster without retail interruptions. Also, start-up costs in direct selling are typically low. Some 

types of direct marketing, such as farm or roadside stands, would be easiest way for small 

farmers to start selling their products, while it may be difficult for smaller farms to enter 

wholesale market with their small amount of production. 

On the other hand, farm age has significantly positive effects on farm sales, and moreover 

the estimated coefficients are larger for the farmers with direct marketing channel in the 

unconstrained model. These results indicate that although participation in direct marketing is 

related to lower farm sales, farmers with more farm experiences may be able to limit the amount 

of the sales decline. In the unconstrained model, one-year increase in farm age reduces the sales 

decline of direct marketing farms by about 9.71 percent (exp(0.0927)=1.0971). This result is 

consistent with the argument of Uva (2002) that a direct marketing strategy requires a special set 

of skills and abilities which may be acquired by farm experiences, suggesting that direct sales fits 

farms with longer experience well. 

Since three geographical variables, average distance to three nearest cities, urban dummy, 

and interaction term of urban*distance to nearest city, have noticeably different coefficients 

across farms with different marketing strategies, we focus on the unconstrained model to 

interpret the results of those variables. Total sales per acre of direct sales farms are significantly 

affected by those two urban proximity variables, the variables of urban and urban*distance to 

nearest city. Results show that their sales per acre reduce as the direct farm locates in urban area 

and locates closer to big city. Direct marketing farms located near big urban cities may be 

influenced by either positive external benefits generated by spatial concentration of businesses 

and households or the negative externality. There may be more demand for crop products within 

local market near urban area, leading to success of farms, whereas urban proximity could also 
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generate negative externalities, which is due to competition between direct marketing farms. As 

shown in the estimation results of marketing choice equation, farmers are more likely to be 

involved in direct marketing in urban region, which may lead the direct market to be highly 

competitive. Therefore, urban proximity would have positive influences on farms’ success if 

positive externalities overwhelm negative externalities, or vice verca. Our results imply that there 

exist overwhelming negative externalities which leads reduced sales of farms with direct 

marketing strategy in urban area. One the other hand, the sales of wholesale sales farms are 

significantly influenced by average distance to nearest three cities. As they locate near urban 

cities, the sales per acre of farms with wholesale channel increase. If it is easier for wholesale 

sales farms to access to several big urbanized cities, they would be able to reduce the costs from 

farm to wholesale market (e.g. transportation costs), and thus their benefits from urban location 

would contribute to increase their farm sales. 

The number of farmers’ markets also have conflicting effects between direct and 

wholesale sales farms. While one farmers’ market increase around the farm increases direct 

marketing farm sales by 1.32 percent (exp(0.0131)=1.0132), it decreases farm sales with 

wholesale channel by 1.65 percent (exp(-0.0166)=0.9835). Since direct marketing of farm 

products through farmers’ markets is one of the most popular sales outlets for agricultural 

producers in the U.S., an increase in the number of farmers’ markets could lead farmers with 

direct marketing strategy to have an easier access to farmers’ markets and consumers who prefer 

to purchase products directly from farmers. This may allow direct marketing farms to reduce 

sales decline due to direct marketing. On the other hand, the sales of farms with wholesale 

channel would be lower as more farmers’ markets exist around them, since parts of demand for 



27 

 

products would be taken away from the direct marketing farms who sells their products in the 

farmers’ markets. 

 

1.6 Conclusion  

The U.S. Department of Agriculture launched the “Know your farmer, know your food” 

initiative in 2008 to promote local, sustainable agriculture. According to the USDA, it is 

designed to support local farmers and community food groups, strengthen rural communities and 

help schools connect with locally grown foods, and the initiative will also enhance direct 

marketing. As such, the direct marketing option increasingly have been recognized as a feasible 

strategy for farmers as well as local economy. This leads to the requirement of information on 

how the choice of marketing outlets impacts on the farm performance and which determinants 

are important for producers to involve in the marketing strategies. 

The primary objective of this study was to estimate the relationship between the adoption 

of direct marketing and farm performance, with considering spatial aspects. We employed two 

types of the endogenous treatment regression models in the form of constrained and 

unconstrained models, which explicitly address self-selection problems that are likely to be 

caused by correlations between farms’ outcomes and the decisions on marketing channels. Our 

results showed that there exists the direct marketing penalty even after various spatial variables 

were included. When farms adopt direct marketing channel, their farm sales per acre would 

decrease. However, for very small farms, in terms of farm acres, there was not significant 

difference in the expected values of sales between farms with different marketing channels and 

those with wholesale channel. This suggests that direct marketing strategy could be a viable 

option for small farms to succeed. 
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Another interesting finding was in the results of geographic variables, in which the 

effects of geographic variables on farm sales were opposite between farms with different 

marketing strategies. Results represented that their sales per acre reduce as the direct sales farm 

locates in urban area and locates closer to big city, which may due to that direct markets are 

highly competitive in urban area. One the other hand, the sales of wholesale sales farms were 

found to be increased as they locate near urban cities, since they could reduce the farm to 

wholesale market costs (e.g. transportation costs), and thus their benefits from urban location 

would contribute to increase their farm sales. The number of farmers’ markets also had 

conflicting effects between direct and wholesale sales farms. While the number of farmers’ 

market increase around the farm increases direct marketing farm sales, it decreases farm sales 

with wholesale channel. 

The secondary objective was to highlight the factors that influence farmers to direct 

market, including locational environment and spatial interaction between farmers’ choice of 

marketing strategy. Results showed that the variables of urban proximity have significant 

impacts on the adoption of direct marketing. The propensity to consume local products through 

direct market outlet may grow with a shorter distance from farm to city since high visibility in a 

populated area can attract many customers. Also, it might be easier for farmers to reflect the 

preferences of local consumers on the types and prices of crops they grow if they are located 

near big city. As the farmers’ market is one of the most popular way to sell products directly, the 

number of farmer’s markets around each farm was also positively related to the probability of 

adoption of direct sales. Also, we considered spatial dependence between farmers’ choice, which 

confirms the existence of positive spatial dependence and social network effect on the selection 

of sales outlet between farms rather than spatial competition in the same marketing outlet. There 
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may be knowledge spillovers between neighboring farms, which allows farms to start direct sales 

readily with better information about direct sales from neighboring farms who engaged in it. 

Our findings have important policy implications in that spatial aspects are significant 

factors to estimate the relationship between marketing strategies and farms’ outcome. The results 

suggest that the impacts of marketing strategies could be different across the location of farms, 

and farmers are influenced by neighboring farms as well as geographic location when they 

choose marketing strategies. Also, the impacts of direct marketing on farm outcome are found to 

be different across farm size. Overall, the findings suggest that the promotion of direct marketing 

should consider farm size, location of farms, and spatial dependence between them in order to 

reduce sales decline from direct marketing and enable farmers to extract the benefits of each 

marketing strategy. 

An important question that remains but is beyond the scope of this study is: why is direct 

marketing associated with lower total sales per acre? Additional analysis is needed to understand 

the reason, but we could anticipate that one of possible explanation may be in that direct 

marketing is employed by farmers as risk management tools. For example, with direct marketing, 

farmers would be able to rapidly respond to changing product preference, which allows them to 

lower the products in stock. Future research could analyze the impacts of marketing efforts on 

the survival of farms to show whether direct marketing is in practice used to reduce business risk 

by farmers. Another challenge we faced was that we could not capture the adoption of each 

specified direct marketing strategy which may require different skills and may be differently 

affected by spatial aspects. In the future, it will be addressed to explore the relationships between 

more specified marketing strategy and the success of farms. 
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TABLES AND FIGURES 

 

Table 1.1. Summary statistics 

Variable Mean Std. Dev. Min Max 

Total sales 416,209 989,383 30.97 11,600,000 

Direct sales 28,580 112,781 0 2,256,124 

Wholesale sales 387,629 991,015 0 11,600,000 

Total sales per acre 12,893 98,935 0.15 2,722,132 

Acres  114.98 300.41 0.01 5,322 

Direct (binary) 0.33 0.47 0 1 

Diversification (Herfindahl index) 0.08 0.17 0 0.74 

Farm age 7.79 6.18 0 24 

Urban 0.18 0.38 0 1 

Female 0.19 0.39 0 1 

Distance to nearest city (km) 90.73 76.97 0.17 286.85 

Average distance to 3 nearest cities (km) 123.47 71.96 7.07 317.46 

Number of farmers mkt within 200km 30.05 25.65 1 81 

N 1767 

 

Table 1.2. Summary statistics by marketing channel 

Variable Direct sales Wholesale sales 

Mean Std. Dev. Mean Std. Dev. 

Total sales 86,794 208,633 581,758 1,169,345 

Total sales per acre 11,614 108,128 13,536 94,018 

Acres 52.84 119.26 146.21 354.37 

Diversification (Herfindahl index) 0.10 0.18 0.07 0.16 

Farm age 8.06 6.96 7.65 5.75 

Urban 0.28 0.45 0.13 0.33 

Female 0.33 0.47 0.12 0.32 

Distance to nearest city 85.90 74.09 93.16 78.30 

Average distance to 3 nearest cities 115.46 74.82 127.49 70.17 

Number of farmers mkt within 200km 43.43 28.83 23.32 20.88 

N 591 1176 



31 

 

Table 1.3. Global spatial autocorrelation in marketing channel selection 

Upper distance Moran’s I Geary’s C 

30km 0.2754*** 

(0.0002) 

0.7681*** 

(0.0003) 

40km 0.2713*** 

(0.0002) 

0.7699*** 

(0.0003) 

50km 0.2646*** 

(0.0002) 

0.7746*** 

(0.0003) 

Knn 15 0.2550*** 

(0.0000) 

0.7339*** 

(0.0000) 

Knn 25 0.2415*** 

(0.0000) 

0.7430*** 

(0.0000) 

Knn 35 0.2361*** 

(0.0000) 

0.7427*** 

(0.0000) 

Variance of statistics in parentheses. 
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Table 1.4. Estimation results of probit model  
 

(1) (2) 

Ln(Farm acre) -0.1553*** 

(0.0246) 

-0.1527*** 

(0.0254) 

Farm age -0.0595*** 

(0.0179) 

-0.0573*** 

(0.0184) 

Farm age2 0.0032*** 

(0.0008) 

0.0032*** 

(0.0008) 

Female 0.4871*** 

(0.0866) 

0.5066*** 

(0.0896) 

Diversification 1.0079*** 

(0.2081) 

0.9867*** 

(0.2155) 

Urban 0.3754** 

(0.1549) 

0.3099* 

(0.1586) 

Distance to nearest city -0.0070*** 

(0.0015) 

-0.0060*** 

(0.0015) 

Average distance to 3 nearest cities 0.0125*** 

(0.0018) 

0.0111*** 

(0.0019) 

Number of farmers mkt  0.0274*** 

(0.0022) 

0.0239*** 

(0.0023) 

Urban*Distance to nearest city -0.0057 

(0.0037) 

-0.0077** 

(0.0038) 

𝜙  1.1504*** 

(0.1040) 

Constant -1.8400*** 

(0.2313) 

-2.1682*** 

(0.2401) 

Log likelihood -881.7660 -819.2067 

Pseudo R2 0.2170 0.2725 

N 1,767 

Year dummy included. 

Standard errors in parentheses. 

Dependent var: Direct=1 if % of direct sales ≥ 0.5, 0 otherwise. 
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Table 1.5. Marginal effects of probit model 
 

(1) (2) 

Ln(Farm acre) -0.0437*** 

(0.0067) 

-0.0398*** 

(0.0064) 

Farm age -0.0167*** 

(0.0050) 

-0.0150*** 

(0.0048) 

Farm age2 0.0009*** 

(0.0002) 

0.0008*** 

(0.0002) 

Female 0.1369*** 

(0.0237) 

0.1322*** 

(0.0228) 

Diversification 0.2833*** 

(0.0574) 

0.2574*** 

(0.0552) 

Urban 0.1055** 

(0.0433) 

0.0809** 

(0.0413) 

Distance to nearest city -0.0020*** 

(0.0004) 

-0.0016*** 

(0.0004) 

Average distance to 3 nearest cities 0.0035*** 

(0.0005) 

0.0029*** 

(0.0005) 

Number of farmers mkt 0.0077*** 

(0.0006) 

0.0062*** 

(0.0006) 

Urban*Distance to nearest city -0.0016 

(0.0010) 

-0.0020** 

(0.0010) 

𝜙  0.3001*** 

(0.0245) 

Year dummy included. 

Standard errors in parentheses. 
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Table 1.6. OLS results of farm sales per acre 
 

(1) (2) 

Direct marketing -1.0188*** 

(0.0937) 

-1.0513*** 

(0.0917) 

Ln(Farm acre) -0.9190*** 

(0.0979) 

-0.8983*** 

(0.0972) 

Ln(Farm acre2) 0.0600*** 

(0.0127) 

0.0584*** 

(0.0127) 

Farm age 0.0771*** 

(0.0206) 

0.0568*** 

(0.0063) 

Farm age2 -0.0010 

(0.0009) 

 

Female -0.0678 

(0.1036) 

 

Diversification -1.6208*** 

(0.2398) 

-1.6207*** 

(0.2392) 

Urban -0.6974*** 

(0.1864) 

-0.7183*** 

(0.1860) 

Distance to nearest city 0.0021 

(0.0016) 

 

Average distance to 3 nearest cities -0.0078*** 

(0.0019) 

-0.0054*** 

(0.0007) 

Number of farmers mkt -0.0131*** 

(0.0024) 

-0.0117*** 

(0.0021) 

Urban*Distance to nearest city 0.0103** 

(0.0043) 

0.0109** 

(0.0043) 

Constant 11.5115*** 

(0.2849) 

11.3764*** 

(0.2403) 

R-squared 0.2563 0.2549 

Adj. R-squared 0.2499 0.2498 

N 1767 

Year dummy included. 

Standard errors in parentheses. 

 

 



 

 

3
5

 

Table 1.7. Regression results of farm sales per acre with the endogenous treatment model 

 (1) (2) 

 Constrained model Unconstrained model 

 Sales per acre Marketing choice Direct sales per acre 
Wholesale sales  

per acre 

 

Marketing choice 

Direct marketing -1.4162*** 

(0.2237) 
    

Ln(Farm acres) -0.9316*** 

(0.1156) 

-0.1428*** 

(0.0272) 

-1.1630*** 

(0.2277) 

-0.7002*** 

(0.1596) 

-0.1431*** 

(0.0270) 

Ln(Farm acres squared) 0.0598*** 

(0.0152) 
 

0.0338 

(0.0356) 

0.0465** 

(0.0185) 
 

Farm age 0.0575*** 

(0.0061) 

-0.0600*** 

(0.0188) 

0.0927*** 

(0.0092) 

0.0315*** 

(0.0077) 

-0.0597*** 

(0.0187) 

Farm age squared 
 

0.0033*** 

(0.0008) 
  

0.0033*** 

(0.0008) 

Female 
 

0.5096*** 

(0.0862) 
  

0.5032*** 

(0.0874) 

Diversification -1.4981*** 

(0.2388) 

0.9689*** 

(0.2204) 

-0.9272*** 

(0.3464) 

-1.6519*** 

(0.3442) 

0.9406*** 

(0.2177) 

Urban -0.6691*** 

(0.2066) 

0.3049* 

(0.1646) 

-0.5043* 

(0.2737) 

-0.4617 

(0.3118) 

0.3070* 

(0.1641) 

Distance to nearest city 
 

-0.0030*** 

(0.0015) 
  

-0.0062*** 

(0.0016) 

Distance to 3 nearest cities -0.0049*** 

(0.0007) 

0.0114*** 

(0.0020) 

0.00003 

(0.0017) 

-0.0044*** 

(0.0009) 

0.0115*** 

(0.0020) 

Urban*Distance to nearest city 0.0103** 

(0.0045) 

-0.0077* 

(0.0040) 

0.0179*** 

(0.0063) 

0.0020 

(0.0057) 

-0.0079** 

(0.0040) 

Number of farmers’ mkts -0.0090*** 

(0.0028) 

0.0240*** 

(0.0023) 

0.0131*** 

(0.0044) 

-0.0166*** 

(0.0050) 

0.0241*** 

(0.0023) 

𝜙 
 

1.1810*** 

(0.1043) 
  

1.1882*** 

(0.1027) 

Constant 11.4277*** 

(0.2780) 

-2.2046*** 

(0.2585) 

 

8.5406*** 

(0.5744) 

11.2215*** 

(0.3877) 

-2.2318*** 

(0.2595) 
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𝜌 0.1519* 

(0.0775) 
 

𝜌1  
0.3444*** 

(0.0971) 

𝜌0  
0.2395 

(0.2114) 

N 
1767 

Log pseudolikelihood 
-4151.46 -4062.74 
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Figure 1.1. Bivariate 𝑲𝒅 values in year 20122 

 

 

 

Figure 1.2. Example of locational effects 

 
2 The solid black curve is 𝐾𝑑. The dotted red curve is the average simulated value and the shaded area is the 

confidence envelope under the null hypothesis of random location. The risk level is 5%, and 1000 simulations have 

been run to build the global confidence envelope. Distances are in meters. 
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Figure 1.3. Expected farm sales per acre by sales strategy and farm acres 
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CHAPTER TWO 

Economic consequences of shocks due to climate change and  

pest and disease outbreak: Comparison of organic  

and conventional apple industry 

 

2.1  Introduction 

Global temperature is rising as a result of increased atmospheric concentrations of 

greenhouse gases. As the consequence of current and projected climate change, pests and 

diseases are expected to occur even more frequently and possibly to extend to previously non-

affected regions. The temperature changes may strongly affect the insects’ physiology and 

spatial distribution, especially in areas where temperatures tend to be below species optima for 

most of the year (Harrington et al. 2001; Yamamura et al. 2006). Many species have already 

responded to the warming conditions that occurred over the last century (Crozier and Dwyer 

2006). What is more, the increased frequency of climate extremes can also promote outbreaks of 

the pest (Gan 2004). As many pests are more prevalent in warmer climates, rising global 

temperatures may exacerbate the risk they pose to food production. According to the U.S. Global 

Change Research Program, the negative impacts on agriculture are projected to increase, due to 

the incidence of weeds, diseases, and insect pests, affecting productivity of most crops and 

livestock. 

The apple industry is a temperate tree fruit crop of economic importance in the United 

States. According to the U.S. Department of Agriculture (hereafter USDA), the value of apple 

production in the U.S. was 2.7 billion dollars in 2019, which was the second largest among all 

fruit and tree nuts production. The value of fresh apple exports was 955.8 million dollars in 2019 
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which accounts for 21 percent of the total value of fresh fruits exports. Since apples are one of 

the most valuable fruit crops, it may be vulnerable to pest or disease outbreaks. For example, the 

2000 fireblight outbreak in Michigan state resulted in the removal of about 400,000 apple trees 

and a direct cost of $42 million (Longstroth, 2001). The rising threat of pest or disease outbreaks 

accompanying climate change impose potentially large costs on apple producers and other 

economic agents, but the impacts of shock are likely to be different between organic and 

conventional apple markets since the agents may respond differently to even the same shock in 

each market. 

In order to reduce crop losses, U.S. farmers employ a range of pest management 

strategies. Despite improved control materials for crop protection, however, pest and disease 

continue to be the key problem especially in organic orchards. Organic growers may adopt pest 

and disease management practices that are significantly more expensive and labor intensive than 

conventional methods. Galinato and Gallardo (2015) found that total variable costs were 

different for both conventional and organic Gala apple production systems in Washington state 

as of 2014. In fact, the costs of chemical and fertilizer for organic were about 25% higher than 

those of conventional growers. Therefore, an outbreak of pest or disease may impose much 

larger costs on organic producers through pest control programs, and thus it could cause either 

some transition from organic to conventional system or an increase in organic price premium. 

In addition to different aspects in production between organic and conventional apple 

industries, consumers also have different preferences for organic and conventional fruits. 

Increased consumer demand for healthier fruit and more environmentally sustainable farming 

has driven the development of pest management systems that use organic and integrated pest 

management (IPM) programs (Peck et al., 2005). In previous literature, consumers who buy 
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organic food tend to be more concerned about human health (Demeritt, 2002; Ekelund, 1990), 

food safety (Goldman and Clancy, 1991; Jolly et al., 1989) and/or environmental stewardship 

(Grunert and Juhl, 1995; Davies et al, 1995). While U.S. acreage of apples has declined and the 

total production under both conventional and organic production methods, has stayed at a similar 

level in recent years (USDA-NASS, 1980-2019); consumer demand has spurred a fast-growing 

organic apple sector. The value of certified organic apples sales accounts for 17.3 percent of total 

apple sales in 2019, up from 6.2 percent in 2008 (USDA-NASS, 2008; 2019). This may be partly 

because consumers have become more conscious of food and pesticide safety issues related to 

pest control methods (Grunert, 2005; Simon et al, 2011; Food standard, 2011). Consumers 

concerned about food and pesticide safety might be more likely to purchase organic fruits when 

pest or disease outbreaks are expected to increase the chemical use in conventional apple 

industry. 

The objective of this study is to measure the economic impacts of pest and disease shocks 

on heterogeneous agents, such as producers, intermediaries, and consumers, in the U.S. apple 

industry which is separated into organic and conventional production methods. We use an 

equilibrium displacement model that enables to measure the impacts of the above mentioned 

shocks in one market (e.g. organic market) on the other market (e.g. conventional market) 

through substitution effects. We complement the analysis by applying simulations to better 

understand these relationships. 

Abundant research on the economics of pests and diseases have been conducted. 

However, most studies have focused on pest management and control systems. A number of 

studies analyze the economic impact of pest management strategies on productivity, yield, and 

product quality (Dasgupta et al., 2007; Hurd, 1994; Wetzstein et al., 1985; Bavcock et al., 1992). 
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Harper and Zilberman (1989) and Grogan and Goodhue (2012) pointed out that pesticide use 

could produce externalities that contribute to pest pressure and beneficial insects, respectively. 

As concerns about the sustainability of agriculture have prompted introduction of integrated pest 

management (IPM) which is intended to reduce ecological and health damage from chemical 

pesticides by using natural parasites and predators to control pest populations, the efforts have 

been devoted to find out the attributes that influence the adoption of IPM system (White and 

Wetzstein, 1995; Bechmann and Wesseler, 2003; Ricker-Gilbert et al., 2008; Greene et al., 1985; 

Cowan and Gunby, 1996; McNamara et al., 1991). On the other hand, Mbah et al. (2010) 

developed a real option framework to analyze the economically optimal timing when crop 

disease control measures should be taken in the presence of risk and uncertainty. 

While the attention has been given to pest management and IPM literatures in economics, 

a number of studies on the effect of pest or disease outbreak have been conducted on the 

entomology and epidemiology areas. Little research attention has been paid to the economic 

impacts of pest outbreaks on crop production. Alam and Rolfe (2006) analyzed the government 

response to the disease outbreaks and estimated the loss of producers’ revenue with the 

application of cost-benefit analysis. Chambers et al. (2010) measured revenue loss due to pest 

increases by incorporating supply-response adjustment of rational producers into the analysis. 

Mitchell et al. (2004) developed a composed-error model to estimate the variance of soybean 

yield loss from pest damage. Hong et al. (2019) estimated the loss of producers’ profits in apple 

maggot quarantine areas which is caused by phytosanitary regulation. While they analyzed the 

economic effects on production of pest and disease, they did not show how heterogeneous agents 

in their industries simultaneously respond to shocks. This paper will employ a U.S. apple 

industry model to estimate the impacts of shock on each economic agent. 
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Fruit trees different from non-perennial crops can take up to 4 to 5 years to come into full 

bearing and require extensive horticultural management during the establishing and full 

production years (e.g., training, pruning, fruit thinning, spraying). Therefore, the external shocks 

such as outbreak of pest or disease could impose larger costs on apple industry than other crops. 

These features require a special model of fruit tree to estimate the impacts of shock on fruit 

markets. Jiang et al. (2017) constructed the model of pear industry at the national level, and 

explicitly included the tree fruit packing and processing intermediaries. Using this model, they 

measured economic impacts of disease outbreak and trade shock for heterogeneous agents along 

the vertical tree fruit supply chain. Although Alston et al. (2013) did not explicitly consider pest 

shock, they developed a model of California wine grapes to estimate the economic consequences 

of the termination of current disease-related policy and continuing the program. 

The apple industry is the second largest tree fruit crop in the U.S. According to the 

USDA, the 2019 apple crop totaled just over 11 billion pounds, and the value of sales was 2.7 

billion dollars. However, the number of studies on the influence of shock on apple industry is 

relatively limited. Willett (1993) and Roosen (1999) constructed econometric models to estimate 

the expected industry responses to changes in exports and domestic conditions and pesticide 

cancellations, respectively. 

The apple industry is not as highly concentrated in a geographic region as other tree fruit. 

In the U.S., 32 states raise apples commercially. Thus, apple production is likely to be affected 

by a number of pests and diseases. Some papers have focused on the impacts of specific pest 

shock. Galinato et al. (2018) and Zhao et al. (2008) evaluated the impacts of apple maggot 

(Rhagoletis pomonella) expansion in Washington state. Zhao et al. (2008) estimated the losses in 

apple industry from increased pest controlling costs due to Apple maggot spread and also 
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assessed benefits from mitigating the speed of spread. Galinato et al. (2018) estimated the costs 

of Apple maggot spread to the Washington state economy. They found that the impacts of Apple 

maggot spread on costs and outputs depends the pressure of the other pest, Codling moth. 

Although their model allowed to analyze the economic consequences of pest shock in a specific 

region, they could not explicitly address the interaction of production and demand between 

states. Tozer and Marsh (2018) developed regional model of apple industry to assess the 

economic impacts of pest and disease shocks that could occur within a specific region and 

studied the possibility of heterogeneous impacts of shock on regional production and welfare. 

They also allowed the intermediaries to be separated into two sectors (fresh and processed fruit 

markets) in order to capture how a shock affects the separate parts of the supply chain. However, 

Tozer and Marsh (2018) employed whole apple industry model and did not consider the potential 

for different responses to pest and disease shock between organic and conventional apple 

industries. As the pests and diseases are expected to occur even more frequently and possibly to 

extend to previously non-affected regions due to climate change, it would be more important to 

precisely estimate the impact of pest and disease outbreak on fruit industry. To do so, it is needed 

to analyze organic and conventional apple markets separately.  

The organic apple industry continues to grow at a rapid pace. The 2019 Organic Survey 

ranked apples as the top organic produce commodity, with sales of 475 million dollars, which is 

increased by 45 percent from 2016 (USDA-NASS, 2016; 2019). However, most studies have 

developed the models of whole apple industry (Willett, 1993; Roosen, 1999; Tozer and Marsh, 

2018; Zhao et al. 2008). An exception is Galinato et al. (2018). Although Galinato et al. (2018) is 

the only paper that studied different impacts of pest expansion between organic and conventional 

apple industry, they only estimated the impacts on Washington state economy. The contribution 
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of this research is to model the U.S. apple industry by separating into organic and conventional 

apple sectors and measure the heterogeneous impacts of pest and disease shocks on two different 

apple markets by considering the interaction between two markets.  

This paper is organized as follows: The next section starts with the discussion the 

dynamic model of the U.S apple industry separated into two types of markets, i.e. organic and 

conventional apple markets. Section 3 explains the Equilibrium displacement model for 

empirical analysis. Section 4 describes the data and scenarios used in the simulation. In Section 

5, the results of simulation are presented. Finally, this paper concludes with Section 6 in which 

the main findings and policy implications are suggested. 

 

2.2 Theoretical model 

To estimate the economic impacts of pest and disease shocks more specifically, we 

develop a dynamic model of the U.S apple industry, extending Tozer and Marsh (2018) by 

separating apple industry into two types of production methods and markets, i.e. organic and 

conventional. In our model, the shock on the organic production method has effects on the 

conventional apple production method, and vice versa. In addition, considering the importance of 

export markets for the U.S. apple industry, our model includes international trade to better depict 

the interactions between domestic and international markets. For simplification purposes, this 

model only focuses on the fresh market apples. This is based on the assumption that most 

growers in the United States invest in apple production considering the fresh market, and the 

processing market is a residual market.  

In our conceptual model, there are three levels of the supply chain: farm level, wholesale 

level, and retail level. At the farm level, total supply is determined by bearing acreage multiplied 
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by yield per acre. We assume the bearing acreage as fixed in the short run and the maturing time 

for tree is needed. However, in the long run, the bearing acreage can change with the investment 

that is influenced by the prices that producers received and other market conditions. Apple 

products are distributed to the domestic and international markets through a market-clearing 

condition at the wholesale level. Also, imports are linked through market-clearing price 

conditions at the wholesale level. The quantities imported and exported apples are assumed to be 

determined through wholesale-level prices. At the retail level, the demand for apples is based on 

the retail prices of apples, retail prices of substitute product (e.g., organic apple prices for 

conventional apples), and household income. Finally, from the market clearing condition, 

domestic supply plus imports equals domestic consumption plus exports, and the market clearing 

prices at each level are identified through marketing margins. 

The market clearing optimization model is constructed by employing the equilibrium 

displacement model. 

 

2.2.1 Bearing area 

The productive population of fruit tree evolves according to its biological features and to 

grower’s decisions to adjust population stocks. Since trees requires on average 5 to 6 years to 

reach its full productive stage, there is a lag between investment decision and the time to 

efficiently bear fruit. The bearing area for each age group j evolves according to the following 

equation:  

𝐴𝑡
𝑗,𝑑
= 𝐴𝑡−1

𝑗−1,𝑑
− 𝑅𝑀𝑡

𝑗,𝑑
+ 𝐴𝑡−1

𝑗𝜏−1,𝑑  , 𝑑 = {𝑜, 𝑐} (1) 

where d=o represents organic and c represents conventional production methods. The area of 

apples 𝐴𝑡
𝑗,𝑑

 is a function of the area of apple in the previous year 𝐴𝑡−1
𝑗−1,𝑑

, the area of trees 
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removed in the current year 𝑅𝑀𝑡
𝑗,𝑑

, and area of trees planted 𝜏 years ago that have now reached 

a productive age 𝐴𝑡−1
𝑗𝜏−1,𝑑.  

Total bearing area is the sum of the areas with trees that have reached full maturity (𝑗 ≥

𝑗𝜏) up to age J when trees are removed due to age: 

𝐴𝑡
𝑑 = ∑ 𝐴𝑡

𝑗,𝑑

𝐽

𝑗=𝑗𝜏

 (2) 

And, total apple area at period t is described by 

𝑇𝐴𝑡
𝑑 = ∑ 𝐴𝑡

𝑗,𝑑

𝑗<𝑗𝜏

𝑗=1

+ 𝐴𝑡
𝑑 . (3) 

The total apple area and bearing area can be represented by the change in tree area each 

year. The change in total apple area is: 

∆𝑇𝐴𝑡
𝑑 = 𝑇𝐴𝑡

𝑑 − 𝑇𝐴𝑡−1
𝑑  (4) 

which is the net difference between new plantings 𝑁𝑃𝑡
𝑑 and removals 𝑇𝑅𝑀𝑡

𝑑, or  

∆𝑇𝐴𝑡
𝑑 = 𝑁𝑃𝑡

𝑑 − 𝑇𝑅𝑀𝑡
𝑑 (5) 

where 𝑇𝑅𝑀𝑡
𝑑 = ∑ 𝑅𝑀𝑡

𝑗,𝑑𝐽−1
𝑗=1 + 𝑅𝑀𝑡

𝐽,𝑑
. 

Also, the change in bearing area is defined by 

∆𝐴𝑡
𝑑 = 𝐴𝑡−1

𝑗𝜏−1,𝑑 − ∑ 𝑅𝑀𝑡
𝑗,𝑑

𝐽

𝑗=𝑗𝜏

 (6) 

or, alternatively, 

∆𝐴𝑡
𝑑 = 𝑁𝑃𝑡−𝑗𝜏

𝑑 − ∑ 𝑅𝑀𝑡
𝑗,𝑑

𝐽

𝑗=𝑗𝜏

. (7) 
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For the bearing acreage, we will use the change in bearing area of organic and 

conventional apples since we have limited data and we cannot get the detailed data (e.g. number 

of trees for each age group, removal, and plating). 

 

2.2.2 Apple production and farm-level supply 

The total production of apple in each year is given by 

𝑇𝑃𝑡
𝑑 = 𝑇𝐴𝑡

𝑑 ∗ 𝐴𝑌𝑡−1
𝑑 ∗ (1 + 𝑔𝑑), 𝑑 = {𝑜, 𝑐} (8) 

where 𝐴𝑌𝑡−1
𝑑  is the yield per acre in the previous year, and 𝑔𝑑 is the annual yield growth rate 

for each apple product. It is assumed that yield per acre will grow over time since the production 

efficiency shows the increasing trend due to the replacement of old plantings with old 

technologies by new orchard systems with advanced technologies and therefore increasing the 

yield per acre.3 Due to the difficulties of employing data of trees or planting and removal acres, 

the annual growth rate of yield per acre would be most appropriate for estimating the dynamics 

of apple production decisions.  

Farm-level supply (𝐹𝐷𝑡
𝑑) for fresh apple is given by 

𝐹𝐷𝑡
𝑑 = 𝑓𝑑 ∗ 𝑇𝑃𝑡

𝑑 (9) 

where 𝑓𝑑 is the proportion of production entered into the fresh market, which is assumed as 

0.86 and 0.69 for organic and conventional industries, respectively, following by the recent 

trends of utilized production from 2011 to 2016 (USDA-NASS, 2011-2016). 

Finally, the total supply of apple in the U.S. is given by 

 
3 In the U.S., the yield per acre of apples (calculated by total production divided by total bearing acres) increased by 

1% annually on the average from 1980 to 2019 (USDA-NASS, 1980-2019). 
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𝑇𝑆𝐴𝑡
𝑑 = 𝐹𝐷𝑡

𝑑 + 𝐹𝑀𝑡
𝑑 ,  (10) 

where 𝐹𝑀𝑡
𝑑 = 𝑠𝑡

𝐼𝑀,𝑑(𝑝𝑡
𝑊,𝑑 − 𝑐𝑡

𝑑) is the quantity of imported apple, 𝑠𝑡
𝐼𝑀 is the imported apple 

function of prices and costs, 𝑝𝑡
𝑊,𝑑

 is the domestic price at the wholesale level, and 𝑐𝑡
𝑑 is the 

trade costs.  

 

2.2.3 Apple demand at the retail level 

Individual demand for apple is based on the prices of organic and conventional apples, 

prices of substitutes, income and other potential demand shifters. The demand function is 

therefore: 

𝑞𝑡
𝑑 = 𝑓𝑡

𝑑(𝑝𝑡
𝑅,𝑜 , 𝑝𝑡

𝑅,𝑐, 𝐼𝑡), d = {o, c} , (11) 

where 𝑝𝑡
𝑅,𝑜

 and 𝑝𝑡
𝑅,𝑐

 are the retail prices of organic fresh apple and conventional fresh apple, 

respectively, and 𝐼𝑡 is the income.   

We assume a homothetic utility function for consumers, therefore we aggregate 

individual demand function to estimate total demand for apple: 

 𝑄𝐷𝑡
𝑑 =∑𝑞𝑡,ℎ

𝑑

𝐻

ℎ=1

= 𝑞𝑡
𝑑 ∗ 𝐻𝑡 (12) 

where H is the population, and h represents individual consumers. 

Finally, total demand for apple in the U.S. is represented by 

𝑇𝐷𝐴𝑡
𝑑 = 𝑄𝐷𝑡

𝑑 + 𝐹𝑋𝑡
𝑑  (13) 

where 𝐹𝑋𝑡
𝑑 = 𝑠𝑡

𝐸𝑋,𝑑(𝑝𝑡
𝑊,𝑑 + 𝑒𝑡

𝑑) is the quantity demanded by the international market, 𝑠𝑡
𝐸𝑀 is 

the exported apple function of prices and tarriff, 𝑝𝑡
𝑊,𝑑

 is the price at the wholesale level, and 𝑡𝑡
𝑑  
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is the tariff, or the tariff equivalent of trade barriers. The quantities imported and exported apples 

are assumed to be determined through wholesale-level prices. 

 

2.2.4 Intermediaries and marketing margins 

In our analysis, there are two prices in the market, the farmgate price (𝑝𝑡
𝐹,𝑑

) and retail 

price (𝑝𝑡
𝑅,𝑑

). The farm to retail marketing margin is made up of two components, the farm to 

wholesale margin (MMF), and the wholesale to retail margin (MMR). Thus, the wholesale price 

is described by,  

𝑝𝑡
𝑊,𝑑 = 𝑝𝑡

𝐹,𝑑 +𝑀𝑀𝐹𝑡
𝑑 (14) 

where 𝑀𝑀𝐹𝑡
𝑑 = 𝛾𝑖

𝑀𝑀𝐹.𝑑 ∗ 𝑝𝑡
𝑊,𝑑

, and 𝛾𝑖
𝑀𝑀𝐹.𝑑 is the proportion of wholesale prices that is 

distributed to farm to wholesale margin. 

The retail price is: 

𝑝𝑡
𝑅,𝑑 = 𝑝𝑡

𝑊,𝑑 +𝑀𝑀𝑅𝑡
𝑑 (15) 

where 𝑀𝑀𝑅𝑡
𝑑 = 𝛾𝑖

𝑀𝑀𝑅,𝑑 ∗ 𝑝𝑡
𝑅,𝑑

, and 𝛾𝑖
𝑀𝑀𝑅.𝑑 is the proportion of retail prices that is distributed 

to wholesale to retail margin. 

 

2.2.5 Market clearing 

Since the import and export decisions are made at the wholesale level, we assumed that 

the apple market clears at the wholesale level. Therefore, we have market clearing condition as: 

𝑇𝐷𝐴𝑡
𝑑 = 𝑇𝑆𝐴𝑡

𝑑 , (16) 

or 

𝑄𝐷𝑡
𝑑 + 𝐹𝑋𝑡

𝑑 = 𝐹𝐷𝑡
𝑑 + 𝐹𝑀𝑡

𝑑 (17) 
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2.3 Equilibrium displacement model (EDM) 

The farm-level supply for fresh apple is given by 𝐹𝐷𝑡
𝑑 = 𝑓𝑑 ∗ 𝑇𝑃𝑡

𝑑. The total logarithmic 

differential equation is as follow: 

𝐸𝐹𝐷𝑡
𝑑 = 𝐸𝑇𝑃𝑡

𝑑 (18) 

where E represents total logarithmic differential of each equation. 

The total demand function for domestically-grown apple is given by  𝑄𝐷𝑡
𝑑 = 𝑞𝑡

𝑑 ∗ 𝐻𝑡, 

where 𝑞𝑡
𝑑 = 𝑓𝑡

𝑑(𝑝𝑡
𝑅,𝑜 , 𝑝𝑡

𝑅,𝑐, 𝐼𝑡). Therefore, logarithmically differentiating the demand results in 

the following: 

𝐸𝑄𝐷𝑡
𝑑 = 𝐸𝐻𝑡 + 휂

𝑜,𝑑 ∗ 𝐸𝑝𝑡
𝑅,𝑜 + 휂𝑐,𝑑 ∗ 𝐸𝑝𝑡

𝑅,𝑐 + 𝜈𝑑 ∗ 𝐸𝐼𝑡 (19) 

where 휂𝑜,𝑑 =
𝜕𝑓𝑡

𝑑

𝜕𝑝𝑡
𝑅,𝑜

𝑝𝑡
𝑅,𝑜

𝑞𝑡
𝑑  and 휂𝑐,𝑑 =

𝜕𝑓𝑡
𝑑

𝜕𝑝𝑡
𝑅,𝑐

𝑝𝑡
𝑅,𝑥

𝑞𝑡
𝑑  represent the own-price elasticities and the cross-

price elasticities, and 𝜈𝑑 =
𝜕𝑓𝑡

𝑑

𝜕𝐼𝑡

𝐼𝑡

𝑞𝑡
𝑑 is the income elasticity.  

To depict international trade, we denoted the function of imported apples and that of 

exported apples by 𝐹𝑀𝑡
𝑑 = 𝑠𝑡

𝐼𝑀,𝑑(𝑝𝑡
𝑊,𝑑 − 𝑐𝑡

𝑑) and 𝐹𝑋𝑡
𝑑 = 𝑠𝑡

𝐸𝑋,𝑑(𝑝𝑡
𝑊,𝑑 + 𝑒𝑡

𝑑), respectively. 

Taking total logarithmic differentiation gives the following: 

E𝐹𝑀𝑡
𝑑 = 𝜇𝐼𝑀,𝑑(𝑝𝑡

𝑊,𝑑 − 𝑐𝑡
𝑑)−1(𝑝𝑡

𝑊,𝑑𝐸𝑝𝑡
𝑊,𝑑 − 𝑑𝑐𝑡

𝑑) (20) 

and 

E𝐹𝑋𝑡
𝑑 = 𝜇𝐸𝑋,𝑑(𝑝𝑡

𝑊,𝑑 + 𝑒𝑡
𝑑)−1(𝑝𝑡

𝑊,𝑑𝐸𝑝𝑡
𝑊,𝑑 + 𝑑𝑒𝑡

𝑑) (21) 

where 𝜇𝐼𝑀,𝑑 =
𝜕𝑠𝑡

𝐼𝑀,𝑑

𝜕(𝑝𝑡
𝑊,𝑑−𝑐𝑡

𝑑)

𝑝𝑡
𝑊,𝑑

𝐹𝑀𝑡
𝑑  and 𝜇𝐸𝑋,𝑑 =

𝜕𝑠𝑡
𝐸𝑋,𝑑

𝜕(𝑝𝑡
𝑊,𝑑+𝑒𝑡

𝑑)

𝑝𝑡
𝑊,𝑑

𝐹𝑋𝑡
𝑑  are the price elasticities of 

imported apple and exported apple with respect to wholesale price, respectively. 

The apple supply from domestic farm is given by 𝑄𝑆𝑡
𝑑 = 𝐹𝐷𝑡

𝑑 + 𝐹𝑀𝑡
𝑑 − 𝐹𝑋𝑡

𝑑. The total 

logarithmic differential equation is as follow: 



 

57 

E𝑄𝑆𝑡
𝑑 =

𝐹𝐷𝑡
𝑑

𝑄𝑆𝑡
𝑑 𝐸𝐹𝐷𝑡

𝑑 +
𝐹𝑀𝑡

𝑑

𝑄𝑆𝑡
𝑑 𝐸𝐹𝑀𝑡

𝑑 −
𝐹𝑋𝑡

𝑑

𝑄𝑆𝑡
𝑑 𝐸𝐹𝑋𝑡

𝑑 . (22) 

The relationship between farmgate and wholesale price and between wholesale and retail 

price is represented by (1 − 𝛾𝑀𝑀𝐹.𝑑)𝑝𝑡
𝑊,𝑑 = 𝑝𝑡

𝐹,𝑑
 and (1 − 𝛾𝑀𝑀𝑅,𝑑)𝑝𝑡

𝑅,𝑑 = 𝑝𝑡
𝑊,𝑑

, respectively. 

Taking total logarithmic differentiation of price equations gives the following: 

(1 − 𝛾𝑀𝑀𝐹.𝑑)𝐸𝑝𝑡
𝑊,𝑑 =

𝑝𝑡
𝐹,𝑑

𝑝𝑡
𝑊,𝑑 𝐸𝑝𝑡

𝐹,𝑑 + 𝛾𝑀𝑀𝐹.𝑑 ∗ 𝐸𝛾𝑀𝑀𝐹.𝑑 (23) 

and 

(1 − 𝛾𝑀𝑀𝑅,𝑑)𝐸𝑝𝑡
𝑅,𝑑 =

𝑝𝑡
𝑊,𝑑

𝑝𝑡
𝑅,𝑑 𝐸𝑝𝑡

𝑊,𝑑 + 𝛾𝑀𝑀𝑅,𝑑 ∗ 𝐸𝛾𝑀𝑀𝑅,𝑑 . (24) 

Since we have market clearing condition as 𝑇𝐷𝐴𝑡
𝑑 = 𝑇𝑆𝐴𝑡

𝑑, or 𝑄𝐷𝑡
𝑑 + 𝐹𝑋𝑡

𝑑 = 𝐹𝐷𝑡
𝑑 +

𝐹𝑀𝑡
𝑑, the total logarithmic differentiation equation is then: 

𝐸𝐻𝑡 + 휂
𝑜,𝑑 ∗ 𝐸𝑝𝑡

𝑅,𝑜 + 휂𝑐,𝑑 ∗ 𝐸𝑝𝑡
𝑅,𝑐 + 𝜈𝑖

𝑑 ∗ 𝐸𝐼𝑡

= 𝐸𝐹𝐷𝑖,𝑡
𝑑 +

𝐹𝑀𝑡
𝑑

𝑄𝑆𝑡
𝑑 [𝜇

𝐼𝑀,𝑑(𝑝𝑡
𝑊,𝑑 − 𝑐𝑡

𝑑)−1(𝑝𝑡
𝑊,𝑑𝐸𝑝𝑡

𝑊,𝑑𝑐𝑡
𝑑 − 𝑑𝑐𝑡

𝑑)]

−
𝐹𝑋𝑡

𝑑

𝑄𝑆𝑡
𝑑 [𝜇

𝐸𝑋,𝑑(𝑝𝑡
𝑊,𝑑 + 𝑒𝑡

𝑑)−1(𝑝𝑡
𝑊,𝑑𝐸𝑝𝑡

𝑊,𝑑 + 𝑑𝑒𝑡
𝑑)]. 

(25) 

Using the market clearing condition and price relationship equations, we can solve 

market clearing prices at different level of markets (𝑝𝑡
𝑊,𝑑, 𝑝𝑡

𝑅,𝑑, 𝑝𝑡
𝐹,𝑑

), quantities of supply and 

demand inside of country (𝐹𝐷𝑡
𝑑 , 𝑄𝐷𝑡

𝑑), and quantities of imports and exports (𝐹𝑀𝑡
𝑑, 𝐹𝑋𝑡

𝑑). 
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2.4 Data 

A dynamic model of apple market is parameterized using data from the U.S. apple 

industry. The fresh apple industry is separated into two different markets, organic fresh and 

conventional fresh markets.  

We employ utilized fresh apple production from Noncitrus Fruits and Nuts and Organic 

Survey (USDA-NASS, 2016) as farm-level supply of apples. Imports and exports of apples are 

derived from the USDA-ERS. Farm-level prices of apples are also from the value of sales per 

pound from USDA Noncitrus Fruits and Nuts and Organic Survey (USDA-NASS, 2016). Retail 

prices of apples are from USDA-AMS (Agricultural Marketing Service, 2016), and we calculate 

the wholesale prices based on the information from Tozer and Marsh (2018). They estimated the 

average wholesale to retail margin is about six times of the farm to wholesale margins, 

respectively.  

Since available data to forecast bearing acres of organic industry in the U.S. is limited, 

we employ Washington organic apple cultivated area in acres and F.O.B. price in $/40-lb box 

data by apple varieties from WSU Tree Fruit Research and Extension from 2004 to 2018 

(Granatstein and Kirby, 2019). Washington is the largest apple producer and produces around 

97% of the organic fresh product in the country in 2019, according to USDA-NASS (2019). For 

the conventional industry, we use entire apple industry (including both organic and conventional 

industries) data as proxy for conventional industry since we have limited data for conventional 

industry, and the bearing acres of conventional apples account for 95% of total apple acres in 

2015 (USDA-NASS, 2015). To estimate the function of conventional bearing acres, we use 

bearing acres and grower price data from 1980 to 2015 from USDA Noncitrus Fruits and Nuts. 
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The model is then empirically calibrated as an equilibrium displacement model using the 

parameters in Table 1. Few studies have estimated demand elasticities for organic and 

conventional apples by separate. We used the estimates of Lin et al. (2009) as the retail price 

elasticities of fresh apples in demand model. Income elasticities for fresh apples are also from the 

estimates of expenditure elasticities in Lin et al. (2009).  

Import and export elasticities are also needed to complete the model. Roosen (1999) 

reports import elasticities for fresh apples as -0.609. Seale et al. (1992) estimated demand 

elasticities for U.S. apples of between -0.90 to -1.62 in Canada, U.K., Singapore, and Hong 

Kong. Richards et al. (1997) estimated elasticities for fresh apples of -1. Given the rage of 

estimated results, Tozer and Marsh (2018) assumed the import and export elasticities as -1 for 

the U.S. fresh apples, and previous studies estimated that the elasticities for organic apples are 

larger than those of conventional apples (Lin et al. 2009). Following these studies, we set the 

export (import) elasticities at -1.3 (1.3) and -1 (1) for organic and conventional apples, 

respectively. 

 

2.5 Scenarios 

Given the number of potential pests and diseases outbreak, we examine a limited number 

of scenarios that represent pest or disease outbreak due to climate change. The baseline scenario 

represents economic outcomes given the environment in which consumer population annually 

increases by 0.09% and annual yield growth rate is 1% due to farms’ strategies of planting and 

removal. This paper then consider several exogenous shocks to the model.  

The second scenario examines a negative supply shock where 5% reduction in organic 

bearing area and 2% reduction in conventional apple area occur. The justification for this 
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scenario relies on the fire blight episode in southwest Michigan in 2000, when fire blight ripped 

through a large portion of the region’s apple orchards and caused the removal of about 400,000 

apple trees covering approximately 2,000 acres which was 4% of apple bearing area in Michigan. 

We assume that damage on organic apple area is larger than those of conventional apples since 

antibiotics have been removed from the national list of allowed materials by the National 

Organic Standards Board in the U.S., and their use have been prohibited in organic orchards after 

October 2014 (Granatstein, 2019). 

The third scenario represents a reduction in yields of apples, 10% reductions in organic 

and 5% reduction in conventional apple yields. Codling moth is nearly worldwide distributed 

pest and has very high potential for adaptation to season length and temperature (Stoeckli et al., 

2012). Stoeckli et al. (2012) showed that under future conditions of increased temperatures 

(2045-2074), the present risk of below 20% for a pronounced second generation will increase to 

70-100%, and the risk of an additional third generation will increase from presently 0-2% to 

100%. If warming patterns are projected to cause them to live longer, it may be necessary for 

additional spraying of the fruit. However, recent consumers pay more attention on the issue of 

pesticides, and producers have limited options available to manage pest and disease (Jones et al., 

2010; Simon et al., 2011), which may lead a reduction in apple yields. Under Scenario 3, a 

reduction in yields of organic apples is larger than those of conventional apples. This could 

represent the results of Simon et al. (2011) which showed that the fruit damage from pests and 

diseases is much more severe in organic farming system than conventional system. The fruit 

injuries due to pests and diseases are between 0 to 2.1%, and 0.1 to 23.7% in the conventional 

and organic system, respectively.  
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Scenario 4 would represent the phenomenon where an outcome of pests in organic apples 

is that producers will have to make an action, like spraying a chemical, which leads producers to 

no longer sell the crop as organic. This could produce some indirect effect on the supply of 

conventional that comes from organic apples being sold as conventional. Under the scenario 4, 

organic production would decrease by 5% since they cannot follow the organic standard due to 

pest outbreak, and therefore which cause that conventional production increases as much as 

organic production decreases.  

Scenario 5 investigates the response of apple importing countries with pest or disease 

outbreaks. The spread of disease or pest is also likely to lead apple importing countries to 

increase their concerns on the introduction and distribution of new species in their countries. For 

example, China, British Columbia, and Canada require all apples shipped from the U.S. to be 

certified as apple-maggot-free, and Washington has implemented a quarantine program4 to 

prevent apple maggot dissemination (Hong et al. 2019). Following Hong et al. (2019), apples 

from quarantine areas must be stored at 1°C for 40 days with the cost burden from cold treatment 

at $11 per 40-lbs box. Under the scenario 5, all producers would be required the implement of 

cold treatment to export fresh products and face the cost ($0.275 per pound) as a trade barrier.  

The exogenous shocks to the system occur in 2016 under scenario 2-5, and all models 

were run over 10 years. 

 

 
4 Apples from quarantine areas must be stored at 1°C for 40 days with the cost burden from cold treatment at $11 

per 40-lbs box. 
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2.6 Results 

2.6.1 Bearing acres model 

From the data listed above, we estimate the bearing acres model for organic and 

conventional industries as, respectively: 

            ∆𝐵𝐴𝑡
𝑜 = −42.05∗∗∗t+0.64∗∗∗𝐵𝐴𝑡−1

𝑜 − 0.84∗∗∗𝐵𝐴𝑡−2
𝑜 + 0.32∗∗∗𝐵𝐴𝑡−5

𝑜  

(12.70)   (0.10)         (0.13)         (0.09) 

+1164.31∗∗∗𝑝𝑟𝑒𝑚𝑖𝑢𝑚𝑡−2 + 459.12
∗∗∗𝑝 𝑡−2

𝐹,𝑜 − 964.06∗∗∗𝑝𝑡−3
𝐹,𝑜 + 711.53∗∗∗𝑝𝑡−5

𝐹,𝑜
 

(323.70)                (167.56)        (229.56)       (225.03) 

 

∆%𝐵𝐴𝑡
𝑐 = 0.607∗ − 0.0007∗ 𝑡 − 0.046 ∗𝑙𝑛𝐵𝐴𝑡−1

𝑐 + 0.769∗∗∗∆%𝐵𝐴𝑡−1
𝑐  

(0.35)   (0.0004)   (0.03)           (0.13) 

+0.037∗∗∗∆%𝑝𝑡−1
𝐹,𝑐 + 0.023∗∗∆%𝑝 𝑡−2

𝐹,𝑐
 

(0.01)           (0.01) 

where Adj.𝑅2’s are 0.689 and 0.706, respectively, and ***, **, and * indicate significance with 

99%, 95%, and 90% confidence.  𝑝𝑟𝑒𝑚𝑖𝑢𝑚𝑡=∑ (𝑝𝑡−𝑗
𝐹,𝑜 − 𝑝𝑡−𝑗

𝐹,𝑐 )2
𝑗=0 3⁄  represents average organic 

price premium over three years, and 𝑝𝑡
𝐹,𝑑

 represents the farmgate prices of apples where d={o, 

c}. 

Farms are required three years to transition from conventional to certified organic 

production in the U.S while there is no regulation for conventional industry. Therefore, it is 

reasonable that the amount of organic acres is influenced by earlier periods of prices and bearing 

acres. In the organic industry, the change in acres is affected by prices at lags of two, three, and 

five years, and the acres at a lag of one, two, and five years. Whereas, in the conventional 
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industry, the price changes at lags of one and two years and acres change at a lag of one year 

have impacts on the change in bearing acres. 

 

2.6.2 Simulation results 

In the baseline scenario, the bearing area results provide evidence that the area of organic 

apples will grow while the area of conventional apples will continue to decrease. Annual growth 

rates of bearing acreage of organic and conventional apple industry are 3.4% and -1.7% on the 

average, respectively (see Table 2). The organic apples production distributed into fresh market 

increases by approximately 82% over the period of study while the conventional fresh apple 

produce decreases by about 10%. However, the share for conventional apples will be still larger 

in that the bearing acres and production of conventional industry will still account for over 90% 

of entire apple industry. As shown in Table 3, the prices of organic apples will be decreased 

gradually as the production will grow, while the prices of conventional apples will increase as 

the production will be reduced. Therefore, the organic price premium is expected to gradually 

decrease over the period of study. For the international trade, the net-trade of organic apples 

increases, whereas the net-trade of conventional apples decreases. This may be because 

decreasing prices of domestic organic products make domestic products become relatively more 

attractive, and therefore imports of organic products decrease, and exports increase. Whereas, 

domestic conventional products become less appealing to foreign consumers due to growing 

prices, and thus exports decrease, and imports increase.  

In scenario 2 of negative supply shock on bearing acreage, all the net changes in 

economic surplus are negative in the organic and the conventional industry (Table 4 and Figure 

1). Figure 1 shows the time paths of changes in consumer and producer surpluses. Consumers are 
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worse off due to a supply shortage since retail prices are higher than in baseline. Domestic 

consumption for both apples decrease as higher prices require consumers to increase their food 

budget, and therefore the consumer surplus decreases with pest outbreak. On the other hand, the 

impacts on producer surpluses are shown as different in organic and conventional industries. In 

conventional industry, positive effects on producer surplus represent that the impacts of an 

increase in price outweigh the losses from the lower production. However, the subsequent 

replanting may be followed to regain the previous level of bearing area, and thus it may allow 

production to grow and prices to decrease, and thus producer surplus gradually decrease. On the 

other hand, in organic industry, huge losses due to negative shock on bearing area exceed the 

gain from increased prices, but producer surplus may rebound to similar level of baseline with 

the subsequent replanting. As the price increases, there also exists a negative net-trade effect of 

which imports of apples increase while exports decrease. This is because higher prices of 

domestic products make foreign products become relatively more attractive to domestic 

consumers, while domestic products become less appealing to foreign countries. 

Figure 2 shows the results of changes in yields represented by scenario 3. Consumer 

surplus is reduced right after the yield shock, and rebounds to a positive change in the following 

years and then remains relatively constant over the period of analysis in both industries. This is 

because retail prices increase in the year of the yield decline and then decrease to the prices 

lower than in baseline as higher prices lead producers to produce more products. Change in 

producer surplus is also negative after the yield shock, but it remains below the baseline in the 

following years. 

Figure 3 shows the welfare changes under scenario 4 of which some products from 

organic acreage are sold as conventional. Consumer surplus of organic apples reduced while 
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consumer surplus from conventional apples soared right after the shock. Theses difference can be 

mostly explained by the changes in retail prices. For the producer surplus, organic producer 

surplus increases right after the shock and then decrease and remain relatively constant in the 

following years. On the other hand, surplus of conventional apples producer shows a downtrend 

relative to the baseline since an increase in produce sold as conventional decreases the prices of 

conventional apples, and which accordingly decreases the conventional production. 

From the trade cost shock in scenario 5, organic and conventional industries show similar 

results to each other (Table 4; Figure 4). Cumulative net welfare changes are positive in entire 

industries due to increases in consumer surplus. As the trade costs are imposed to organic and 

conventional fresh apple markets, the exports of both apple industries decrease right after the 

shock. Immediately after the trade cost shock declines in exports are rerouted to domestic supply 

and reduce the equilibrium prices in both industries, and therefore, producer surpluses fall while 

consumer surpluses are better off.  

 

2.7 Conclusion 

In this study we constructed model of the U.S. apple industry that is separated into 

organic and conventional industries to better understand how the economic consequences of 

shocks are distributed. Our model is based on a dynamic change in bearing area equation for 

each industry and optimized to clear the markets at the wholesale level, and is designed to 

predict changes in economic welfare as economic agents respond to pest or disease outbreak. 

Though we parameterize our model using the U.S. apple industry, it is general enough to be 

adapted to study the impacts of various exogenous shocks on any other perennial crops. 
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We examine a number of scenarios that represent pest or disease outbreak due to climate 

change, such as reduction in bearing acreage, yield shock, and change in trade cost. Our 

empirical simulation results show that due to different structures between organic and 

conventional industries, the impacts of pests and disease shocks vary across industries, and 

therefore the degrees of the impacts for producer and consumer surpluses are found to be 

different. 

Given that exogenous shock is one of the major concerns for the U.S. tree fruit industry, 

our model would be useful in the estimation of impacts that result from pest and disease shock 

due to climate change. Also, for policy makers findings in this study demonstrate that the effects 

of pest or disease outbreaks on producer and/or consumer welfare vary between organic and 

conventional industries and by type of shocks. When policy makers suggest policy responses in 

relation to the outbreak and examine a control strategy, for a particular type of outbreak, they 

should consider that apple production systems are very heterogenous between organic and 

conventional industries and the impacts on industries could differ widely as growers and 

consumers’ abilities to respond to shock vary across industry. 
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TABLES AND FIGURES 

 

Table 2.1. Parameter values used in simulation 

Parameter Organic apple 

market 

Conventional 

apple market 

Own-price elasticity of fresh apples b -1.06 -0.83 

Cross-price elasticity between fresh apples from different markets b 0.10 0.10 

Income elasticity of fresh apples b 0.99 1.01 

Export elasticity of fresh apples c,e -1.3 -1 

Import elasticity of fresh apples c,e 1.3 1 

Farm to wholesale market margin rate of fresh apples c 0.33 0.33 

Wholesale to retail market margin rate of fresh apples c 0.67 0.67 

Sources: b Lin et al. (2009); c Tozer and Marsh (2018); e Assumed.  

 

 

Table 2.2. Trends of bearing area and apple supply without shock, baseline 

year 
Area in acres Apples distributed into fresh market (lbs) 

Organic Conventional Organic Conventional 

0 15,037 313,763 448,224,954 7,261,841,653 

1 14,610 308,465 439,853,159 7,210,623,485 

2 14,987 302,293 455,703,057 7,136,998,489 

3 16,349 296,352 502,094,400 7,066,717,787 

4 18,081 290,645 560,851,890 6,999,920,806 

5 19,437 285,157 608,925,099 6,936,424,976 

6 20,011 279,906 633,196,569 6,876,786,171 

7 19,864 274,917 634,806,607 6,821,764,742 

8 19,482 270,199 628,826,120 6,771,731,752 

9 19,441 265,731 633,775,258 6,726,359,071 

10 20,049 261,469 660,132,976 6,684,654,210 
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Table 2.3. Trends of prices, exports, and imports without shock, baseline 

year 
Farmgate prices ($/lb) Exports (lbs) Imports (lbs) 

Organic Conventional Organic Conventional Organic Conventional 

0 0.714 0.394 94,128,767 3,172,646,109 72,427,568 621,738,486 

1 0.728 0.400  91,790,154     3,130,387,935  74,227,018  630,019,754  

2 0.715 0.405   93,850,489     3,086,356,162  72,560,908  638,881,559  

3 0.671 0.410  101,422,717     3,052,573,124  66,706,408  645,874,712  

4 0.620 0.414  111,412,695     3,022,948,499  60,135,931  652,142,799  

5 0.585 0.418  119,564,092     2,991,137,563  55,736,147  659,005,395  

6 0.571 0.423  123,172,864     2,954,952,891  54,053,877  666,977,577  

7 0.574 0.429  122,357,936     2,915,720,191  54,411,505  675,832,991  

8 0.582 0.434  120,092,240     2,877,158,289  55,419,040  684,771,231  

9 0.583 0.439  119,941,998     2,843,150,532  55,488,372  692,865,166  

10 0.568 0.444  123,819,526     2,815,429,144  53,694,524  699,620,765  
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Table 2.4. Net present values of welfare impacts5 

(a) Organic industry   

Scenarios Change in consumer surplus Change in producer surplus Net change in surplus 

2 -114.94 -4.09 -119.03 

3           48.44  -54.52 -6.08 

4 14.22 -13.86 0.36 

5 37.41  -12.77 24.64 

(b) Conventional industry   

Scenarios Change in consumer surplus Change in producer surplus Net change in surplus 

2 -252.86 73.70 -179.16 

3 -25.40 -152.04 -177.44 

4 9.14 -5.67 3.47 

5 704.19 -386.43 317.77 

(c) Entire industry   

Scenarios Change in consumer surplus Change in producer surplus Net change in surplus 

2 -367.80 69.61 -298.20 

3 23.03 -206.56 -183.53 

4 23.37 -19.54 3.83 

5 741.60 -399.20 342.41 

All values in $US millions. 

The discount rate is set as 4%. 

 

 

 

 

 

 
5 The change in surplus is the difference between surpluses in the shock scenario and baseline. Change in consumer 

surplus=∫ 𝑄1𝑑𝑃
𝑥

𝑃1
− ∫ 𝑄0𝑑𝑃

𝑥

𝑃0
= −(1 + 휀)−1𝑃0𝑄0(𝑒

(1+𝜀)𝐸𝑃 − 1). Change in producer surplus= 𝑇𝑃𝑠 − 𝑇𝑃𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒  

where TP=Total revenue–Total cost. Following Taylor (2013), we assumed the costs of organic and conventional 

systems are $5153/acre $4621/acre in 2016 dollars, respectively. Net change in surplus=Change in consumer 

surplus +Change in producer surplus. 
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(a) Change in consumer surplus 

 

(b) Change in producer surplus 

 

Figure 2.1. Change in economic surplus under Scenario 2 
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(a) Change in consumer surplus 

 

(b) Change in producer surplus 

 

Figure 2.2. Change in economic surplus under Scenario 3 
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(a) Change in consumer surplus 

 

(b) Change in producer surplus 

 

Figure 2.3. Change in economic surplus under Scenario 4 

 

-30,000,000

-25,000,000

-20,000,000

-15,000,000

-10,000,000

-5,000,000

0

5,000,000

10,000,000

0

200,000

400,000

600,000

800,000

1,000,000

1,200,000

1,400,000

1,600,000

0 1 2 3 4 5 6 7 8 9 10

C
h
a
n
g
e
 i
n
 s

u
rp

lu
s 

o
f 

o
rg

a
n
ic

 i
n
d
u
st

ry
 (
$
)

C
h
a
n
g
e
 i
n
 s

u
rp

lu
s 

o
f 

co
n
ve

n
ti
o
n
a
l 
in

d
u
st

ry
 (
$
)

Conventional Organic

-2,500,000

-2,000,000

-1,500,000

-1,000,000

-500,000

0

500,000

1,000,000

1,500,000

-1,000,000

-800,000

-600,000

-400,000

-200,000

0

0 1 2 3 4 5 6 7 8 9 10

C
h
a
n
g
e
 i
n
 s

u
rp

lu
s 

o
f 

o
rg

a
n
ic

 i
n
d
u
st

ry
 (
$
)

C
h
a
n
g
e
 i
n
 s

u
rp

lu
s 

o
f 

co
n
ve

n
ti
o
n
a
l 
in

d
u
st

ry
 (
$
)

conventional organic



 

73 

(a) Change in consumer surplus 

 

(b) Change in producer surplus 

 

Figure 2.4. Change in economic surplus under Scenario 5 
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CHAPTER THREE  

Organic apple supply response to price premiums 

 

3.1 Introduction 

The organic sector continues to account for a growing share of total food purchases 

globally. Fresh fruit and vegetables account for a large share of total organic sales. In 

Washington, certified organic apple acres approximately doubled from 2013 to 2018 (Granastein 

and Kirby, 2019). Certified organic acres account for 14% of apple acreage in 2018, up from 7% 

in 2013. However, transitioning a field to certified organic status is a time consuming and costly 

process for a farmer. This is particularly true for perennial crops like apples that have very high 

establishment costs. Also, organic producers must pay for the certification fees that covers the 

costs of inspections and other certifier activities. In 2007, mean certification costs for apple 

producers were approximately 30 dollars per acer in Washington (Slattery et al., 2011). Organic 

premium can offset the transitioning costs and contribute to higher profits for organic farmers, 

and thus strong price premium can attract growers to organic production system. Over the last 

decade, price premiums for organic products have contributed to growth in certified organic 

farmland and, ultimately, market expansion (Oberholtzer et al., 2005). Therefore, it is critical to 

understand how the supply of organic crops responds to the price of organic relative to 

conventional, or the organic price premium. 

There is a large literature – building from the pioneering work of Nerlove (1956) - that 

empirically examines the relationship between past prices, price expectations, and supply 

response for agricultural commodities. Compared to conventionally grown annual crops, supply 

response to price changes for organic crops likely has a more complex lag structure because a 
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field must undergo a 36-month transition period. There is an asymmetric nature to this as well. 

An organic farmer can quickly reduce organic and transition acres when the organic price 

premium drops, but they are restricted in the short-run from expanding if the organic premium 

increases. A similar dynamic exists for conventional or organic tree fruit, which typically have 

about a three year establishment phase before a significant crop is harvested. This presents an 

interesting question for organic apples. The organic transition phase is concurrent to the 

establishment phase, so it may be that the time lag for organic apples is no different than 

conventional.    

Some existing literatures identify price premium trend for a variety of crops. Oberholtzer 

et al (2006) shows that significant organic price premiums exist for broilers and eggs. 

Oberholtzer et al (2005) shows that organic price premiums for broccoli and carrots remain 

strong at both wholesale- and farmgate-level. Granastein and Kirby (2019) and Slattery et al. 

(2011) identify price premium trend for apples. The others estimate price premium for organic or 

specialty crops. Ankamah et al. (2016) estimate the price premium for organic salmon in Danish 

retail sale. Abraben et al. (2017) and Delmas and Grant (2014) identify whether the price 

premiums for the wines produced with organic practices exist. Weber (2011) estimate the price 

premium growers receive from participating in Fair Trade-organic markets.  

The motivations for adopting organic agriculture have tended to change over time. While 

the innovators of organics were motivated by philosophical commitments like environmentalism, 

the recent adopters are more dependent on financial and practical incentives to cover the risks of 

conversion and thus need reliable access to organic price premiums (Padel, 2001; Constance and 

Choi, 2010). Although some existing literatures examine the price premiums for a variety of 

crops, the studies that analyze how the price premiums changes organic supply are limited by a 
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lack of consistent and comparable price data. This study aims at determining the impacts of price 

premium on the supply of organic crops. 

In this paper we analyze a rich farm-level data set of nearly every organic farm in 

Washington State with information on acres, yield, and prices for major varieties of organic 

apples for each year from 2009 to 2011. This allows for a much better understanding of the 

structure of organic supply response compared to what can be learned with aggregate data. 

Differences in scale, negotiating position with packers and processors, productivity, and product 

quality result in significant dispersion in prices across farms for the same type of organic apple 

variety. Estimating supply elasticities for organic apples is more accurate using farm and variety 

level price data than market level prices.    

Our analysis breaks down into two parts. We first characterize the distribution of organic 

apple variety prices and yields across farms. We then estimate an econometric model of land 

adjustment and yields to determine how the elasticity of supply depends on the market-level 

organic premium versus farm-level prices.   

We are draw from the long literature on perennial crop supply response started by French 

and Matthews (1971). They explain variations in output by combining changes in yields and 

acreage and explicitly bringing out the concept of the gestation lags between initial input and 

first output. Perennial crops face problems from gestation lags not ordinarily encountered in the 

study of annual crops. Most existing literatures on crop supply response, however, depend on the 

analysis with aggregate-level data (French et al.,1985; Kumar and Sharma, 2006; Devadoss and 

Luckstead, 2010; Laajimi et al., 2008; Kalaitzandonakes and Shonkwiler, 1992). This study 

focuses on how crop supply depends on the organic premium and prices using farm-level data. 
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Our analysis is also informed by dynamic models of adjustment in the livestock industry 

where it takes two to three years to adjust animal numbers in response to changes in profitability, 

which is similar to the organic transition time period (Rucker, Burt, and LaFrance., 1984; Foster 

and Burt, 1992; Mbaga and Coyle, 2003).  

To properly model supply analysis, it is essential to understand both short-run and long-

term decisions. Decisions made in earlier stages may affect the set of possible decisions and 

outcomes in later stages through the production process. Although Wickens and Greenfield 

(1973) note that there are two parts: potential production (long-run decision) and the proportion 

of potential production that is harvested (short-run decision), they estimate a single reduced form 

equation for the supply of coffee, a perennial crop. Most studies also resort to reduced-form 

models (French and Matthews, 1971; Dowling, 1979). These reduced-form specifications do not 

adequately capture the unique characteristics of the perennial crop supply response. In contrast, a 

structural model specification permits the estimation of supply decisions divided into long- and 

short-term responses, and thereby, determine the special features of perennial crop supply 

response. Our comprehensive farm-level data allows us to estimate the relevant structural 

equations instead of relying on a single reduced-form supply equation.  

Kalaitzandonakes and Shonkwiler (1992) apply structural estimation approach of 

perennial new planting and replanting investment relationships to grapefruit. Devadoss and 

Luckstead (2010) analyze apple supply response with structural equations for new planting, 

removal, yield function. While they identify the detailed structural parameters, these studies only 

deal with state-level data. In spite of the dearth of suitable time series data for planting and 

removal data at farm-level, we use comprehensive farm-level data on acres, yield, and prices 
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farms received, and focus on long- and short-term decisions by estimating the structural model 

specification of acreage adjustment, yields, farm-level price equations. 

The objective of this study is to determine apple supply response by estimating a 

structural model for land adjustment, yield, and price equations. This paper is structured as 

follows. The next section starts with data description. Section 3 explains the estimation models 

and presents the analysis results at aggregate- and farm-levels. Finally, this paper concludes with 

Section 4 in which the main findings and policy implications are suggested. 

 

3.2 Data description 

Aggregate-level data is annual covering the years 1995 to 2020. Table 1 shows 

descriptive statistics of organic apple data in Washington at aggregate-level. The aggregate 

annual data include organic premiums, organic and conventional prices, certified and transition 

acres, yields, and production for seven organic apple varieties (Fuji, Gala, Granny smith, Red 

delicious, Golden delicious, Pink lady, and Honeycrisp). Table 2 and Figure 1 show descriptive 

statistics by variety and trend of variables, respectively.  

Organic premium data is from WSU Tree Fruit Research and Extension, and it is 

calculated based on FOB prices (dollars per 40-lb box) by including all storage, grades, and sizes 

of apples. The organic premium is a measure of organic prices relative to conventional in percent 

difference. Organic apple prices are almost always higher than conventional, but the magnitude 

of the difference varies from year to year (Granastein and Kirby, 2019).  

Transition area describes land transitioning from conventional to organic production. 

When land is converted to organic production, it must undergo a 36-month transition before an 

organic crop is harvested that creates a lag between a market signal and entering the market. 
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During the transition, organic practices are adopted, but products must not be labeled, sold, or 

represented as organic. Once the land completes the 36-month transition, the certificate is issued 

and the land can be used for certified organic products. Transition acres is the best measure for 

assessing how supply responds to changes in the organic premium. Annual change in total 

certified acres is not exactly equal to the one-year lag in transition acres. Producers sometimes 

decide to not carry through with the certification process. Also, there is always some amount of 

certified acres that are not recertified.   

Farm-level data on production, acres, and prices by apple variety is from the years 2009, 

2010, and 2011 if farms sell their products in the markets from 2009 to 2012, which are derived 

from the database of WSDA certified organic farms. There are 184 unique farms combined over 

the three years (2009-2011). By year, there are 133, 145, and 144 unique farms, respectively. An 

observation in the underlying data set specifies farm-variety-year, and there are a total of 1319 

observations. By year, there are 430, 449, and 440 observations. Farms in the sample produced 

an average of 3.1 to 3.2 varieties out of a potential 9 (Fuji, Gala, Granny Smith, Golden 

delicious, Red delicious, Honeycrisp, Braeburn, Pink Lady, and Cameo) by year. The mode 

number of varieties was 1. There are 49 varieties in our data, but we focus on the 9 varieties that 

account for 97% of total sales and 96% of total acres. Price information is more complicated than 

acres and production because either that farms sometimes sell one year of production over more 

than one calendar year or that farms sell their product next year of production. Apples can be 

stored for as long as a year. We use the weighted average of prices if farms sell one year of 

production over more than one calendar year. We also remove the farm that has too high price. 

For all varieties, the average retail prices of organic apples were less than 4 dollars per pound in 

2011, we drop 3 observations of a farm that has prices as about 14 dollars. Table 3 and Table 4 
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show descriptive statistics of farm-level data and descriptive statistics by apple variety, 

respectively. Each variety has 256, 251, 149, 145, 135, 124, 113, 82, and 64 observations. 

 

3.3 Results 

3.3.1 Supply elasticity estimated with aggregate data 

Farms’ desired area to be cultivated at time t depends on the expected prices and other 

explanatory variables as follows: 

𝐴𝑡
∗ = 𝑎1 + 𝑎2𝑃𝑡

∗ + 𝑎3𝑍𝑡 + 𝑢𝑡 (1) 

where 𝐴𝑡
∗ is farms’ desired acreage at time t, 𝑃𝑡

∗ is the expected price, 𝑍𝑡 is a set of other 

variables determining farms’ acreage, and 𝑢𝑡 accounts for unobserved random factors affecting 

desired area with zero expected mean. Since a full land adjustment may not be possible in the 

short term and are delayed, it is necessary to apply a dynamic approach.  

Nerlove (1956) assumes some relationship between desired and actual acreage as: 

𝐴𝑡 − 𝐴𝑡−1 = 𝛿(𝐴𝑡
∗ − 𝐴𝑡−1) (2) 

where 𝐴𝑡 is the actual acreage. 

The structural form equations (1) and (2) yields the reduced form as: 

𝐴𝑡 = 휃1 + 휃2𝐴𝑡−1 + 휃3𝑃𝑡
∗ + 휃4𝑍𝑡 + 𝜈𝑡 (3) 

with 

휃1 =  𝛿−𝑎1, 휃2 =  1 − 𝛿, 휃3 = 𝛿𝑎2, 휃4 = 𝛿𝑎3, 𝜈𝑡 =  𝛿𝑢𝑡 

Given the abovementioned theoretical model, and assuming there are K varieties over T 

periods, the acreage functions can be specified as: 

𝐶𝐴𝑘𝑡 = 𝜆1 + 𝜆2𝐶𝐴𝑘𝑡−1 + 𝜆3𝑇𝐴𝑘𝑡−1 + 𝜆4𝑃𝑃𝑘𝑡 + 𝜇𝑖
𝐶𝐴 + 휁𝑖𝑡

𝐶𝐴 (4) 

and 
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𝐶𝐴𝑘𝑡 = 𝜆1 + 𝜆2𝐶𝐴𝑘𝑡−1 + 𝜆3𝑇𝐴𝑘𝑡−1 + 𝜆4𝑃𝑂𝑘𝑡 + 𝜆5𝑃𝐶𝑘𝑡 + 𝜇𝑖
𝐶𝐴 + 휁𝑖𝑡

𝐶𝐴 (5) 

where TA and CA represent transition and certified acres, respectively, 𝑃𝑃 is organic price 

premium and PO and PC are organic and conventional prices, respectively. We employ the 

lagged three-year moving average of price premiums and organic prices, and conventional prices 

as a proxy for expected own and competing crop prices. We also consider lagged transition acres 

as the variables determining farms’ certified acreage since transition acres is one of the best 

measure for predicting certified acres. 

For production and yield functions, following Nerlove (1956), expectations are assumed to 

be updated in proportion to the difference between the observed and expected price levels of the 

previous period as: 

𝑃𝑡
∗ − 𝑃𝑡−1

∗ = 𝛾(𝑃𝑡−1 − 𝑃𝑡−1
∗ ), (6) 

which then can be expressed as an infinite-order AR(p) process as follows:  

𝑃𝑡
∗ =∑𝛾

∞

𝜏=1

(1 − 𝛾)𝜏−1𝑃𝑡−𝜏. 
(7) 

The impact of past information on prices can be measured by substituting equation (7) in 

equation (3). However, this full systems estimation has a major limitation when a single 

misspecification in any equation leads to inconsistent estimates of all parameters in the model 

(Cumby et al, 1983; Shideed and White, 1989). Therefore, alternative method would be the method 

of quasi-rational expectations as developed by Nerlove et al. (1979) that estimates equation (7), 

and then in the second stage, substituting the calculated values in equation (3), which in turn, can 

be estimated as a single equation.  

We select the first-order autoregressive process, and the specification of production and 

yield function is: 
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𝑄𝑘𝑡 = 𝛽1 + 𝛽2𝑄𝑘𝑡−1 + 𝛽3𝑃𝑃𝑘𝑡−1 + 𝛽4𝑇𝐴𝑘𝑡−1 + 𝜇𝑖
𝑄 + 휁𝑖𝑡

𝑄
 (8) 

and 

𝑄𝑘𝑡 = 𝛽1 + 𝛽2𝑄𝑘𝑡−1 + 𝛽3𝑃𝑂𝑘𝑡−1 + 𝛽4𝑃𝐶𝑘𝑡−1 + 𝛽5𝑇𝐴𝑘𝑡−1 + 𝜇𝑖
𝑄 + 휁𝑖𝑡

𝑄
 (9) 

where Q is either production or yield per acre. Such specification is similar with De Menezes and 

Piketty (2012). 

The problem with such dynamic panel data regression is that the presence of the lagged 

dependent variable introduces autocorrelation in the error term, which results in a dynamic panel 

bias when applying ordinary least squares (OLS) estimation. For transition acreage model, since 

the 𝑇𝐴𝑖𝑡 is a function of the fixed effect (𝜇𝑖
𝑇𝐴), it is obvious that 𝑇𝐴𝑖𝑡−1 is also a function of 

𝜇𝑖
𝑇𝐴 and is correlated with error term. This violates the strict exogeneity assumption, and 

therefore it turns OLS estimator biased and inconsistent. As one of solutions to this problem, we 

could transform the data and apply the fixed effect (FE) estimator that wipes out 𝜇𝑖. However, 

the lagged dependent variable remains correlated with 휁𝑖𝑡−1, and therefore the lagged dependent 

variable is biased downward with the FE (Roodman, 2009). 

Anderson and Hsiao (1982) suggest the instrumental variable (IV) method to estimate the 

first difference (FD) model as an alternative to eliminate the fixed effect terms by differencing 

instead of within transformation. This allows to use the second lagged difference as an IV for 

lagged dependent variable that is strictly exogenous. Although this method leads to consistent 

estimates, Arellano and Bond (1991) propose a more efficient estimator than IV, difference 

generalized method of moments (GMM). Thus, we use the Arellano and Bond (1991) procedure 

to estimate a dynamic panel difference model. Also, following Roodman (299), we collapse the 

instrument set in order to limit instrument proliferation. When instruments are many, they tend to 

overfit the instrumented variables and bias the results toward those of OLS. It creates one 
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instrument for each variable and lag distance, rather than one for each time period, variable, and 

lag distance. In small samples, it helps to avoid the bias that arises as the number of instruments 

climbs toward the number of observations. 

Table 5 and 6 report the results of certified acreage and production and yield response 

functions, respectively. In the model (1) and (2), Table 5, the acreage has been estimated as a 

function of the lagged certified and transition acres and the lagged three-year moving average of 

price variables: organic price premiums or the prices of organic (PO) and conventional (PC). In 

the model (3) and (4), Table 5, the lagged yield is also included as an explanatory variable. In 

table 6, the production and yield are estimated as a function of the lagged dependent variable, 

transition acres, and price variables, respectively. All variables except for price premium are log-

transformed. 

We conducted several statistical tests to check the consistency of estimation results. The 

results in Table 5 and 6 show that the Hansen test cannot reject the null hyphothesis of the over-

identifying restrictions. We also conducted the Arellano-Bond test for first and second order 

autocorrelated disturbance, which represents there exist first-order autocorrelation but no 

evidence for significant second-order autocorrelation in residuals. According to Arellano and 

Bond (1991), when the model presents a good specification, it is preferable to use the one-step 

estimation since two-step standard errors tend to be biased downward in the case of small 

sample. 

In table 5, the results from columns (1) and (2) show that all variables except for 

conventional price are significant and have positive signs as expected. A percent increase in 

price premium and own-price increase the certified acres by 0.42% and 0.57%, respectively, in 

the short run. This indicates that higher organic prices are able to cover the costs of organic 
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system and thus attract growers to organic production. As the organic prices increase, new farms 

may begin their operations with organic system rather than conventional system, and for existing 

farms, they are likely to make the transition from conventional to organic farming system. The 

prices of conventional apples are not significant, meaning that organic farmers may account for 

own-prices rather than the prices of competitive products. The results from columns (3) and (4) 

where the lagged yield per acre is included as an independent variable show that only price 

premium variable is significant and the effect is smaller than in column (1). 

In table 6, for the yield function, responses to price premium and own-price are also 

positive and statistically significant as expected with economic theory. A percent rise in organic 

premium and own-price induces yields increase of about 0.34% and 0.63%, respectively, in the 

short run. On the other hand, production only responds to own prices. One percent increase in 

own-price increases production by 0.46%. 

From the estimated coefficients in Table 5 and 6, we calculate supply elasticities of price 

in short and long run. Table 7 represents supply elasticities of price variables. The short-term 

supply elasticity is the estimated coefficient, and the long term elasticity is calculated by 𝑎2 in 

equation (1).  In the long run, acreage supply is price elastic (1.5246 and 2.368), which is 

consistent with those found by Willet (1993). Willett (1993) showed that the response of the 

change in apple acreage to a lagged three year moving average of apple prices is elastic as 1.84 

to 3.68. The long-run production and yield elasticities are found to be 1.015 and 0.579 and 1.104, 

respectively, which is relatively inelastic than acreage responses. Whereas, in the short run, the 

elasticities are not much different across acreage, production, and yield responses. The results 

 
6 The price premium elasticity of acreage is 2.445 with the result from column (3) in Table 5. 
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suggest that in general, higher organic premium and/or own-price induce producers to expand 

acreage and improve their crop yields. On the other hand, one of the possible explanations for the 

higher elasticities of acreage in the long run is the feature of organic industry where organic 

producers can always sell their organic products as conventional depending on market 

conditions. This may encourage organic apple producers to overinvest in organic apple acres 

because it allows them for more supply flexibility when the organic premium is high. Therefore, 

the acreage supply is more price elastic than production and yield responses since they can sell 

their organic production as conventional if the price drops, but they can’t quickly expand organic 

production if the organic premium increases.  

 

3.3.2 Farm-level distribution of prices, yield, and revenue 

In Table 3, the average of production, acre, and price of all farms are 772,935 pounds, 

23.088 acres, and 0.297 dollars per pound, respectively, but the variations are found to be very 

large. Figure 2, 3, and 4 represent distributions of supply quantities, acres, and prices of all apple 

varieties, and all distributions are skewed right. About 73% of observations have supplied 

quantity less than the average, 772,935 pounds, 72% of them operate farmland less than 23.088 

acres, and about 63% of them received prices less than the average, 0.297 dollars. On the other 

hand, Figure 5 shows that the distribution of yields per acre is less right-skewed, which is very 

different from the distributions of acres and production. Even if farms have the same farm acres, 

some may have higher yield rate, which might be due to the prices they received, different price 

premiums by apple variety, and their locations. 
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Figure 6, 7, 8 and 9 show the distributions of production, acres, prices, and yields per 

acre by variety, in which the distributions of all varieties are similar, but the degrees of skewness 

are different across varieties.  

 

3.3.3 Farm-level supply elasticity 

For perennial crops, in the short run, farms can adjust their supply only within their 

existing capacity, either increasing or decreasing their yield rate. Therefore, supply response is 

estimated by fitting a yield function in the short run. The key determinant of change in yield rate 

is the prices farms actually received and organic premium for the variety in the previous 

production year, which can shift yield rates in the short run. Farms also change their yield rate 

depending on the previous yield rate and the adjusted acreage. The equation of yield rate is 

expressed as: 

𝑞𝑡 = 𝛼1 + 𝛼2𝑞𝑡−1 + 𝛼3𝑝𝑡−1 + 𝛼4𝑃𝑃𝑡−1 + 𝛼5𝑎𝑐𝑡 + 휀𝑞 (10) 

and 

𝑞𝑡 = 𝛼1 + 𝛼2𝑞𝑡−1 + 𝛼3𝑝𝑡−1 + 𝛼4𝑃𝑂𝑡−1 + 𝛼5𝑃𝐶𝑡−1 + 𝛼6𝑎𝑐𝑡 + 휀𝑞 (11) 

where q is the yield per acre, p is the price received, PP is organic premium for the variety, PO 

and PC represent the prices of organic and conventional for the variety, respectively, ac is the 

acres of farm-variety pair, and 휀 is the disturbance term. 

On the other hand, changes in area of perennial crops can occur in the long run. Apple 

producers can either expand or shrink their area to desired amount of acres to be allocated to the 

specific varieties. The possible determinant of change in desired area could be profitability of 

each variety, which can be represented by lagged variables of organic premiums, since organic 
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production needs years to acquire organic certification. The determined acreage affects farms to 

adjust their yield rates. The acreage response equation is specified as:  

𝑎𝑐𝑡 = 𝛽1 + 𝛽2𝑎𝑐𝑡−1 + 𝛽3𝑃𝑃𝑡−𝑖 + 휀𝐴 (12) 

and 

𝑎𝑐𝑡 = 𝛽1 + 𝛽2𝑎𝑐𝑡−1 + 𝛽3𝑃𝑂𝑡−𝑖 + 𝛽4𝑃𝐶𝑡−𝑖 + 휀𝐴 (13) 

We have a system of structural equations, where some equations contain endogenous 

variables among the explanatory variables. Under our hypothesis, we expect that the determined 

acreage affects farms to adjust their yield rates. To account for the endogeneity, the model is 

simultaneously estimated using three-stage least squares (3SLS) following Zellner and Theil 

(1962).  

In our structural system, the variables, yield and acreage, are explicitly endogenous by 

appearing as dependent variables in Equations (10)-(13). Lagged yield rates, lagged prices, 

lagged acreage, lagged price variables for the variety, and 10 county and 9 apple variety 

dummies are used as the exogenous variables. All variables except for price premium and 

dummy variables are log-transformed. 

Results with farm-level data are represented in Table 8. For comparative analysis, all 

parameters are also estimated using ordinary least squares (OLS). The results from Breusch-

Pagan test show that we can reject the hypothesis that the correlations of the residuals in two 

equations are zero, implying that the 3SLS model may be more reliable. Therefore, the 

discussion centers on the results of 3SLS estimation unless specifically stated otherwise. 

In the short-run supply response model with yields rate per acre, the signs of the 

coefficients for the lagged yields and lagged prices are found to be positive as expected. One 

percent increase in previous year prices increases production per acre by 0.5%. Farms may 



 

94 

expect larger profit from product and conduct more intensive cultivation as they received higher 

prices. On the other hand, the market price that is represented by lagged organic price premium 

(PP) is found to be positive but insignificant, while the individual farm’s yield responds to own-

variety market prices in the model (2). One percent rise in own-variety prices induces yield 

increase of about 3.5%, which is larger than the effect of prices that farms actually received. This 

result suggests that farms respond to the average market prices more than the prices they 

received, and thus they are more likely to depend on organic market conditions when they 

determine the crop yields. This is because the prices that farms received may include the price of 

apples sold as conventional, but most growers may consider the organic market to sell their 

products when they invest in apple production. On the other hand, one of the reasons for the 

large coefficient on organic market price would be that farms sometimes sell one year of 

production over more than one calendar year, and they may decide the time to sell their products 

largely depending on the organic market prices. The sign of the coefficient for the current 

certified acreage is also positive, which may represent the economies of scale of apple farms, but 

the effects is relatively small.  

The long-run supply is given by acreage response model in Table 8. We test one- to 

three-year lagged price premium variables. Results show that when one-year and two-year 

lagged premiums are used as the organic premium variable, the effects are found to be 

insignificant at the 10% level. On the other hand, one percent increase in three-year lagged 

organic premium significantly increases organic certified acres by about 0.2%. As three-year 

lagged organic premiums increase, farms may invest in expanding the acres of specific variety to 

draw long-run profitability. Since farms are required three years to transition from conventional 

to certified organic production, it may be reasonable that farms consider three-year lagged 



 

95 

organic premiums to expect their future profitability and adjust their farm size. On the other 

hand, the coefficients on market prices of organic and conventional apples are as expected but 

not significant. This suggests that organic apple producers may depend on the organic premiums 

rather than organic prices when they invest in organic apple acres. Higher premiums would be 

more helpful for organic producers to offset future uncertainties in organic markets than organic 

price increases by itself. 

 

3.4 Conclusion 

This study aims at determining the impacts of price premium on the supply of organic 

crops. We estimate an econometric model of land adjustment, production, and yields to 

determine how the elasticity of supply depends on the market-level organic premium versus 

farm-level prices. For this purpose, we analyze Washington organic apple supply at aggregate- 

and farm-levels. 

The aggregate-level results show that acreage, production, and yield responses to price 

premiums and/or own prices are significantly positive. The estimated elasticities underline that in 

the short run, the elasticities are not much different across acreage, production, and yield 

responses. On the other hand, the long-run production and yield elasticities are found to be price 

inelastic relative to acreage responses. This may be due to that organic producers can have more 

supply flexibility when the organic premium is high because they can always sell their organic 

products as conventional depending on market conditions, and thus this allows them to 

overinvest in organic apple acres. However, they cannot quickly expand organic production if 

the organic premium increases, and they need more time to make necessary production 
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adjustment. Therefore, the acreage supply is more price elastic than production and yield 

responses. 

On the other hand, the farm-level results suggest that farm’s yield responds to the average 

market prices more than the prices they received, and thus they are more likely to depend on 

organic market conditions when they determine the crop yields. Also, individual farm’s land 

adjustment responds to organic premiums, but not to own-variety prices. This suggests that 

organic apple producers may depend on the organic premiums rather than organic prices when 

they invest in organic apple acres. Higher organic premium allows for more supply flexibility 

since they can sell their products as either organic or conventional, and thus it would be more 

helpful to offset future uncertainties in organic markets than organic price increases by itself. 
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TABLES AND FIGURES 

 

Table 3.1. Summary statistics of aggregate-level data 

 Obs Mean s.d Min Max 

Transition acres 147 321.10 335.85 0.5 1,541.26 

Certified acres 151 1,713.40 1,508.00 8.00 8,032.70 

Organic premium 167 0.46 0.27 -0.04 1.26 

Organic price 170 36.21 12.14 18.84 81.00 

Conventional price 167 25.20 9.98 13.05 64.27 

Production 116 982,362 1,019,222 29,000 5,662,000 

Yield per acre 116 471.09 173.30 70.21 894.45 
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Table 3.2. Summary statistics of aggregate-level data by variety 

Variety Variable Obs Mean s.d. Min Max 

Fuji Transition acres 22 458.32 372.13 76 1,222 

Certified acres 22 2,648.25 1,677.94 165 5,579 

Organic premium 26 0.44 0.21 -0.04 0.97 

Organic price 26 34.67 6.70 24.69 50.42 

Conventional price 26 23.33 4.89 17.04 42.99 

Production 17 1,631,529 958,505 254,000 3,108,000 

Yield per acre 17 517.33 116.94 236.94 685.63 

Gala Transition acres 22 484.67 362.42 76 1,266 

Certified acres 22 3,157.16 2,249.13 223 8,033 

Organic premium 26 0.47 0.25 0.18 1.02 

Organic price 26 34.46 7.12 25.77 48.95 

Conventional price 26 23.64 4.35 18.12 36.82 

Production 17 2,320,588 1,584,185 465,000 5,662,000 

Yield per acre 17 628.73 156.08 325.40 894.45 

Granny Smith Transition acres 21 243.24 218.04 4 655 

Certified acres 22 1,346.35 724.92 158 2,976 

Organic premium 26 0.53 0.26 0.23 1.26 

Organic price 26 33.88 6.88 22.59 50.94 

Conventional price 26 22.23 2.74 16.51 27.02 

Production 17 707,000 380,176 212,000 1,485,000 

Yield per acre 17 482.82 142.34 256.35 708.91 

Golden Del. Transition acres 19 146.32 139.51 3 515 

Certified acres 21 1,035.81 290.46 603 1,638 

Organic premium 26 0.53 0.30 0.16 1.20 

Organic price 26 31.14 5.98 21.49 45.82 

Conventional price 26 20.63 3.13 14.68 25.80 

Production 17 296,941 92,940 115,000 464,000 

Yield per acre 17 301.42 116.30 70.21 460.30 

Red Del. Transition acres 23 297.83 338.82 4 984 

Certified acres 23 1,263.90 316.75 681 1,872 

Organic premium 26 0.56 0.27 0.16 1.11 

Organic price 26 26.42 4.35 18.84 36.70 

Conventional price 26 17.13 2.58 13.05 21.75 

Production 17 627,118 185,174 288,000 916,000 

Yield per acre 17 485.71 130.45 235.68 693.65 

Honeycrisp Transition acres 19 445.59 469.20 11 1541 

Certified acres 19 1,693.43 1,777.34 151 6170 

Organic premium 14 0.22 0.12 0.11 0.47 

Organic price 17 65.10 7.45 53.72 81.00 

Conventional price 14 53.56 6.74 41.42 64.27 

Production 14 738,500 716,403 29,000 2,309,000 
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Yield per acre 14 341.92 124.92 97.32 534.52 

Pink Lady Transition acres 21 154.82 143.82 0.5 532 

Certified acres 22 835.83 471.86 8 1,820 

Organic premium 23 0.35 0.27 -0.02 0.91 

Organic price 23 38.04 7.85 22.79 54.05 

Conventional price 23 28.32 3.30 22.13 33.28 

Production 17 511,824 286,380 67,000 989,000 

Yield per acre 17 516.88 194.59 143.47 805.86 

 

Table 3.3. Descriptive statistics of farm-level data 

Variable Mean s.d. Min Max 

Production 734,843 1,215,087 48.78 9,762,450 

Yield 31,057 177,34 93.75 175,000 

Price 0.307 0.321 0.001 4.186 

Acres 22.74 35.47 0.01 305.22 

Organic premium 0.256 0.083 0.054 0.403 

Obs 1,319 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

100 

Table 3.4. Descriptive statistics of farm-level data by variety 

Variety Variable Obs Mean s.d. Min Max 

Fuji Production 

256 

859,721 1,411,176 200 8,187,175 

Yield 287,14 15,103 400 75,704 

Price 0.307 0.251 0.011 2.081 

Acres 28.42 41.93 0.25 272.17 

Organic premium 0.259 0.025 0.226 0.286 

Gala Production 

251 

1,027,625 1,510,357 925 9,762,450 

Yield 33,455 14,988 313 85,100 

Price 0.297 0.180 0.006 1.353 

Acres 28.34 39.28 0.1 305.22 

Organic premium 0.252 0.014 0.236 0.270 

Granny Smith Production 

149 

618,225 896,242 90 5,153,750 

Yield     

Price 0.276 0.410 0.003 4.186 

Acres 20.19 30.22 0.02 170.5 

Organic premium 0.357 0.032 0.333 0.403 

Golden Del. Production 

145 

548,236 1,054,078 500 6,622,000 

Yield 31,291 16,298 700 80,564 

Price 0.215 0.235 0.001 1.537 

Acres 15.32 30.68 0.05 196.77 

Organic premium 0.349 0.023 0.324 0.381 

Red Del. Production 

135 

824,447 1,255,429 75 9,208,375 

Yield 32,901 17,087 94 94,042 

Price 0.245 0.370 0.004 3.842 

Acres 23.87 36.79 0.01 303.28 

Organic premium 0.311 0.066 0.229 0.392 

Honeycrisp Production 

124 

520,381 989,214 131 5,300,750 

Yield 24,861 20,508 204 173,171 

Price 0.622 0.448 0.012 3.058 

Acres 19.13 29.09 0.05 203.7 

Organic premium 0.133 0.022 0.110 0.161 

Braeburn Production 

113 

394,021 569,881 48.78 4,398,375 

Yield 32,234 20,272 925 150,732 

Price 0.208 0.222 0.008 1.246 

Acres 12.97 18.39 0.02 137.3 

Organic premium 0.218 0.058 0.140 0.283 

Pink Lady Production 

82 

891,361 1,235,461 200 6,060,600 

Yield 34,424 21,980 200 175,000 

Price 0.352 0.278 0.010 1.676 

Acres 27.71 42.32 0.01 239.64 

Organic premium 0.180 0.050 0.114 0.236 

Cameo Production 64 409,092 756,953 489 3,389,200 
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Yield 26,134 15,424 2,336 60,372 

Price 0.275 0.366 0.009 2.151 

Acres 16.20 25.89 0.01 107 

Organic premium 0.099 0.047 0.054 0.164 

 

Table 3.5. GMM estimation results of aggregate-level acreage response 

 Acreage 

 (1) (2) (3) (4) 

Certified acres (t-1) 0.727*** 

(0.105) 

0.761*** 

(0.130) 

0.890*** 

(0.141) 

0.911*** 

(0.120) 

Yield (t-1)   0.157** 

(0.071) 

0.158** 

(0.063) 

Transition acres (t-1) 0.084*** 

(0.032) 

0.105*** 

(0.027) 

0.090*** 

(0.020) 

0.116*** 

(0.014) 

PP  0.416** 

(0.177) 

 0.269* 

(0.150) 

 

PO  0.566** 

(0.256) 

 0.188 

(0.311) 

PC  0.146 

(0.425) 

 0.711 

(0.744) 

Year 0.009 

(0.012) 

0.004 

(0.015) 

-0.005 

(0.016) 

-0.004 

(0.016) 

N 120 120 100 100 

Hansen Chi2 4.30 0.36 4.79 4.45 

AB test for AR (1) -1.88* -1.96** -2.28** -2.26** 

AB test for AR (2) 0.57 1.18 1.16 0.95 
Standard errors are in parentheses. 

***, **, and * denote significance at 1%, 5%, and 10% levels, respectively. 
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Table 3.6. GMM estimation results of aggregate-level production and yield response 

 Production Yield 

       (1)      (2) (3) (4) 

Production (t-1) 0.438*** 

(0.104) 

0.544*** 

(0.009) 

  

Yield (t-1)   0.406*** 

(0.101) 

0.434*** 

Transition acres (t-1) 0.0006 

(0.014) 

0.009 

(0.012) 

-0.078*** 

(0.007) 

-0.071*** 

(0.008) 

PP  0.181 

(0.148) 

 0.344*** 

(0.109) 

 

PO  0.463* 

(0.241) 

 0.625*** 

(0.179) 

PC  0.166 

(0.276) 

 -0.096 

(0.212) 

Year 0.049 

(0.030) 

0.033 

(0.027) 

-0.0007 

(0.013) 

-0.002 

(0.012) 

N         95         95 95 95 

Hansen Chi2         5.52         4.63 1.79 0.52 

AB test for AR (1)         -2.09**         -2.05** -2.30** -2.09** 

AB test for AR (2)        1.52         1.33 1.29 1.32 
Standard errors are in parentheses. 

***, **, and * denote significance at 1%, 5%, and 10% levels, respectively. 

 

 

Table 3.7. Price supply elasticities  

 Acreage Production Yield 

 LT ST LT ST LT ST 

PP 1.524 0.416 - - 0.579 0.344 

PO 2.368 0.566 1.015 0.463 1.104 0.625 
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Table 3.8. Farm-level regression results  

 (1) (2) 

 3SLS OLS 3SLS OLS 

(Eq.1)     

𝑞𝑡−1 
0.396*** 

(0.036) 

0.395*** 

(0.038) 

0.406*** 

(0.036) 

0.407*** 

(0.038) 

𝑝𝑟𝑖𝑐𝑒𝑡−1 
0.493*** 

(0.177) 

0.463** 

(0.184) 

0.483*** 

(0.175) 

0.449** 

(0.182) 

𝑃𝑃𝑡−1 
0.455 

(0.847) 

0.583 

(0.881) 

  

𝑃𝑂𝑡−1   
3.530** 

(1.383) 

4.044*** 

(1.421) 

𝑃𝐶𝑡−1   
-0.789 

(1.029) 

-0.992 

(1.067) 

𝑎𝑐𝑡 
0.057** 

(0.025) 

0.016 

(0.024) 

0.054** 

(0.024) 

0.013 

(0.024) 

Cons 
5.760*** 

(0.421) 

5.816*** 

(0.437) 

-2.782 

(2.661) 

-3.703 

(2.729) 

𝑅2 0.324 0.328 0.337 0.340 

(Eq.2)     

𝑎𝑐𝑡−1 
0.967*** 

(0.012) 

0.968*** 

(0.012) 

0.967*** 

(0.012) 

0.968*** 

(0.012) 

𝑃𝑃𝑡−3 
0.205** 

(0.102) 

0.136 

(0.107) 

  

𝑃𝑂𝑡−3  
 0.146 

(0.173) 

0.167 

(0.180) 

𝑃𝐶𝑡−3  
 -0.090 

(0.261) 

-0.155 

(0.271) 

Cons 
-0.067 

(0.067) 

-0.044 

(0.068) 

-0.206 

(0.320) 

-0.082 

(0.331) 

𝑅2 0.926 0.926 0.926 0.926 

B-P test (𝜒2) 26.57***  25.06***  

Obs 662 
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Figure 3.1. Trends of transition acres and organic premium by variety 
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Figure 3.2. Distribution of yields (All apples) 

 

 

Figure 3.3. Distribution of acres (All apples) 

 
Figure 3.4. Distribution of prices (All 

apples) 

 

 

Figure 3.5. Distribution of yields per acre 

(All apples) 
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Figure 3.6. Distributions of yields by apple variety 

 

 

Figure 3.7. Distributions of acres by apple variety 
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Figure 3.8. Distributions of prices by apple variety 

 

 

Figure 3.9. Distributions of yields per acre by apple variety 
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