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Abstract
In the (special) smoothing spline problem one considers a variational problem with a
quadratic data fidelity penalty and Laplacian regularization. Higher order regularity
can be obtained via replacing the Laplacian regulariser with a poly-Laplacian reg-
ulariser. The methodology is readily adapted to graphs and here we consider graph
poly-Laplacian regularization in a fully supervised, non-parametric, noise corrupted,
regression problem. In particular, given a dataset {xi }n

i=1 and a set of noisy labels
{yi }n

i=1 ⊂ R we let un :{xi }n
i=1 → R be the minimizer of an energy which consists

of a data fidelity term and an appropriately scaled graph poly-Laplacian term. When
yi = g(xi ) + ξi , for iid noise ξi , and using the geometric random graph, we iden-
tify (with high probability) the rate of convergence of un to g in the large data limit
n → ∞. Furthermore, our rate is close to the known rate of convergence in the usual
smoothing spline model.
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1 Introduction

Given the applications to signal processing and computer science the smoothing
spline problem has been attracting the interest of statisticians since the 1960s [1, 2].
The problem can be stated as [3]: given feature vectors {xi }n

i=1 ⊂ � ⊂ R
d and labels

{yi }n
i=1 ⊂ R minimize

E (spline)
n (u) = 1

n

n∑

i=1

|yi − u(xi )|2 + τ‖∇su‖2L2(�)
(1)

over all u ∈ Hs(�), where Hs(�) is the Sobolev space with square integrable sth
(weak) derivative on �. Here, one tries to find an unknown function u: � → R that
is trying to match the observed labels {yi }n

i=1 at {xi }n
i=1 (through the data fidelity

term 1
n

∑n
i=1 |yi − u(xi )|2) whilst being smooth in the sense of Hs regularization

(by including the regularization term τ‖∇su‖2
L2(�)

). It is important to note that the
regularity penalty is applied uniformly throughout the domain �.

Recently, the spline methodology has found use in data science and machine learn-
ing as a candidate for semi-supervised or fully-supervised learning. Zhu et al. [4]
introduced the following variational problem as a method for finding missing labels.
They assumed that for every pair of feature vectors xi , x j with i, j ∈ {1, . . . , n}
one has a measure of similarity Wi, j . Further assuming that there is no error in
the observed labels {yi }i∈Zn , where Zn � {1, . . . , n}, they proposed the variational
problem: minimize

E (ZGL)
n (u) =

n∑

i, j=1

Wi, j |u(xi ) − u(x j )|2 (2)

subject to u(xi ) = yi for all i ∈ Zn over u: {xi }n
i=1 → R. The power of this method is

that the regularization will be applied more strongly when the density of data is higher,
at least when the weights Wi, j are based on the proximity of points in the Euclidean
sense. Indeed, in the ε-graph setting, the continuum, n → ∞, limit of (2) is, up to a
multiplicative constant,

E∞(u) =
∫

�

|∇u(x)|2ρ2(x) dx (3)

where ρ is the density of the data. We see that where ρ is large the minimizer of (3)
should be smoother, and conversely when ρ is smaller the minimizer can fluctuate
more. This is typically desirable behaviour in classification tasks since the minimizer
can be expected to be approximately constant within clusters and quickly transitioning
outside of clusters where the density of data is assumed to be low.

Several types of convergence results connecting (2) to (3) exist in the literature. For
instance pointwise convergence of the objective functionals was established in [5, 6].
Rates of convergence between constrained minimizers of (2) to constrained minimiz-
ers of (3) appeared in [7]. Further results concern the convergence of the Laplacian
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operator, without rates in [8–10] and with rates in [11–14], the game theoretic Lapla-
cian in [15], the p-Laplacian in [16], and the ∞-Laplacian in [17]. However, none of
these results consider asymptotic consistency in the sense that the minimizer of (2)
converges to a “true function”. (It would bemore accurate to describe the above results
as convergence properties of themethod.) To our knowledgewe are the first to consider
consistency in the graph-based setting.

When there is uncertainty in the observed labels, minimising (2) with constraints
is not the natural model. Instead, as in (1), we can reformulate the Zhu et al. model in
the fully supervised setting with soft labels by

E (yn)
n,τ (u) = 1

n

n∑

i=1

|u(xi ) − yi |2 + τ

n2ε2

n∑

i, j=1

Wi, j |u(xi ) − u(x j )|2 (4)

where we include the correct scaling on the second term. The parameter τ controls
the weighting between regularity and matching the data: formally, τ = 0 corresponds
to the hard constrained problem. In some settings the large data limits for minimizers
of (4) can be inferred from the hard constrained problem, see [7].

To complete the generalization of the Zhu et al. model to an analogue of the spline
problem (1) we discuss higher order regularization. The Dirichlet energy E (ZGL)

n can
be written in inner product form:

E (ZGL)
n (u) = 〈�nu, u〉L2(μn)

where �n is the graph Laplacian and L2(μn) is the space of L2 functions with respect
to the empirical measureμn (defined in the following subsection). A natural method to
introduce higher order regularity is to consider higher powers of the graph-Laplacian,
in particular

E (yn)
n,τ (u) = 1

n

n∑

i=1

(u(xi ) − yi )
2 + τ 〈�s

nu, u〉L2(μn), (5)

in which case (4) is the special case of (5) with s = 1. In the context of graphs this
model was introduced in [18], although the fractional Laplacian, including non-local
and discrete versions, has been of interest in applied mathematics for much longer,
see for example [19] and references therein. As observed in [4] and (in terms of
uncertainty quantification) [20], (5) has an interpretation as a maximum a-posteriori
(MAP) estimate for the Gaussian process regression method (also known as kriging).
As an aside we mention works that have explored the connection between discrete
and continuum problems in the Bayesian setting such as [21, 22] and [23], where the
latter introduces Matérn priors on graphs and studies their continuum limits. In this
paper we use the setting of [18] to recover a labeling function g as the MAP estimator
given the data {(xi , yi )}n

i=1 and using the graph poly-Laplacian to define a prior. In
this Bayesian context, these works identify the higher-order regularizers as beneficial
for fitting functions which are expected to have higher degree of regularity. Our focus
will be on recovering the labels g as well as some of its higher order information at
the data points {xi }n

i=1 in the form of powers of the Laplacian of g.
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Theoretical analysis of splines dates back to the 1960s and we refer to [3] for an
overview of more historical works and only mention a few select (more recent) refer-
ences here related to large data limits. Convergence in norm of special splines under
various settings have been studied in [24–32] and pointwise convergence results in
[33–37]. The optimal rates of convergence for special splines were established in [38]
with rate ‖u∗

τ − g‖L2(�) = O(n− s
2s+d )where u∗

τ is the spline estimate minimizing (1).
The result in [38] further established rates of convergence of derivatives, in particular

showing ‖∇ku∗
τ − ∇k g‖L2(�) = O(n− s−k

2 s+d ). The general splines problem writes (1)
in a more abstract framework. In particular, one seeks to find u ∈ H, where H is
a reproducing kernel Hilbert space that can be decomposed H = H0 ⊕ H1, as the
minimizer of

E (gen spline)
n (u) = 1

n

n∑

i=1

|yi − Li u|2 + τ‖P1u‖2H

where Li ∈ H∗ (whereH∗ is the dual space ofH) and P1: H → H1 is the orthogonal
projection. The motivation for the model is that H1 is an infinite dimensional space
where one wants to regularise, whilst H0 is a finite dimensional space which doesn’t
need regularization. For an appropriate choice of H and Li one recovers the special
smoothing spline problem (as a special case of the general smoothing spline problem).
In particular,H0 is the space of polynomials of degree at most s andH1 is the subspace
of Hs with ∇ku = 0 for k = 0, . . . , s − 1 and norm ‖∇su‖L2 , see [39] for further
details. The general smoothing spline problem has itself attracted attention with large
data convergence in norm results appearing in [40–45] and weak convergence results
in [39].

In this paper, using the model (5), we consider the problem of non-parametric
regression of a noisy signal g observed at finitely many points that are randomly
selected from an unknown probability distribution μ on the torus T . More precisely,
we assume we are given a set of feature vectors {xi }n

i=1 ⊂ � := T and a set of
associated noisy real valued labels {yi }n

i=1 satisfying

yi = g(xi ) + ξi , (6)

from which we wish to recover the true signal g, also known as the label function. The
random variables ξi are assumed to be mean zero, sub-Gaussian and independent. Our
main results establish variance and bias estimates for the error of approximation of the
signal g and of some of its higher order information by the solution u of a variational
problem characterized by a graph PDE of the form

τ�s
nu + u = y. (7)

Up to logarithms, we establish an O(n− s
d+4s ) rate of convergence of minimizers of

E (yn)
n,τ in (5) to g. This is comparable to the O(n− s

d+2s ) rate of convergence in splines,
see [38]. Projecting the samples onto the first K eigenvectors of the graph Laplacian
gives a better rate of O(n− s

d+2s ) (the minimax rate) [46], however the optimal choice
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K depends on the Hs norm of g, which will usually be unknown. See Remarks 9
and 10 for further details.

Methods such as kernel ridge regression are closely related to smoothing spline
models. These methods use a data fidelity (on {xi }n

i=1) plus regularization on � (in
particular incorporating�’s geometry explicitly) to attempt to recover g. In that setting,
the question of how to set regularization parameters was studied in [47, 48]. Some
very recent works have focused on studying the “ridgeless case”, where one considers
the limit as one sets the regularization parameter to zero, with both positive [49] and
negative [50] results depending on the richness of the data. A related approach is to
interpolate between data points usingCm penalization [51–53] or Sobolev penalization
[54–56].

There are connections between the Gaussian process regression (kriging) method
approach that we take here and the generalized lasso model (which includes the lasso,
the fused lasso, trend filtering, and the more closely related to our work: graph fused
lasso, graph trend filtering, and Kronecker trend filtering), see for example [57]. Both
Gaussian process regression and generalized lasso attempt to recover an unknown
function g from noisy observations of the form (6) in the fully supervised setting (i.e.
for each feature vector xi we have an observation yi ). However, in the lasso models
the function g is assumed to be linear, i.e. g(x) = β · x where β is an unknown
vector which parametrises g. The fused lasso, on the other hand, uses a total variation
regularization in place of the graph poly-Laplacian considered here. In grid graphs
this has been considered in [58–60] where the estimator is shown to be minimax
(the estimator performs best amongst all other estimators in the worst case). Further
results have considered chain graphs [61], and k-NN and ε-connected graphs [62]
(the ε-connected graph setting is also the setting of this paper). In particular, the L2

convergence rate of the fused lasso on an ε-connected graph is (ignoring logarithms)

O(n− 1
d ) which at least in some settings is the minimax rate [62]. Up to logarithms,

and assuming a sufficiently smooth signal g, our basic L2 convergence rates for the
approximation of g coincide with these rates. This is also approximately the L∞
convergence rate given in [63] for the case s = 1 in (7), which is the minimax L∞ rate
given in [64]. At this point we would like to remark that our variance estimates are
meaningful and converge to zero with growing n even if the regularization parameter
τ is not scaled down to zero. Our results characterize precisely the continuum limit of
the solutions to the graph PDE (7), and are of relevance in case one were interested,
not only on denoising, but also in enforcing additional regularization. We also remark
that in our results we provide additional information about the convergence towards
g, by giving convergence rates for higher-order derivatives.

Other approaches for high order regularization that do not consider Gaussian priors
use instead a non-linear p-Laplacian operator for large enough p defined by

�
(p)
n u(xi ) = 1

nε p

n∑

j=1

Wi j (u(xi ) − u(x j ))|u(xi ) − u(x j )|p−2

(which is consistent with the definition in (8) for p = 2 and written �n := �
(2)
n ).

In the graph setting, results like those in [65] establish that solutions of a p-Dirichlet
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regularised problem converge with rate n− 1
4 to the solution of an analogue continuum

non-local variational problem; although the setting differs from ours as we scale the
connectivity of our graph to obtain a local limit whilst in [65] the connectivity of the
graph remains fixed and the limit is to a nonlocal variational problem. Naturally, the
advantage of the framework in [65] is that the dimension of the space essentially plays
no role in the analysis (depending on the precise edge model one uses) and therefore
it is enough to consider the problem in 1D (as the authors do). On the other hand,
by not scaling down the connectivity threshold it is not possible to recover the local
geometry. The same authors, in the same setting, show a rate of convergence for the
associated gradient flow [66]. As was mentioned earlier when discussing generalized
Lasso models (in particular in graph trend filtering), total variation is another tool
used to regularise regression and classification problems. This has motivated theoreti-
cal works like [67] which study the convergence of graph total variation to a continuum
weighted total variation (the same paper proposed a topology to study the convergence
that didn’t require regularity—in particular pointwise evaluation—of the continuum
function). Total variation functionals are also widely used for clustering and segmen-
tation such as in graph cut methods, for example ratio or Cheeger cuts [68, 69], graph
modularity clustering [70, 71], and Ginzburg–Landau segmentation [72–74].

Since we have observations for all feature vectors our problem is in the fully-
supervised setting. The semi-supervised setting with Laplacian regularization (closely
related to (7) with s = 1 but with hard constraints as opposed to having a penalty term)
has been considered in [7]which show an “ill-posedness result” (the labels disappear in
the large data limit) if the number of labelled points scales below a critical threshold,
and a “well-posedness result” (the labels remain in the continuum problem) when
the number of labels scales linearly with n. Using graph p-Laplacian regularization
with finite labels the authors in [15, 16] show that whether the variational problem is
asymptotically well-posed depends on the choice of p and how the graph is scaled. For
the fractional graph Laplacian with finite labels, it is shown in [18] that the problem is
ill-posed if s ≤ d

2 or the length scale on the graph is sufficiently large and conjectured
that this is sharp.

We alsomention that other approaches to regression on unknownmanifolds include
[75], where local tangent planes around points are carefully constructed to apply
regression methods in the more classical functional data setting. Our approach is
markedly different as it does not rely on the construction of extrinsic geometric objects.
In particular, once a proximity graph is defined on the data cloud, all regularisers and
the resulting PDEs become intrinsic to the graph.

Here we have reviewed a wide range of models which incorporate higher-order
regularity. From a high-level, the inclusion of higher-order regularity terms will lead
to improved fitting when the underlying source of labels has more regular dependence
on the features, and this is quantified by concrete consistency results. Furthermore,
higher-order regularizers have proved useful in smoothly propagating labels in semi-
supervised and Bayesian learning settings. This work adds to this literature in the
context of higher-order Laplacian regularization.

In the remainder of this section we define the graph and continuum operators that
are analysed in the paper, and then state our main results.
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1.1 Discrete operators

We begin by stating our basic assumptions on the data, and the graph that we use to
model it:

(A1) Assumptions on the domain � : � is a d-dimensional torus.

The assumption that� is a torus is largely to simplify our arguments; we expect the
same result to hold on manifolds without boundaries. For sets with boundaries (either
in the manifold setting or when � is an open subset of R

d ) we do not expect the same
results. This is because the rate of convergence of the graph Laplacian to its continuum
limit deteriorates near the boundary, see for example [7, Theorem 3.2]. We leave the
question of rates of convergence for regression with the graph poly-Laplacian open in
this setting.

(A2) Assumptions on the feature vectors xi : xi
iid∼ μ where μ ∈ P(�), where

P(�) is the set of probability measures on �;
(A3) Assumption on the density of μ : μ has a density ρ ∈ C∞(�) that is bounded

from above and below by positive constants, i.e. 0 < ρmin := minx∈� ρ(x) ≤
maxx∈� ρ(x) =: ρmax < +∞.

(A4) Assumptions on the graph constructed using the data {xi } :Gn := (�n, Wn)

where �n = {xi }n
i=1 are the nodes and Wn = (Wi, j )

n
i, j=1 are the edge weights

defined by Wi, j = ηε(|xi − x j |) for i �= j and Wi,i = 0. Here ηε = 1
εd η(·/ε)

and where η : [0,+∞) → [0,+∞) is assumed to satisfy:
(a) η(t) > 1

2 for all t ≤ 1
2 and η(t) = 0 for all t ≥ 1;

(b) η is decreasing.
(A5) Assumptions on the labelled data : for each i ∈ N, yi = g(xi ) + ξi , for

g ∈ H2 s+1+ d
2 (�). and ξi ∈ R are independent and identically distributed (iid),

sub-Gaussian centred noise (where sub-Gaussian by definition means there
exists C > c > 0 such that P

(|ξ j | > t
) ≤ Ce−ct2 for all t ≥ 0).

Our model assumes noise in the labels, but not in the feature vectors. An interesting
further question would be what happens if feature vectors are also noisy. This question
has been partially studied in the context of adversarial noise (where the adversary
perturbs the feature vectors) in the semi-supervised setting; the results of [76] show
that if the adversary cannot move feature vectors more than some maximum distance
then the method is still asymptotically consistent.

Remark 1 1. The assumption that g ∈ H2s+1+ d
2 is because we show ‖u∗

τ‖Hk (�) �
‖g‖Hk (�), where u∗

τ is the noiseless solution in the continuum setting (i.e. solves
τ�s

ρu + u = g where �ρ is the continuum limit of the graph Laplacian, see (12)
and compare to (7)). By Morrey’s inequality we have that u∗

τ ∈ C2s+1(�), and
hence u∗

τ solves the above equation in a strong sense (see Lemma 2.14 for details).
2. The assumptions on η are technical in nature and are imposed to facilitate some

very concrete steps in our analysis. Assumption (A4)(b) is slightly stronger than
what is typically required in related papers, and will only be used to simplify our
computations in, for example, Lemma 2.3.
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The graph Laplacian�n plays an important role in the regularization and is defined
as follows:

�n := 2

nε2
(Dn − Wn), Dn = (Di, j )

n
i, j=1 diagonal matrix with Di,i =

n∑

k=1

Wi,k .

(8)
Here we have chosen what is called the unnormalized graph Laplacian.

Throughout the paper we will denote the empirical measure μn := 1
n

∑n
i=1 δxi . We

will define an inner product with respect to a (usually probability) measure ν by

〈u, v〉L2(ν) :=
∫

�

u(x)v(x) dν(x) for u, v measurable w.r.t. ν,

and the associated L2 norm by ‖u‖L2(ν) =
√

〈u, u〉L2(ν). When ν = μn then the norm

can be written ‖u‖L2(μn) =
√

1
n

∑n
i=1 u(xi )2.

There is a small abuse in notation in how we define �n since we will also write
�n : L2(μn) → L2(μn); in this case we associate un ∈ L2(μn) with its vector rep-
resentation (un(x1), . . . , un(xn))�. With a secondary abuse of notation we can apply
�n to a continuous function on a continuum domain. That is, if u ∈ C0(�) then we
can interpret �nu = �n(u��n ) as the graph Laplacian applied to the restriction of u
onto the data points �n = {xi }n

i=1 ⊂ �.
We can define the graph derivative by ∇nu(xi , x j ) = 1

ε

√
Wi j (u j − ui ) which is

an anti-symmetric divergence (i.e. satisfies ∇nu(xi , x j ) = −∇nu(x j , xi )). Using the
norm

〈U , V 〉L2(μn⊗μn) = 1

n2

n∑

i, j=1

U (xi , x j )V (xi , x j )

on the set of anti-symmetric divergences U : {xi }n
i=1 ×{xi }n

i=1 → R we can define the
graph divergence to be the negative adjoint of the graph derivative, i.e. divnU (xi ) =
2

nε

∑n
j=1

√
Wi jU (xi , x j ). The normalization in the graph derivative is chosen so that

the graph Laplacian can be defined as the negative of the graph divergence applied to
the graph derivative: �n = −divn ◦ ∇n .

Given an = (a1, . . . , an), with ai ∈ R, we let

E (an)
n,τ (un) = 1

n

n∑

i=1

|un(xi ) − ai |2 + τ R(s)
n (un), (9)

where the regularization is given by

R(s)
n (un) = 〈�s

nun, un〉L2(μn), (10)
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and here s is a positive integer with�s
n the s-th power of the matrix. We will mostly be

concerned with the situation where an = yn = (y1, . . . , yn), which gives the energy

E (yn)
n,τ (un) = 1

n

n∑

i=1

|un(xi ) − yi |2 + τ R(s)
n (un) (11)

We will define u∗
n,τ to be the minimizer of (11). Note that when s = 1,

R(1)
n (un) = 1

n2ε2

n∑

i, j=1

Wi, j |un(xi ) − un(x j )|2

and the regularization functional is the graph Dirichlet energy. We define R(s)
n for

non-integer powers via the eigenvector–eigenvalue expansion (however our results
consider only integer powers). That is, we let (λ

(n)
i , q(n)

i ) be eigenpairs of �n then,

since {q(n)
i }n

i=1 form an orthonormal basis of L2(μn), we can write (for any s ∈ R)

R(s)
n (un) =

n∑

i=1

(λ
(n)
i )s〈un, q(n)

i 〉2
L2(μn)

.

1.2 Continuum operators

We now define the appropriate continuum operators and variational formulations. It
is well-known that as n → ∞, the operator �n converges to a continuum limit �ρ [7,
9–13, 15], where �ρ is the differential operator defined by

�ρφ := −ση

ρ
div(ρ2∇φ) (12)

and ση is the constant defined by

ση :=
∫

Rd
η(|h|)|h1|2 dh. (13)

For τ > 0 fixed, the continuum objective functional is defined by

E (g)∞,τ (u) =
∫

�

|u(x) − g(x)|2ρ(x) dx + τ R(s)∞ (u) (14)

where
R(s)∞ (u) = 〈�s

ρu, u〉L2(μ). (15)
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We will define u∗
τ to be the minimizer of (14). Again, we observe that when s = 1 the

regularization functional,

R(1)∞ (u) = ση

∫

�

|∇u(x)|2ρ2(x) dx,

is a weighted Dirichlet energy.
We remark that, by the fact that ρ is bounded from below, we may integrate by

parts to obtain

cR(s)∞ (u) ≤
∫

�

|∇su(x)|2 dx ≤ C R(s)∞ (u)

for some constants C > c > 0.
We can also define R(s)∞ for non-integer powers analogously to the discrete case.

More concretely, by the spectral theorem and the fact that � is compact, if we let
(λi , qi ) be eigenpairs of �ρ then {qi }∞i=1 form an orthonormal basis of L2(μ). In turn
we can define

R(s)∞ (u) =
∞∑

i=1

λs
i 〈u, qi 〉2L2(μ)

which is well-defined for any s ∈ R.

1.3 Main results

Our results are to bound the bias and variance of the estimator u∗
n,τ , defined as the

minimizer of E (yn)
n,τ . Following the terminology of [47] we define the variance of the

estimator by

‖u∗
n,τ − u∗

τ ��n ‖L2(μn)

where u∗
τ is the minimizer of E (g)∞,τ and ��n is the restriction to �n , and the bias is

defined to be

‖u∗
τ − g‖L2(μ).

The main results are the following.

1.3.1 L2 variance estimates

We state the L2 variance estimates in the following theorem.

Theorem 1.1 (Variance Estimates) Let Assumptions (A1)–(A5) hold and s ∈ N. We
define E (yn)

n,τ by (11) and E (g)∞,τ by (14) where R(s)
n is defined by (10), R(s)∞ by (15), �n
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by (8) and �ρ by (12). Let u∗
n,τ be the minimizer of E (yn)

n,τ and u∗
τ be the minimizer of

E (g)∞,τ . Then, for all α > 1, there exists ε0 > 0, τ0 > 0, C > c > 0 such that for all
ε, n satisfying

ε0 ≥ ε ≥ C d

√
log(n)

n
(16)

and τ ∈ (0, τ0) we have

‖u∗
n,τ − u∗

τ ��n ‖L2(μn) ≤ C

(√
log(n)

nεd
+ ε2s

τ
+ τε

)

with probability at least 1 − C
(

n−α + ne−cnεd+4s
)

.

Letgn = (g(x1), . . . , g(xn)), and letug∗
n,τ be theminimizer of the “noiseless” energy

E (gn)
n,τ . The proof of Theorem 1.1 is divided into two steps: in the first we compare u∗

n,τ

and ug∗
n,τ (corresponding to averaging in y) which gives a quantitative bound on the

effect of the noise; in the second part we compare ug∗
n,τ with u∗

τ (which corresponds to
averaging in x). We do this in Sects. 2.1 and 2.2 respectively.

Remark 2 We notice that the estimates are meaningful for fixed τ when n goes to
infinity, i.e. τ is not required to become smaller with growing n.

Remark 3 In addition to the bound in L2(μn) between u∗
n,τ and u∗

τ we are able to

show a bound between the Laplacians �
s
2
n u∗

n,τ and �
s
2
ρ u∗

τ ��n when s is even. More
precisely, our results show,

∥∥∥�
s
2
n u∗

n,τ − �
s
2
ρ u∗

τ ��n

∥∥∥
L2(μn)

≤ C

(√
log(n)

nεdτ
+ εs

τ
+ ε

)

with the same probability as in Theorem 1.1. This inequality likely generalizes to
odd s, but to prove it using the methods in this paper we would require a pointwise
convergence result for the graph derivative which is beyond the scope of the paper.

Remark 4 We offer a comparison with the estimates in [65] (although note that a direct
comparison is not possible as we scale ε → 0 whilst [65] work in the setting where
ε > 0 is fixed). If, as in [65], we fix τ > 0, and therefore absorb it into our constants,
and choose s = 1 then the error bound simplifies to

‖u∗
n,τ − u∗

τ ��n ‖L2(μn) ≤ C

(√
log(n)

nεd
+ ε

)
.

Unfortunately, optimising over ε implies a scaling in ε = εn of

εn ∼
(
log(n)

n

) 1
d+2
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which is outside of the conditions of Theorem 1.1 as (16) does not hold (one needs
nεd+4 � log(n) in order to get a high probability bound). Instead we choose εn ∼
(
log(n)

n

) 1
d+4

. With this choice the error scales as

‖u∗
n,τ − u∗

τ ��n ‖L2(μn) �
(
log(n)

n

) 1
d+4

.

The results in [65] show that for the p-Laplacian regularized problem a rate of con-

vergence n− 1
4 when d = 1, s = 1 and ε > 0 is fixed independently of n, compared to

our rate of convergence of n− 1
5 (up to logarithms).

1.3.2 L2 bias estimates

We have the following L2 bias estimate.

Theorem 1.2 (Bias Estimates) Let Assumptions (A1), (A3) hold and τ > 0, s ≥ 1 and
g ∈ Hs(�). We define E (g)∞,τ by (14) where R(s)∞ is defined by (15) and �ρ by (12). Let

u∗
τ be the minimizer of E (g)∞,τ , then

‖u∗
τ − g‖L2(μ) ≤ τ‖�s

ρg‖L2(μ).

The theorem is proved in Sect. 3.

Remark 5 We are also able to show that, for s even,

∥∥∥�
s
2
ρ (g − u∗

τ )

∥∥∥
L2(μ)

≤
√

τ

2

∥∥�s
ρg
∥∥
L2(μ)

.

1.3.3 L2 error estimates

The results from Sects. 1.3.1 and 1.3.2 can be combined to bound the error between
u∗

n,τ and g.

Theorem 1.3 Let Assumptions (A1)–(A5) hold and let s ∈ N. We define E (yn)
n,τ by (11)

where R(s)
n is defined by (10) and �n by (8). Let u∗

n,τ be the minimizer of E (yn)
n,τ . Then

for every α > 1 there exists ε0 > 0, C > c > 0 such that for all ε, n satisfying (16)
and τ ∈ (0, τ0) we have

‖u∗
n,τ − g��n ‖L2(μn) ≤ C

((
log(n)

n

)1/4
+
√
log(n)

nεd
+ ε2s

τ
+ τ

)

with probability at least 1 − C
(

n−α + ne−cnεd+4 s
)

.
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Proof By the triangle inequality and Theorem 1.2,

‖u∗
n,τ − g��n ‖L2(μn) ≤ ‖u∗

n,τ − u∗
τ ��n ‖L2(μn) + ‖u∗

τ ��n −g��n ‖L2(μn)

≤ C

(√
log(n)

nεd
+ ε2s

τ
+ ετ

)
+ ‖u∗

τ ��n −g��n ‖L2(μn) (17)

with probability at least 1 − C(n−α + ne−cnεd+4s
).

To simplify notation, let ωi = (u∗
τ (xi ) − g(xi ))

2 then

‖u∗
τ ��n −g��n ‖L2(μn) = 1

n

n∑

i=1

(u∗
τ (xi ) − g(xi ))

2 = 1

n

n∑

i=1

ωi .

We note that E[ωi ] = E[(u∗
τ (X) − g(X))2] = ‖u∗

τ − g‖2
L2(μ)

and

0 ≤ αi ≤ sup
x∈�

(
u∗

τ (x) − g(x)
)2 ≤ 2

(
‖u∗

τ‖2L∞ + ‖g‖2L∞
)

≤ M

for all τ < τ0 by Lemma 2.14 and Assumption (A5). In particular, M is independent
of n and τ . Hoeffding’s inequality: for all ζ > 0,

P

(
1

n

n∑

i=1

αi − 1

n

n∑

i=1

E[αi ] ≥ ζ

)
≤ exp

(
−2nζ 2

M2

)
,

with Theorem 1.1 implies, with probability at least 1 − e−cnζ 2 ,

‖u∗
τ − g��n ‖2L2(μn)

≤ ‖u∗
τ − g‖2

L2(μ)
+ ζ ≤ τ 2‖�s

ρg‖2L2(μ)
+ ζ.

We choose ζ 2 = α log(n)
cn so ‖u∗

τ − g��n ‖2L2(μn)
≤ τ 2‖�s

ρg‖2
L2(μ)

+ C
√

log(n)
n with

probability at least 1 − n−α . Substituting into (17) we have

‖u∗
n,τ − g��n ‖L2(μn) ≤ C

(√
log(n)

nεd
+ ε2s

τ
+ ετ + τ‖�s

ρg‖L2(μ) +
(
log(n)

n

)1/4)

with probability at least 1 − C(n−α + ne−cnεd+4s
). ��

Remark 6 In the above proof we could have obtained tighter estimates if we had
used Bernstein’s inequality instead of Hoeffding’s inequality, since the variance of the
random variables (u∗

τ (xi )−g(xi ))
2 can be easily proved to be of order τ 2. However, as

wewill see below, the loose estimates provided byHoeffding’s inequality are of strictly
smaller order than the errors that come from Theorem 1.1 and thus it is sufficient for
our purposes to use these simpler bounds.
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Remark 7 Combining Remarks 3 and 5 and using a similar strategy as the one used to
obtain the estimates in Corollary 1.3 we can also show, for even s,

∥∥∥�
s
2
n u∗

n,τ − �
s
2
ρ g��n

∥∥∥
L2(μn)

≤ C

((
log(n)

n

)1/4
+
√
log(n)

τnεd
+ εs

τ
+ ε + √

τ

)

with probability at least 1 − C
(

n−α + ne−cnεd+4s
)
.

Remark 8 When s = 1 the error simplifies to

‖u∗
n,τ − g��n ‖L2(μn) ≤ C

((
log(n)

n

)1/4
+
√
log(n)

nεd
+ ε2

τ
+ τ

)

with probability at least 1−C
(

n−α + ne−cnεd+4
)
. Choosing τ optimally with respect

to ε implies τ = ε and

‖u∗
n,τ − g��n ‖L2(μn) ≤ C

((
log(n)

n

)1/4
+
√
log(n)

nεd
+ ε

)
.

The optimal choice of ε is εn =
(
log(n)

n

) 1
d+2

, which (as in Remark 4) is outside the

admissible scaling of εn , so we choose εn ∼
(
log(n)

n

) 1
d+4

. In this regime the optimal

error is then

‖u∗
n,τ − g��n ‖L2(μn) ≤ C

(
log(n)

n

) 1
d+4

,

as the term
(
log(n)

n

)1/4
is always of smaller order. Notice that the above error rate is

approximately the minimax rate achieved for the total variation regularised problem

which, in certain cases, is up to logarithms scaling as n− 1
d [62], comparable to the

L∞ minimax rates and convergence of spline smoothing obtained in [38, 63, 64],

which are approximately n− 1
d+2 . This also coincides with the semi-supervised rate of

convergence given in [7] when the number of labeled data is linear in n.

Remark 9 For s ∈ N we can choose τ = εs so that the error simplifies to

‖u∗
n,τ − g��n ‖L2(μn) ≤ C

((
log(n)

n

)1/4
+
√
log(n)

nεd
+ εs

)
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with probability at least 1− C(n−α + ne−cnεd+4s
). If we choose εn ∼

(
M log(n)

n

) 1
d+4s

,

then the error scales as

‖u∗
n,τ − g��n ‖L2(μn) ≤ C

((
log(n)

n

)1/4
+
(
log(n)

n

) s
d+4s
)

≤ C

(
log(n)

n

) s
d+4s

(where C depends on M) with probability at least 1 − C
(
n−α + n1−cM

)
, choosing

M = 1+α
c we have that the bound holds with probability at least 1 − Cn−α . This is

close to the spline error rate, which, up to logarithms, scales as n− s
d+2s ; see [38].

Remark 10 Theminimax rates for estimating g from noisy samples (6) is n− s
2s+d when

g ∈ Hs (the rate achieved by splines). In the graph setting the minimax rate can be
obtained by projecting the samples onto the first K = K (‖g‖Hs ) eigenvectors of the
graph Laplacian [46]. Whilst this has the advantage of better rates, one must have an
a-priori estimate in the Hs norm of g in order to know K .

1.4 Outline

The rest of the paper is organized as follows. In Sect. 2 we obtain the L2 variance
estimates discussed in Sect. 1.3.1. In Sect. 3 we consider the bias of the estimation
procedure given in Sect. 1.3.2.

2 L2 variance estimates

In this section we prove the variance estimates stated precisely in Theorem 1.1. We
split the proof into two main steps. First, we compare the solution u∗

n,τ with a discrete
noiseless function ug∗

n,τ . Then, we compare the function ug∗
n,τ with u∗

τ .

2.1 Removing the noise

We start by stating the main result of the section.

Proposition 2.1 Let Assumptions (A1)–(A4) hold and s ∈ N. Let E (yn)
n,τ be defined

by (9), where R(s)
n , �n are defined by (10), (8) respectively, and let u∗

n,τ , ug∗
n,τ be the

minimizers of E (yn)
n,τ , E (gn)

n,τ respectively. Assume that ξi are iid, mean zero, sub-Gaussian
random variables. Then, for all α > 1, there exists ε0 > 0 and C > 0 such that for
any ε, n satisfying (16) and τ > 0 we have

∥∥u∗
n,τ − ug∗

n,τ

∥∥
L2(μn)

≤ C

(√
log(n)

nεd
+ ε2s

τ

)

∥∥∥�
s
2
n u∗

n,τ − �
s
2
n ug∗

n,τ

∥∥∥
L2(μn)

≤ C

(√
log(n)

nεdτ
+ εs

τ

)
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with probability at least 1 − Cn−α .

The proof of the proposition will be given at the end of the section. The strategy is
to compare the Euler–Lagrange equations associated with minimising E (yn)

n,τ and E (gn)
n,τ .

In particular, we have

1

2
∇L2(μn)E

(yn)
n,τ (un) = τ�s

nun + un − yn (18)

and therefore

τ�s
nu∗

n,τ + u∗
n,τ − yn = 0

τ�s
nug∗

n,τ + ug∗
n,τ − gn = 0. (19)

We let w∗
n,τ = u∗

n,τ − ug∗
n,τ then it follows that

τ�s
nw∗

n,τ + w∗
n,τ − (yn − gn) = 0

and w∗
n,τ minimizes E (yn−gn)

n = E (ξn)
n where ξn = (ξ1, . . . , ξn). We can write

w∗
n,τ = (τ�s

n + Id
)−1

ξn . (20)

To obtain an estimate on ‖w∗
n,τ‖L2(μn) we use an ansatz w̃n and show ‖w∗

n,τ −
w̃n‖L2(μn) ≤ C

√
log(n)

nεd and ‖w̃n‖L2(μn) ≤ Cε2s

τ
with high probability. Our choice of

ansatz is to assume that the diagonal part of �n dominates and therefore �n ≈ 2
nε2

Dn

which leads to the choice,

w̃n =
(

τ

(
2

nε2
Dn

)s

+ Id

)−1

ξn . (21)

This choice of ansatz is appropriate because �n is increasingly sparse (for instance,
if η(t) is the indicator function on [0, 1] then we have positive edge weights only
when |xi − x j | ≤ ε, and therefore each node has on the order of nεd edges, hence the

fraction of non-zero entries in W is nεd

n = εd ) and therefore well approximated by a
diagonal matrix, which with high probability will not amplify the vector ξ . We can
equivalently write

w̃n(xi ) = ξi

τ
(

2
nε2

∑n
k=1 Wi,k

)s + 1
. (22)

The following lemmas will be useful.
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Lemma 2.2 Under Assumptions (A1)–(A4) there exists C, C1, C2, c > 0 such that, if
nεd ≥ 1 then

C1 ≤ 1

n

n∑

j=1

Wi, j ≤ C2 and #
{

j : Wi, j > 0
} ≤ Cnεd

for all i = 1, . . . , n with probability at least 1 − 2ne−cnεd
.

Proof Fix i ∈ N, then Wi, j are iid for j �= i . If M = ‖ηε‖L∞(R) and σ 2 =
E
(
Wi, j − E[Wi, j ]

)2 (where the expectation E[Wi, j ] is taken over x j ) then it is
straightforward to show the bounds σ 2 ≤ Cε−d and M ≤ Cε−d . By Bernstein’s
inequality, for all t > 0,

P

⎛

⎝

∣∣∣∣∣∣

∑

j �=i

(
Wi, j − E[Wi, j ]

)
∣∣∣∣∣∣
> t

⎞

⎠ ≤ 2 exp

(
− t2

2nσ 2 + 4Mt
3

)
≤ 2 exp

(
−ct2εd

n + t

)
.

Choosing t = λn and restricting to λ ≤ 1 we have

P

⎛

⎝

∣∣∣∣∣∣

∑

j �=i

(
Wi, j − E[Wi, j ]

)
∣∣∣∣∣∣
> λn

⎞

⎠ ≤ 2 exp
(
−cnεdλ2

)
.

Hence, (recalling Wi,i = 0)

(n − 1)E[Wi, j ] − λn ≤
n∑

j=1

Wi, j ≤ (n − 1)E[Wi, j ] + λn

with probability at least 1 − 2e−cnεdλ2 . One can show that there exists C1, C2 such
that C1 ≤ E[Wi, j ] ≤ C2. For n ≥ 2 (so that n − 1 ≥ n/2),

C1

2
− λ ≤ 1

n

n∑

j=1

Wi, j ≤ C2 + λ

with probability at least 1 − 2e−cnεdλ2 . Choosing λ = C1
4 and union bounding over

i ∈ {1, . . . , n} we can conclude the first result.
The second result follows from the first by choosing ε̃ = 2ε and letting W̃i, j =

ηε̃(|xi − x j |). Then, Wi, j > 0 implies ε̃d W̃i j ≥ 0.5 and therefore #{ j : Wi, j >

0} ≤ 2ε̃d∑n
j=1 W̃i, j . Applying the first part of the lemma we have 2ε̃d∑n

j=1 W̃i, j ≤
2C2nε̃d = 2d+1C2nεd as required. ��
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Lemma 2.3 Under Assumptions (A1)–(A4) define �n and Dn by (8). Then, for all
α > 1, there exists ε0 > 0 and C > 0 such that for all ε, n satisfying (16) we have

‖�n‖op ≤ C

ε2
, ‖Dn‖op ≤ Cn, and ‖Wn‖op ≤ Cn

with probability at least 1 − Cn−α .

Proof For d ≥ 3 one can bound ‖�n‖op ≤ Cε−2 by [18, Lemma 22]. Indeed,
‖�n‖op ≤ Cε−2 whenever dW∞(μn, μ) < ε, where dW∞ is the ∞-Wasserstein
distance. By [77, Theorem 1.1] this holds with probability at least 1 − Cn−α . The
same argument is used in (23) below as one step in the proof for d = 2.

For d = 2 a small modification is required to remove the additional logarithmic
factors that are present in the scaling of dW∞(μn, μ), i.e. one has dW∞(μn, μ) ∼
(log(n))

3
4√

n
and therefore requires ε ≥ C (log(n))

3
4√

n
. However, this can be avoided by

comparing μn to a smooth approximation of μ.
In [78, Lemma 3.1] the authors show, in the Euclidean setting, that if ε = εn → 0

satisfies log n
nεd

n
→ 0 then there exists an absolutely continuous probability measure

μ̃n ∈ P(�) such that

dW∞(μn, μ̃n)

εn
→ 0 and ‖ρ − ρ̃n‖L∞(μ) → 0

where ρ̃n is the density of μ̃n . As in [14, Proposition 2.10] the proof can be modified to
give a non-asymptotic quantitative high probability bound. In particular, there exists

constants C , ε0 and θ0 such that if n− 1
d ≤ ε ≤ ε0 and θ ≤ θ0 then

dW∞(μn, μ̃n) ≤ ε and ‖ρ − ρ̃n‖L∞(μ) ≤ C(θ + ε)

with probability at least 1 − 2ne−cnθ2εd
. For the rest of the proof we fix θ = θ0 and

absorb it into the constants.
Note that ifwedefine η̄ = η((|·|−1)+) andTn :� → � satisfies‖Tn−Id‖L∞(�) ≤ ε

then

η

( |x − Tn(y)|
ε

)
≤ η

(
(|x − y| − |Tn(y) − y|)+

ε

)

≤ η

((∣∣∣∣
x − y

ε

∣∣∣∣− 1

)

+

)

= η̄

( |x − y|
ε

)
.

We choose Tn to be a transport map satisfying Tn#μ̃n = μn and ‖Tn − Id‖L∞(μ̃n) =
dW∞(μn, μ̃n) (since μ̃n has a Lebesgue density then we may apply standard optimal
transport results, in particular Brenier’s theorem, to infer existence of such a map).
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Let λmax be the largest eigenvalue of �n then, as in the proof of [18, Lemma 22],

λmax = sup
‖u‖L2(μn )

=1
〈u,�nu〉L2(μn)

≤ 4

n2εd+2 sup
‖u‖L2(μn )

=1

n∑

i, j=1

η

( |xi − x j |
ε

)
u(xi )

2

= 4

nεd+2 sup
‖u‖L2(μn )

=1

n∑

i=1

u(xi )
2
∫

�

η

( |xi − Tn(y)|
ε

)
ρ̃n(y) dy

≤ 4

nεd+2 sup
‖u‖L2(μn )

=1

n∑

i=1

u(xi )
2
∫

�

η̄

( |xi − y|
ε

)
ρ̃n(y) dy

≤ 4

nεd+2 sup
‖u‖L2(μn )

=1

n∑

i=1

u(xi )
2
∫

�

η̄

( |xi − y|
ε

)
(ρ(y) + C) dy

≤ C

ε2

(23)

since
∫
Rd η̄(|z|) dz < +∞.

Although the bound holds for probability at least 1 − Cne−cnεd
when d = 2 we

can assume that the C in (16) is sufficiently large so that nεd

log(n)
≥ α+1

c . After some

elementary algebra one has that 1 − Cne−cnεd ≥ 1 − Cn−α .
For any v ∈ L2(μn)we have, by Lemma 2.2 with probability at least 1−2ne−cnεd

,

‖Dnv‖2
L2(μn)

= 1

n

n∑

i=1

⎛

⎝v(xi )

n∑

j=1

Wi, j

⎞

⎠
2

≤ C2
2n

n∑

i=1

v(xi )
2 = C2

2n2‖v‖2
L2(μn)

which implies ‖Dn‖op ≤ C2n. The operator norm bound on Wn follows from the
bounds on the operator norms of �n , Dn and the triangle inequality. Choosing C in
Equation (16) sufficiently large we can assume that 1 − 2ne−cnεd ≥ 1 − Cn−α . ��

In fact, [18, Lemma 22], suggests the operator bound on �n is sharp (up to a
constant), that is, there exists c > 0 such that ‖�n‖op ≥ c

ε2
.

Lemma 2.4 Let Assumptions (A1)–(A4) hold and s ≥ 1, k ∈ N. Let ξi be iid, mean
zero, sub-Gaussian random variables. Define w̃n by (22) and Dn by (8). Then, for any
α > 1 there exists ε0 > 0 and C > 0 such that for all ε, n satisfying (16) and τ > 0
we have

‖Wn(Dn)
k−1w̃n‖L2(μn) ≤ Cnkε2s

τ

√
log(n)

nεd

with probability at least 1 − Cn−α .
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Proof Let us condition on a graph Gn that satisfies the two inequalities:

(i) C1 ≤ 1
n

∑n
j=1 Wi, j ≤ C2, for all i = 1, 2, . . . , n,

(ii) #
{

j : Wi, j > 0
} ≤ Cnεd for all i = 1, 2, . . . , n.

Fix i ∈ {1, 2, . . . , n} and define

q j = τWi, j

ε2snk−1

[
Dk−1

n w̃n

]

j
.

Conditioned on Gn we have that q j are zero mean and independent random variables.
Moreover, since

q j = τWi, j
(∑n

�=1 W j,�
)k−1

ξ j

ε2snk−1
(
τ
(

2
nε2

∑n
�=1 W j,�

)s + 1
)

then we have |q j | ≤ C|ξ j |
εd so q j is sub-Gaussian and ‖q j‖ψ2 ≤ C‖ξ j ‖ψ2

εd � 1
εd where

‖ · ‖ψ2 is the Birnbaum–Orlicz norm defined by

‖Q‖ψ2 := inf

{
c ≥ 0 : Ee

Q2

c2 ≤ 2

}
for a random variable Q.

By Hoeffding’s inequality, for any t > 0

P

⎛

⎝

∣∣∣∣∣∣

n∑

j=1

q j

∣∣∣∣∣∣
> t |Gn

⎞

⎠ ≤ P

⎛

⎝

∣∣∣∣∣∣

∑

j : Wi, j >0

q j

∣∣∣∣∣∣
> t |Gn

⎞

⎠

≤ 2 exp

(
− ct2
∑

j : Wi, j >0 ‖q j‖2ψ2

)

≤ 2e− ct2εd
n .

We choose t = λ

√
n log(n)

εd so

τ

ε2snk−1

∣∣∣
[
Wn Dk−1

n w̃n

]

i

∣∣∣ =
∣∣∣∣∣∣

n∑

j=1

q j

∣∣∣∣∣∣
≤ λ

√
n log(n)

εd

with probability at least 1−2n−cλ2 , conditioned on Gn . Union bounding and selecting

λ =
√

α+1
c , we then get that the above bound holds for all i ∈ {1, 2, . . . , n} with

probability at least n1−cλ2 = n−α . Hence, after absorbing α into the constant C ,

∥∥∥Wn Dk−1
n w̃n

∥∥∥
L2(μn)

≤
∥∥∥Wn Dk−1

n w̃n

∥∥∥
L∞(μn)

≤ Cnkε2s

τ

√
log(n)

nεd
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conditioned on Gn with probability at least 1 − 2n−α . Since, by Lemma 2.2, the
probability of Gn satisfying conditions (i) and (ii) is at least 1 − 2e−cnεd

, and by
choosing C sufficiently large we have that 2e−cnεd ≤ Cn−α we can conclude the
lemma. ��

To control ‖w̃n − w∗
n,τ‖L2(μn) we take advantage of the convexity of our objective

functional E (ξn)
n,τ , where we recall that ξn = yn −gn . In particular, one can easily show

that E (ξn)
n,τ satisfies

〈
∇L2(μn)E

(ξn)
n,τ (vn) − ∇L2(μn)E

(ξn)
n,τ (un), vn − un

〉

L2(μn)

= 2τ
∥∥∥�

s
2
n (vn − un)

∥∥∥
2

L2(μn)
+ 2‖un − vn‖2

L2(μn)

for any un, vn ∈ L2(μn). Hence,

‖un − vn‖L2(μn) ≤ 1

2

∥∥∥∇L2(μn)E
(ξn)
n (vn) − ∇L2(μn)E

(ξn)
n (un)

∥∥∥
L2(μn)

∥∥∥�
s
2
n (un − vn)

∥∥∥
L2(μn)

≤ 1

2
√

τ

∥∥∥∇L2(μn)E
(ξn)
n (vn) − ∇L2(μn)E

(ξn)
n (un)

∥∥∥
L2(μn)

.

Applying this bound to un = w∗
n,τ and vn = w̃n , and using the optimality of w∗

n,τ , we
have

‖w∗
n,τ − w̃n‖L2(μn) ≤ 1

2

∥∥∥∇L2(μn)E
(ξn)
n (w̃n)

∥∥∥
L2(μn)

(24)

∥∥∥�
s
2
n (w∗

n,τ − w̃n)

∥∥∥
L2(μn)

≤ 1

2
√

τ

∥∥∥∇L2(μn)E
(ξn)
n (w̃n)

∥∥∥
L2(μn)

. (25)

The next lemma will bound these gradients in order to prove L2 convergence rates.

Lemma 2.5 Let Assumptions (A1)–(A4) hold and s ∈ N. Let ξi be iid, mean zero,
sub-Gaussian, random variables. Define w̃n by (22) and w∗

n,τ by (20) where �n is
given by (8). Then, for any α > 1, there exists C > 0 such that if ε, n satisfy (16) and
τ > 0 we have

‖w̃n − w∗
n,τ‖L2(μn) ≤ C

√
log(n)

nεd

∥∥∥�
s
2
n w̃n − �

s
2
n w∗

n,τ

∥∥∥
L2(μn)

≤ C

√
log(n)

nεdτ

with probability at least 1 − Cn−α .
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Proof By the definition of w̃n , namely Equation (21) and the Fréchet derivative of

E (ξn)
n,τ , see (18) we have

1

2
∇L2(μn)E

(ξn)
n,τ (w̃n) = (τ�s

n + Id
)
w̃n − ξn

= 2sτ

nsε2s

(
(Dn − Wn)s − Ds

n

)
w̃n

= 2sτ

nsε2s

⎛

⎝

⎛

⎝
∑

χ∈{0,1}s

s∏

i=1

Dχi
n (−Wn)1−χi

⎞

⎠− Ds
n

⎞

⎠ w̃n .

Using the bounds from Lemmas 2.3 and 2.4 and their associated probability estimates,
along with the fact that we have cancelled the Ds

n term, we then may bound

1

2

∥∥∥∇L2(μn)E
(ξn)
n,τ (w̃n)

∥∥∥
L2(μn)

≤ 2sτ

nsε2s

∑

χ∈{0,1}s

Cnsε2s

τ

√
log(n)

nεd
≤ C

√
log(n)

nεd
.

This concludes the proof. ��
Our final lemma before proving Proposition 2.1 is to bound ‖w̃n‖2

L2(μn)
.

Lemma 2.6 Let Assumptions (A1)–(A4) hold and s ∈ N. Let ξi be iid, mean zero,
sub-Gaussian, random variables. Define w̃n by (22). Then, for any α > 1, there exists
C > 0 such that for all ε, n satisfying nεd ≥ 1 and τ > 0 we have

‖w̃n‖L2(μn) ≤ Cε2s

τ

with probability at least 1 − n−α .

Proof By application of Lemma 2.2 we have

‖w̃n‖2
L2(μn)

= 1

n

n∑

i=1

ξ2i(
τ
(

2
nε2

∑n
k=1 Wi,k

)s + 1
)2

≤ ε4s

4sC2s
1 τ 2n

n∑

i=1

ξ2i .

Applying a Chernoff bound we have, for all s, t ≥ 0,

P

(
n∑

i=1

ξ2i ≥ t

)
≤

E

[
es
∑n

i=1 ξ2i

]

est
=
∏n

i=1 E

[
esξ2i
]

est
.
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Choosing s = ‖ξi‖−2
�2

and t = An we have

P

(
1

n

n∑

i=1

ξ2i ≥ A

)
≤ 2ne−An‖ξi ‖−2

�2 .

Now we choose A sufficiently large so that A
‖ξi ‖2�2

≥ α + log 2 and hence

2ne−An‖ξi ‖−2
�2 ≤ e−nα ≤ n−α.

In particular, ‖w̃n‖L2(μn) ≤ Cε2 s

τ
with probability at least 1 − n−α as required. ��

The proof of Proposition 2.1 now follows from Lemmas 2.3, 2.5 and 2.6 since

‖u∗
n,τ − ug∗

n,τ‖L2(μn) ≤ ‖w∗
n,τ − w̃n‖L2(μn) + ‖w̃n‖L2(μn) ≤ C

(√
log(n)

nεd
+ ε2s

τ

)

and
∥∥∥�

s
2
n u∗

n,τ − �
s
2
n ug∗

n,τ

∥∥∥
L2(μn)

≤
∥∥∥�

s
2
n w∗

n,τ − �
s
2
n w̃n

∥∥∥
L2(μn)

+
∥∥∥�

s
2
n w̃n

∥∥∥
L2(μn)

≤
∥∥∥�

s
2
n w∗

n,τ − �
s
2
n w̃n

∥∥∥
L2(μn)

+ ‖�n‖
s
2
op‖w̃n‖L2(μn)

≤ C

(√
log(n)

nεdτ
+ εs

τ

)

with probability at least 1 − Cn−α .

2.2 Discrete-to-continuum in the noiseless case

In this subsection we prove the following estimates which relate the functions ug∗
n,τ

(the minimizer of E (gn)
n,τ defined in (9) with an = (g(x1), . . . , g(xn))) with the function

u∗
τ (the minimizer of E (g)∞,τ defined in (14)).
As in (19) we can write the Euler–Lagrange equations associated with minimizing

E (g)∞,τ by
τ�s

ρu∗
τ + u∗

τ − g = 0. (26)

Our main result for this section is the following proposition.

Proposition 2.7 Let Assumptions (A1)–(A5) hold and s ∈ N. Define �n, �ρ and ση

by (8), (12) and (13) respectively. Let ug∗
n,τ and u∗

τ satisfy (19) and (26) respectively.
Then, for any α > 1 and τ0 > 0 there exists constants ε0 > 0, C > c > 0 such that,
for any ε, n satisfying (16) and τ ∈ (0, τ0) we have

∥∥ug∗
n,τ − u∗

τ ��n

∥∥
L2(μn)

≤ Cτε

∥∥∥�
s
2
n ug∗

n,τ − �
s
2
ρ u∗

τ ��n

∥∥∥
L2(μn)

≤ Cε
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with probability at least 1 − Cn−α − Cne−cnεd+4s
.

The proof of the proposition is given in Sect. 2.2.3. The proof of Theorem 1.1
follows immediately from the triangle inequality and Propositions 2.1 and 2.7. One
of the main ingredients for proving Proposition 2.7 is the following result which is of
interest on its own.

Theorem 2.8 Let Assumptions Assumptions (A1)–(A4) hold and s ∈ N. Define �n, �ρ

and ση by (8), (12) and (13) respectively. Then, for any α > 1, there exists C > c > 0
and ε0 > 0 such that for any u ∈ C2 s+1 and ε, n satisfying (16),

∥∥(�s
n − �s

ρ

)
u
∥∥
L2(μn)

≤ Cε
(‖u‖C2s+1(�) + 1

)

with probability at least 1 − Cn−α − Cne−cnεd+4s
.

We notice that when s = 1 it is well known that the graph Laplacian is pointwise
consistent and the rate at which it converges, e.g. [12]. Theorem 2.8 generalizes this
result, and states that with high probability �s

nu → �s
ρu in an L2 sense for all s ∈ N

where u is sufficiently smooth and ε = εn satisfies a lower bound. The proof of
Theorem 2.8 is given in Sect. 2.2.2.

Before presenting a rigorous proof of Proposition 2.7, let us present a heuristic
argument. First, we write

�s
nu(x) − �s

ρu(x) = �s−1
n

(
�n − �ρ

)
v(0)(x) +

(
�s−1

n − �s−1
ρ

)
v(1)(x)

= �s−1
n

(
�n − �ρ

)
v(0)(x) + �s−2

n

(
�n − �ρ

)
v(1)(x)

+
(
�s−2

n − �s−2
ρ

)
v(2)(x)

= · · ·

=
s∑

k=1

�s−k
n

(
�n − �ρ

)
v(k−1)(x)

where v(k) = �k
ρu. We keep track of higher order errors in the pointwise consistency

of the graph Laplacian, following the method in [15] to estimate, when v ∈ Cr ,

(
�n − �ρ

)
v(x) = εE1(x) + ε2E2(x) + · · · εr−3Er−3(x) + εr−2Er−2(x) (27)

where Ei ∈ Cr−i−2. Now, heuristically one expects (with high probability)
‖� j

n Ei‖L2(μn) � ‖Ei‖C2 j (�) (when j ≤ r−i−2
2 ) and we recall a worse case (high

probability) operator norm bound ‖� j
n‖op ≤ Cε−2 j , see Lemma 2.3. Letting u = u∗

τ ,
and assuming g ∈ C1(�), we can immediately infer that u ∈ C2s+1(�) from (26)
(as a standard elliptic regularity result). We choose v = v(k−1) in (27) and note that
r = 2(s − k) + 3. Now, (with high probability)
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∥∥∥�s−k
n Ei

∥∥∥
L2(�)

=
∥∥∥∥�

i−1
2

n �
s−k− i−1

2
n Ei

∥∥∥∥
L2(�)

≤ ‖�n‖
i−1
2

op

∥∥∥∥�
s−k− i−1

2
n Ei

∥∥∥∥
L2(�)

≤ Cε1−i ‖Ei‖C2(s−k)−i+1(�) .

So, (with high probability)

∥∥∥�s−k
n

(
�n − �ρ

)
v(k−1)

∥∥∥
L2(μn)

≤
2(s−k)+1∑

i=1

εi
∥∥∥�s−k

n Ei

∥∥∥
L2(μn)

≤ Cε

2(s−k)+1∑

i=1

‖Ei‖C2(s−k)−i+1(�)

≤ Cε.

Thus,
∥∥�s

nu − �s
ρu
∥∥
L2(μn)

= O(ε) (note that C in the above inequality depends
on u, in the proof we will show that this dependence is in terms of ‖u‖C2s+1(�), i.e.∥∥�s

nu − �s
ρu
∥∥
L2(μn)

≤ Cε
(‖u‖C2 s+1(�) + 1

)
).

The above discussion is clearly formal and we spend the remainder of the section
making the proof rigorous. We do this in two stages. The first step gives operator
bounds on �n for smooth functions, i.e. quantifying ‖� j

n Ei‖L∞(μn) � ‖Ei‖C2 j (�).
The second step derives (27) from which we can prove Theorem 2.8 when combined
with the first step.

2.2.1 Operator bounds on powers of the graph Laplacian

The aim of this subsection is to prove the following proposition.

Proposition 2.9 Let Assumptions (A1)–(A4) hold and m ∈ N. Define �n by (8). Then,
for all α > 1, there exists C > c > 0 and ε0 > 0 such that for any ε, n satisfying (16)
and for all v ∈ C2m(�) we have

‖�m
n v‖L2(μn) ≤ C(‖v‖C2m (�) + 1)

with probability at least 1 − Cne−cnεd+4m−2 − Cn−α .

Let us define the non-local continuum Laplacian by

�εv(x) = 2

ε2

∫

�

ηε(|x − y|) (v(x) − v(y)) ρ(y) dy. (28)

We prove the proposition in two steps. In the first step we show ‖�m
ε v‖L2(�) ≤

C‖v‖C2m (�). In the second stepwe bound the difference ‖�m
n v−�m

ε v‖L2(μn). Initially
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we consider the casewhenm = 1,which is just the difference of�nv(x) to its expected
value �εv(x) = E [�nv(x)]. We can then bootstrap this to m > 1. Putting the two
steps together proves Proposition 2.9.

Lemma 2.10 Let Assumptions (A1), (A3) and (A4) hold, and k ∈ N. Define �ε by (28).
Then, there exists C > 0, ε0 > 0 such that for all ε ∈ (0, ε0) and for all v ∈ Ck+2(�)

we have
‖�εv‖Ck (�) ≤ C‖v‖Ck+2(�). (29)

Furthermore, if v ∈ C2k(�) then

∥∥∥�k
εv

∥∥∥
C0(�)

≤ C‖v‖C2k (�). (30)

Proof We can write, for ε sufficiently small, where ∇ above is the gradient in R
d , and

D2 the matrix of second derivatives of a function on R
d ,

�εv(x) = 2

ε2

∫

B(x,ε)

ηε(|x − y|)(v(x) − v(y))ρ(y) dy

= − 2

ε2

∫

Rd
η(|z|)

(
ε∇v(x) · z + ε2

∫ 1

0

∫ t

0
D2v(x + εsz)[z, z] ds dt

)

×
(

ρ(x) + ε

∫ 1

0
∇ρ(x + εsz) · z ds

)
dz,

by Taylor’s theorem and a change of variables. Using the reflective symmetry of η we
have

∫
Rd η(|z|)z dz = 0 and hence,

�εv(x) = −2∇v(x) ·
∫

Rd
η(|z|)z

∫ 1

0
∇ρ(x + εsz) · z ds dz

− 2ρ(x)

∫

Rd
η(|z|)

∫ 1

0

∫ t

0
D2v(x + εsz)[z, z] ds dt dz

− 2ε
∫

Rd
η(|z|)

(∫ 1

0

∫ t

0
D2v(x + εsz)[z, z] ds dt

)(∫ 1

0
∇ρ(x + εsz) · z ds

)
dz.

If v ∈ Ck+2(�) and ρ ∈ Ck+1(�) then �εv ∈ Ck(�) and moreover

‖�εv‖Ck (�)≤C
(
‖v‖Ck+1(�)‖ρ‖Ck+1(�)+ ‖v‖Ck+2(�)‖ρ‖Ck (�)+ ε‖v‖Ck+2(�)‖ρ‖Ck+1(�)

)

≤C‖v‖Ck+2(�).

This proves the first part of the lemma. Iterating the estimate (29) implies (30). ��
Now we turn to Step 2 and bounding the difference �n − �ε.
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Lemma 2.11 Let Assumptions (A1)–(A4) hold. Define �n by (8) and �ε by (28). For
any ε0 > 0 there exists C > c > 0 such that for any ε ∈ (0, ε0), p > 0, n ∈ N and
w ∈ C1(�) we have

sup
x∈�n

|(�n − �ε)w(x)| ≤ ε p‖w‖C1(�)

with probability at least 1 − Cne−cnεd+2p+2
.

Proof Fix w ∈ C1(�), x ∈ �n and let �i = 2
ε2

ηε(|x − y|) (w(x) − w(y)). So,

1

n

n∑

i=1

�i = �nw(x) and E[�i ] = �εw(x). (31)

Note that

|�i − E[�i ]| ≤ C‖w‖C1(�)

εd+1 and E [�i − E[�i ]]2 ≤
C‖w‖2

C1(�)

εd+2 .

By Bernstein’s inequality for any t > 0,

P

(
n∑

i=1

(�i − E[�i ]) ≥ t

)
≤ exp

(
− ct2εd+2

n‖w‖2
C1(�)

+ tε‖w‖C1(�)

)
.

Choosing t = nε p‖w‖C1(�) implies

P

(
n∑

i=1

(�i − E[�i ]) ≥ nε p‖w‖C1(�)

)
≤ exp

(
−cnεd+2p+2

1 + ε p+1

)
≤ exp

(
−cnεd+2p+2

)
.

Symmetrising the argument we have

∣∣∣∣∣

n∑

i=1

(�i − E[�i ])
∣∣∣∣∣ ≤ nε p‖w‖C1(�)

with probability at least 1 − 2e−cnεd+2p+2
. Substituting in (31) and union bounding

over all x ∈ �n we have proved the lemma. ��
Using the above lemma we can provide a bound on �m

n − �m
ε .

Lemma 2.12 Assume Assumptions (A1)–(A4) hold and m ∈ N. Define �n by (8) and
�ε by (28). Then, for all α > 1, there exists C > c > 0 and ε0 > 0 such that for any
ε, n satisfying (16) and v ∈ C2m−1(�) we have

∥∥�m
n v − �m

ε v
∥∥
L2(μn)

≤ C‖v‖C2m−1(�)
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with probability at least 1 − Cne−cnεd+4m−2 − Cn−α .

Proof We can write

∥∥�m
n v − �m

ε v
∥∥
L2(μn)

≤
m−1∑

i=0

∥∥∥�m−i
n �i

εv − �m−i−1
n �i+1

ε v

∥∥∥
L2(μn)

≤
m−1∑

i=0

‖�n‖m−i−1
op

∥∥∥(�n − �ε)�i
εv

∥∥∥
L2(μn)

≤ C
m−1∑

i=0

‖�i
εv‖C1(�)

≤ C
m−1∑

i=0

‖v‖C2i+2(�)

≤ C‖v‖C2m (�)

by Lemmas 2.3, 2.10 and 2.11 with probability at least 1 − Cne−cnεd+4m−2 − Cn−α .
��

2.2.2 Proof of Theorem 2.8

Now, we note that

�s
nu(x) − �s

ρu(x) = �s−1
n

(
�n − �ρ

)
v(0)(x) +

(
�s−1

n − �s−1
ρ

)
v(1)(x)

= �s−1
n

(
�n − �ρ

)
v(0)(x) + �s−2

n

(
�n − �ρ

)
v(1)(x)

+
(
�s−2

n − �s−2
ρ

)
v(2)(x)

= · · ·

=
s∑

k=1

�s−k
n

(
�n − �ρ

)
v(k−1)(x)

where v(i) = �i
ρu.

The idea is now to use pointwise convergence but to keep track of higher order terms
than the estimates that appear in [12, 15]. For example, [15] shows that if f ∈ C3 then

∣∣�n f (x) − �ρ f (x)
∣∣ ≤ C‖ f ‖C3ϑ, (32)

whereϑ ≥ ε, with probability at least 1−Cne−cnεd+2ϑ2
. Directly applying the operator

bounds we have

∥∥�s
nu − �s

ρu
∥∥
L2(μn)

≤
s∑

k=1

‖�n‖s−k
op

∥∥∥
(
�n − �ρ

)
v(k−1)

∥∥∥
L2(�)
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≤ C
s∑

k=1

ε−2(s−k)‖v(k−1)‖C3(�)ϑk

≤ C‖u‖C2s+1

s∑

k=1

ε−2(s−k)ϑk .

If we could choose ϑk = ε1+2(s−k) then the proof is immediate; however the pointwise
convergence result (32) requires ϑ ≥ ε which rules out this choice. However, we will
show that this gives the right answer, in particular, that the convergence is within εwith
probability at least 1 − Cne−cnεd+4s

. The rest of the section is devoted to removing
the assumption that ϑk ≥ ε.

Proof of Theorem 2.8 Let us fix k andwrite v = v(k−1). Then, assuming u ∈ C2 s+1(�)

we have v ∈ C2(s−k)+3(�) and so, for y sufficiently close to x ,

v(y) = v(x) +
2(s−k+1)∑

j=1

∑

i ( j)∈{1,...,d} j

a( j)
i ( j)

j∏

�=1

(
y

i ( j)
�

− x
i ( j)
�

)
+ O

(∣∣∣∣yi ( j)
�

− x
i ( j)
�

∣∣∣∣
2(s−k)+3

)

where

a( j)
i ( j) = 1

j !
∂ jv

∂x
i ( j)
1

· · · ∂x
i ( j)

j

(x),

i ( j) = (i ( j)
1 , . . . , i ( j)

j ) ∈ {1, . . . d} j and the big-O notation is understood as mean-
ing that there exists a bounded function, say �

i ( j)
�

depending on x
i ( j)
�

and y
i ( j)
�

such

that O

(∣∣∣yi ( j)
�

− x
i ( j)
�

∣∣∣
2(s−k)+3

)
= �

i ( j)
�

(x
i ( j)
�

, y
i ( j)
�

)|y
i ( j)
�

− x
i ( j)
�

|2(s−k)+3. Now we can

write

�nv(x) = 2

nε2

∑

y∈�n

Wxy(v(x) − v(y))

= − 2

nε2

∑

y∈�n

Wxy

⎡

⎣
2(s−k+1)∑

j=1

∑

i ( j)∈{1,...d} j

a( j)
i ( j)

j∏

�=1

(
y

i ( j)
�

− x
i ( j)
�

)
⎤

⎦

+ O

⎛

⎝ε2(s−k)+1

n

∑

y∈�n

Wxy

⎞

⎠ .
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By Lemma 2.2, 1
n

∑
y Wxy ≤ C for all x ∈ �n with probability at least 1− 2ne−cnεd

,

hence we can write (with probability at least 1 − 2ne−cnεd
)

�nv(x) = −
2(s−k+1)∑

j=1

∑

i ( j)∈{1,...d} j

a( j)
i ( j) I ( j)

i ( j) + O(ε2(s−k)+1)

where

I ( j)
i ( j) =

∑

y∈�n

�
( j)
i ( j) , �

( j)
i ( j) (y) = 2

nε2
Wxy

j∏

�=1

(
y( j)

i ( j)
�

− x ( j)

i ( j)
�

)
.

Note that ‖�( j)
i ( j)‖L∞ ≤ Cε j−2−d

n and E[�( j)
i ( j) (Y )2] ≤ Cε2( j−2)−d

n2
, which follows from

|�( j)
i ( j) (y)| � 1

nε2
Wxy︸︷︷︸
� 1

εd

j∏

�=1

⎛

⎜⎜⎜⎜⎝
y( j)

i ( j)
�

− x ( j)

i ( j)
�︸ ︷︷ ︸

�ε

⎞

⎟⎟⎟⎟⎠
� 1

nε2+d− j

E[�( j)
i ( j) (Y )2] � 1

n2ε4
E

⎡

⎢⎢⎢⎣W 2
xy︸︷︷︸

� 1
ε2d

j∏

�=1

(
y( j)

i ( j)
�

− x ( j)

i ( j)
�

)2

︸ ︷︷ ︸
ε2

⎤

⎥⎥⎥⎦

� 1

n2ε4+2d−2 j

∫ ∫

|x−y|≤ε

dx dy

︸ ︷︷ ︸
�εd

� 1

n2ε4+d−2 j
.

Hence, by Bernstein’s inequality

I ( j)
i ( j) = 2

ε2

∫

�

ηε(|x − y)|)
⎡

⎣
j∏

�=1

(
y

i ( j)
�

− x
i ( j)
�

)
⎤

⎦ ρ(y) dy + O(ε j−2ϑ)

= 2ε j−2
∫

Rd
η(|z|)

⎡

⎣
j∏

�=1

z
i ( j)
�

⎤

⎦ ρ(x + εz) dz + O(ε j−2ϑ)

with probability at least 1−2ne−cnεdϑ2
for all x ∈ �n . After union bounding we may

assume that the above estimate holds for all x ∈ �n , for all k = 1, . . . , s, for all j =
1, . . . , k, and for all i ( j) ∈ {1, . . . , d} j with probability at least 1 − Cne−cnεdϑ2

. We
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choose ϑ = ε2(s−k)+3− j and so, since ϑ ≥ ε2 s , the following holds with probability
at least 1 − Cne−cnεd+4s

.
Now we approximate

ρ(x + εz) =
2(s−k+1)− j∑

m=0

εm
∑

p(m)∈{1,...,d}m

b(m)

p(m)

m∏

q=1

z
p(m)

q
+ O(ε2(s−k)− j+3)

where

b(m)

p(m) = 1

m!
∂mρ

∂x
p(m)
1

· · · ∂x
p(m)

m

(x).

Hence,

I ( j)
i ( j) = 2

2(s−k+1)− j∑

m=0

∑

p(m)∈{1,...,d}m

εm+ j−2b(m)

p(m)

∫

Rd
η(|z|)

⎡

⎣
j∏

�=1

z
i ( j)
�

⎤

⎦

⎡

⎣
m∏

q=1

z
p(m)

q

⎤

⎦ dz

+ O(ε(2(s−k)+1).

Let

F( j, m) =
∑

i ( j)∈{1,...,d} j

∑

p(m)∈{1,...,d}m

a( j)
i ( j)b

(m)

p(m)C(i ( j), p(m))

and

C(i ( j), p(m)) = −2
∫

Rd
η(|z|)

⎡

⎣
j∏

�=1

z
i ( j)
�

⎤

⎦

⎡

⎣
m∏

q=1

z
p(m)

q

⎤

⎦ dz

so that

�nv(x) =
2(s−k+1)∑

j=1

2(s−k+1)− j∑

m=0

εm+ j−2F( j, m) + O(ε(2(s−k)+1).

We now look at the following terms: (i) j = 1, m = 0; (ii) j = 1, m = 1; and (iii)
j = 2, m = 0 (the terms which are potentially of order ε−1 and ε0). For (i),

C(i,∅) = −2
∫

Rd
η(|z|)zi dz = 0.

For (ii),

C(i, p) = −2
∫

Rd
η(|z|)zi z p dx =

{
0 if i �= p
−2ση if i = p.
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For (iii),

C((i1, i2),∅) = −2
∫

Rd
η(|z|)zi1zi2 dz =

{
0 if i1 �= i2
−2ση if i1 = i2.

So F(1, 0) = 0,

F(1, 1) = −2ση

d∑

i=1

a(1)
i b(1)

i = −2ση∇v(x) · ∇ρ(x),

and

F(2, 0) = −2ση

d∑

i=1

a(2)
i,i b(0) = −σηρ(x)trace(D2v(x)).

As F(1, 0)ε−1 + F(1, 1) + F(2, 0) = − ση

ρ(x)
div(ρ2∇v)(x) = �ρv(x) then we have

(adding back the k dependence on v)

�nv(k−1)(x) − �ρv(k−1)(x) =
2(s−k)+1∑

m=2

εm−1F(1, m) +
2(s−k)∑

m=1

εm F(2, m)

+
2(s−k+1)∑

j=3

2(s−k+1)− j∑

m=0

εm+ j−2F( j, m) + O(ε2(s−k)+1).

In particular, if we let F (k)
j,m(x) = F( j, m) and define E (k)(x) to satisfy

O(ε2(s−k)+1) = ε2(s−k)+1E (k)(x) then

∥∥(�s
n − �s

ρ

)
u
∥∥
L2(μn)

≤
s∑

k=1

∥∥∥�s−k
n

(
�n − �ρ

)
v(k−1)

∥∥∥
L2(μn)

≤
s∑

k=1

2(s−k)+1∑

m=2

εm−1
∥∥∥�s−k

n F (k)
1,m

∥∥∥
L2(μn)

+
s∑

k=1

2(s−k)∑

m=1

εm
∥∥∥�s−k

n F (k)
2,m

∥∥∥
L2(μn)

+
s∑

k=1

2(s−k+1)∑

j=3

2(s−k+1)− j∑

m=0

εm+ j−2
∥∥∥�s−k

n F (k)
j,m

∥∥∥
L2(μn)

+
s∑

k=1

ε2(s−k)+1
∥∥∥�s−k

n E (k)
∥∥∥
L2(μn)

.
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By Lemma 2.3 (with probability at least 1 − Cn−α) we have

ε2(s−k)+1
∥∥∥�s−k

n E (k)
∥∥∥
L2(μn)

≤ ε2(s−k)+1‖�n‖s−k
op ‖E (k)‖L2(μn) ≤ ε‖E (k)‖L2(μn).

We also have F (k)
j,m ∈ C2(s−k)+3− j and ‖F (k)

j,m‖C2(s−k)+3− j (�) ≤ C‖u‖C2 s+1(�),
therefore we have for j ≥ 3

εm+ j−2
∥∥∥�s−k

n F (k)
j,m

∥∥∥
L2(μn)

≤ εm+ j−2‖�n‖
j−3
2

op

∥∥∥∥�
2(s−k)+3− j

2
n F (k)

j,m

∥∥∥∥
L2(μn)

≤ Cεm+1
(∥∥∥F (k)

j,m

∥∥∥
C2(s−k)+3− j (�)

+ 1

)

with probability at least 1− Cn−α − Cne−cnεd+4m−2 ≥ 1− Cn−α − Cne−cnεd+2 s
by

Lemma2.3 andProposition2.9.When j = 1, 2wehave, directly fromProposition2.9,

∥∥∥�s−k
n F (k)

j,m

∥∥∥
L2(μn)

≤
∥∥∥F (k)

j,m

∥∥∥
C2(s−k)(�)

≤
∥∥∥F (k)

j,m

∥∥∥
C2(s−k)+3− j (�)

≤ C‖u‖C2s+1(�)

with probability at least 1 − Cne−cnεd+2s
. Hence,

∥∥(�s
n − �s

ρ

)
u
∥∥
L2(μn)

≤ Cε
(‖u‖C2s+1(�) + 1

)

with probability at least 1 − Cn−α − Cne−cnεd+4s
. ��

Remark 11 In our proofswe avoid attempting to establish pointwise consistency results
for the difference �s

n − �s
ρ (for arbitrary s ∈ N) when acting on smooth enough

functions, and instead by careful manipulation of the equations, we rely only on the
existing pointwise consistency results for the case s = 1 [11, 15].

2.2.3 Proof of Proposition 2.7

We start with two preliminary lemmas which will be used in the proof of Proposi-
tion 2.7.

Lemma 2.13 Let τ > 0, s > 0, �n be defined by (8) and �ρ defined by (12) where ση

is defined by (13). Assume wn and w solve

τ�s
nwn + wn = hn

τ�s
ρw + w = h

for hn ∈ L2(μn) and h ∈ L2(μ). Then,

‖wn‖L2(μn) ≤ ‖hn‖L2(μn)

‖w‖L2(μ) ≤ ‖h‖L2(μ).
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Proof Let {q(n)
i }n

i=1 be an eigenbasis of �n with non-negative eigenvalues {λ(n)
i }n

i=1.
Then wn solving τ�s

nwn + wn = hn implies

(
τ [λ(n)

i ]s + 1
)

〈wn, q(n)
i 〉L2(μn) = 〈hn, q(n)

i 〉L2(μn).

So,

‖wn‖2L2(μn)
=

n∑

i=1

∣∣∣∣
〈
wn, q(n)

i

〉

L2(μn)

∣∣∣∣
2

=
n∑

i=1

∣∣∣∣∣∣∣

〈
hn, q(n)

i

〉

L2(μn)

1 + τ
[
λ

(n)
i

]s

∣∣∣∣∣∣∣

2

≤
n∑

i=1

∣∣∣∣
〈
hn, q(n)

i

〉

L2(μn)

∣∣∣∣
2

= ‖hn‖2L2(μn)
.

The proof for ‖w‖L2(μ) ≤ ‖h‖L2(μ) is analogous. ��
Lemma 2.14 Assume Assumptions (A3) and (A5) hold and s > 0. Define �ρ by (12)
where ση is defined by (13). Let u∗

τ be the solution to (26). Then, for all τ0 > 0 there
exists C such that

sup
τ∈(0,τ0)

‖u∗
τ‖C2s+1(�) ≤ C .

Proof Let {(λi , qi )}∞i=1 be eigenpairs of �ρ . Define Hk(�) ={
u ∈ L2(μ): ∑∞

i=1 λk
i 〈u, qi 〉2L2(μ)

< +∞
}

with the norm ‖u‖2Hk (�)
=

∑∞
i=1 λk

i 〈u, qi 〉2L2(μ)
. And let Hk(�) be the usual Sobolev space with square inte-

grable kth (weak) derivative. By [18, Lemma 17] Hk(�) ⊆ Hk(�) and there exists
C > c > 0 (depending only on the choice of k) such that

C‖u‖Hk (�) ≥ ‖u‖Hk (�) ≥ c‖u‖Hk (�) for all u ∈ Hk(�).

As in the proof of Lemma 2.13 we take advanatge of the fact that 〈u∗
τ , qi 〉L2(μ) =

〈g,qi 〉L2(μ)

1+τλs
i

to infer

‖u∗
τ‖2Hk (�)

=
∞∑

i=1

λk
i 〈u∗

τ , qi 〉2L2(μ)

=
∞∑

i=1

λk
i

∣∣∣∣
〈g, qi 〉L2(μ)

1 + τλs
i

∣∣∣∣
2
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≤
∞∑

i=1

λk
i 〈q, qi 〉2L2(μ)

= ‖g‖2Hk (�)

≤ C2‖g‖2Hk (�)
.

Hence ‖u∗
τ‖Hk (�) ≤ C

c ‖g‖Hk (�). By choosing k sufficiently large and employing
Morrey’s inequality we can find C̄ such that ‖u‖C2s+1(�) ≤ C̄‖u‖Hk (�) for all u ∈
Hk(�). In particular, ‖u∗

τ‖C2 s+1(�) ≤ CC̄
c ‖g‖Hk (�) which proves the lemma. ��

Remark 12 The constant C in the previous lemma depends on the choice of k and g.
In particular, we use equivalence of norms between the spaces Hk and Hk , Morrey’s
inequality to embed C2s+1 into Hk , and the Hk norm of g. We note, however, that the
constant c depends on g only through ‖g‖Hk (�), and this dependence is linear.

We can now prove Proposition 2.7.

Proof of Proposition 2.7 We have

τ�s
nu∗

τ + u∗
τ − g = τ

(
�s

n − �s
ρ

)
u∗

τ

on �n . So, letting w = u∗
τ ��n −ug∗

n,τ we can bound

τ�s
nw + w = τ

(
�s

n − �s
ρ

)
u∗

τ .

By Lemma 2.13 and Theorem 2.8

‖w‖L2(μn) ≤ τ
∥∥(�s

n − �s
ρ

)
u∗

τ

∥∥
L2(μn)

≤ Cτε
(‖u∗

τ‖C2s+1(�) + 1
)

with probability at least 1− Cn−α − Cne−cnεd+4s
. By Lemma 2.14 ‖u∗

τ‖C2s+1(�) can
be bounded for all τ ∈ (0, τ0). This completes the proof of the first inequality.

We can derive the second inequality from the first inequality as follows

∥∥∥∥�
s
2
n ug∗

n,τ − �
s
2
ρ u∗

τ ��n

∥∥∥∥
2

L2(μn)

≤ 2

∥∥∥∥�
s
2
n ug∗

n,τ − �
s
2
n u∗

τ

∥∥∥∥
2

L2(μn)

+ 2

∥∥∥∥�
s
2
n u∗

τ − �
s
2
ρ u∗

τ ��n

∥∥∥∥
2

L2(μn)

≤ 2
∥∥∥�s

n

(
ug∗

n,τ − u∗
τ ��n

)∥∥∥
L2(μn)

∥∥∥ug∗
n,τ − u∗

τ ��n

∥∥∥
L2(μn)

+ Cε2
(
‖u∗

τ ‖Cs+1(�) + 1
)2

with probability at least 1 − Cn−α − Cne−cnεd+4s
where we have used Theorem 2.8

on the second term and the computation

∥∥∥�
s
2
n ug∗

n,τ − �
s
2
n u∗

τ

∥∥∥
2

L2(μn)
=
〈
�

s
2
n (ug∗

n,τ − u∗
τ ),�

s
2
n (ug∗

n,τ − u∗
τ )
〉

L2(μn)
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= 〈�s
n(ug∗

n,τ − u∗
τ ), ug∗

n,τ − u∗
τ

〉
L2(μn)

≤ ∥∥�s
n(ug∗

n,τ − u∗
τ )
∥∥
L2(μn)

∥∥ug∗
n,τ − u∗

τ

∥∥
L2(μn)

on the first term. Comparing the Euler–Lagrange equations we have

τ�s
n

(
ug∗

n,τ − u∗
τ ��n

)+ (ug∗
n,τ − u∗

τ

) = τ
(
�s

ρ − �s
n

)
u∗

τ .

By Theorem 2.8 we can derive the bound

∥∥�s
n

(
ug∗

n,τ − u∗
τ ��n

)∥∥
L2(μn)

≤ 1

τ

∥∥ug∗
n,τ − u∗

τ ��n

∥∥
L2(μn)

+ ∥∥(�s
ρ − �s

n

)
u∗

τ

∥∥
L2(μn)

≤ Cε
(
1 + ‖u∗

τ‖C2s+1(�)

)

with probability at least 1 − Cn−α − Cne−cnεd+4s
. Therefore,

∥∥∥�
s
2
n ug∗

n,τ − �
s
2
ρ u∗

τ ��n

∥∥∥
2

L2(μn)
≤ Cε2

(
τ + (1 + τ)‖u∗

τ‖2C2s+1(�)

)

with probability at least 1 − Cn−α − Cne−cnεd+4s
. If τ ≤ τ0 then we can bound by

Cε2 as required. ��
Putting together Propositions 2.1 and 2.7 proves Theorem 1.1 and Remark 3.

3 L2 bias estimates

Recalling that the Fréchet derivative of E (g)∞,τ is

1

2
∇L2(μ)E

(g)∞,τ (u) = τ�s
ρu + u − g

then one can easily check that the following subgradient equality holds

〈
∇L2(μ)E

(g)∞,τ (w),w − v
〉

L2(μ)
−‖w−v‖2

L2(μ)
−τ

∥∥∥∥�
s
2
ρ (w − v)

∥∥∥∥
2

L2(μ)

= E(g)∞,τ (w)−E(g)∞,τ (v)

(33)
for any v,w ∈ Hs(�). Since ∇L2(μ)E

(g)∞,τ (u∗
τ ) = 0 and g is sufficiently regular then

‖u∗
τ − g‖2

L2(μ)
+ τ

∥∥∥�
s
2
ρ (u∗

τ − g)

∥∥∥
2

L2(μ)
= E (g)∞,τ (g) − E (g)∞,τ (u

∗
τ )

=
〈
∇L2(μ)E

(g)∞,τ (g), g − u∗
τ

〉

L2(μ)
− ‖g − u∗

τ‖2L2(μ)

− τ

∥∥∥�
s
2
ρ (g − u∗

τ )

∥∥∥
2

L2(μ)
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where for the first equality we let w = u∗
τ , v = g in (33), and in the second equality

we let w = g, v = u∗
τ in (33). Hence

‖u∗
τ − g‖2

L2(μ)
+ τ

∥∥∥�
s
2
ρ (u∗

τ − g)

∥∥∥
2

L2(μ)
= 1

2

〈
∇L2(μ)E

(g)∞,τ (g), g − u∗
τ

〉

L2(μ)

≤ 1

2

∥∥∥∇L2(μ)E
(g)∞,τ (g)

∥∥∥
L2(μ)

‖g − u∗
τ‖L2(μ).

It follows that

∥∥u∗
τ − g

∥∥
L2(μ)

≤ 1

2

∥∥∥∇L2(μ)E
(g)∞,τ (g)

∥∥∥
L2(μ)

= τ
∥∥�s

ρg
∥∥
L2(μ)

and

∥∥∥�
s
2
ρ (u∗

τ − g)

∥∥∥
2

L2(μ)
≤ 1

2

∥∥∥∇L2(μ)E
(g)∞,τ (g)

∥∥∥
L2(μ)

∥∥�s
ρg
∥∥
L2(μ)

= τ

2

∥∥�s
ρg
∥∥2
L2(μ)

which proves Theorem 1.2 and Remark 5.
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