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Abstract

Optimal transport and its related problems, including optimal partial transport, have
proven to be valuable tools in machine learning for computing meaningful distances
between probability or positive measures. This success has led to a growing
interest in defining transport-based distances that allow for comparing signed
measures and, more generally, multi-channeled signals. Transport Lp distances
are notable extensions of the optimal transport framework to signed and possibly
multi-channeled signals. In this paper, we introduce partial transport Lp distances
as a new family of metrics for comparing generic signals, benefiting from the
robustness of partial transport distances. We provide theoretical background such
as the existence of optimal plans and the behavior of the distance in various limits.
Furthermore, we introduce the sliced variation of these distances, which allows for
rapid comparison of generic signals. Finally, we demonstrate the application of the
proposed distances in signal class separability and nearest neighbor classification.

1 Introduction

At the heart of Machine Learning (ML) lies the ability to measure similarities or differences between
signals existing in different domains, such as temporal, spatial, spatiotemporal grids, or even graphs
in a broader sense. The effectiveness of any ML model depends significantly on the discriminatory
power of the metrics it employs. Several criteria are desired when quantifying dissimilarities among
diverse multivariate signals, including: 1) the ability to compare signals with varying lengths, 2)
adherence to the inherent structure and geometry of the signals’ domain, 3) being invariant to local
deformation and symmetries, 4) computational efficiency, and 5) differentiability. In recent literature,
significant efforts have been dedicated to addressing these challenges. Prominent examples include
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the Dynamic Time Warping (DTW) [1] technique and its numerous extensions [2, 3, 4, 5, 6], as well
as more recent methods based on optimal transport principles [7, 8, 9, 10].

Dynamic Time Warping (DTW). DTW is a technique for comparing and aligning time series
signals that may vary in lengths or exhibit temporal distortions. To compare two signals, DTW
computes the minimal-cost alignment between the signals [1], enforcing the chronological order. The
alignment problem in DTW is solved via dynamic programming (DP) using Bellman’s recursion,
with quadratic cost in lengths of the signals. A large body of work has studied extensions of the
DTW approach. For instance, Ten Holt et al. [3] extend DTW to multivariate time series. Salvador
and Chan [4] propose FastDTW, a linear time approximation of DTW with reasonable accuracy.
To achieve robustness, Keogh and Pazzani [2] propose derivative DTW (DDTW), calculating the
minimum-cost alignment based on derivatives of input signals, while Jeong et al. [5] consider
the relative importance of alignments and propose weighted DTW (WDTW) providing robustness
against outliers. Other notable extensions include Canonical Time Warping [11] and generalized time
warping [12], which enable the application of DTW to multi-modal sequences whose instances may
have different dimensions. More recently, Cuturi & Blondel [6] provide a differentiable variant of
DTW, softDTW, allowing its seamless integration into end-to-end learning pipelines.

Optimal Transport. Optimal transport (OT) has gained recognition as a powerful tool for quantifying
dissimilarities between probability measures, finding broad applications in data science, statistics,
machine learning, signal processing, and computer vision [13, 14]. The dissimilarity metrics derived
from OT theory define a robust geometric framework for comparing probability measures, exhibiting
desirable properties such as a weak Riemannian structure [15], the concept of barycenters [16],
and parameterized geodesics [17]. However, it is important to note that OT has limitations when
it comes to comparing general multi-channel signals. OT is specifically applicable to non-negative
measures with equal total mass, restricting its use to signals that meet specific criteria: 1) single-
channel representation, 2) non-negativity, and 3) integration to a common constant, such as unity for
probability measures. In cases where signals do not fulfill these criteria, normalization or alternative
methods are required for meaningful comparison using OT.

Unbalanced and Optimal Partial Transport. Comparing non-negative measures with varying
total amounts of mass is a common requirement in physical-world applications. In such scenarios,
it is necessary to find partial correspondences or overlaps between two non-negative measures
and compare them based on their respective corresponding and non-corresponding parts. Recent
research has thus focused on extensions of the OT problem that enable the comparison of non-
negative measures with unequal mass. The Hellinger-Kantorovich distance [18, 19], optimal partial
transport (OPT) problem [20, 21, 22], Kantorovich-Rubinstein norm [23, 24] and unnormalized
optimal transport [25, 26] are some of the variants that fall under the category of "unbalanced optimal
transport" [18, 19]. These methods provide effective solutions for comparing non-negative measures
in scenarios where the total amount of mass varies. It is important to note that although the unbalanced
optimal transport methods have advanced the capabilities of comparing non-negative measures with
unequal mass, they still cannot be used to compare multi-channel signals or signals with negative
values.

Transport-Based Comparison of Generic Signals. Recent studies have proposed extensions of the
Optimal Transport (OT) framework to compare multi-channel signals that may include negative values,
while still harnessing the benefits of OT. For example, Su & Hua [8] introduced the Order-preserving
Wasserstein distance, which computes the OT problem between elements of sequences while ensuring
temporal consistency through regularization of the transportation plan. A more rigorous treatment of
the problem was proposed in [7] that led to the so-called Transportation Lp (TLp) distances. In short,
to compare two signals f and g, TLp uses the OT distance between their corresponding measures,
e.g., the Lebesgue measure, raised onto the graphs of the signals (See Section 3). Later, Zhang et
al. [10] utilized a similar approach to TLp while adding entropy regularization [27] and introduced
Time Adaptive OT (TAOT). Lastly, in Spatio-Temporal Alignments, Janati et al. [9] combine OT
with softDTW. They utilized regularized OT to capture spatial differences between time samples and
employed softDTW for temporal alignment costs.

Contributions. In this paper, we tackle the problem of comparing multi-channel signals using
transport-based methods and present a new family of metrics, denoted as PTLp, based on the optimal
partial transport framework. Our approach is motivated by the realization that while TLp distances
allow for the comparison of general signals, they require complete correspondences between input
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signals, which limits their applicability to real-world signals that often exhibit partial correspondences.
Our specific contributions are: 1) introducing a new family of metrics based on optimal partial
transport for comparing multi-channel signals, 2) providing theoretical results on existence of the
partial transport plan in the proposed metric, as well as the behavior of the distance in various limits,
3) providing the sliced variation of the proposed metric with significant computational benefits, and
4) demonstrating the robust performance of the proposed metric on nearest neighbor classification in
comparison with various recent baselines.

General Notations. We provide an extensive list of our notations in the supplementary material. Here
we provide a small subset used in the development of our proposed framework. We use R+ for the set
of postive real numbers, Rd to denote the d-dimensional Euclidean space, and Sd−1 ⊂ Rd to denote
the unit hyper-sphere. Given Ω ⊆ Rd, p ≥ 1, we use P(Ω) to denote the set of Borel probability
measures and Pp(Ω) to denote the set of probability measures with finite p’th moment defined on
a metric space (Ω, d). We use M+(Ω) to denote the set of all positive Radon measures defined on
Ω. For µ ∈ Pp(Ω), we define Lp(µ;Rk) := {f : Ω → Rk |

∫
Ω
∥f(x)∥p dµ(x) < ∞} to denote a

Banach space with the usual norm. For f : Ω → Ω̂ and measure µ in M+(Ω) we use f#µ to denote
the pushforward of measure µ through f , which is formally defined as f#µ(A) = µ(f−1(A)) for
∀A ⊆ Ω̂.

2 Background - Optimal (Partial) Transport and Their Sliced Variations

Optimal Transport. The OT problem in the Kantorovich formulation [28] is defined for two
probability measures µ and ν in P(Ω), and a lower semi-continuous cost function c : Ω2 → R+ by:

OTc(µ, ν) := inf
γ∈Π(µ,ν)

∫
Ω2

c(x, y) dγ(x, y), (1)

Here, Π(µ, ν) is the set of all joint probability measures whose marginals are µ and ν. We represent
this by π1#γ = µ and π2#γ = ν, where π1 and π2 are the canonical projection maps. If c(x, y) is a
p-th power of a metric, then the p-th root of the resulting optimal value is known as the p-Wasserstein
distance. This distance is a metric in Pp(Ω). We will ignore the subscript c if it is the default cost
∥ · ∥p. Please see the appendix for more details.

Optimal Partial Transport. The problem of Optimal Partial Transport (OPT) extends the concept of
mass transportation to include mass destruction at the source and mass creation at the target, with
corresponding penalties for such actions. More precisely, let µ, ν ∈ M+(Ω), where M+(Ω) is set of
positive Radon measures defined on Ω. Let λ ≥ 0 denote the penalty for mass creation or destruction.
Then the OPT problem is defined as:

OPTλ,c(µ, ν) := inf
γ∈Π≤(µ,ν)

∫
Ω2

c(x, y) dγ(x, y) + λ(∥µ∥TV + ∥ν∥TV − 2∥γ∥TV) (2)

where
Π≤(µ, ν) := {γ ∈ M+(Ω

2) : π1#γ ≤ µ, π2#γ ≤ ν},

π1#γ ≤ µ indicates that π1#γ is dominated by µ, i.e., for any Borel set A ⊆ Ω, π1#γ(A) ≤ µ(A),
analogously for π2#γ ≤ ν. The cost function c : Ω2 → R is lower semi-continuous (generally,
it is nonnegative), and ∥µ∥TV is the total variation (and the total mass) of µ, analogously for
∥ν∥TV, ∥γ∥TV. When the transportation cost c(x, y) is a metric, OPTλ,c(·, ·) defines a metric on
M+(Ω) (see [29, Proposition 2.10], [30, Proposition 5], [26, Section 2.1] and [31, Theorem 4]). For
simplicity of notation, we drop the c in the subscript of OT and OPT.

Sliced Transport. For one-dimensional measures, i.e., when Ω ⊆ R, both OT and OPT problems
have efficient solvers. In particular, the OT problem has a closed-form solution, and for discrete
measures with M and N ≥ M particles, it can be solved in O(N log(N)). Moreover, a quadratic
algorithm, O(MN), was recently proposed in [32] for the one-dimensional OPT problem. To extend
the computational benefits of one-dimensional OT and OPT problems to d-dimensional measures,
recent works utilize the idea of slicing, which is rooted in the Cramér–Wold theorem [33] and the
Radon Transform from the integral geometry [34, 35]. For θ ∈ Sd−1, a one-dimensional slice of
measure µ ∈ M+(Ω) can be obtained via ⟨θ, ·⟩#µ where ⟨·, ·⟩ : Ω2 → R denotes the inner product.
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Figure 1: Illustrating the fundamental idea of TLp distances. On the left, signals f and g are depicted
along with their associated measures µ and ν. In the middle, the measures µ and ν are lifted to the
graphs of f and g, respectively. On the right, the optimal transport plan is visualized, accompanied
by the corresponding transportation cost.

Then for µ, ν ∈ Pp(Ω) we can define the Sliced-OT (SOT) as:

SOT(µ, ν) :=

∫
Sd−1

OT(⟨θ, ·⟩#µ, ⟨θ, ·⟩#ν) dσ(θ), (3)

where σ ∈ P(Sd−1) is a probability measure such that supp(σ) = Sd−1, e.g., the uniform distribution
on the unit hyper-sphere. Similarly, for µ, ν ∈ M+(Ω), Sliced-OPT (SOPT) [32] can be defined as:

SOPTλ(µ, ν) :=

∫
Sd−1

OPTλ(θ)(⟨θ, ·⟩#µ, ⟨θ, ·⟩#ν) dσ(θ), (4)

where λ ∈ L1(σ;R+) is generally a projection dependent function.

3 Partial Transport for Multi-Channel Signals

In the previous section, we discussed the suitability of OT and OPT problems (and similarly, SOT and
SOPT problems) for comparing measures µ and ν in Pp(Ω) or M+(Ω), respectively. In this section,
we begin by defining a transport-based distance for multi-channel signals defined on a general class
of measures, following the work of Thorpe et al. [7] on Transport Lp distances. We then motivate
the need for partial transportation when comparing such multi-channel signals and introduce our
Partial-Transport Lp, PTLp, distance.

Transport Lp Distances. Following [7], a multi-channel signal with k channels can be defined as the
pair (f, µ) for µ ∈ Pp(Ω) and f ∈ Lp(µ;Rk) := {f : Ω → A ⊆ Rk}. We denote the set of all such
signals as

Qp(Ω;Rk) := {(f, µ)|µ ∈ Pp(Ω), f ∈ Lp(µ;Rk)}.
We name it as the transport Lp space. The TLp

β distance between two such k-dimensional signals
(f, µ) and (g, ν) in Qp(Ω;Rk) is defined as:

TLp
β((f, µ), (g, ν)) = inf

γ∈Π(µ,ν)

∫
Ω2

( 1
β
∥x− y∥p + ∥f(x)− g(y)∥p

)
dγ(x, y). (5)

For any p ∈ [1,∞) and β > 0, the TLp
β distance defines a proper metric on Qp(Ω;Rk), and

(Qp(Ω;Rk),TLp
β) is a metric space. Intuitively, the TLp

β measures the OT between measures µ and
ν raised onto the graphs of f and g. Hence, TLp

β solves an OT problem in the (d+ k)-dimensional
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(a) (b) (c)

Figure 2: Highlighting the necessity of optimal partial transport. On the left, the signals exhibit
complete correspondences, and OT successfully aligns the signals. In the middle, the signals display
partial correspondences, and employing OT for comparison results in inaccurate correspondences.
On the right, optimal partial transport (OPT) is employed, leading to the recovery of accurate partial
correspondences.

space. Figure 1 shows the core concept behind TLp distances. Notably, the TLp
β distance satisfies

the following properties:

lim
β→0

TLp
β((f, µ), (g, ν)) =

{
∥f − g∥pLp(µ) if µ = ν

∞ elsewhere
(6)

lim
β→+∞

TLp
β((f, µ), (g, ν)) = OT(f#µ, g#ν) (7)

Hence, the TLp
β distance interpolates between the Lp distance between f, g and the p-Wasserstein

distance between f#µ and g#ν.

Partial Transport Lp Distances. In many real-world scenarios, it is natural for two signals to only
partially match each other. Figure 2 illustrates this phenomenon. However, because TLp distances are
rooted in OT, they may sacrifice true correspondences in order to achieve a complete match between
the two signals (as seen in Figure 2). To address this issue, we propose extending the definition of
TLp distances to partial transport, allowing for partial matching for signal comparison.

To do so, we first expand the definition of k-dimensional signals to be defined on positive measures
rather than probability measures. Specifically, we define a signal as the pair (f, µ) where µ ∈ M+(Ω)
and f ∈ Lp(f ;Rk). We denote the set of all such signals as Q+

p (Ω;Rk), that is,

Q+
p (Ω;Rk) := {(f, µ) : µ ∈ M+(Ω), f ∈ Lp(µ;Rk)}.

We now propose our Partial Transport Lp (PTLp) distance between two signals (f, µ) and (g, ν) in
Q+

p (Ω;Rk) as:

PTLp
β,λ((f, µ), (g, ν)) = inf

γ∈Π≤(µ,ν)

∫
Ω2

(
1

β
∥x− y∥p + ∥f(x)− g(y)∥p

)
dγ(x, y)

+ λ(∥µ∥TV + ∥ν∥TV − 2∥γ∥TV) (8)

Note that as opposed to the TLp distance, the optimization in Eq. (8) is on the set of partial
correspondences Π≤(µ, ν). In practice, one often deals with discrete samples of k-dimensional
signals. Consider f and g as two k-dimensional signals with M and N samples respectively. Let
µ =

∑M
i=1 δxi

and ν =
∑N

j=1 δyj
denote the empirical distributions, where N,M ∈ N, fi = f(xi),

and gj = g(yj). In this case, the PTLp problem (8) can be written as:

PTLp
β,λ((f, µ), (g, ν)) =

∑
γ∈Π≤(1M ,1N )

(
1

β
∥xi − yj∥p + ∥fi − gj∥p)γij + λ(N +M − 2|γ|) (9)

where 1M is the M−length vector with all 1 entries and analogously 1N ;

Π≤(1M , 1N ) := {γ ∈ RM×N
+ : γ1M ≤ 1N , γT 1N ≤ 1M};

and |γ| =
∑

ij γij . In this case, we can further restrict the searching space of γ as the optimal γ will
be induced by a 1-1 mapping.

Next, we provide some of the theoretical characteristics of PTLp. First, the PTLP problem (8) admits
a minimizer, and the optimal value defines a metric in Q+

p (Ω;Rk):

5



Theorem 3.1. For any p ≥ 1, and λ, β > 0 there exists a minimizer for the PTLp problem (8).
Furthermore, for the empirical PTLp problem (9), there exists a minimizer γ ∈ Π≤(1M , 1N ) that is
induced by a 1-1 mapping. That is, the optimal γ satisfies γij ∈ {0, 1} for each i, j, and each row
and column of γ contains at most one nonzero element.
Theorem 3.2. (Q+(Ω;Rk),PTLp

β,λ) defines a metric space.

We refer to Section C in the appendix for the proofs of the above theorems and a detailed discussion
of the PTLp space Q+(Ω;Rk).

Similar to the TLp distance, we can also extend the definition for β = 0 and β = ∞ by the following
theorem:
Theorem 3.3. If λ > 0, we have

lim
β→0

PTLp
β,λ((f, µ), (g, ν)) = ∥f − g∥pLp(µ∧ν),2λ + λ(∥µ− ν∥TV) (10)

lim
β→∞

PTLp
β,λ((f, µ), (g, ν)) = OPTλ(f#µ, g#ν), (11)

where µ ∧ ν is the minimum of measure µ, ν,

∥f − g∥pLp(µ∧ν),2λ :=

∫
Ω

∥f − g∥p ∧ 2λ d(µ ∧ ν).

and ∥µ− ν∥TV is the total variation of the signed measure µ− ν.

See Section A in the appendix for the details of notations and Section D for the proof. Note, if we
take λ → ∞, we can recover (6), (7) by the above limits. We note that λ → 0 is not an interesting
case as it indicates zero cost for creation and destruction of mass, leading to an optimal γ of all zeros,
i.e., PTLp

β,0((µ, f), (ν, g)) = 0 for all (µ, f), (ν, g) ∈ Qp
+(Ω;Rk).

Sliced Extensions of TLP and PTLP. Using the connection between the TLp distance and OT
distance [7], Eq. (5) can be rewritten as

TLp
β((f, µ), (g, ν)) = OT(µ̂, ν̂) (12)

where µ̂ = (Tβ,f,p)#µ is a push-forward measure of µ by Tβ,f,p(x) =

[
xβ− 1

p

f(x)

]
, and similarly

ν̂ = (Tβ,g,p)#ν. Eq. (12) allows us to apply SOT method to the TLp distance, and have the
sliced-TLP distance as follows:

STLp
β((f, µ), (g, ν)) =

∫
Sd+k−1

OT(θ#µ̂, θ#ν̂)dσ(θ) (13)

where σ(θ) is a probability measure with non-zero density on Sd+k−1, for instance the uniform
measure on the unit sphere. Similarly, by leveraging SOPT and the relation between PTLp and OPT
(see proposition C.3), we can define Sliced PTLp as

SPTLp
β,λ((f, µ), (g, ν)) =

∫
Sd+k−1

OPTλ(θ)(θ#µ̂, θ#ν̂)dσ(θ) (14)

where λ can be defined as an L1(σ,R++) function of θ. Note that STLp
β and SPTLp

β,λ are metrics
on Q(Ω;Rk) and Q+(Ω;Rk), respectively.

Equipped with the newly proposed distances, we now demonstrate their performance in separability
and nearest neighbor classification.

4 Experiments

4.1 Separability

A valid distance should be able to separate a mixture of different classes of signals. We aim to
illustrate the separability of the PTLp distance on different classes of signals in this experiment.
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Synthetic Data
We generate the following two classes of signals on the domain [0, 1]:

S0 = {f(t) | f(t) = φ(t|x, σ0);

x = 0.98z + 0.01, z ∼ Unif[0, 1]}
S1 = {g(t) | g(t) = φ(t|x+ 0.001, σ1)− φ(t|x− 0.001, σ1);

x = 0.98z + 0.01, z ∼ Unif[0, 1]}

where φ denotes a Gaussian probability density function scaled within [0, 1], σ0 = 0.01 and σ1 =
0.01√

2
; time t ∼ Unif[0, 1]. In short, S0 is the class of signals with one positive Gaussian bump,

whereas S1 denotes the class of signals with both a positive and a negative Gaussian bumps. To
further test the robustness, we add random blip noise ϵ(t) to each signal as the second separability
experiment:

ϵ(t) = αφ(t|x, σe = 0.001
√
5) + 0.1ϵ0

where α is randomly chosen from {−0.5, 0.5}; x = 0.98z + 0.01, z ∼ Unif[0, 1]; ϵ0 is the Gaussian
noise. ϵ(t) can be considered as a tiny positive/negative bump with Gaussian oscillation.

Figure 3: Visualizing manifold learning results for two classes of signals. For original signals (top
row), both TLp and PTLp separates two classes well, but Lp fails. However, for the noisy signals
(bottom row), only PTLp shows a clear decision boundary.

Results
Figure 3 shows the 2D Multi-Dimensional Scaling (MDS) embeddings calculated from the precom-
puted pairwise Lp, TLp and PTLp distance matrices. We observe that PTLp not only achieves high
performance in separating the two classes, but also exhibits robustness to noise. When adding blips,
TLp tends to mistake the noise for the main trend and cluster signals based on the noise.

4.2 1 Nearest Neighbor Classification

Experiment setup
To demonstrate the effectiveness of our proposed PTLp metric and its sliced variant SPTLp, we test
these methods on the task of 1 Nearest Neighbor (1NN) classification, along with other baselines.

7



Given a test signal, we seek the nearest training signal with respect to each metric/divergence, and
predict the test label as that of the found nearest neighbor.

Dataset
We use three modified UCR datasets of varying lengths from [36]: Suffix, Prefix and Subsequence.
The Suffix dataset is generated by simulating scenarios when sensors are activated at different times,
thus may miss some observations from the start and record only suffix time series. Similarly, the
Prefix dataset generator imitates the sensor behavior of stopping non-deterministically and produces
only prefix time series. The Subsequence dataset contains time series that have variations on both
starting and stopping time, i.e. the sensor may only capture subsequences.

Baselines
The Lp distance between signals is known for its simplicity and efficiency, which fits signals in a
fixed temporal grid. OT-based similarity metrics, p-Wasserstein distance (OT), and TLp treat signals
/ the graph of signals as probability measures and solve the optimization problem of transporting one
probability measure to the other in the most cost-efficient way. Moreover, STLp is included in the
baselines as a fast approximation of TLp.

Unlike the Lp metric, Dynamic Time Warping (DTW) [1] applies an elastic (non-linear) warping to
temporal sequences and finds an optimal matching between the warped time series. DTW is more
robust to time distortions by its pathological alignment. An (N,M)-warping path is a sequence
p = (p1, p2, · · · , pL) with pl = (nl,ml) ∈ [1 : N ]× [1 : M ], which defines an alignment between
two sequences of length N and M that satisfies monotonicity, continuity and boundary conditions
[37]. Given a pair of temporal sequences f = {fi}Ni=0 and g = {gj}Mj=0 on the domain Ω, DTW is
calculated as

DTW(f, g) = min
p

{cp(f, g) | p is an (N,M)-warping path}, (15)

where cp(f, g) =
∑

(i,j)∈p c(fi, gj) and c(fi, gj) is the cost of moving from fi to gj . We also include
variants of DTW, namely WDTW, DDTW, and Soft-DTW (SDTW) as baselines. For SDTW, we
consider two cases for the smoothing parameter γ = 0.01 and γ = 1.

Grid search for optimal β and λ
To find the optimal β and λ for PTLp

β,λ, we perform grid search based on the 5-fold cross validation.
We use the scikit-learn built-in GridSearchCV tools for implementation. The search range for β is
set to be {10−3, 10−2, 10−1, 1, 10, 100, 103, 104}, and λ is chosen from a set of 10 evenly spaced
values from 0.1 to the radius of the raised distribution on the graph of each signal.

In SPTLp
β,λ, we also need to specify the slices, i.e. θ’s for 1 dimensional projections. We obtain the

optimal β from PTLp
β,λ. As the amount of mass that should be transported may vary across slices, we

adopt the strategy to search for the best λ for the most informative slice, and then set λ’s accordingly
for other slices. We set θ0 to be the first principle component of all signals. Note that θ0 vanishes at
dimensions corresponding to xβ− 1

p , but concentrates on f(x) in Tβ,f,p(x) =
[
xβ− 1

p ; f(x)
]

(refer
to Eq. (12) and Eq. (13)). Similarly, we implement grid search for best λθ0 corresponding to θ0.
Given θ0 and λθ0 , for a specific slice θ, λθ = ⟨θ, θ0⟩λθ0 , where ⟨·, ·⟩ denotes inner product.

Results
Table 4.2 presents the results of nearest neighbor classification using different metrics/divergences on
three subsets of the modified UCR dataset: Prefix, Subsequence, and Suffix. The table indicates that
no single metric/divergence exhibits a significant advantage over others on a single dataset. However,
SPTLp achieves the best performance on two out of three datasets and performs nearly as well as the
top performers on the remaining dataset, resulting in an overall win. It is worth noting that although
the improvement margins are small, the computational advantage of SPTLp and STLp compared to
other competitors (see Figure 2), make them more favorable choices in terms of efficiency.

4.3 Computation efficiency using Sliced PTLp

We summarize the time complexities of all methods considered in Table 2.

In implementation, DTW-based methods are solved by a dynamic programming algorithm. For
DTW, soft-DTW, we use the solvers from tslearn, which are accelerated by numba. TLp and
PTLp are solved by linear programming solvers in PythonOT, whose time complexity is cubic with
respect to the length of signals in the worst case, and quadratic in practice when the measures are

8

https://tslearn.readthedocs.io/en/stable/
https://numba.pydata.org
https://pythonot.github.io/


Table 1: Nearest neighbor classification results on the modified UCR dataset [36]. For each dataset
the top two performers are turned bold. The average for each subset, i.e., Prefix, Subsequence, and
Suffix, as well as the total average are reported. While the overall performances are close, we note that
SPTLp and STLp provide significantly faster solutions when accelerated by parallel computation
with respect to slices.

Pr
efi

x
D

at
as

et

Method PTLp SPTLp TLp STLp OT
SDTW
γ = 0.01

SDTW
γ = 1

DTW WDTW DDTW Lp

Adiac 0.23 0.26 0.23 0.22 0.08 0.21 0.19 0.19 0.03 0.29 0.25
ArrowHead 0.49 0.51 0.44 0.41 0.45 0.45 0.45 0.43 0.39 0.52 0.25
BeetleFly 0.65 0.80 0.55 0.55 0.40 0.30 0.30 0.30 0.50 0.75 0.55

DSR 0.64 0.53 0.45 0.47 0.32 0.38 0.37 0.38 0.30 0.30 0.60
DPOAG 0.68 0.68 0.65 0.64 0.59 0.65 0.63 0.65 0.42 0.42 0.55
ECG200 0.78 0.74 0.78 0.72 0.64 0.74 0.77 0.74 0.36 0.77 0.73

Ham 0.52 0.57 0.51 0.50 0.54 0.55 0.56 0.57 0.49 0.49 0.45
Herring 0.63 0.69 0.61 0.61 0.47 0.67 0.66 0.66 0.59 0.59 0.56

Lightning7 0.49 0.44 0.40 0.49 0.38 0.55 0.51 0.53 0.26 0.30 0.32
OSULeaf 0.45 0.41 0.40 0.33 0.32 0.34 0.42 0.34 0.10 0.52 0.19

Plane 0.84 0.80 0.69 0.68 0.48 0.68 0.72 0.67 0.14 0.14 0.50
ShapeletSim 0.52 0.49 0.48 0.53 0.50 0.51 0.57 0.51 0.50 0.50 0.49

SyntheticControl 0.84 0.81 0.76 0.83 0.55 0.87 0.84 0.87 0.17 0.40 0.48
Trace 0.75 0.72 0.79 0.75 0.44 0.81 0.78 0.82 0.23 0.24 0.61
Wine 0.50 0.59 0.46 0.54 0.59 0.44 0.46 0.46 0.50 0.56 0.50

Average
Prefix 0.59 0.60 0.55 0.55 0.45 0.54 0.55 0.54 0.33 0.45 0.47

Su
bs

eq
ue

nc
e

D
at

as
et

Adiac 0.17 0.14 0.17 0.17 0.05 0.12 0.12 0.12 0.03 0.18 0.05
ArrowHead 0.46 0.49 0.51 0.47 0.46 0.47 0.54 0.46 0.39 0.49 0.33
BeetleFly 0.55 0.50 0.65 0.55 0.60 0.65 0.65 0.65 0.50 0.50 0.65

DSR 0.39 0.39 0.34 0.34 0.34 0.43 0.38 0.35 0.30 0.31 0.29
DPOAG 0.63 0.65 0.65 0.63 0.54 0.60 0.58 0.60 0.42 0.60 0.54
ECG200 0.71 0.69 0.59 0.62 0.53 0.62 0.67 0.62 0.36 0.66 0.62

Ham 0.48 0.54 0.49 0.52 0.42 0.46 0.49 0.46 0.49 0.49 0.44
Herring 0.45 0.56 0.56 0.58 0.48 0.50 0.53 0.56 0.59 0.52 0.48

Lightning7 0.30 0.38 0.37 0.42 0.29 0.37 0.45 0.40 0.26 0.40 0.11
OSULeaf 0.42 0.38 0.32 0.31 0.24 0.34 0.41 0.34 0.10 0.50 0.17

Plane 0.57 0.51 0.54 0.56 0.24 0.43 0.50 0.43 0.14 0.14 0.33
ShapeletSim 0.49 0.46 0.53 0.53 0.51 0.53 0.58 0.53 0.50 0.52 0.47

SyntheticControl 0.69 0.63 0.63 0.72 0.51 0.76 0.77 0.76 0.17 0.41 0.19
Trace 0.63 0.56 0.67 0.68 0.36 0.78 0.64 0.74 0.23 0.82 0.44
Wine 0.56 0.67 0.63 0.59 0.54 0.29 0.61 0.54 0.50 0.48 0.50

Average
Subsequence 0.50 0.50 0.51 0.51 0.41 0.49 0.53 0.50 0.33 0.47 0.37

Su
ffi

x
D

at
as

et

Adiac 0.20 0.21 0.26 0.26 0.10 0.24 0.21 0.19 0.03 0.28 0.06
ArrowHead 0.45 0.49 0.42 0.45 0.43 0.42 0.43 0.42 0.39 0.65 0.29
BeetleFly 0.50 0.60 0.55 0.75 0.50 0.55 0.65 0.55 0.50 0.50 0.55

DSR 0.51 0.57 0.62 0.62 0.37 0.43 0.43 0.43 0.30 0.23 0.38
DPOAG 0.59 0.61 0.64 0.61 0.55 0.63 0.59 0.62 0.42 0.42 0.43
ECG200 0.68 0.75 0.72 0.70 0.65 0.70 0.71 0.69 0.36 0.67 0.67

Ham 0.54 0.57 0.50 0.48 0.56 0.46 0.58 0.52 0.49 0.56 0.47
Herring 0.56 0.56 0.52 0.52 0.47 0.56 0.50 0.48 0.59 0.59 0.58

Lightning7 0.49 0.52 0.51 0.58 0.32 0.52 0.62 0.51 0.26 0.44 0.19
OSULeaf 0.40 0.38 0.40 0.38 0.31 0.31 0.41 0.30 0.10 0.56 0.25

Plane 0.70 0.70 0.64 0.63 0.48 0.67 0.68 0.67 0.14 0.75 0.20
ShapeletSim 0.53 0.56 0.61 0.48 0.56 0.52 0.54 0.52 0.50 0.53 0.48

SyntheticControl 0.77 0.76 0.76 0.78 0.51 0.86 0.87 0.86 0.17 0.44 0.10
Trace 0.65 0.64 0.68 0.65 0.39 0.80 0.70 0.76 0.23 0.60 0.27
Wine 0.56 0.57 0.56 0.57 0.56 0.57 0.54 0.59 0.50 0.54 0.57

Average
Suffix 0.54 0.57 0.56 0.56 0.45 0.55 0.56 0.54 0.33 0.52 0.37

Average
Total 0.54 0.56 0.54 0.54 0.44 0.53 0.54 0.53 0.33 0.48 0.40

empirical. STLp, SPTLp can be accelerated by numba. For STLp and SPTLp, we set the number
of projections to be 50. Note, the computation of STLp and SPTLp can be further accelerated by
parallel computation with respect to slices.
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Table 2: Worst case time complexities for our proposed methods and baselines. Here N denotes the
length of the signals, d and k are the signal dimension and number of channels respectively. L is the
number of slices for sliced methods. Note that DTW and its variants used in this paper share the same
complexity, which is denoted by *DTW in the table.

Method Worst-case Complexity
PTLp O(N3(d+ k))
SPTLp O(LN((d+ k) +N + log(N)))
TLp O(N3(d+ k))
STLp O(LN((d+ k) + log(N)))
OT O(N3k)
*DTW O(N2k)
Lp O(Nk)

5 Conclusion

In this paper, we propose partial transport Lp (PTLp) distance as a similarity measure for generic
signals. We have shown that PTLp defines a metric that comes with an optimal transport plan. We
further characterize the behaviors of PTLp

β,λ as β goes to various limits. We extend PTLp to sliced
partial transport Lp (SPTLp), which is more computationally efficient. In the experimental section,
we have demonstrated that the proposed metric is superior to other baselines in separability, and
shown promising results on 1 nearest neighbor classification.

10



References
[1] Hiroaki Sakoe and Seibi Chiba. Dynamic programming algorithm optimization for spoken word

recognition. IEEE transactions on acoustics, speech, and signal processing, 26(1):43–49, 1978.

[2] Eamonn J. Keogh and Michael J. Pazzani. Derivative Dynamic Time Warping, pages 1–11.

[3] Gineke A Ten Holt, Marcel JT Reinders, and Emile A Hendriks. Multi-dimensional dynamic
time warping for gesture recognition. In Thirteenth annual conference of the Advanced School
for Computing and Imaging, volume 300, page 1, 2007.

[4] Stan Salvador and Philip Chan. Toward accurate dynamic time warping in linear time and space.
Intelligent Data Analysis, 11(5):561–580, 2007.

[5] Young-Seon Jeong, Myong K Jeong, and Olufemi A Omitaomu. Weighted dynamic time
warping for time series classification. Pattern recognition, 44(9):2231–2240, 2011.

[6] Marco Cuturi and Mathieu Blondel. Soft-dtw: a differentiable loss function for time-series. In
International conference on machine learning, pages 894–903. PMLR, 2017.

[7] Matthew Thorpe, Serim Park, Soheil Kolouri, Gustavo K Rohde, and Dejan Slepčev. A
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6 Appendix

We refer to the main text for the references.

A Notation

• R+ := {x ∈ R : x ≥ 0}.
• R++ := {x ∈ R : x > 0}.

• Rk: the codomain of signals, where k ≥ 1.
• Ω: unless otherwise stated is a closed subset of Rd where d ≥ 1.
• M(Ω), M(Ω2): the set of signed Radon measures on Ω, Ω2 respectively.
• M+(Ω), M+(Ω

2): the set of positive Radon measures on Ω, Ω2 respectively.
• spt(µ) for µ ∈ M(Ω): the support of the measure µ.
• ∥µ∥TV where µ ∈ M(Ω): the total variation of µ. If µ is positive, ∥µ∥TV = µ(Ω).
• Weak-convergence of measures: given a sequence {γn}n∈N ⊂ M(Ω2), if there exists
γ0 ∈ M(Ω2) such that ∫

f dγn →
∫

f dγ,∀f ∈ C0(Ω2),

then we say γn converges weakly in measure to γ, and write

γn⇀γ.

Note that this type of convergence is also an example of weak∗ convergence.
• Sequential compactness in the weak topology: given K ⊂ M+(Ω

2), K is said to be
sequentially compact in the weak topology if for any sequence {γn}n∈N ⊂ K, there exists
a further subsequence and some γ ∈ K such that γn⇀γ.

• π1, π2: the canonical projections on Ω2, i.e. π1((x, y)) = x, π2((x, y)) = y.
• f#γ: the push-forward of the measure γ by f , i.e. f#γ(A) = γ(f−1(A)) for any Borel set
A.

• µ ∧ ν: minimum measure between µ and ν. Formally, for any Borel set A,

µ ∧ ν(A) := inf{µ(A1) + ν(A2)},

where the infimum is taken over all possible partitions of A = A1 ∪ A2. For example, if
µ, ν are continuous with respect to some reference measure L, say µ = fµL, ν = fνL, then
µ ∧ ν = (fµ ∧ fν)L, where fµ ∧ fν denotes the minimum between fµ(x) and fν(x) for
each x.

• µ ≤ ν where µ, ν ∈ M+(Ω): if for each Borel set A ⊂ Ω, µ(A) ≤ ν(A).
• Π(µ, ν) where µ, ν ∈ M+(Ω): the set of Kantorovich plans between µ, ν, i.e. Π(µ, ν) :=
{γ ∈ M+(Ω

2) : (π1)#γ = µ, (π2)#γ = ν}. Note, the set is nonempty if and only if
µ(Ω) = ν(Ω).

• Π≤(µ, ν) where µ, ν ∈ M+(Ω): the set of Kantorovich plans between µ, ν for the OPT
problem, i.e. Π(µ, ν) := {γ ∈ M+(Ω

2) : (π1)#γ ≤ µ, (π2)#γ ≤ ν}.

• (C0
b(Ω

2), ∥ · ∥sup): the space of continuous and bounded functions on Ω2. Note, the dual
space of C0

b(Ω
2) is the space of Radon measures M(Ω2).

• ∥·∥Lp(µ), ∥·∥Lp(µ),2λ where µ ∈ M+(Ω): the Lp norm and truncated Lp norm with respect
to reference measure µ. i.e.

∥f∥Lp(µ) =

(∫
Ω

∥f(x)∥p dµ(x)
)1/p

,

∥f∥Lp(µ),2λ =

(∫
Ω

∥f(x)∥p ∧ 2λ dµ(x)

)1/p
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• f, g : Ω → Rk: functions that represent the signals.
• β > 0, λ ≥ 0: constants used in the PTLp problem.
• p ≥ 1: a constant which denotes the order of norm.
• Q+

p (Ω;Rk): the PTLp space, we refer to Section C for the definition.

• Dβ : (Ω× Rk)2 → R with

Dp
β((x, x̃), (y, ỹ)) =

1

β
∥x− y∥p + ∥x̃− ỹ∥p :

the cost function in the PTLp problem. Note, Dβ defines a metric and is equivalent to ℓp

norm on Ω× Rk.
• C(γ; (f, µ), (g, ν), β, λ) =

∫
Ω2 Dβ((x, f(x)), (y, g(y))) dγ(x, y) + λ(∥µ∥TV + ∥ν∥TV −

2∥γ∥TV): the objective function in the PTLp problem (8).
• C ′(γ; (f, µ), (g, ν), β, λ) =

∫
Ω2 Dβ((x, f(x)), (y, g(y))) ∧ 2λ dγ(x, y) + λ(∥µ∥TV +

∥ν∥TV−2∥γ∥TV): the objective function in an equivalent formulation of the PTLp problem
as defined in (19).

• Ĉ(γ̂; µ̂, ν̂, Dp
β , λ) =

∫
Ω2 D

p
β((x, x̃), (y, ỹ))) dγ + λ(∥µ̂∥TV + ∥ν̂∥TV − 2∥γ̂∥TV): the

objective function in the OPT problem (17).
• cβ,f,g(x, y) :=

1
β ∥x − y∥p + ∥f(x) − g(y)∥p, c∞,f,g(x, y) := ∥f(x) − g(y)∥p: the cost

function in the OPT problems (20), (25)
• µ̂ := (id×f)#µ, ν̂ := (id×g)#ν, γ̂ := ((id×f), (id×g))#γ, where µ, ν ∈ M+(Ω), γ ∈
M+(Ω

2): the identification between the PTLp space, Q+
p (Ω;Rk), and a subset of M+(Ω×

Rk).
• OTc(µ, ν),OT(µ, ν): the optimal transportation problem, where c is the cost function. The

default cost is the (p-th power of the) ℓp norm, and we use OT(µ, ν) to denote OT∥·∥p(µ, ν).

• OPTc(µ, ν),OPT(µ, ν): the optimal partial transportation problem, where c is the cost
function. Analog to OTc,OT.

B Preliminary Results for Radon Measures

We start by showing that weak convergence in measure preserves inequalities.
Proposition B.1. Given a sequence (µn)n∈N ⊂ M+(Ω), if µn⇀µ0 for some µ0 ∈ M(Ω), then
µ0 ∈ M+(Ω) and µ0 ≤ µ.

Proof. Pick any continuous and bounded function f ∈ C0
b(Ω), we have∫

f dµ0 = lim
n→∞

∫
Ω

f dµn ≤
∫
Ω

f dµ,

thus µ0 ≤ µ. Similarly, we have µ0 ≥ 0.

We will also make use of the closure, in the weak topology, of the space Π≤(µ, ν), which follows
similarly to the analogous result for the space Π(µ, ν). A similar result has been proved when µ, ν
are continuous measure, for example [20, Lemma 2.2]. For completeness we include a proof in the
general case.
Proposition B.2. The set Π≤(µ, ν) is sequentially compact in the weak topology.

Proof. Pick a sequence {γn}n∈N ⊂ Π≤(µ, ν) ⊂ M+(Ω
2) ⊂ M(Ω2). We have γn is bounded with

respect to total variation. Indeed,

∥γn∥TV = γn(Ω
2) ≤ µ(Ω), ∀n

In addition, we will show γn is tight. Pick ϵ > 0, since µ, ν are inner regular, there exists compact set
K ⊂ Ω such that µ(Ω \K), ν(Ω \K) ≤ ϵ.

γn(Ω \K2) ≤ γn(Ω× (Ω \K) + γn((Ω \K)× Ω) ≤ µ(Ω \K) + ν(Ω \K) ≤ 2ϵ.
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Thus (γn) is a tight sequence.

By Prokhorov’s theorem for signed measures the closure (in the weak topology) of Π≤(µ, ν) is
weakly sequentially compact in M(Ω2). It remains to show Π≤(µ, ν) is weakly closed.

Let γn ⇀ γ ∈ M(Ω2). First, we claim π1#γn ⇀ π1#γ, π2#γn ⇀ π2#γ. Indeed, pick f ∈ C0
b(Ω),

f can be regarded as a function in C0
b(Ω

2) whose value is independent to the second input y. Thus,
we have

lim
n→∞

∫
Ω

f(x) dπ1#γn(x) = lim
n→∞

∫
Ω2

f(x) dγn(x, y) =

∫
Ω2

f(x) dγ(x, y) =

∫
Ω

f(x) dπ1#γ(x)

that is π1#γn ⇀ π1#γ and similarly π2#γn ⇀ π2#γ. By Lemma B.1, we have π1#γ ≤ µ, π2#γ ≤
ν and γ ≥ 0.

C Relation between PTLp and OPT

We formally introduce the PTLp space.

Definition C.1. Given nonempty closed Ω ⊂ Rd the PTLp space is defined as

Q+
p (Ω;Rk) = {(f, µ) : µ ∈ M+(Ω), f ∈ Lp(µ;Rk)}.

The identity in Q+
p (Ω;Rk) is defined as: (f, µ) = (g, ν) if and only if µ = ν and f = g, µ-a.s.

Inspired by the technique in [38], it is easy to see that the mapping T : Q+
p (Ω;Rk) → M+(Ω×Rk)

with (f, µ) 7→ (id× f)#µ defines an embedding. That is, the map T allows us to identify an element
(f, µ) ∈ Q+

p (Ω;Rk) with a measure in the product space M+(Ω × Rk) which can be written as
(id× f)#µ.

Proposition C.2. The mapping T : Q+
p (Ω;Rk) → Ran(T ) ⊂ M+(Ω× Rk) is a 1-1 mapping.

Proof. Choose distinct (f, µ), (g, ν) ∈ Q+
p (Ω;Rk). Then by the identity in Q+

p (Ω;Rk) as we defined
above, we have one of the following: µ ̸= ν or µ = ν and µ(x : f(x) ̸= g(x)) > 0.

For the first case, there exists a Borel set A ⊂ Ω such that µ(A) ̸= ν(A). Without loss of generality,
we suppose µ(A) > ν(A). We have

T ((f, µ))({(x, f(x)) : x ∈ A}) = (id× f)#µ({(x, f(x)) : x ∈ A})
= µ(A)

> ν(A)

= (id× g)#ν({(x, g(x)) : x ∈ A})
≥ (id× g)#ν({x, f(x) : x ∈ A, f(x) = g(x)})
= (id× g)#ν({(x, f(x)) : x ∈ A}) (16)
= T ((g, ν))({(x, f(x)) : x ∈ A})

where (16) follows from the fact (id × g)#ν is supported on the graph of g. Thus, T ((f, µ)) ̸=
T ((g, ν)).

For the second case, there exists Borel set B, such that f(x) ̸= g(x),∀x ∈ B and µ(B) > 0. Thus,
we have

(id× f)#µ({(x, f(x)) : x ∈ B}) = µ(B) > 0

and

(id× f)#ν({(x, f(x)) : x ∈ B}) = ν{x : f(x) = g(x), x ∈ B}
= µ{x : f(x) = g(x), x ∈ B}
= 0.

Thus T ((f, µ)) ̸= T ((g, ν)). Therefore T is a 1-1 mapping.

15



In the space M+(Ω× Rk), we can define the following OPT problem. For β ∈ (0,∞), we define
Dβ : (Ω× Rk)2 → R+ by

Dp
β((x, x̃), (y, ỹ)) =

1

β
∥x− y∥p + ∥x̃− ỹ∥p.

It is straightforward to show D is metric and is equivalent to the ℓp metric in Ω × Rk. Thus the
following OPT problem defines a (p-th power of a) metric in M+(Ω× Rk) by [32, Appendix C] or
[39, Theorem 2.2], where µ̂, ν̂ ∈ M+(Ω× Rk):

OPTDp
β ,λ

(µ̂, ν̂) = inf
γ̂∈Π≤(µ̂,ν̂)

∫
(Ω×Rk)2

Dp
β((x, x̃), (y, ỹ)) dγ̂ + λ(∥µ̂∥TV + ∥ν̂∥TV − 2∥γ̂∥TV).

(17)

Similar to [38, Proposition 3.3], we will show the OPT distance (17) and the PTLp distance (8) are
equivalent.

Proposition C.3. Choose (f, µ), (g, ν) ∈ Q+
p (Ω;Rk), let µ̂ = (id× f)#µ, ν̂ = (id× g)#ν. Define

F : Π≤(µ, ν) → Π≤(µ̂, ν̂) by

γ 7→ γ̂ = F (γ) := ((id× f), (id× g))#γ.

Then, F is bijection. Furthermore, let Ĉ(γ̂; µ̂, ν̂, Dp
β , λ) and C(γ; (f, µ), (g, ν), β, λ) denote the

objective function in (17) and (8) respectively, we have

Ĉ(γ̂; µ̂, ν̂, Dp
β , λ) = C(γ; (f, µ), (g, ν), β, λ).

Therefore,
PTLp

β,λ((f, µ), (g, ν)) = OPTDp
β ,λ

(µ̂, ν̂),

Proof. First, it is straightforward that F is well defined. We start by showing that F is injective. If
γ1, γ2 ∈ Π≤(µ, ν) and γ1 ̸= γ2 then there exists A,B such that γ1(A×B) ̸= γ2(A×B). Without
loss of generality assume γ1(A×B) > γ2(A×B). Let γ̂1 = F (γ1) and γ̂2 = F (γ2). Then,

γ̂1(A× Rk ×B × Rk) = ((id× f), (id× g))#γ1(A× Rk ×B × Rk)

= γ1
({

(x, y) : (x, f(x), y, g(y)) ∈ A× Rk ×B × Rk
})

= γ1(A×B)

> γ2(A×B)

= γ2
({

(x, y) : (x, f(x), y, g(y)) ∈ A× Rk ×B × Rk
})

= ((id× f), (id× g))#γ2(A× Rk ×B × Rk)

= γ̂2(A× Rk ×B × Rk).

So γ̂1 ̸= γ̂2, hence F is injective.

To show surjectivity, take any γ̂ ∈ Π̂≤(µ̂, ν̂). Take any Â, B̂ such that 0 = (µ̂ × ν̂)(Â × B̂) =

µ(Â)ν(B̂). Then either µ̂(Â) = 0 or ν̂(B̂) = 0. In the first case γ̂(Â× B̂) ≤ γ̂(A× (Ω× Rk)) ≤
µ̂(Â) = 0. Similarly, in the second case γ̂(Â × B̂) ≤ ν̂(B̂) = 0 and so spt(γ̂) ⊆ spt(µ̂ × ν̂). It
follows in a similar way that spt(F (γ)) ⊂ spt(µ̂× ν̂) for any γ ∈ Π≤(µ, ν).

We define γ ∈ M+(Ω
2) by γ(A) = γ̂({(x, f(x)), (y, g(y)) : (x, y) ∈ A}). We have γ ∈ Π≤(µ, ν).

Take Â, B̂ ⊂ Ω × Rk and we compare F (γ)(Â × B̂) with γ̂(Â × B̂). By the previous argument
we only need consider Â ∈ spt(µ̂) and B̂ ∈ spt(ν̂)). In particular, we may assume that Â =

{(x, f(x)) : x ∈ A} and B̂ = {(y, g(y)) : y ∈ B} for some A,B ⊆ Ω. Now

Fγ(Â× B̂) = γ
({

(x, y) : ((x, f(x)), (y, g(y))) ∈ Â× B̂
})

= γ(A×B) = γ̂(Â× B̂).

Thus Fγ = γ̂ and so F is surjective.
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For each γ ∈ Π≤(µ, ν) we continue to let γ̂ = F (γ) denote the corresponding measure in Π≤(µ̂, ν̂).
We have

Ĉ(γ̂; µ̂, ν̂, Dp
β , λ) =

∫
(Ω×Rk)2

Dp
β((x, x̃), (y, ỹ)) dγ̂(x, x̃, y, ỹ) + λ(∥µ̂∥TV + ∥ν̂∥TV − 2∥γ̂∥TV)

=

∫
Ω2

1

β
∥x− y∥p + ∥f(x)− g(y)∥p dγ(x, y) + λ(∥µ∥TV + ∥ν∥TV − 2∥γ∥TV)

= C(γ; (f, µ), (g, ν), β, λ) (18)

Combining with the fact that γ 7→ γ̂ is a bijection, we have

OPTλ(µ̂, ν̂) := PTLp
β,λ((f, µ), (g, ν))

which completes the proof.

Remark C.4. Proposition C.2 and C.3 imply that (Q+
p (Ω),PTL

p
λ,β) is a metric space when β, λ ∈

(0,∞) and therefore we can conclude Theorem 3.2.

We now prove existence of minimizers for PTLp problem.

Proof of Theorem 3.1. From Proposition C.3, we have that the PTLp problem (8) admits a solution
if and only if the OPT problem (17) admits a solution. By the relation between OPT and OT
(see, for example, [20, section 2], or [32, Appendix B]), one can convert the OPT problem (17)
to a classical OT problem defined on (Ω × Rk) ∪ {∞̂} where ∞̂ is an isolated point. It is lower
semi-continuous and bounded from below. Thus by the classical result in optimal transport theory
(e.g. [13, Theorem 4.1]), there exists an optimal transportation plan for the OPT problem (17)).
Note, an equivalent way to prove the existence of a minimizer is using the direct method from the
calculus of variations (compactness and lower-semi continuity implies existence of minimizers).
Indeed, Π≤(µ, ν) is compact in the weak topology by Proposition B.2 and γ → Ĉ(γ; µ̂, ν̂, Dp

β , λ) is
lower-semi continuous (in the sense of the weak topology). Thus the PTLp problem (8) admits a
minimizer.

For the Empirical PTLp problem, by the relation between PTLp and OPT as discussed in Proposition
C.3 or Lemma D.1 in the next section, it suffices to show there exists an 1-1 mapping that can solve
the corresponding OPT problem (see (17)). By [32, Theorem 4.1], we complete the proof.

D The PTLp Problem for Extreme β

In this section, we discuss the PTLp problem when β → 0 and β → ∞. First, we prove equivalence
of the PTLp problem with a truncated version.
Lemma D.1. There exists optimal γ ∈ M+(Ω

2) for the PTLp problem (8) such that γ(S) = 0
where S := {(x, y) : 1

β ∥x − y∥p + ∥f(x) − g(y)∥p ≥ 2λ}. Therefore, the PTLp problem can be
defined as

PTLp
β,λ((f, µ), (g, ν)) = inf

γ∈Π≤(µ,ν)

∫
Ω2

(
1

β
∥x− y∥p + ∥f(x)− g(y)∥p

)
∧ 2λ dγ(x, y)

+ λ(∥µ∥TV + ∥ν∥TV − 2∥γ∥TV) (19)

Proof. Similar to the last section, the PTLp problem can be written as the following OPT problem
between µ, ν defined as follows:

OPTcβ,f,g,λ(µ, ν) := inf
γ∈Π≤(µ,ν)

∫
Ω2

cf,g(x, y) dγ(x, y) + λ(∥µ∥TV + ∥ν∥TV − 2∥γ∥TV) (20)

where the ground cost is defined as

cβ,f,g(x, y) :=
1

β
∥x− y∥p + ∥f(x)− g(y)∥p.

Thus, by [32, Lemma 3.2], we have that there exists an optimal γ such that γ(S) = 0 on S = {(x, y) :
c(x, y) ≥ 2λ} and we complete the proof.
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Now we discuss the extreme cases β = 0 and β = ∞.
Theorem D.2. For any positive sequence βn → 0, we have

lim
n→∞

PTLp
β,λ((f, µ), (g, ν)) = ∥f − g∥pLp(µ∧ν),2λ + λ∥µ− ν∥TV (21)

Proof. Let γ = (id× id)#(µ ∧ ν), then γ ∈ Π≤(µ, ν) and

PTLp
βn,λ

((f, µ), (g, ν)) ≤
∫
Ω×Ω

(
1

βn
∥x− y∥p + ∥f(x)− g(y)∥p

)
∧ 2λ dγ(x, y)

+ λ (∥µ∥TV + ∥ν∥TV − 2∥γ∥TV)

=

∫
Ω

∥f(x)− g(x)∥p ∧ 2λ d(µ ∧ ν)(x) + λ (∥µ∥TV + ∥ν∥TV − 2∥µ ∧ ν∥TV)

= ∥f − g∥pLp(µ∧ν),2λ + λ∥µ− ν∥TV.

In the rest of the proof we will prove the coverse inequality.

Since

1

βn

(∫
Ω2

∥x− y∥p ∧ 2λ dγ(x, y) + βnλ (∥µ∥TV + ∥ν∥TV − 2∥γ∥TV)

)
≤

∫
Ω2

1

βn
∥x− y∥p ∧ 2λ+ ∥f(x)− g(y)∥p ∧ 2λ dγ(x, y) + λ (∥µ∥TV + ∥ν∥TV − 2∥γ∥TV)

then
1

βn
OPT∥·∥p∧2λ,λ(µ, ν) ≤ PTLp

βn,λ
((f, µ), (g, ν)) ≤ ∥f − g∥pLp(µ∧ν),2λ + λ∥µ− ν∥TV.

So OPT∥·∥p,λ(µ, ν) = OPT∥·∥p∧2λ,λ(µ, ν) ≤ O(βn) → 0.

Let γn ∈ Π≤(µ, ν) satisfy

OPTp
∥·∥p,βnλ

(µ, ν) =

∫
Ω2

∥x− y∥p ∧ 2λ dγn(x, y) + βnλ (∥µ∥TV + ∥ν∥TV − 2∥γn∥TV) .

As Π≤(µ, ν) is weakly sequentially compact then there exists a subsequence (which we relabel)
and a γ0 such that γn ⇀ γ0 ∈ Π≤(µ, ν). Now, ∥γn∥TV = γn(Ω

2) → γ0(Ω
2) = ∥γ0∥TV, and

(x, y) 7→ ∥x− y∥p ∧ 2λ is continuous and bounded, so

OPT∥·∥p∧2λ,βnλ(µ, ν) →
∫
Ω2

∥x− y∥p ∧ 2λ dγ0(x, y)

Hence,
∫
Ω2 ∥x − y∥p dγ0(x, y) = 0 and so x = y γ0-a.e.. In particular, there exists µ0 such that

γ0 = (id × id)#µ0 and µ0 ≤ ν, µ0 ≤ ν. We are left to show limn→∞ PTLp
βn,λ

((f, µ), (g, ν)) ≥
PTLp

0,λ((f, µ), (g, ν)), where

PTLp
0,λ((f, µ), (g, ν)) := inf

µ0≤µ∧ν

∫
Ω

∥f(x)− g(x)∥p ∧ 2λ dµ0(x) + λ(∥µ∥TV + ∥ν∥TV − 2∥µ0∥TV).

(22)

We will show that the minimizer is µ ∧ ν. Indeed, let C ′(µ0; (f, µ), (g, ν), 0, λ) denote the trans-
portation cost induced by µ0, we have

C ′(µ ∧ ν; (f, µ), (g, ν), 0, λ)− C ′(µ0; (f, µ), (g, ν), 0, λ)

=

∫
Ω

∥f(x)− g(x)∥p ∧ 2λ− 2λ d(µ ∧ ν − µ0)(x)

≤ 0

where the inequality follows since µ ∧ ν − µ0 is a nonnegative measure. Thus we have

PTLp
0,λ((f, µ), (g, ν)) = ∥f − g∥µ∧ν,2λ + λ(∥µ− ν∥TV ). (23)
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Since C0
b(Ω) is dense in Lp(µ),Lp(ν), for any ε > 0 there exists fε, gε ∈ C0

b(Ω) such that∫
Ω2

∥f(x)− fε(x)∥p dµ(x) ≤ ε,

∫
Ω2

∥g(y)− gε(y)∥p dν(y) ≤ ε.

Now, (∫
Ω2

∥f(x)− g(y)∥p dγn(x, y)
) 1

p

≥
(∫

Ω2

∥fε(x)− gε(y)∥p dγn(x, y)
) 1

p

−
(∫

Ω2

∥f(x)− fε(x)∥p dγn(x, y)
) 1

p

−
(∫

Ω2

∥gε(y)− g(y)∥p dγn(x, y)
) 1

p

≥
(∫

Ω2

∥fε(x)− gε(y)∥p dγn(x, y)
) 1

p

− 2ε

→
(∫

Ω2

∥fε(x)− gε(y)∥p dγ0(x, y)
) 1

p

− 2ε.

So,

lim inf
n→∞

PTLp
βn,λ

((f, µ), (g, ν)) ≥
∫
Ω2

∥fε(x)− gε(y)∥p dγ0(x, y)−Kε

+ λ (∥µ∥TV + ∥ν∥TV − 2∥γ0∥TV)

≥
∫
Ω2

∥f(x)− g(y)∥p dγ0(x, y)−K ′ε

+ λ (∥µ∥TV + ∥ν∥TV − 2∥γ0∥TV)

≥ PTLp
0,λ((f, µ), (g, ν))−K ′ε

for constants K,K ′. Taking ε → 0 completes the proof.

Based on the above theorem, we can extend the PTLp distance for β = 0.
Corollary D.3. When µ = ν, we have

PTLp
0,λ((f, µ), (g, µ)) = ∥f − g∥pLp(µ),2λ.

The proof is straightforward.

Next, we discuss the case β = ∞.
Theorem D.4. For any positive sequence βn → ∞, we have

lim
n→∞

PTLp
β,λn

((f, µ), (g, ν)) = OPTλ(f#µ, g#ν). (24)

Proof. Without loss of generality, we can assume βn is a monotonic increasing sequence. Note, it is
straightforward to show (e.g. see Proposition C.3 by setting the 1

β term to be 0):

OPTλ(f#µ, g#ν) = OPTc∞,f,g,λ(µ, ν)

= inf
γ∈Π≤(µ,ν)

∫
Ω2

∥f(x)− g(y)∥p dγ(x, y) + λ (∥µ∥TV + ∥ν∥TV − 2∥γ∥TV)

(25)

where c∞,f,g(x, y) := ∥f(x)− g(y)∥p. For each n and γ, we have∫
Ω2

1

βn
∥x− y∥p + ∥f(x)− g(y)∥p dγ(x, y) + λ(∥µ∥TV + ∥ν∥TV − 2∥γ∥TV)

≥
∫
Ω2

∥f(x)− g(y)∥p dγ(x, y) + λ(∥µ∥TV + ∥ν∥TV − 2∥γ∥TV). (26)
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Taking the infimum on both sides and passing to the limit, we have

lim inf
n→∞

PTLp
β,λn

((f, µ), (g, ν)) ≥ OPTcf,g,λ(µ, ν) (27)

For the other direction, we let γ∞ be an optimal transportation plan for OPTcf,g,λ(µ, ν), then

lim sup
n→∞

PTLp
β,λn

((µ, f), (ν, g))

≤ lim sup
n→∞

∫
Ω2

(
1

βn
∥x− y∥p + ∥f(x)− g(y)∥p

)
∧ 2λ dγ∞(x, y) + λ(∥µ∥TV + ∥ν∥TV − 2∥γ∞∥TV)

=

∫
Ω2

lim sup
n→∞

(
1

βn
∥x− y∥p + ∥f(x)− g(y)∥p

)
∧ 2λ dγ∞(x, y) + λ(∥µ∥TV + ∥ν∥TV − 2∥γ∞∥TV)

=

∫
Ω2

∥f(x)− g(y)∥ ∧ 2λ dγ∞(x, y) + λ(∥µ∥TV + ∥ν∥TV − 2∥γ∞∥TV)

where the third line follows from the Monotone convergence theorem (or Beppo Levi’s lemma). Thus

lim sup
n→∞

PTLp
β,λn

((f, µ), (g, ν)) ≤ OPTc∞,f,g,λ(µ, ν) (28)

Combining (27) and (28), we complete the proof.

Remark D.5. Combining Theorem D.2 and D.4, we prove Theorem 3.3 in the main text.
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E More 1 NN Classification Experiments

We provide additional nearest neighbor classification results in Table E.

Table 3: Additional nearest neighbor classification results on the modified UCR dataset [36]. Similarly,
we highlight top two performers and provide the averages.

Pr
efi

x
D

at
as

et

Method PTLp SPTLp TLp STLp OT
SDTW
γ = 0.01

SDTW
γ = 1

DTW WDTW DDTW Lp

Coffee 0.79 0.68 0.50 0.61 0.54 0.64 0.57 0.64 0.54 0.71 0.61
ECGFiveDays 0.58 0.60 0.63 0.63 0.51 0.61 0.58 0.61 0.50 0.59 0.55

DistalPhalanxTW 0.53 0.54 0.50 0.51 0.45 0.51 0.49 0.55 0.30 0.30 0.53
BirdChicken 0.75 0.75 0.55 0.55 0.60 0.70 0.70 0.70 0.50 0.65 0.55

GunPoint 0.63 0.71 0.65 0.66 0.67 0.65 0.69 0.72 0.49 0.49 0.65
CBF 0.81 0.81 0.71 0.72 0.54 0.86 0.84 0.86 0.33 0.66 0.46

DPOC 0.62 0.72 0.64 0.64 0.59 0.66 0.67 0.67 0.58 0.58 0.57
OliveOil 0.33 0.30 0.33 0.33 0.30 0.27 0.23 0.23 0.17 0.17 0.13
Symbols 0.64 0.61 0.42 0.56 0.32 0.64 0.64 0.62 0.16 0.56 0.47
FaceFour 0.66 0.53 0.56 0.59 0.25 0.48 0.59 0.49 0.30 0.26 0.27

ItalyPowerDemand 0.79 0.81 0.65 0.68 0.62 0.71 0.74 0.71 0.50 0.69 0.61
FISH 0.55 0.53 0.38 0.38 0.26 0.47 0.52 0.44 0.14 0.49 0.39

SwedishLeaf 0.64 0.62 0.47 0.48 0.31 0.45 0.51 0.43 0.06 0.66 0.24
ToeSegmentation1 0.58 0.65 0.76 0.72 0.48 0.59 0.68 0.58 0.53 0.65 0.48
ToeSegmentation2 0.62 0.75 0.62 0.59 0.54 0.64 0.75 0.64 0.82 0.82 0.78

Average
Prefix 0.64 0.64 0.56 0.58 0.47 0.59 0.61 0.59 0.39 0.55 0.49

Su
bs

eq
ue

nc
e

D
at

as
et

Coffee 0.54 0.57 0.54 0.71 0.46 0.71 0.57 0.71 0.54 0.50 0.64
ECGFiveDays 0.57 0.56 0.57 0.57 0.52 0.59 0.57 0.58 0.50 0.58 0.53

DistalPhalanxTW 0.51 0.56 0.55 0.58 0.40 0.61 0.45 0.48 0.30 0.51 0.31
BirdChicken 0.40 0.55 0.50 0.60 0.35 0.70 0.75 0.70 0.50 0.50 0.60

GunPoint 0.65 0.66 0.63 0.64 0.56 0.65 0.71 0.67 0.49 0.77 0.59
CBF 0.71 0.71 0.65 0.70 0.48 0.75 0.74 0.75 0.33 0.55 0.36

DPOC 0.60 0.63 0.62 0.62 0.62 0.62 0.62 0.59 0.58 0.58 0.60
OliveOil 0.50 0.43 0.53 0.40 0.43 0.50 0.50 0.37 0.17 0.17 0.37
Symbols 0.52 0.50 0.49 0.48 0.37 0.48 0.51 0.48 0.16 0.68 0.30
FaceFour 0.51 0.49 0.52 0.40 0.39 0.35 0.38 0.35 0.30 0.40 0.26

ItalyPowerDemand 0.66 0.71 0.61 0.63 0.60 0.70 0.71 0.70 0.50 0.68 0.52
FISH 0.35 0.40 0.31 0.31 0.17 0.31 0.30 0.27 0.14 0.57 0.21

SwedishLeaf 0.42 0.44 0.39 0.40 0.20 0.33 0.38 0.31 0.06 0.60 0.11
ToeSegmentation1 0.67 0.68 0.66 0.67 0.55 0.67 0.69 0.66 0.53 0.69 0.48
ToeSegmentation2 0.71 0.78 0.70 0.68 0.58 0.69 0.79 0.69 0.82 0.82 0.73

Average
Subsequence 0.55 0.58 0.55 0.56 0.45 0.58 0.58 0.56 0.39 0.57 0.44

Su
ffi

x
D

at
as

et

Coffee 0.54 0.57 0.61 0.61 0.54 0.68 0.68 0.71 0.54 0.66 0.57
ECGFiveDays 0.57 0.61 0.55 0.58 0.52 0.63 0.62 0.62 0.50 0.50 0.53

DistalPhalanxTW 0.56 0.58 0.53 0.55 0.50 0.61 0.58 0.57 0.30 0.30 0.28
BirdChicken 0.45 0.55 0.70 0.60 0.40 0.45 0.45 0.45 0.50 0.50 0.50

GunPoint 0.61 0.65 0.57 0.60 0.65 0.65 0.66 0.62 0.49 0.49 0.58
CBF 0.61 0.72 0.71 0.73 0.42 0.78 0.78 0.78 0.33 0.33 0.34

DPOC 0.68 0.71 0.67 0.68 0.59 0.70 0.71 0.68 0.58 0.58 0.55
OliveOil 0.17 0.30 0.23 0.30 0.27 0.17 0.20 0.13 0.17 0.13 0.17
Symbols 0.55 0.52 0.51 0.53 0.38 0.51 0.55 0.50 0.16 0.53 0.24
FaceFour 0.38 0.45 0.27 0.28 0.24 0.35 0.39 0.35 0.30 0.39 0.17

ItalyPowerDemand 0.80 0.81 0.82 0.77 0.69 0.82 0.85 0.82 0.50 0.77 0.59
FISH 0.36 0.37 0.35 0.35 0.16 0.37 0.38 0.34 0.14 0.45 0.14

SwedishLeaf 0.53 0.54 0.53 0.53 0.30 0.49 0.57 0.48 0.06 0.68 0.18
ToeSegmentation1 0.59 0.64 0.60 0.51 0.52 0.60 0.62 0.60 0.53 0.82 0.52
ToeSegmentation2 0.71 0.77 0.62 0.62 0.55 0.68 0.73 0.69 0.82 0.69 0.77

Average
Suffix 0.54 0.59 0.55 0.55 0.45 0.57 0.58 0.56 0.39 0.52 0.41

Average
Total 0.58 0.60 0.55 0.56 0.46 0.58 0.59 0.57 0.39 0.55 0.45
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