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ABSTRACT
The use of clinical prediction models to produce individualized risk estimates can facilitate the implementation of
precision psychiatry. As a source of data from large, clinically representative patient samples, electronic health re-
cords (EHRs) provide a platform to develop and validate clinical prediction models, as well as potentially implement
them in routine clinical care. The current review describes promising use cases for the application of precision
psychiatry to EHR data and considers their performance in terms of discrimination (ability to separate individuals with
and without the outcome) and calibration (extent to which predicted risk estimates correspond to observed out-
comes), as well as their potential clinical utility (weighing benefits and costs associated with the model compared to
different approaches across different assumptions of the number needed to test). We review 4 externally validated
clinical prediction models designed to predict psychosis onset, psychotic relapse, cardiometabolic morbidity, and
suicide risk. We then discuss the prospects for clinically implementing these models and the potential added value of
integrating data from evidence syntheses, standardized psychometric assessments, and biological data into EHRs.
Clinical prediction models can utilize routinely collected EHR data in an innovative way, representing a unique op-
portunity to inform real-world clinical decision making. Combining data from other sources (e.g., meta-analyses) or
enhancing EHR data with information from research studies (clinical and biomarker data) may enhance our abilities to
improve the performance of clinical prediction models.

https://doi.org/10.1016/j.biopsych.2024.02.1006
Precision psychiatry is a data-driven approach that is designed
to support the delivery of more personalized mental health
care. Clinical prediction models that produce individual-level
risk estimates can facilitate this approach (1). They have
informed clinical decision making in oncology (2,3), cardiology
(4), and primary care (5,6), thereby leading to more effective,
efficient care and improved outcomes.

Within the precision psychiatry paradigm, electronic health
records (EHRs) are key to advancing clinical prediction models in
psychiatric settings because they provide a platform to develop,
validate, and implement models using routinely collected, real-
world clinical data on a large scale. Using EHR data for clinical
prediction models has strengths (real-world data, routinely
collected, richly detailed, readily available big data, long-term
follow-up) but also has limitations (reflects existing biases; lack
of standardization; idiosyncratic, inequitable access; risks of data
leaks), which are outlined in more detail in Box 1.

There are several points regarding performance that need to
be considered before discussing clinical impact.We need clinical
prediction models that are validated not only internally (model’s
performance assessed within the population on which it was
developed) but also externally (performing well in a setting
different from the one in which it was developed). Good external
validation performance suggests that it will perform well on new
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data from new settings (7–9) but is currently underperforming
(10,11). It is important to evaluate a clinical prediction model to
understand its potential impact on real-world care. Discrimina-
tion, calibration, and clinical utility are key considerations when
evaluating a clinical prediction model (Box 2). Therefore, a good
clinical prediction model can distinguish between individuals
with (currently or in the future) and without the outcome of in-
terest (discrimination), produce risk estimates that have good
agreement with observed risk (calibration), and show superior
potential net benefit over gold-standard or other approaches
(clinical utility) in external validation.

Implementing clinical prediction models that leverage EHRs
represents a pragmatic step forward in usingwider sources of data
to improve research and health care. This paper outlines 4 varied
use cases,whichwere chosen tobest illustrate a rangeof potential
roles for EHR-based clinical prediction models for severe mental
disorders at different steps in the care pathway. These use cases
have demonstrated good performance in external validation and
seem to be suitable for implementation in existing clinical settings.
Respectively, they involve clinical predictionmodels for identifying
individuals at risk of psychosis, evaluating hospitalization risk
following discharge from early intervention services, assessing
cardiometabolic risk following a first episode of psychosis (FEP),
and screening for suicide risk in severe mental disorders.
f Biological Psychiatry. This is an open access article under the
CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Box 1. Strengths and Limitations of Using EHR Data for Clinical Prediction Models

Strengths

Real-World Data
Data are representative of all patients in the local setting and their ongoing care, not just those who are well enough to attend potentially burdensome

research assessments.

Routinely Collected
No requirement for collecting additional data because it is all collected as part of daily clinical interactions. This reduces labor and economic costs,

while avoiding additional burden and potential outcome contamination driven by asking clinicians to record a specific outcome.

Richly Detailed
As well as containing structured data on sociodemographics, diagnoses, medication, and laboratory test results, NLP can be used to extract

information (e.g., symptoms, substance use, medications) from unstructured free text (e.g., clinical notes and letters) (34). These data can be further
expanded through linkage to other sources (e.g., census data, research data).

Readily Available Big Data
EHRs are already available in many countries [90% coverage in the European Union (94)], although different systems are used in different countries.

There is therefore no need for prospective data collection, which is time-consuming and burdensome for patients and their clinicians. As a result,
the datasets available are large, presenting a promising opportunity for development and validation of generalizable clinical prediction models.

Long-Term Follow-Up
EHR data can span years instead of months of follow-up, usually seen in randomized controlled trials. This provides greater certainty in outcomes,

particularly when asserting the absence of an outcome.

Limitations

Reflects Existing Biases
Biases in health care provision, where vulnerable groups receive suboptimal or no treatment will be reflected in any model developed using EHR data

(72,73). For example, a clinical prediction model predicting future insurance costs systematically discriminated against millions of Black patients. At
any given score, Black patients were substantially sicker than White patients (90). Care is therefore needed when considering predictors,
particularly when they are proxy measurements.

Lack of Standardization
Recording of data are rarely standardized, and some key variables (e.g., diagnoses, ethnicity) are not routinely recorded as structured data in all EHR

systems (91). This can lead to differences in how these variables are recorded between sites. Similarly, because data entry is not standardized,
there can be substantial data missingness. However, the use of NLP can mitigate this by identifying these data in clinical notes and letters (34).

Idiosyncratic
Biomarker-based clinical prediction models are attractive because they may better reflect the underlying etiopathology of the disorders (72,92). Many

have been developed, but it is rare for models solely using biomarker data to be externally validated (10,93). In contrast, EHR data are designed to
capture clinically relevant information rather than data related to the mechanisms underlying disorders.

Inequitable Access
While availability is high, populations who are economically disadvantaged or marginalized are likely to be those without access to EHRs, which could

amplify disparities.

Risks of Data Leaks
Leaking of EHR data can impact patients’ lives, potentially increasing stigma and insurance premiums and reducing job opportunities due to medical

and psychiatric history (95,96). Appropriate data governance and cybersecurity regulations are therefore essential to protect patient data.

EHR, electronic health record; NLP, natural language processing.
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USE CASE 1: IDENTIFYING INDIVIDUALS AT RISK OF
PSYCHOSIS

Problem

Identifying people when they are at high risk of developing
psychosis provides a unique opportunity for illness prevention
(12–15), and over the past 25 years, this approach has been
implemented through the assessment of adolescents and
young adults at clinical high risk for psychosis (CHR-P) (16).
However, these individuals can be difficult to identify and
2 Biological Psychiatry - -, 2024; -:-–- www.sobp.org/journal
engage. Thus, even when clinical early detection services are
well resourced, only a small minority of people who develop an
FEP have previously been engaged by these specialist ser-
vices (17,18). In fact, people with FEP are more likely to have
been seen initially by generic secondary mental health
teams and emergency departments (18). This presents an
ascertainment opportunity because individuals who contact
other mental health teams may have EHRs that contain de-
mographic and clinical information. Thus, screening EHRs
provides a way to identify people who are at risk of developing

http://www.sobp.org/journal


Box 2. Definitions of Key Considerations for Clinical Prediction Model Performance: Discrimination, Calibration, and Clinical Utility

Discrimination
Ability to separate individuals with and without the outcome.
Typically measured by Harrell’s C: the proportion of randomly selected cases who receive a higher risk score than randomly selected noncases.
There is no strict cutoff for discrimination that is good enough because this depends on the context of the clinical use case and on the available

alternatives (88).

Calibration
Clinical prediction models should not only discriminate well but also provide accurate risk estimates, which are assessed by calibration.
Calibration assesses the relationship between predicted probabilities and observed risk proportions (89).
Miscalibrated models result in over- or underestimation of risk, i.e., a model may discriminate well between those with and without the outcome, but

probabilistic estimates of absolute risk may be systematically off-target, which is important if this is being communicated to the patient or used for
the clinical decision.

A miscalibrated model can lead to patients being misinformed about their true risk and may also have treatment implications: a patient may be
recommended an unnecessary intervention (overestimation) or not receive care that is needed (underestimation) (89).

Therefore, calibration is essential to prevent potential harm caused by the overestimation or underestimation of risk.

Clinical Utility
Measured by net benefit.
Allows us to weigh the benefits and costs associated with using the model.
Net benefit is compared to reference strategies (e.g., treat all, treat none, or the current gold-standard approach) across different assumptions of the

number needed to test (e.g., a number needed to test/treat of 10 equates to an odds of 1:9, indicating that missing the outcome of interest once is 9
times worse than an unnecessary intervention) (22,23).

Therefore, it considers a range of preferences for whether you are more worried about missing the outcome or giving an unnecessary intervention to
evaluate potential clinical benefit.
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FEP but have presented to mental health services with what
seemed to be other problems and may benefit from more
specialized preventive care from CHR-P services.
Approach

A transdiagnostic risk calculator for psychosis was developed
in the EHRs of South London and Maudsley NHS Foundation
Trust (SLaM) (SLaM Lambeth and Southwark; n = 33,820; 1001
events) to identify individuals at increased risk for psychosis
among patients who had presented to generic secondary
mental health services (18). The original model was developed
using a Cox proportional hazards model and included 5
literature-based predictors (age, gender, age-by-gender inter-
action, ethnicity, and ICD-10 diagnosis) to estimate the risk of
developing psychosis within 6 years (18). Discrimination per-
formance measured Harrell’s C = 0.79 (19–21) in the external
validation dataset (SLaM Croydon and Lewisham; n = 54,716;
1010 events) (18). This indicated that if a case (an individual
who developed psychosis) and a control (an individual who did
not develop psychosis) were selected from the population at
random, the case would have a 79% chance of having a higher
risk score. Miscalibration was minimal, with only slight under-
estimation of risk, particularly at lower levels of observed risk.
The risk calculator showed good clinical utility, with net ben-
efits seen for numbers needed to test between 1 and 99
compared with the defaults of treating all or treating none. This
suggests that if missing the outcome of interest is equally or up
to 99 times more harmful than an unnecessary intervention,
then there is clinical benefit in using the model (22,23).

The transdiagnostic risk calculator maintained discrimina-
tion performance in further external validations in EHR data-
sets from other sites in the United Kingdom (C = 0.73–0.79;
B

n = 13,702–33,710; 490–868 events) (24,25) and from the
United States (IBM MarketScan Commercial Database; data
from multiple, geographically dispersed U.S. states, from in-
dividuals covered by employer-sponsored health insurance
plans; C = 0.68; n = 2,430,333; 24,941 events) (26). There were
no major calibration issues, except in the U.S. external vali-
dation (24). This external validation performance indicates that
the model is transportable and is likely to perform well in new
settings outside of the one it was developed in following
recalibration, a crucial consideration in the implementation of a
clinical prediction model (27).

The transdiagnostic risk calculator was the first risk pre-
diction model in psychiatry to test its feasibility for prospective
use. An initial in vitro phase was used to navigate barriers to
implementation (28), assess the model’s acceptability, and
integrate the risk calculator into a local EHR system (29).
Following this, every individual who received their first non-
organic, nonpsychotic ICD-10 mental disorder diagnosis was
screened using the model over the course of 1 year. If an in-
dividual was estimated to have a 5% risk of developing psy-
chosis within 2 years, their clinician was contacted, and a
CHR-P assessment (30,31) was recommended. Clinician
acceptability, measured as the proportion of clinicians who
responded to the recommendations of the risk calculator, was
high (77%) (32).

The transdiagnostic risk calculator has since been refined,
with the addition of 14 symptom and substance use predictors
(33), extracted automatically from free-text clinical notes and
letters using natural language processing (NLP) algorithms
(34). This improved its discrimination to C = 0.85 in external
validation (SLaM, n = 63,854, 1662 events). Further work is
needed to test the performance of this refined model in other
settings. Additional refinements have been made to the model
iological Psychiatry - -, 2024; -:-–- www.sobp.org/journal 3
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to update risk estimates dynamically in real-time as new clin-
ical information on symptoms and substance use is recorded.
This has initially been done using recurrent neural networks
(U.S. primary and secondary care; n = 4770; 2287 events; C =
0.86) (35).

Expected Benefits and Remaining Challenges for
Clinical Implementation

Existing early detection services with access to EHRs can use
this clinical prediction model to enhance their ability to detect
CHR-P individuals. Providing CHR-P individuals with gold-
standard interventions saves £626 per person (36), which
could potentially be boosted with improved detection strate-
gies. Early detection services are often underresourced, and
digital tools could provide an inexpensive and noninvasive way
to identify potentially eligible clients who are already being
seen by other mental health teams or who may be on a waiting
list for treatment. Effective implementation is reliant on navi-
gating local governance pathways (32), appropriate resourcing
for additional assessments, and streamlining alerting and
referral pathways (29). Implementation of dynamic models re-
quires guidelines for real-world use of updated risk estimates.

The basic version of this model is freely available online at
http://psychosis-risk.net, and its use as part of a digital plat-
form is shown here (29).

USE CASE 2: EVALUATING HOSPITALIZATION RISK
FOLLOWING DISCHARGE FROM EARLY
INTERVENTION IN PSYCHOSIS SERVICES

Problem

Early intervention in psychosis (EIP) services typically provide
treatment for 2 to 3 years (37). Clinicians may then decide to
discharge individuals to primary care or to a generic mental
health team. In the 2 years following discharge, one-third of
individuals discharged to primary care are subsequently
referred to generic mental health teams, and 12% will be
hospitalized (38). During this same period, 35% of those dis-
charged directly to generic mental health teams are hospital-
ized (38). Both clinicians and people with psychosis have
raised concerns about the unpredictability of outcomes after
the completion of EIP care (39).

Approach

A clinical prediction model was developed (Oxford Health NHS
Foundation Trust; n = 831; 79 events) and externally validated
(West London NHS Foundation Trust; n = 1393; 162 events) to
predict admission to an inpatient psychiatric unit within
12 months of discharge from EIP services (40). The primary
outcome was hospitalization within 12 months of discharge.
The model was developed using logistic regression analysis,
including 8 literature-based predictors (age at discharge,
gender, ethnicity, social deprivation, diagnosis prior to
discharge, duration of EIP care, number of previous admis-
sions to a psychiatric hospital at discharge, and having a
diagnosis of a substance use disorder).

The model was internally validated through bootstrapping,
with a resulting discrimination of C = 0.76. Discrimination
declined slightly (C = 0.70) in external validation, and
4 Biological Psychiatry - -, 2024; -:-–- www.sobp.org/journal
calibration was similar to the development dataset, with un-
derestimation of risk at lower observed risk (5%–10%) and
overestimation in the low-to-mid observed risk range
(10%–20%). This suggests that the model may be generaliz-
able, at least to other EIP services in England, although it may
be slightly overfitted due to the limited number of admission
events and small sample size in the derivation dataset. Deci-
sion curve analysis demonstrated a net benefit of using the
prediction model over treating all, treating none, and clinician
discretion for a range of numbers needed to test between 2
and 5.

Expected Benefits and Remaining Challenges for
Clinical Implementation

Although the feasibility of implementing this model clinically
has yet to be assessed, by providing an estimate of the level of
risk for relapse, it could be used to inform decisions about
whether an individual’s subsequent management is likely to
require a mental health team as opposed to management in
primary care. Those at greatest risk could then be stratified to
more intensive follow-up from mental health services, while
those at lower risk could be offered monitoring in primary care,
thereby better targeting resources. EIP services save £4075
per person through avoiding hospitalization (41), which could
potentially be extended through the use of this model. Imple-
mentation in new settings could be challenging as noted
above; the sample size and event number are relatively low,
meaning that model performance and stability may not be
optimal. Collaboration across EIP services may refine the
model for future implementation. Moreover, due to differences
in service configuration, this model may not generalize to in-
ternational settings.

USE CASE 3: ASSESSING CARDIOMETABOLIC RISK
IN FEP

Problem

Cardiometabolic disorders, such as type 2 diabetes and car-
diovascular disease, are highly prevalent in people with psy-
chotic disorders (42,43) and contribute to a reduced life
expectancy of 10 to 15 years compared with the general
population (44). The average age of psychosis onset is 20.5
years (45). By the time people with psychosis are in their 40s,
up to 15% will have already died, mostly as a result of co-
morbid physical illness (46). It is possible to detect liability to
cardiometabolic disorders early through metabolic syndrome,
a group of traits including altered glucose-insulin homeostasis,
adiposity, and hypertension. Metabolic syndrome is similarly
highly prevalent in young people with psychosis (47), with traits
emerging at least from psychosis onset and exacerbated by
antipsychotic medications (48,49). Most of the existing clinical
prediction models for predicting poor cardiometabolic out-
comes were originally developed for use in the general popu-
lation, in whom cardiometabolic dysfunction typically emerges
in middle to older adulthood (50). However, because car-
diometabolic dysfunction emerges at a much earlier age in
people with psychotic disorders, existing general population–
based models substantially underpredict cardiometabolic risk
in people with psychosis.

http://psychosis-risk.net
http://www.sobp.org/journal
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Approach

The Psychosis Metabolic Risk Calculator (PsyMetRiC) was
developed to estimate risk of developing metabolic syndrome
within 6 years using clinical data collected from people with
FEP in Birmingham and Cambridgeshire/Peterborough EIP
services (n = 651; 109 events) (51). Penalized logistic regression
analysis was used including 9 literature-based predictors (age,
Black or African-Caribbean ethnicity, Asian or other ethnicity,
male sex, body mass index, current smoker, prescription of a
metabolically active antipsychotic, and high-density lipoprotein
and triglyceride concentrations) (51). The model performed well,
with C = 0.75 in external validation (SLaM, n = 510; 76 events),
with similar performance in the partial model that omitted pre-
dictors requiring blood test results (51).

This high discrimination performance has been maintained
in subsequent external validations in Switzerland (C = 0.73;
n = 558; 103 events) and Spain (C = 0.72; n = 466; 66 events)
(52), highlighting the potential for international transportability.
There was some evidence of miscalibration with overprediction
(Switzerland) and underprediction (Spain) in higher predicted
probabilities. A decision curve analysis across all validations
indicated that an additional 30% to 46% of metabolic
syndrome cases could be detected through the use of
PsyMetRiC (51,52).

Expected Benefits and Remaining Challenges for
Clinical Implementation

EIP services could use PsyMetRiC to identify individuals who
are at particular risk of developing cardiometabolic morbidity
as a result of their psychotic disorder and its treatment.
Currently, annual costs for physical morbidity in psychotic
disorders are around £2413 per person, which represents more
than half of the total amount that the NHS spends per person
on psychotic disorders (53). Therefore, the use of PsyMetRiC
could substantially reduce associated costs for the treatment
of psychotic disorders. The use of NLP to capture predictor
data, such as smoking status, from clinical notes may help
automate screening procedures. Clinical measures designed
to minimize physical morbidity, such as interventions that
target smoking, alcohol use, diet and exercise, and the se-
lection of medications that are not strongly associated with
metabolic side effects could then be preferentially offered to
this subgroup. Larger datasets could improve the performance
of PsyMetRiC by enabling additional predictors (e.g., diet and
other lifestyle behaviors), refinement of existing predictors
(e.g., more granular representation of ethnicity), and/or the
development of more sophisticated modeling strategies (e.g.,
to account for antipsychotic switching early in treatment).

PsyMetRiC is freely available as a web tool at https://
psymetric.shinyapps.io/psymetric.

USE CASE 4: SCREENING FOR SUICIDE RISK IN
SEVERE MENTAL DISORDERS

Problem

The risk of suicide in severe mental disorders is high,
approximately 17 to 20 times higher in people with schizo-
phrenia (54) or bipolar disorder (55) than in the general popu-
lation. Therefore, an accurate assessment of suicide risk is an
B

important part of routine clinical care (56–58). Such assess-
ments can form a valuable component of initial assessment
upon service entry, identifying potentially modifiable factors
and providing guidance for more intensive interventions for
patients at higher risk (59,60). Despite this, there are no spe-
cific clinical prediction models for patients with severe mental
disorders (61).

Approach

The Oxford Mental Illness and Suicide model (OxMIS) was
developed using linked Swedish registry and EHR data
(n = 58,771; 494 events) to estimate the 1-year risk of suicide in
individuals with schizophrenia spectrum or bipolar disorder
(62). It uses multiple sociodemographic and clinical predictors,
including male sex, age, previous violent crime, previous drug
use, previous alcohol use, previous self-harm, education level,
parental drug or alcohol use, parental suicide, recent antipsy-
chotic treatment, recent antidepressant treatment, current
inpatient status, length of first inpatient stay . 7 days, number
of previous episodes. 7, receiving benefits, parental psychiatric
hospitalization, and comorbid depression (62). Discrimination
performance was demonstrated in 2 external validations in
Sweden (C = 0.71, n = 16,387, 139 events) (62) and Finland (C =
0.70, n = 137,112, 1475 events) (63). Calibration was generally
adequate (62,63), with some evidence of overestimation of risk
with predicted probabilities . 5%, which applied to a very small
proportion of the sample (1.3%) (63). However, this has been
mitigated by setting 5% as the maximum possible risk level
communicated with the screening tool (63).

The clinical feasibility of the model was explored in a study
involving 38 clinicians in Spain (Barcelona and Sevilla) and
China (Changsha). Clinicians stated that the model would be
practical as part of a suicide risk assessment or treatment plan
in 93% of cases, with 89% of clinicians stating that they would
consider using it in the future (64). Half of these clinicians rated
OxMIS as providing an accurate representation of suicide risk
(64). However, no actual suicide data were recorded in this
study, and therefore, it was not possible to compare this es-
timate with the true incidence, and an optimism bias is to be
expected. A recent systematic review reported that unstruc-
tured clinical approaches were associated with a sensitivity of
31% for future suicidal acts, meaning that there are a high
number of false negatives (individuals considered to not be at
risk who later die by suicide) (65). OxMIS has higher sensitiv-
ities at 55% and 59% and a 0.5% false negative rate in
external validations. Limiting false negatives ensures that all
patients receive the relevant care they need.

Using OxMIS has been estimated to result in an overall saving
of £250 to £599 per person with severe mental illness screened
compared with a clinical assessment alone, with £662 per per-
son saved by specifically excluding false negatives (66). These
cost savings may increase further with automated predictor
retrieval using NLP, which reduces the need for manual entry of
predictor data from clinical notes and is feasible (67).

Expected Benefits and Remaining Challenges for
Clinical Implementation

OxMIS can be used as part of a clinical suicide risk assess-
ment. It could be particularly useful with people who have
iological Psychiatry - -, 2024; -:-–- www.sobp.org/journal 5
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presented with psychosis for the first time because the risk of
suicide at this stage is especially high (68). This could facilitate
the early recognition of suicide risk, underscoring safety
planning and tailoring of clinical management accordingly to
minimize risk in vulnerable subgroups and guide resource
allocation in services by excluding individuals who are at low
risk (60). It can also provide an opportunity to transparently
discuss suicide risks with patients and their family and/or
caregivers. Developing a practical framework for interpreting
OxMIS scores will require clinicians to interpret probability
scores, as they do with QRISK and Framingham scores for
cardiovascular risk and 5-year survival rates in people with
newly diagnosed cancer. It will also require clear linkage to
additional preventive measures, which will depend on effec-
tiveness and service capacity. Finally, a checklist approach to
risk assessment needs to be avoided, with OxMIS instead
being part of a range of measures to augment clinical decision
making.

OxMIS is freely available as a web tool at http://oxrisk.com/
oxmis.
DISCUSSION

These 4 use cases illustrate how EHR data can facilitate the
precision psychiatry approach. Although our examples are
varied in the populations of interest and outcomes predicted,
they demonstrate good discrimination and calibration perfor-
mance, as well as evidence of potential transportability
through external validation, and have shown potential clinical
utility (Table 1).

While a model’s predictive performance is an important
metric when evaluating its potential utility, a model with sub-
optimal performance at the individual level may still provide a
net benefit on a population level over standard care, depending
on the nature of the clinical scenario. For example, an algo-
rithm for selecting patients for clozapine treatment from among
those who had not responded to initial antipsychotic treatment
with relatively low individual-level performance still resulted in
0.10 more quality-adjusted life-years and saved £7363 per
person compared with treatment as usual on a population level
(69). Such a model can continue to be refined and improved
postimplementation (8), but if it performs too poorly, it can
erode clinician confidence and obstruct effective imple-
mentation (28). Therefore, evidence of clinical utility is essential
when considering a model for clinical use, in addition to
discrimination and calibration (70).

The application of prediction models to EHR data may also
facilitate recruitment to prospective studies and clinical trials
by enabling prescreening for participants at scale and identi-
fying individuals who are likely to receive greater benefit from
an intervention being trialed. For example, to evaluate whether
an intervention with CHR-P individuals reduces the risk of
transition to psychosis, the sample recruited must subse-
quently yield a subgroup of participants that develops psy-
chosis that is large enough to detect an effect. Using an EHR-
based clinical prediction model to identify CHR-P individuals
who have a greater risk of transition could allow the enrollment
of a sample enriched for psychosis risk, thus reducing the
sample size required. EHR data can also be useful in mitigating
the effects of participants dropping out of prospective studies
6 Biological Psychiatry - -, 2024; -:-–- www.sobp.org/journal
or clinical trials. If a participant is no longer available for a
follow-up assessment, information about their clinical out-
comes may still be accessible from their EHR if they have been
in contact with clinical services (71). To facilitate this, pseudo-
anonymized trial participant IDs would need to be linked with
local or national EHR IDs.

Ensuring that the use of clinical prediction models provides
vulnerable subpopulations with equitable care is an important
consideration, particularly because EHR data reflect the un-
derlying biases inherent in the health care system (72,73). In-
dividuals from vulnerable subpopulations (e.g., ethnic
minorities; lesbian, gay, bisexual, and transgender individuals)
may be underrepresented in training samples, which means
that these clinical prediction models may make less accurate
predictions in these groups and potentially entrench existing
biases and unfairness in health care (74,75). Testing the per-
formance of clinical prediction models across vulnerable sub-
populations should be considered to identify any weaknesses
in the model, which should be taken into account when
considering any prospective clinical use (76), and studies are
aligning with recommendations from the new STANDING
Together (https://www.datadiversity.org/recommendations)
collaboration for data diversity. Similarly, generalizability of
model performance needs to be tested in different settings.
External validation studies have rarely been conducted in
psychiatry (5% of all developed models), with international
external validation studies being even rarer and those per-
formed in the Global South even rarer still (10). None of these
models have been externally validated in the Global South,
although work is ongoing.

Several barriers to the implementation of precision psychi-
atry using EHRs remain. First, EHR systems are not interop-
erable (77,78); data from one clinical service often have a
different structure and coding than data from another service,
particularly if there are different EHR providers (79). Countries
with nationalized health systems have an advantage when
considering large-scale implementation of clinical prediction
models because the structure and coding of their EHRs are
more likely to be similar across sites. For example, it is feasible
to attain coverage of 96% of the population with EHR data for
research in the United Kingdom (80). Furthermore, research
measures, such as symptom severity or standardized outcome
measures, are not consistently incorporated in EHRs (81),
which limits the data available to use as predictors in models.
There are ongoing programs that are seeking to address these
issues through co-designed, integrated EHR and clinical de-
cision support systems (82). Second, information governance
and cybersecurity regulations are important, but they can be
complex, and again, these typically differ between sites. Even
across Europe, while General Data Protection Regulation is
commonly used, its interpretation varies across countries (83).
It is therefore essential to have local support at sites to
champion implementation. Third, while NLP models can
improve the performance or feasibility of automated screening,
they are not 100% accurate, even with the most advanced
models. This can lead to inconsistencies in NLP algorithms for
the same concept at different centers, which adds noise to
validation studies. Furthermore, there is a language bias
because NLP algorithms are language specific and require
additional work to allow international validation and

http://oxrisk.com/oxmis
http://oxrisk.com/oxmis
https://www.datadiversity.org/recommendations
http://www.sobp.org/journal


Table 1. Summary of Use Case Background, Model Performance, and Implementation

Use Case Population Aim Version Settings Discrimination Calibration
NNT With

Clinical Utility Implementation
Alternative Externally
Validated Models

Use Case 1 Individuals
receiving their
first ICD-10
mental disorder
diagnosis in
secondary care

Predict risk of
psychosis onset

Basic United Kingdom,
United States

When all
predictors
available C =
0.73–0.79.
When
ethnicity was
absent and
imputed C =
0.68.

Good calibration
when all
predictors
available. Some
miscalibration
when ethnicity
was absent.

1–99a 12-month prospective
feasibility of
implementation
study. Clinician
adherence was high
(77%).

No models for identifying
individuals at risk of
developing psychosis.
Two models for
predicting psychosis
onset in CHR-P
individuals (88): one
using clinical and
cognitive variables
(C = 0.70–0.79)
(89–91), and the other
combining clinical,
cognitive, and
biomarker data (BAC =
71.3) (92).

NLP United Kingdom C = 0.85 No major
calibration
issues.

NR No

Use Case 2 Patients about to
be discharged
from EIP care

Predict risk of
hospitalization
following
discharge

N/A United Kingdom C = 0.70 Underestimation of
risk at lower
observed risk
(5%–10%) and
overestimation at
the low-to-mid
observed risk
range (10%–

20%).

2–5 No Two models predicting
remission from FEP
within 6 weeks (C =
0.68) (93) and 1 year
(C = 0.68) (94) using
clinical data. No
models exist
predicting outcomes
postdischarge from
EIP care.

Use Case 3 Young people with
FEP

Predict risk of
metabolic
syndrome

Full United Kingdom,
Spain,
Switzerland

C = 0.72–0.75 Some
miscalibration in
higher predicted
probabilities.

5–35a No No other models
developed and
validated for
populations with
severe mental disorder
(106).

Partial United Kingdom,
Spain,
Switzerland

C = 0.66–0.71 Marginally more
pronounced
miscalibration in
higher predicted
probabilities.

5–35a No

Use Case 4 Patients with
severe mental
disorders

Predict risk of
suicide

N/A Finland, Sweden C = 0.70–0.71 Some
overestimation
of risk with
predictive
probabilities
.5%, but this
relates to very
few of the
sample (1.3%).

NR Clinicians stated
that the model would
be practical in 93%
of cases. Most
clinicians (89%)
would consider
future use.

One model predicting
1-year suicide risk in
youth with bipolar
disorder using clinical
data (C = 0.78) (107).

BAC, balanced accuracy; C, Harrell’s C; CHR-P, clinical high risk for psychosis; EIP, early intervention for psychosis; FEP, first-episode psychosis; N/A, not applicable; NLP, natural language processing; NNT, number
needed to test; NR, not reported.

aPreselected maximum NNT.
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implementation. Finally, as modeling methodologies evolve
and become more complex, while model performance may
increase, so will complexity. This has implications for the
transparency and interpretability of risk estimates (75) as well
as required computing power, which could affect
implementation.

FUTURE DIRECTIONS

Clinical prediction models may find innovative ways to use
EHR data. Combining data from other sources (e.g., meta-
analyses) or enhancing EHR data with information from
research studies (clinical and biomarker data) are 2 ap-
proaches that could enhance our ability to improve the per-
formance of clinical prediction models.

For example, PETRUSHKA (Personalise Antidepressant
Treatment for Unipolar Depression Combining Individual
Choices, Risks and Big Data) (84) aims to develop a model to
predict the efficacy, acceptability, and tolerability of individual
antidepressants, combining patient’s preferences on side ef-
fects with individual-level patient data from both randomized
controlled trials from a previously published network meta-
analysis (85) and EHRs from U.K. primary care using a meta-
learner approach (https://www.psych.ox.ac.uk/research/
evidence-based-mental-health/petrushka-trial) (86).

Similarly, the Baseline Biomarker Check study aims to
incorporate standardized clinical and cognitive assessments
from patients with psychosis, along with imaging and periph-
eral blood measures into their EHRs. Complementing existing
clinical data with additional measures may extend the use of
EHR data to improve prediction of clinical outcomes, such as
the use of genetic data in EHR-based prediction models in
oncology (87).

CONCLUSIONS

EHRs provide a convenient platform to provide large-scale
data required to develop and validate clinical prediction
models, as well as the opportunity to implement them in situ
and inform real-world clinical decision making. There are
already several clinical prediction models that have shown
good performance in this context and are well positioned for
implementation and improving mental health care in the im-
mediate future.
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