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We analyze the dynamics of metastable Markovian open quantum systems by unraveling their average
dynamics into stochastic trajectories. We use quantum reset processes as examples to illustrate metastable
phenomenology, including a simple three-state model whose metastability is of classical type, and a two-qubit
model that features a metastable decoherence-free subspace. In the three-state model, the trajectories exhibit
classical metastable phenomenology: fast relaxation into distinct phases and slow transitions between them. This
extends the existing correspondence between classical and quantum metastability. It enables the computation of
committors for the quantum phases, and the mechanisms of rare transitions between them. For the two-qubit
model, the decoherence-free subspace appears in the unraveled trajectories as a slow manifold on which the
quantum state has a continuous slow evolution. This provides a classical (nonmetastable) analog of this quantum
effect. We discuss the general implications of these results, and we highlight the useful role of quantum reset
processes for analysis of quantum trajectories in metastable systems.

DOI: 10.1103/PhysRevA.109.022244

I. INTRODUCTION

Isolated quantum systems evolve unitarily, according to
the Schrödinger equation. However, practical quantum sys-
tems are never isolated: their unavoidable coupling to the
environment leads to effects such as dissipation and deco-
herence [1,2]. Indeed, recent experimental advances have
demonstrated a rich phenomenology in open quantum sys-
tems, such as ultracold atoms [3], optomechanical systems
[4,5], superconducting circuits [6,7], and Rydberg atoms in
optical lattices [8,9]. Understanding and modeling these sys-
tems is essential for applications of quantum technologies.

Metastability in open quantum systems occurs when their
dynamical relaxation features a separation of timescales
[10–13]. This offers a route to realization of long-lived
quantum coherences [14–17], which are crucial for quan-
tum technologies such as computation [18,19], which re-
quire quantum memories [20,21]. Understanding emergent
slow timescales is also important for more fundamental
questions that arise in open quantum systems, including
quantum phenomena associated with nonequilibrium phase
transitions [22–25]. These include metastable decoherence-
free subspaces (DFSs) [10] and glassy phenomenology
[26,27].

This work focuses on Markovian metastable open quan-
tum systems, which exhibit a rich phenomenology, while

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

remaining theoretically tractable. Recent work [25,28–30]
has analyzed such systems through the quantum master
equation (QME) which describes deterministic nonunitary
evolution of the system’s density matrix [31,32]. This al-
lows characterization of metastable phenomena such as slow
transient relaxation to the steady state, and slow decay of
steady-state autocorrelation functions [10]. However, the re-
sulting theory of quantum metastability is distinct from its
classical counterpart: the quantum theory gives access to
expectation values but the classical theory also predicts the
behavior of stochastic trajectories. The behavior of trajec-
tories in the quantum setting requires information beyond
the QME, including time records of environmental mea-
surements [33–38] and the unraveled quantum state, via a
quantum trajectory formalism [39–42]. Analysis of these tra-
jectories reveals phenomena beyond the reach of the QME,
including full-counting statistics of photon emissions [43–46],
measurement-induced phase transitions [47–51], geometric
phase transitions [52,53], the quantum Zeno effect [54–56],
quantum steering [57], and quantum thermodynamics [58,59].

This work analyzes several metastable quantum systems in
the trajectory formalism. This extends previous results based
on the QME [10,12], and time records [12], and strength-
ens the connections to classical theories of metastability. For
example, metastable classical systems relax quickly into dis-
tinct phases, after which they make slow transitions between
them; one may also identify basins of attraction of the phases,
via the committor [60,61]. Our analysis of quantum trajecto-
ries yields corresponding committors for metastable quantum
phases, as well as the mechanism of transitions between them.
This allows characterization of fluctuations within these sys-
tems’ nonequilibrium steady states, beyond the QME.
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Quantum Model Semi-Markov 
Representation

FIG. 1. Example models studied in this work. (a) Three-state
model with a single jump operator (see Sec. III A). (b) Three-state
model with two jumps (see Sec. III E). (c) Two-qubit model featuring
a metastable DFS (see Sec. V).

We demonstrate these results by analyzing several different
systems, which highlight general features of metastability,
as well as providing their own specific insights. We mostly
focus on quantum reset models [45,62], which are particularly
tractable in the trajectory formalism. These models have the
property that each quantum jump operator has a unique des-
tination state, which are termed reset states. While this may
seem like a significant restriction, such models are known to
be rich enough to support classical metastable behavior (in
the sense of [10,12]). We show here that they also exhibit
intrinsically quantum metastability, specifically DFSs.

Quantum reset models are convenient for trajectory anal-
yses because their unraveled dynamics can be restricted to a
relatively small set of quantum states, avoiding the require-
ment to follow the complicated random time evolution of a
wave function or density matrix. In fact, many aspects of these
systems can be obtained from a mapping to classical semi-
Markov processes [45,62]: this means that the rate of quantum
jumps at time t only depends on the destination of the last
jump, and the time elapsed since that jump. In this work, we
discuss several examples within this class, which are depicted
in Fig. 1. The left column shows the quantum models, with
solid arrows indicating unitary (Hamiltonian) evolution, and
the wavy arrows quantum jumps. The right column shows the
semi-Markov representation, whose internal states correspond
to the reset states of the jumps; the arrows indicate the jumps,
which may reset the state to the previous destination, or jump
to a new one.

The three models are illustrative of several aspects of quan-
tum metastability. The models in Figs. 1(a) and 1(b) each
have a three-dimensional Hilbert space, but they differ in the
number of quantum jump operators, and thus in the number
of reset states in the semi-Markov representation. For suitable
parameters, both models exhibit classical metastability in the
sense of [10,12]. This work additionally shows that their quan-

tum trajectories support the full metastable phenomenology
expected for classical systems, such as fast relaxation into
the metastable phases, and slow transitions between them.
We also identify the mechanisms for transitions between the
metastable phases, and we analyze the committors for the
phases. This material is the subject of Sec. III. Based on
these observations, we then present in Sec. IV several general
results for the committor, and its connections with the QME.

In contrast to these three-state models, the two-qubit (four-
state) system of Fig. 1(c) supports a nonclassical form of
metastability, a metastable DFS, which manifests in quantum
trajectories as a manifold on which the quantum state evolves
in a slow but continuous fashion, although the number of
reset states is finite. This differs qualitatively from classical
metastability in the sense of [12], which features rare tran-
sitions between discrete metastable phases. This model is
discussed in Sec. V.

Throughout this work, we use these example systems
to identify and explain generic features of trajectories of
metastable open quantum systems. While previous work has
focused on the QME evolution and on experimental time
records [12,27], our focus on quantum trajectories gives a
more direct connection to metastability in classical systems,
for which the focus on trajectories is natural, as in transition
state theory and transition path theory [60,61]. While quantum
trajectories are less intuitive than their classical counterparts,
our examples of quantum reset processes result in simple and
physically informative descriptions.

Our concluding Sec. VI summarizes our main insights
and surveys open directions. For quantum metastability with
discrete phases, we discuss a detailed correspondence with
metastability of classical systems, including the committor,
the intermittent fluctuations of the quantum state, and the
mechanisms of transitions between metastable phases. For
intrinsically quantum metastable phenomena like DFS, the
results establish a different kind of correspondence with
classical stochastic processes, in terms of slow continuous
relaxation that would not be interpreted as metastability in
the classical setting, but rather as slow relaxation within a
continuous manifold. We also explain that while our examples
have been taken from quantum reset processes, many of these
conclusions are generic for metastable open quantum systems.

II. DYNAMICS OF MARKOVIAN OPEN
QUANTUM SYSTEMS

This section summarizes theoretical background for
metastable open quantum systems, and the concept of the
committor from classical metastable systems.

A. Quantum master equation

The quantum master equation (QME) [31,32,63] is a
generic description of the dynamics of the density matrix ρ

of a Markovian open quantum system. It takes the form

ρ̇ = L(ρ),

L(ρ) = −i[H, ρ] +
M∑

k=1

(
JkρJ†

k − J†
k Jkρ + ρJ†

k Jk

2

)
, (1)
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where H is the system Hamiltonian and the Jk are jump
operators which describe the environmental interaction. We
consider systems defined on finite-dimensional Hilbert spaces
H.

The linear operator L is called the quantum Liouvillian. Its
eigenvalues have nonpositive real parts, they are denoted λ j

for j = 1, 2, . . . , dim(H)2. We order them according to their
real parts: Re(λ j ) � Re(λ j−1) � · · · � λ1. The correspond-
ing eigenmatrices of L are denoted by Rj and those of L† are
denoted by Lk . These satisfy Tr[LiR j] = δi j .1 We assume that
the open quantum system has a unique steady state, so there
is a nondegenerate zero eigenvalue λ1 = 0 and the density
matrix for this steady state is ρSS = R1.

B. Metastability in the QME

In the QME description, a quantum system is metastable if
its spectrum has a gap: the operator L has m “slow” eigenval-
ues which separate from the rest of the spectrum. There are
slow and fast timescales associated with metastability:

τS = −1

Re(λm)
, τF = −1

Re(λm+1)
, (2)

where the gap in the spectrum means that τS � τF.
It will be convenient in the following to assume that

metastability is controlled by a small parameter ε: specifically,
we assume that limε→0 Re(λm) = 0 so that τS diverges in this
limit, but τF is finite. Hence, after an initial fast relaxation, the
dynamics of ρ(t ) is controlled by the slow eigenvalues and
eigenmatrices of L [10], such that for t � τF

ρ(t ) ≈ ρSS +
m∑

k=2

αketλk Rk, (3)

where αk = Tr[Lkρ(0)]. This characterization of the slow dy-
namics describes the metastable time regime τF � t � τS,2 as
well as the slow relaxation to ρSS that occurs at long times
t � τS [64].

Consider two-phase metastability, m = 2, which has many
similarities with metastability in simple classical systems. The
emerging picture is that the system has two distinct metastable
phases which are described by matrices ρA, ρB which have
unit trace. These can be computed as

ρA = ρSS + αmax
2 R2, ρB = ρSS + αmin

2 R2, (4)

where αmax
2 , αmin

2 are the extremal eigenvalues of L2 [12]. For
small ε, the matrices ρA, ρB are called extremal metastable
states (EMS), they are almost density matrices, as explained
in [10,12].

The emerging physical picture is that ρ(t ) relaxes quickly
into a linear combination of ρA, ρB: during the metastable time
regime τF � t � τS the system appears stationary because (3)
reduces to

ρ(t ) ≈ pAρA + pBρB, (5)

1We assume for simplicity that L is diagonalizable, ignoring the
possibility of Jordan blocks.

2Mathematically, this regime is accessed by taking first ε → 0 and
then t → ∞.

where pA,B = Tr[PA,Bρ(0)], with

PA = L2 − αmin
2 1

αmax
2 − αmin

2

, PB = −L2 + αmax
2 1

αmax
2 − αmin

2

. (6)

These operators have non-negative eigenvalues and PA +
PB = 1, ensuring that pA, pB are probabilities.3 This means
in particular that a system initialized in a state ρ(0) with
Tr[PAρ(0)] = 1 will relax quickly to ρA (on timescale τF).
The approximate equality in (5) appears because we have
neglected terms that vanish as either τF/t → 0 or t/τS → 0.

The situation described here for m = 2 corresponds to
classical metastability in the sense of [10,12]: within the
metastable time regime, ρ(t ) can be expressed as a linear com-
bination of density matrices corresponding to distinct phases,
with real coefficients that correspond to probabilities, as in (5).
More complex forms of quantum metastability, such as DFS,
can occur when m > 2; these involve long-lived coherences
between the phases (see Sec. V).

C. Trajectories of quantum reset processes and
their mapping to semi-Markov processes

The QME describes the evolution of the quantum system,
while the environment has been integrated out completely.
Quantum trajectory theory [1,42,65–67] describes systems
subject to continuous monitoring, including the joint statistics
of measurements in the system and the environment. For ex-
ample, consider a driven system in which experiments yield a
time record of photon emissions, as observed in quantum op-
tics experiments [33,34,68], superconducting qubits [36,69],
and quantum dots [70]. These (stochastic) time records are
not captured by the QME, instead, we use an unraveled repre-
sentation in terms of a pure density matrix ψt (the conditional
state), which has its own stochastic evolution [39–42].

We use angle brackets 〈·〉 to indicate averages over
the (stochastic) unraveled dynamics. Note that 〈ψt 〉 = ρ(t ),
which follows the QME (1) so the time-dependent density
matrix can be obtained as an average of ψt over the quantum
trajectories. Since ψt is pure, one can always write ψt =
|ψt 〉〈ψt | and work with the wave function |ψt 〉 instead of
the density matrix. In the following we use ψt and |ψt 〉 as
interchangeable representations of the conditional state, for
ease of writing.

In quantum reset processes [45], all jump operators are of
rank 1:

Jk = √
κk|φk〉〈ξk|, (7)

where |φk〉 is the reset state (i.e., the jump destination),
while κk and 〈ξk| parametrize the jump rate. Such models are
widespread in recent studies [29,54,71–74]. Repeated global
projective measurements at fixed rate also naturally results
in reset dynamics, where the reset states |φk〉 correspond to
the eigenstates of the measured observable [75]. Quantum tra-
jectories are particularly simple for quantum reset processes
[45]. (Note that quantum reset models are distinct from the
“stochastic resetting” considered in [76–78], in which the

3PA and PB form a positive operator-valued measure (POVM).
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trajectory is reset with a fixed rate, independent of the current
quantum state.) It is convenient to define

G = −iHeff, (8)

where Heff = H − i
2

∑
k J†

k Jk is an effective Hamiltonian
which governs the evolution of the conditional state between
jumps. If the system jumps by operator Jj at time t , the
probability that it does not jump again before time t + τ is
the survival probability

S j (τ ) = Tr[eGτ φ je
G†τ ]. (9)

Moreover, if the system does survive until time t + τ , its
conditional state is then ψt+τ = ψ j (τ ) with

ψ j (τ ) = eτGφ jeτG†

S j (τ )
. (10)

In this state, the rate to jump by operator Jk is

w jk (τ ) = Tr[Jkψ j (τ )J†
k ] = κk〈ξk|ψ j (τ )|ξk〉. (11)

The quantum jump Monte Carlo method allows these quan-
tum trajectories to be generated [42,67]; they can be described
mathematically as piecewise deterministic processes, whose
stochastic simulation is discussed in Sec. 7.1 of [1].

As this rate depends explicitly on the time τ since the last
jump, the sequence of jumps cannot be described by a Markov
process. Instead, it is an example of a semi-Markov process
[62,79].

This observation, that the conditional state (10) only de-
pends on the last jump Jj and the time τ since this last jump,
allows a simplified analysis of quantum trajectories in quan-
tum reset processes. Instead of following the conditional state
itself, we can follow the evolution of j, τ , from which ψt can
be easily reconstructed. Note that the steady-state probability
distribution for ψt , which we refer to in the following as the
invariant measure, is entirely supported on states of the form
(10).

D. Classical metastability in trajectories, and the committor

In the following, we exploit some established methods
from metastability in classical systems, including transition
path theory [61,80,81]. We briefly summarize these ideas
for classical Markov processes on finite configuration spaces,
which may be discrete or continuous.

The central idea is that typical trajectories of metastable
systems relax quickly into one of their metastable phases,
followed by rare transitions between them: we formalize this
notion below. Anticipating the connection to quantum sys-
tems, the associated fast and slow timescales are denoted by
τF and τS, respectively. For simplicity, we focus on the case
of two metastable phases which we denote as A and B. The
extension to more than two phases is straightforward.

To identify the phases, we define “core” sets of configura-
tions, which are SA for phase A, and SB for phase B. (The
theory is independent of the specific choice of these sets,
as long as certain constraints are met, see below.) Then any
stochastic trajectory can be partitioned into phases, as follows:
Let χA

t = 1 if SA was visited more recently than SB and
χA

t = 0 otherwise; similarly χB
t = 1 if SB was visited more

recently than SA and χB
t = 0 otherwise. Then if χA

t = 1 we
say that the system is in phase A and similarly if χB

t = 1 then
it is in phase B. If χA

t = χB
t = 0 then neither core set has been

visited during the whole trajectory and we say that the system
is not in either phase.

Within this setting, we also define the committor: For any
configuration x outside the core sets, the committor to phase
A is the probability that a trajectory starting at x hits set
SA before set SB. This committor is denoted by CA(x). If x
is in set SA then define CA(x) = 1 and similarly for x in SB

then CA(x) = 0. Obviously, CA(x) + CB(x) = 1. The commit-
tor CA(x) can always be estimated numerically by generating
many stochastic trajectories starting from x, and measuring
the fraction that hit SA before SB, although this may be com-
putationally expensive. (In the models considered here, more
efficient methods are available, see below.)

The definition of the committor applies for any sets SA,B.
However, trajectories of metastable systems have two essen-
tial properties within this setting: (i) for any initial state, the
system almost surely relaxes into one of the phases, on a fast
timescale of order τF; (ii) the residence times within the phases
are long, of order τS. These features depend weakly on the spe-
cific choices of the core sets, as long as they are representative
of the configurations explored within the phases.

Now assume as in Sec. II B that metastability in this classi-
cal system is controlled by a parameter ε, such that (τF/τS) →
0 as ε → 0. We will analyze the committor in this limit

C∗
A(x) = lim

ε→0
CA(x). (12)

For metastable systems with properties (i) and (ii) above, it
follows that while the committor is defined in terms of hitting
times of the core sets SA,B, it can also be computed as the
probability that χA

t = 1 for a time t with τF � t � τS, that is,

C∗
A(x) = lim

t→∞ lim
ε→0

Prob
(
χA

t = 1|x0 = x
)
. (13)

Finally, we identify the basin of attraction of phase A as the
set of states x with C∗

A(x) = 1, with a corresponding basin for
phase B. Hence, for ε = 0, trajectories started from within the
basins relax quickly into their corresponding phases.4 There
are generically configurations x with C∗

A(x) �= 0, 1, which are
in neither basin. Trajectories started from these configurations
may relax into either phase, with finite probability.

III. THREE-STATE MODEL

A. Model and metastable phenomenology

A canonical model of an open quantum system is the three-
state “V”-shaped model depicted in Fig. 1(a), which has been
well studied in a range of contexts [43,82–85] and is known to
exhibit metastability [10,86–88]. This model can be realized
experimentally as states in a cavity [89], energy levels of an
atom [82,90], and in quantum dots [85].

4These basins are defined asymptotically as ε → 0. For finite ε, it
may be useful to define a larger basin as the set of configurations x
with CA(x) > 1 − δ for some small parameter δ, but the asymptotic
definition is sufficient for our purposes.
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(b)

c)

(a)

FIG. 2. Three-state model. (a) QME dynamics from initial state
|0〉〈0| with 1 = 1, 2 = 0.05, κ = 4, and ρi j = 〈i|ρ(t )| j〉. (b) Cor-
responding example unraveled trajectory. (c) Measurement record
for (b), where each vertical line denotes a jump.

Consider a quantum system with three physical states |a〉,
|b〉, |c〉; its Hamiltonian and single jump operator are

H = 1(|a〉〈b| + |b〉〈a|) + 2(|a〉〈c| + |c〉〈a|),
J1 = √

κ1|a〉〈b|, (14)

from which we see that the system is a quantum reset process,
with a semi-Markov representation as depicted in Fig. 1(a).
Physically, it is natural to think of 1,2 as coherent driv-
ing terms while κ1 > 0 is a matrix element for spontaneous
photon emission. Metastability is relevant for small driving
frequency 2, specifically

|2| � |1|, κ1. (15)

To analyze metastability in the framework of Sec. II B, we
therefore take 2 = εω2 and take ε → 0 at fixed ω2,1, κ1.

It is convenient to change basis, defining |0〉 = |a〉, |1〉 =
i|b〉, |2〉 = i|c〉. In this basis, the matrix elements of G are all
real and the reset state is |0〉. It follows that the steady state of
the unraveled dynamics is restricted to conditional states with
real matrix elements.

The spectrum of the QME has λ1 = 0 (as it must); in the
metastable regime (15), we explain in the Appendix 1 that
it has one small (real) eigenvalue λ2 = O(ε2) that is well
separated from the rest [which are O(1)]. Hence, the QME
dynamics has fast relaxation to (5) on timescale τF = O(1),
followed by slow relaxation to ρSS on timescale τS = O(ε−2),
as described by (3). This is shown in Fig. 2(a).

A representative quantum trajectory and its corresponding
measurement record are shown in Figs. 2(b) and 2(c), obtained
from a single quantum jump Monte Carlo simulation of the
dynamics described in Sec. II C [1,2]. It consists of alternat-
ing “bright” and “dark” periods, which correspond to two
metastable phases which we label as B (bright) and D (dark).
These correspond to the phases A, B anticipated in Secs. II B
and II D. The dark phase consists of long time periods where
the conditional state is “shelved” with |ψt 〉 ≈ |2〉, and no

jumps take place. Within the bright phase the state ψt fluctu-
ates; the jump rate is of order unity so jumps occur frequently;
and 〈2|ψt |2〉 remains small. The large rate of quantum jumps
corresponds to frequent photon emissions, hence the name
“bright.”

B. Connections between trajectory and QME dynamics

Figures 2(a) and 2(b) highlight the different information
that is available in the averaged (QME) dynamics for ρ(t )
and the quantum trajectories for the conditional state ψt . One
always has ρ(t ) = 〈ψt 〉 on average, but typical states ψt are
not close to ρ(t ). This situation is generic for metastable
systems with intermittent trajectories.

To understand the relationships between the averaged
dynamics and the quantum trajectories, we consider a pertur-
bative analysis about ε = 0 [10,12]. In the degenerate case
ε = 0, the Hilbert space is broken into two subspaces: one
contains the levels |0〉, |1〉 and corresponds to the bright phase;
the other is just level |2〉. As in (5), an initial density matrix
with support on both components relaxes quickly under the
QME dynamics, and arrives in a linear combination of the two
EMS:

ρ(t ) ≈ pBρB + pDρD (16)

for τF � t � τS, where ρB, ρD represent the bright and dark
phases, respectively, and are supported on the two subspaces.

Turning to the unraveled dynamics with ε = 0, every tra-
jectory relaxes quickly into either the bright phase or the dark
phase: in the notation of Sec. II D, this means that either
χB

t = 1 or χD
t = 1 after a short time of order τF, after which

these variables do not change. (In Sec. IV below, we establish
some general relationships between quantum trajectories and
the QME, showing that the probabilities of relaxing into each
phase are pB, pD.) After this fast relaxation, the key point is
that ψt is typically close to either ρB or ρD, depending on the
phase into which the system relaxed. This differs from the
average state in (16) as long as both pB and pD are nonzero.

On increasing ε from zero, the system becomes ergodic:
the QME dynamics now has two-step relaxation to a unique
steady state and the trajectories show rare transitions between
the metastable phases (recall Fig. 2 and the associated discus-
sion). On these long timescales t ∼ τS, the coefficients pB, pD

in (16) acquire time dependence according to (3): we have
m = 2 so this is well described by a single exponential with
(real) rate λ2 = O(ε2). For consistency with the unraveled
trajectories, this λ2 must be the rate for the rare transitions
between the phases: this is an additional connection between
quantum trajectories and QME dynamics [12,30]. Finally,
note that in addition to this (nonperturbative) restoration of
ergodicity on taking ε > 0, the EMS ρB, ρD are affected (per-
turbatively) by ε, acquiring weak coherences, for example,
〈1|ρSS|2〉 = O(ε).

C. Jumpless trajectory

To analyze the system further, we exploit the fact that it
is a quantum reset process. This means that when a jump
occurs, the subsequent evolution is determined by the effec-
tive Hamiltonian according to (10), with φ j = |0〉〈0|. The
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(b)

(c)

(a)

(d)

FIG. 3. Three-state model. (a) Trajectories of the (real) wave
function |ψt 〉 can be plotted on a sphere. Red lines are the jump-
less trajectory for 2 = 0.05 (solid) and 2 = 0.0001 (dashed) with
κ = 4, 1 = 1. The shading shows the committor to the dark phase.
(b) Steady-state probability density p(�) for the distance � traveled
along the jumpless trajectory. Here 2 = 0.05. We also show the
corresponding jump rate w11(�). (c) Probability density for the time
since the last jump, within the steady state. (d) Committor to the dark
phase as a function of the time since the last jump. All panels take
1 = 1, κ1 = 4 as in Fig. 2.

system follows this evolution until the next jump occurs, af-
ter which the process repeats. Similarly to (10), this means
that

|ψτ 〉 ∝ eτG|0〉, (17)

where τ is the elapsed time since the last jump, and the
constant of proportionality is fixed by normalization. This
equation describes the time evolution of the quantum state
after a jump, under the assumption that no further jumps takes
place. Hence, we refer to it as the “jumpless trajectory.”

Of course, this (deterministic) jumpless trajectory is not
typical for the (stochastic) unraveled dynamics. Instead, typi-
cal trajectories of the unraveled dynamics can be constructed
by piecing together segments of the jumpless trajectory, each
of which starts from the reset state, interspersed by jumps.
Since there is a single reset state, the invariant measure for ψt

is entirely supported on this jumpless trajectory.
In our chosen basis, G is a (nonsymmetric) 3 × 3 matrix

with real elements so the elements of |ψτ 〉 are also real.
Hence, |ψτ 〉 can be represented as a point on the surface
of a sphere. For simplicity, we focus our discussion on the
parameter regime κ1 � 41, the alternative case is discussed
in the Appendix. Figure 3(a) shows the resulting jumpless
trajectory for illustrative parameters, representative of the
metastable regime (15). The north pole of the sphere corre-
sponds to the reset point: the trajectory extends away from
this point and eventually converges towards to a stationary
point. From (17), this is the eigenvector of G with largest

real part, which we denote by |ϕa〉. In addition, we have
from (11), the jump rate for states on the jumpless trajectory
is

w11(τ ) = κ1〈1|ψ1(τ )|1〉. (18)

Using (17) and (18) together is helpful for understanding
the unraveled dynamics of this model. Some properties of
the jumpless trajectory are computed in the Appendix 2 we
summarize here the main results and their implications: we
have |ϕa〉 = |2〉 + O(ε). The eigenvector of G with the sec-
ond largest real part is denoted by |ϕ+〉. Starting from the
reset point |0〉, the jumpless trajectory evolves quickly (on
a timescale of order unity) to a state |ϕ̃+〉 = |ϕ+〉 + O(ε):
this corresponds to the point where the trajectory abruptly
changes direction in Fig. 3(a), which we refer to as the “el-
bow.” The jump rate w11(ψ ) is large (of order 1/τF) between
the reset point and the elbow, so the typical dynamical be-
havior involves repeated rapid motion from |0〉 towards |ϕ̃+〉,
interspersed with frequent jumps back to |0〉. This is the
characteristic behavior of the bright phase: the corresponding
average activity is κ1〈1|ρB|1〉 = O(1).

To understand the transition to the dark phase, note that
the jumpless trajectory slows down near the elbow: the Ap-
pendix 2 shows that it remains close to |ϕ̃+〉 for a time of order
τF log(1/ε). On longer times, it evolves towards |ϕa〉 where the
jump rate is κ1〈1|ϕa|1〉 = O(ε2). This corresponds to the dark
phase: we see that the transition mechanism from bright to
dark is a continuous evolution along the jumpless trajectory.
Such events are rare because the jump rate is large near the
elbow and the state remains there a long time: the Appendix 2
shows that the probability to pass the elbow before jumping is
O(ε2). By contrast, the transition from dark to bright occurs by
a jump back to |0〉: this is rare because of the small jump rate.
The two dynamical regimes can both be seen in the trajectory
in Fig. 2(b): it starts in the bright phase and visits the dark
phase twice.

The above analysis illustrates that the steady state of the
unraveled dynamics only visits states on the jumpless trajec-
tory, as expected for a quantum reset process with a single
jump operator. Figure 3(b) shows how the steady-state prob-
ability density can be parametrized in terms of the distance
� traveled along the jumpless trajectory. Here, the distance
between two nearby points ψ and ψ + dψ , denoted by d�,
is given by the trace distance of the corresponding pure
states d� = 1

2‖dψ‖1 = 1
2

∑
i |λi|, where λi are the eigenval-

ues of dψ which are real [91]. Hence, the distance along
the jumpless trajectory at time τ since the last reset is given
by �(τ ) = 1

2

∫ τ

0 ‖ψ̇ (t )‖1dt , where ψ̇ (τ ) is the time derivative
of the jumpless trajectory (10). The steady-state probabil-
ity density along the jumpless trajectory is given by p(�) =
p(τ )dτ/d�, where p(τ ) is the steady-state probability density
parametrized by time since the last reset.

The probability shows two peaks, corresponding to the two
phases. The bright phase forms a broad peak centered near
|ϕ̃+〉 while the dark phase is a sharp peak near |ϕa〉. For large
τ , both p(τ ) and d�/dτ decay exponentially as ln[p(τ )] =
O(ε)τ and ln(d�/dτ ) = O(1)τ , respectively. The faster decay
of d�/dτ results in p(�) diverging as � → �max, i.e., as |ψ〉
approaches |φa〉.
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D. Committor and semi-Markov analysis

The shading in Fig. 3(a) shows the committor CD(ψ ). Re-
calling Sec. II D, this is the probability that a trajectory started
in state ψ reaches the dark phase before the bright phase.
For any stochastic dynamics, the committor can always be
estimated numerically by running many stochastic trajectories
starting from ψ . However, Sec. IV B derives a generic formula
for the committor in quantum reset processes, which allows
more efficient numerical estimation. The results of Fig. 3(a)
use this more efficient method.

It is convenient to take the core set of the bright phase SB as
the single point |0〉, so the hitting time for this set is the time
of the first jump. For the dark phase we take SD as a small ball
around |ϕa〉. As discussed in Sec. II D, the committor can be
used to identify the two phases within the Hilbert space: CD is
large when ψ is close to the dark phase, and small when it is
far away.

As explained in Sec. II C, the jumps in this quantum reset
process are semi-Markov: as long as at least one jump has
taken place, the state |ψt 〉 is restricted to the jumpless trajec-
tory in Fig. 3(a), and its position on this line only depends
on the time τ since the last jump. This means that after the
first jump has taken place, the unraveled dynamics can be
reduced to a reset process for the random variable τ ∈ [0,∞),
or equivalently for log τ . To illustrate this, Fig. 3(c) shows
the steady-state probability distribution of log τ . It shows two
peaks, which correspond to the two metastable phases.

Within the semi-Markov representation, the committor be-
comes a function of τ , shown in Fig. 3(d). Recalling that
the committor CD is large for systems in the dark phase and
small for those in the bright phase, we see that the bright
phase corresponds to small τ and the dark phase to large τ .
The semi-Markov jump rate w11(τ ) is shown in Fig. 3(b),
parametrized as a function of distance along the jumpless
trajectory. Metastability in this semi-Markov representation
arises because w11(τ ) is large when τ is small, but decreases
strongly for large τ : this encapsulates the effect of shelving
in the dark state. These results in the semi-Markov represen-
tation illustrate the advantage of the quantum reset process
for analysis of quantum trajectories: a generic three-state
quantum system has a dynamical evolution of |ψt 〉 in a three-
dimensional Hilbert space, but the invariant measure and the
basins of attraction of the phases can be analyzed via a one-
dimensional stochastic process for τ .

E. Two-jump variant of three-state model

The three-state model considered thus far illustrates several
aspects of metastability but it also has special features, due
to its simplicity. In particular, as ε → 0 the dark metastable
phase has no activity at all.

To illustrate a more generic situation we modify the model
by adding an additional jump operator [see Fig. 1(b)]:

J2 = √
κ2|2〉〈2|. (19)

Recalling (11), this operator manifests in the unraveled
dynamics as a jump into state |2〉 with rate w j2(τ ) =
κ2〈2|ψ j (τ )|2〉 that depends on the destination j of the last
jump, as well as the time τ since that jump. At the level of
the QME, the operator J2 corresponds to dephasing within the

(d)

(e) (f)

(c)

a)

(b)

FIG. 4. Two-jump variant of three-state model. (a) Example un-
raveled trajectory, from initial state |0〉〈0|. (b) Measurement record
for (a) with jumps J1 (blue) and J2 (green). (c) Jumpless trajectories
from the reset states |0〉 (red) and |2〉 (blue) to the asymptotic state
(black dot). The shading shows the committor to the dark phase.
(d) Probability density for the steady state, as a function of distance
along the jumpless trajectories, from each reset state denoted by |ψr〉.
(e) Probability density for the time since the last jump, within the
steady state, from each reset state. (f) Committor to the dark phase
as a function of the time since the last jump, from each reset state,
calculated using (29). All panels take 1 = 1, κ1 = 4, κ2 = 1, with
2 = 0.05 in (a)–(d).

dark phase. We take 2 = εω2 as before, and κ2 = O(1). This
choice ensures that the model is still metastable as ε → 0.

Figures 4(a) and 4(b) depict a representative trajectory and
corresponding measurement record. The behavior is similar to
Fig. 2, except that the “dark phase” now includes fluctuations
of the quantum state, with a finite rate of internal jumps whose
statistics are approximately Poissonian with rate κ2〈2|ϕa|2〉.
(Despite this fact, we continue to refer to it as the “dark
phase,” to aid comparison with previous sections.)

The system is still a quantum reset process so its quantum
trajectories have a semi-Markov representation, as depicted in
Fig. 1(b). However, it is slightly more complex than the origi-
nal three-state model because there are two different jumpless
trajectories, one starting from each reset point (which are |0〉
and |2〉). The resulting situation is illustrated in Fig. 4(c).
Both jumpless trajectories end at the same point: this is the
dominant eigenvector of G, which we continue to denote by
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|ϕa〉. As ε → 0, we have |ϕa〉 ≈ |2〉, as in the original three-
state model. We emphasize that the invariant measure for ψt

is fully supported on these two jumpless trajectories: this is
the essential simplification that is available for quantum reset
processes.

To characterize the stochastic trajectory dynamics, we
again consider the probability distribution for the distance
traveled along the jumpless trajectories [Fig. 4(d)]. Since
each jumpless trajectory ends at the same asymptotic point,
we now measure the length backwards from that point, so
we take � to be negative, with the final point (� = 0) cor-
responding to |ψt 〉 = |ϕa〉. The invariant measure now has
contributions from both jumpless trajectories: the probability
density for the system to be on trajectory j at a distance
� from the corresponding reset point is pj (�), with nor-
malization

∑2
j=1

∫ 0
−∞ p j (�)d� = 1. One metastable phase is

concentrated on each jumpless trajectory. Hence, in contrast to
the bimodal distribution in Fig. 3(b), each p j now has a single
peak, which corresponds to one of the coexisting phases.

Figure 4(e) shows the corresponding distributions of the
time since the last jump. To understand the mechanisms of
transition between the phases, observe that the system leaves
the dark phase by a jump to |0〉, as in the original model of
(14). It may transition to the dark phase either by passing the
elbow along the jumpless trajectory (as in the original model)
or by a direct jump to |2〉: the relative probabilities of these
two mechanisms depend on κ2.

The existence of two reset states means that the steady state
in the semi-Markov representation is now represented as a
joint probability distribution for the type of the last jump and
the time since this jump. This means that the invariant measure
in Fig. 4(e) consists of two histograms, instead of the single
histogram in Fig. 3(c). Nevertheless, the common features
of the two variants of the model are that they both exhibit
intermittent dynamics of trajectories, with fast relaxation into
metastable states, and rare transitions between them.

Figure 4(f) shows the committor in the semi-Markov rep-
resentation, analogous to Fig. 3(d). The interpretation is that
the jumpless trajectory starting from |2〉 is predominantly in
the dark phase (CD is large); the jumpless trajectory starting
from |0〉 starts in the bright phase (CD is small for small τ )
but it crosses over to the dark phase when τ is large [similar
to Fig. 3(d)]. There are four jump rates w jk (τ ) in the semi-
Markov representation (indexed by j, k): the important feature
is that the jump rate into |2〉 is large in the dark phase and
small in the bright phase, and vice versa for the jump rate
into |0〉. This means that after a jump into either reset state,
it is overwhelmingly likely that the next jump will return to
the same reset state; this is generic for metastability in reset
models where both states have finite activity.

IV. THE COMMITTOR

We have seen that the committor is a useful quantity for
the analysis of quantum trajectories, especially as a way to
identify the distinct metastable phases in Figs. 3(a) and 4(c).
We now derive general properties of this object, which directly
aid its computation. In doing so we develop generic connec-
tions between the committor (which depends on trajectories)
and the quantum master equation (which describes the average

dynamics). These generic results are not restricted to quantum
reset models. We also derive some additional properties of
the committor that hold for the specific case of quantum reset
models.

A. Relation of the committor to the QME

The unraveled dynamics of the models discussed so far has
all the features of classical metastability: a system started in
any state |ψ〉 typically relaxes quickly into either the bright
or the dark phase; it explores that phase quickly and it resides
there for a long time, before eventually transitioning into the
other phase. The fast relaxation is stochastic, and the proba-
bility to relax into the dark phase is the committor CD.

Now consider a general open quantum system with two-
phase metastability. After initialization in pure state ψ0 at time
t = 0, we consider the probability distribution μ(ψ, t ) of the
conditional state ψt . Assuming that ψt relaxes quickly into
one of the phases A or B (such that either χA

t = 1 or χB
t = 1

after a time of order τF), we have by (13) that for τF � t � τS,

μ(ψ, t ) ≈ C∗
A(ψ0)μA(ψ ) + [1 − C∗

A(ψ0)]μB(ψ ), (20)

where all dependence on the initial condition appears through
(the asymptotic value of) the committor C∗

A(ψ0), and μA,B(ψ )
are probability distributions for the conditional state, within
the metastable phases. The approximate equality appears be-
cause we rely on the separated timescales τF � t � τS.

Recalling that ρ(t ) = 〈ψt 〉, averaging ψ against the distri-
bution in (20) yields

ρ(t ) ≈ C∗
A(ψ0)ρA + [1 − C∗

A(ψ0)]ρB, (21)

where ρA, ρB are the averages of ψ with respect to μA, μB.
Since (5) holds in the same asymptotic limit, it is natural to
compare these two results, which suggests that we identify pA

with CA(ψ0), and similarly for phase B. Noting that (5) and
(21) are approximate equalities that become accurate in the
limit ε → 0, one finds

C∗
A(ψ ) = Tr[P∗

Aψ], C∗
B(ψ ) = Tr[P∗

Bψ], (22)

with P∗
A,B = limε→0 PA,B.

Equation (22), which is generic for unraveled systems with
two-phase metastability, is important as a connection between
the QME and trajectory representations of metastability. For
example, if P∗

A |ψ〉 = |ψ〉 then C∗
A(ψ ) = 1 so this state is in

the basin of attraction of phase A, and quantum trajectories
started in |ψ〉 will (typically) relax quickly into that phase.
A similar property holds if P∗

B |ψ〉 = |ψ〉, in which case |ψ〉
is in the basin of attraction of phase B (and P∗

A |ψ〉 = 0). For
initial (pure) states ψ which overlap with both phases, the
committor is intermediate: they relax to one phase or the other
with probability C∗

A,B(ψ ). (The extension of these results to
more than two phases is straightforward.)

An interesting feature of (22) is that the committor is in-
dependent of the unraveling (for example, the same formula
applies also for homodyne unravelings [2]). Hence, the basins
of attraction of the phases A and B are also independent of
the unraveling. We also emphasize that (20), which is the
starting point for this analysis, relies on the assumption that
the unraveled dynamics relaxes quickly into either phase A
or phase B. This certainly holds in the three-state examples
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considered here and we expect it to hold in a broad range
of examples, but a detailed investigation of the conditions
required remains as an interesting direction for future work.

Having identified these general principles, we summarize
their implications for the three-state models. Any trajectory
which starts in a quantum superposition of the two phases,
such as (|0〉 + i|2〉)/

√
2, will evolve on the fast timescale τF

into either the dark or the bright phase, according to these
committor probabilities. In the limit ε → 0, the relevant oper-
ators are projectors: P∗

D = |2〉〈2| and P∗
B = (|0〉〈0| + |1〉〈1|).

These are projections onto the bright and dark subspaces of
the model. The committors to each phase, which are computed
directly in Sec. IV B, are related to the underlying QME by
(22). Hence, as ε → 0 they converge to

C∗
B(ψ ) = 〈0|ψ |0〉 + 〈1|ψ |1〉, C∗

D(ψ ) = 〈2|ψ |2〉. (23)

B. Committor for reset processes

For reset processes, the core sets SA,SB that appear in the
definition of the committor can often be identified with reset
states, as they were in Sec. III E. Here we derive a formula for
the committor that applies in this situation. (We note, however,
that this choice of core sets is not possible in all cases: an
example is given by the model of Sec. III A, which has only
one reset state.)

For a quantum trajectory starting in state ψ0 at time t =
0, the probability that the first jump has destination |φ j〉 and
occurs in the time interval [t, t + dt ) is p( j, t |ψ0)dt , with

p( j, t |ψ0) = S(t, ψ0)w j (t, ψ0), (24)

where S(t, ψ0) = Tr[eGtψ0eG†t ] is the survival probability up
to time t [analogous to (9)] and

w j (t, ψ0) = Tr[JjeGtψ0eG†t J†
j ]

Tr[eGtψ0eG†t ]
(25)

is the jump rate by jump Jj at time t [analogous to (11)]. For
quantum reset processes we can then use (7) to obtain

p( j, t |ψ0) = κ j〈ξ j |eGtψ0eG†t |ξ j〉. (26)

Hence, the total probability that the first jump after t = 0 is of
type j is

P( j|ψ0) =
∫ ∞

0
dt p( j, t |ψ0). (27)

This is an example of a splitting probability [92].
Now consider a system with two or more phases, where the

core set for each phase A, B, . . . consists of a single reset state,
with corresponding jump operators of the form (7). Then the
committor from state ψ0 to phase A is exactly the probability
that a quantum trajectory starting at ψ0 makes its first jump to
|φA〉, which is

CA(ψ0) =
∫ ∞

0
dτ κA〈ξA|eGtψ0eG†t |ξA〉. (28)

For example, in the model of Sec. III E, one identifies the
jump operator corresponding to jumps into the “dark” phase
as J2 = √

κ2|2〉〈2| and (28) reduces to

CD(ψ0) =
∫ ∞

0
dτ κ2〈2|eGτψ0eG†τ |2〉, (29)

with a similar formula for CB on replacing |2〉 → |1〉 and
κ2 → κ1. The committor for this model, calculated from (29),
is shown in Figs. 4(c) and 4(f). Note that as ε → 0, (29)
converges to (23).

The result (28) has practical implications. It is much more
efficient than estimating committors directly by running many
random trajectories starting from each state. Of course, one
can also use (22) to obtain the committor in the limit ε → 0,
but (28) is useful since it is valid also at finite ε, and it also
avoids the requirement to diagonalize the quantum Liouvillian
operator. In addition, while (28) is not directly applicable to
the first model of Sec. III, a modified version of the formula
still applies, where the upper limit on the integral is the time
at which the jumpless reaches the core set SD for the dark
state. This last method was used to compute the committor in
Figs. 3(a) and 3(d).

V. TWO-QUBIT MODEL

As well as the two-phase metastability considered so
far, the general theory of quantum metastability includes a
range of other phenomena including noiseless subsystems
(NSS) and decoherence-free subspaces (DFS) [93], which are
protected from dissipation and decoherence, and have been
proposed as possible candidates for the implementation of
quantum information processing [94,95].

A. Quantum reset model with metastable DFS

As an example of a metastable DFS in a quantum reset
process, we consider two coupled qubits, with Hamiltonian
and jump operators given by

H = 1σ
y
1 + 2σ

y
2 ,

J1 = √
γ1n1σ

−
2 , (30)

J2 = √
γ2(1 − n1)σ+

2 ,

where σ±
i = 1

2 (σ x
i ± σ

y
i ), the subscript denotes the qubit

on which the operator acts, ni = 1
2 (1 + σ z

i ), and we use
the single-qubit basis {|↑〉, |↓〉}. This system is depicted in
Fig. 1(c) and based on a similar model, proposed in [10]. It
is defined in a basis for which the matrix elements of G and
L are all real. The model is a quantum reset process with
two reset points, |↑↓〉 and |↓↑〉. The semi-Markov structure
of the model is illustrated in Fig. 1(c). Note that this has the
same structure as for the two-jump three-state model shown
in Fig. 1(b), but the differing waiting time distributions of
the semi-Markov processes lead to very different qualitative
behavior.

The metastable regime is

|1|, |2| � γ1, γ2. (31)

For consistency with the general formalism of Sec. II B, we
take 1,2 = εω1,2 with γ1,2 > 0 and ω1,2 held constant as
ε → 0. In this limit, the QME is metastable with four slow
eigenvalues, m = 4: in fact, the model has a metastable DFS
[10]. These four slow eigenvalues and the metastable DFS are
also preserved on replacing

H → H + rσ
x
1 σ

y
2 (32)
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and fixing r = O(1) as ε → 0. This generates fast uni-
tary evolution of the quantum state within the DFS. Our
analysis focuses on the model (30) which corresponds
to r = 0, but we also include brief comments on the
general case.

We recall the distinction of [10] between classical
metastability and a metastable DFS. In classical metasta-
bility for m = 4, the QME solution (3) for t � τF would
become

ρ(t ) ≈
∑

X∈{A,B,C,D}
pX (t )ρX , (33)

where the four states are A, B,C, D, the pX (t ) are time-
dependent probabilities of each state (summing to unity), and
ρX is a density matrix describing phase X [10,12]. All these
density matrices are supported on different parts of the sys-
tem’s Hilbert space. The four terms in the sum mirror the m
terms in (3). In contrast, for the model considered here, we
have (at the same level of accuracy)

ρ(t ) ≈ p1(t )|↑↓〉〈↑↓| + p2(t )|↓↑〉〈↓↑|
+z(t )|↑↓〉〈↓↑| + z∗(t )|↓↑〉〈↑↓|, (34)

where now p1,2(t ) are real-valued probabilities (summing to
unity) but z(t ) is complex (with |z|2 � p1 p2). This means
that the metastable manifold approximately corresponds to a
qubit with basis states |↑↓〉 and |↓↑〉. The z terms in (34)
represent coherences between different parts of the metastable
manifold, which are forbidden in (33).

B. Connections between trajectory and QME dynamics

Figures 5(a) and 5(b) show a typical quantum trajectory
of this model, and its corresponding time record. Compared
with the models considered so far, there are several striking
features. First, the projection of ψ onto the states |↑↑〉 and
|↓↓〉 is extremely small throughout [in fact, O(ε)]. Second,
quantum jumps are rare, throughout the evolution. Third, the
two-phase behavior of Figs. 2(b) and 4(a) is absent: instead,
one sees occasional fast events (triggered by jumps), which
are followed by periods of continuous slow evolution towards
an asymptotic (dark) state.

These aspects of the behavior are linked to properties of
the QME, which are clearest from a perturbative analysis
about ε = 0. As noted above, the QME behavior for ε = 0
corresponds to fast relaxation into (34). All contributions to
ρ(t ) that involve |↑↑〉 and |↓↓〉 decay quickly so they do not
appear in (34): this is a decay subspace [64,96]. Similarly,
quantum trajectories for ε = 0 relax into pure states |ψ〉〈ψ |
with |ψ〉 = z1|↑↓〉 + z2|↓↑〉, which are stationary in the un-
raveled dynamics at ε = 0. The manifold (34) is annihilated
by jump operators J1, J2, hence, these states are dark.

On restoring a positive ε > 0, one naturally recovers small
contributions of |↑↑〉, |↓↓〉 in the quantum trajectories. For
small positive ε, the small contributions of |↑↑〉, |↓↓〉 restore
small finite jump rates, as observed. The slow continuous
evolution of the conditional state in Fig. 5(a) is a more subtle
feature of the metastable DFS. We explain below that it is re-
lated to the evolution of coherences z(t ) within the metastable
manifold. Note also that this slow evolution is a feature of
this model that is not fully generic for metastable DFSs: for

FIG. 5. Two-qubit quantum reset model with metastable DFS.
(a) Example unraveled trajectory, from initial state 1

4

∑
i j |i〉〈 j|.

(b) Corresponding measurement record. (c) Illustration of the un-
raveled dynamics. (d) Stationary state probability density along the
length of the jumpless trajectory from each reset state denoted by
|ψr〉. (e) Semi-Markov probability density. All panels take γ1 = 4,
γ2 = 1, with 1 = 0.02, 2 = 0.01 in (a), (b), and (d).

the model of (32), Eq. (34) includes a fast unitary evolution.
However, we focus here on r = 0, for simplicity.

C. Quantum trajectories

To analyze quantum trajectories in more detail, we begin
with jumpless trajectories starting from the reset points, as be-
fore. The matrix G has real elements. For ε = 0 the states |↑↓〉
and |↓↑〉 are eigenvectors of G with degenerate eigenvalues
of zero, while |↑↑〉 and |↓↓〉 are eigenvectors with positive
eigenvalues. For ε > 0 the degenerate pair are split, leading
to a dominant eigenvector |ϕa〉 and a second eigenvector |ϕ2〉
which are both of the form cos φ|↑↓〉 + sin φ|↓↑〉 + O(ε),
with eigenvalues O(ε2).

It follows that the jumpless trajectories evolve quickly
away from the reset points before arriving in a slow manifold
spanned by |ϕa〉 and |ϕ2〉. This is illustrated in Fig. 5(c):
there is fast motion along the blue lines, followed by slow
motion along the purple line, which is the slow manifold. The
dotted red line can be parametrized as cos ϑ |↑↓〉 + sin ϑ |↓↑〉;
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similarly, the purple line is cos ϑ |ϕa〉 + sin ϑ |ϕ2〉: the separa-
tion of the two lines is O(ε).

The dominant eigenvector |ϕa〉 is the black dot, and both
jumpless trajectories eventually converge to this point. The
two slow eigenvalues of G are both O(ε2), and this sets
the speed at which the jumpless trajectory moves along the
slow manifold. (Note that the jumpless trajectory describes
a four-dimensional wave function with real co-efficients: we
represent it by a three-dimensional sketch, bearing in mind
that the fourth component is fixed by normalization.)

In contrast to the models discussed so far, the properties
outlined in Sec. II D do not hold in this case, and one cannot
identify fast relaxation into distinct metastable phases with
slow transitions between them. This qualitative difference
from the three-state model illustrates that the metastable DFS
is inherently nonclassical. The absence of distinct phases also
means that committors, which are characteristic of classical
metastability, cannot be defined in this case. The possibility
of continuous slow evolution of the quantum state within a
slow manifold is a distinctive feature of quantum metastable
systems: this behavior is absent from classical theories of
metastability.

Figure 5(d) shows the invariant measure along the jumpless
trajectories: there is significant probability [p(�) = O(1) as
ε → 0] over a range of �. The typical time between jumps
is long, as shown in Fig. 5(e). In fact, the entire slow manifold
is similar to a dark phase in that the jump rate is O(ε2)
everywhere. Following the prescription of Sec. IV B, one can
use the semi-Markov property of the quantum trajectories to
compute the probability that the system jumps to a given
reset state given the destination of the previous jump, using
(29). Since there are two reset points, there are four such
probabilities: we find that they are all of order unity. This is
in stark contrast to the three-state model of Sec. III E where
the system tends to make multiple repeated jumps of the same
type: in that case, two of the probabilities are O(1) but the
other two are small, O(ε2).

Having described trajectories that start from the reset
points, we briefly consider other initial points. The purple
line in Fig. 5(c) is just one part of a larger slow manifold
that corresponds to a qubit |ψ〉 = za|ϕa〉 + z2|ϕ2〉 where za, z2

are complex in general. A trajectory initialized anywhere
on this manifold will evolve slowly towards |ϕa〉, and its
jump rate is small [in fact, O(ε2)] throughout this evolu-
tion. The slow timescales for these processes mean that any
coherence between |↓↑〉 and |↑↓〉 in the initial condition
survives a long time: this is a central feature of the metastable
DFS. In the specific case of quantum reset processes, jumps
necessarily remove the coherences between the reset states,
with the result that DFSs must always be “dark,” as in this
example.

Finally, it is also interesting to analyze quantum trajectories
for the generalized model of (32). The essential difference in
this case is that the purple line in Fig. 5(c) is extended to a
closed circle around which the jumpless trajectories circulate
quickly (frequency of order r), although the DFS remains
dark, as it must. Similarly to introducing (32), one can also
apply any unitary operation (gate) acting as a rotation within
the slow manifold. This produces a logical qubit, from the two
physical qubits, which supports long-lived coherence. The

evolution under the applied operations remains approximately
unitary on the long times between jump events.

D. Recovering classical metastability for �1 � �2

In addition to a metastable DFS, the two-qubit model (30)
also supports other metastable structures. To illustrate this,
note that for 1 = 0, the Hilbert space is disconnected into
two subspaces that are not mixed under the dynamics: suitable
bases for the subspaces are {|↑↑〉, |↑↓〉} and {|↓↑〉, |↓↓〉}. We
label these subspaces as ↑ and ↓, according to the state of the
first spin. It follows that for |1| � |2|, γ1, γ2, one recovers
two-phase metastability, with one phase supported on each
subspace, and phenomenology similar to the three-state model
considered above.

Similarly to the analysis of Sec. IV A, the committors for
these phases can be identified from (22). Labeling the phases
according the subspaces, the committor for the ↑ phase can be
identified as

C∗
↑(ψ ) = Tr[n1ψ] = 〈↑↑|ψ |↑↑〉 + 〈↑↓|ψ |↑↓〉 (35)

and similarly C∗
↓(ψ ) = Tr[(1 − n1)ψ].

A particularly interesting situation occurs for

|1| � |2| � γ1, γ2 (36)

in which case the QME spectrum has two gaps. As an
example, we take 1 = ε2ω1, 2 = εω2 in which case
the slow eigenvalues of the QME are λ1 = 0, λ2 = O(ε4),
λ3,4 = O(ε2). For times t � ε−2, the eigenvalues λ3,4 do not
contribute and one does indeed observe simple two-phase
(classical) metastability. However, the eigenvalues λ3,4 af-
fect the behavior on intermediate timescales. [The system
still features the “slow manifold” (34). After each jump, the
relaxation into this manifold occurs quickly; while motion
within this manifold can occur with intermediate rates which
scale as λ3,4 or with slow rates, scaling as λ2.] This resulting
situation is illustrated in Fig. 6. The two-phase metastability
is clear from the representative trajectory and corresponding
measurement record in Figs. 6(a) and 6(b) and the existence
of an intermediate relaxation time is visible in Fig. 6(c).

Figure 6(d) illustrates that the stationary point |ϕa〉 of the
unraveled dynamics is close to the reset point |↑↓〉, in contrast
to the situation shown in Fig. 5(c). The ↑ phase consists of
rapid motion from |↑↓〉 towards |ϕa〉, with frequent jumps
back to |↑↓〉, reminiscent of the bright phase in the three-state
models of Sec. III. Trajectories in the ↓ phase evolve quickly
from the reset state |↓↑〉 to the slow manifold: they move
towards |ϕa〉 with an intermediate rate, but they typically reset
back to |↓↑〉 before getting close to |ϕa〉. These two phases
are visible as two separate peaks in the distribution p(�) in
Fig. 6(e).

Finally, Fig. 6(f) shows the committor as a function of the
time since the last reset. The core sets for the two phases are
the reset points, as in Sec. III E. Hence, the committor to the
↑ phase is given by (28) on replacing A → ↑, κA → γ1, and
|ξA〉 → |↑↓〉. Figure 6(f) shows that if the last reset was to
|↑↓〉, the next reset state will almost certainly be the same,
independent of the time since the last reset. If the last reset was
to |↓↑〉, the most likely destination of the next jump depends
on the time τ . For small τ then the system most likely resets to
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(c)

(b)

(a)

(e) (f)

(d)

FIG. 6. Two-qubit model with classical metastability. (a) Exam-
ple measurement record for 1 = 0.0005, 2 = 0.01, and initial
state 1

4

∑
i, j |i〉〈 j|. (b) Corresponding quantum trajectory. (c) Mag-

nified portion of (b). (d) Illustration of the unraveled dynamics.
(e) Probability density along the length of the jumpless trajectory
from each reset state denoted by |ψr〉. (f) Committor to the state
|ψ〉 ≈ |↑↓〉 in the semi-Markov representation, calculated from (28).

the same destination, but for large τ the state approaches |ϕa〉
and tends to jump to |↑↓〉 instead. This behavior is similar to
Fig. 4(f).

Since this model has frequent jumps in both phases, it is
essential for the two-phase metastability that the destination
of each jump tends to be similar to that of the previous one
(recall Sec. III E). To see how this happens, it is convenient
to write the slow manifold as |ψ〉 = cos ϑ |u〉 + sin ϑ |v〉 with
|u〉 = |↑↓〉 + O(ε), and |v〉 = |↓↑〉 + O(ε). The ↑ phase cor-
responds to ϑ ≈ 0 and it can be shown that 〈↑↑|u〉 = O(ε),
while 〈↓↓|u〉 = O(ε2). Constructing the semi-Markov rates
from (11), one finds that systems in the ↑ phase jump to |↑↓〉
with rate O(ε2) but they jump to |↓↑〉 with a much smaller
rate O(ε4). Hence, resets to the same state are indeed much
more frequent. A similar situation holds in the ↓ phase.

VI. OUTLOOK

A. Beyond quantum reset models

All examples considered so far have been quantum re-
set models: we emphasized that quantum trajectories are

(c)

(b)

(a)

FIG. 7. Nonquantum-reset variant of two-qubit model. (a) Ex-
ample unraveled trajectory, from initial state 1

4

∑
i, j |i〉〈 j| with 1 =

0.02, 2 = 0.01, γ1 = 4, γ2 = 1. (b) Measurement record for (a).
(c) Illustration of the dynamics (see text).

particularly tractable in this case. However, the metastable
phenomenology discussed above is not restricted to these
models. In particular, the relationship (22) between the com-
mittor and the spectrum of the QME is generic for system with
classical metastability (in the sense of [12]).

We offer two specific examples of metastable nonreset pro-
cesses. The first is obtained by combining the jump operators
of the two-jump three-state model of Sec. III E into a single
jump operator

J = J1 + J2 = √
κ1|0〉〈1| + √

κ2|2〉〈2|. (37)

This operator does not mix the unperturbed phases, so the cou-
pling between them is unchanged from the original model and
the low-lying spectrum of the QME has the same qualitative
features. As a result, the committors to the two phases are still
given to leading order by (23), and the average jump rates
within the phases are also unchanged, although the higher-
order statistics are different. The quantum trajectories have
the same qualitative behavior as the original quantum reset
model. In this sense, the reset model is a tractable system that
exemplifies a broader class of metastable systems.

A similar construction can be used to analyze a two-qubit
model introduced in [10]. This has the same Hamiltonian as
(30), but a single jump operator

J = √
γ1n1σ

−
2 − √

γ2(1 − n1)σ+
2 (38)

which replaces the two jumps in (30) by a single jump which
superposes them. The low-lying spectrum of the QME is
almost unchanged since at ε = 0 the DFS is dark, so that at
ε > 0 the QME spectrum has m = 4 with the metastable DFS.

Figure 7 shows a representative quantum trajectory for
this model, with its corresponding measurement record, and a
sketch illustrating the behavior of jumpless trajectories. This
can be compared with Fig. 5. The main difference is that
the system is not a quantum reset model: the red circle in
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Fig. 7(c) shows the possible destinations of quantum jumps,
which are all states of the form |ψ〉 = q|↑↓〉 ±

√
1 − q2|↓↑〉

with −1 � q � 1.5

From (38), the jump destination (parametrized by q) de-
pends on the small components of |ψ〉, which have a nontrivial
evolution, leading to a complicated dependence of q on the
starting point of the jump. However, it is still useful to
consider jumpless trajectories in this representation. Every
jump takes the system onto the red circle, after which the
state relaxes quickly onto the slow manifold (purple circle).
It then evolves within that manifold towards the asymptotic
state |ϕa〉. Jumps may take place from any point on the slow
manifold and may end at any point on the red circle. As a
result, there is a continuous family of jumpless trajectories. In
contrast to the corresponding quantum reset model (Sec. V),
this means that the steady-state probability distribution cannot
be represented as in Figs. 5(d) and 5(e). However, the DFS
phenomenology is very similar between reset and nonreset
models: Again, the reset model is useful as a tractable example
that illustrates generic metastable behavior. An interesting
question is whether there are qualitative aspects of metasta-
bility that cannot be captured by reset models: an important
case might be the metastability that appears near first-order
phase transitions in many-body systems [11,24,30].

B. Quantum systems with classical metastability

A central conclusion of Secs. III and IV is a connection
between quantum trajectories and those of classical systems
with metastability. This appears in quantum systems with
classical metastability in the sense of [10,12]. The associ-
ated phenomenology is that typical trajectories relax quickly
into one of the metastable phases and explore them quickly;
on long timescales they exhibit rare transitions between the
phases. In the stationary regime, these trajectories show in-
termittent behavior, which switches between the phases: this
mirrors the intermittent behavior of time records discussed in
[12]. The rates for the slow and fast processes in such sys-
tems are controlled by τS and τF, respectively. In the classical
framework, an important role is played by the committor: for
two-phase metastability, we explained that this can be related
to the spectrum of the QME, via (22), providing quantitative
connection between QME and trajectory representations.

As examples of this behavior we considered two vari-
ants of a simple three-state model, which exhibits bright and
dark states. Both examples are quantum reset processes: we
explained how this structure can be exploited in order to
characterize their behavior via a mapping to semi-Markov
processes, and by analysis of jumpless trajectories that start
from the reset point(s). Hence, the stationary state of the
unraveled dynamics is supported on a finite set of lines in the
Hilbert space. Our results show these quantum reset models
are relatively simple to analyze, while still supporting rich
metastable behavior. This means that some general insights
can be extrapolated from such simple examples: for exam-

5Since the state of the unraveled dynamics is the pure density
matrix ψ = |ψ〉〈ψ |, the points |ψ〉 and −|ψ〉 are equivalent in this
graphical illustration.

ple, metastable systems generically show large differences
between quantum trajectories and the averaged behavior of
the QME; we also show how the committor is useful for
delineating metastable phases within quantum trajectories.

To continue the theoretical program that we have started
here, it would be important to characterize more rigorously
the conditions required to observe intermittency in unrav-
eled dynamics. One could also investigate models which are
metastable but do not exhibit this intermittent behavior, for
example, a qubit with H = σ z, J = εγxσ

x + εγyσ
y + γzσ

z.
Other interesting questions occur in quantum trajectories
where two metastable phases have the same average jump rate,
which makes them harder to distinguish from experimental
time records.

C. Quantum systems with nonclassical metastability

Our analysis of the two-qubit model of Sec. V illustrates
the observation of [10], that quantum systems can support
nonclassical metastable behavior such as metastable DFS.
Consistent with the nomenclature of nonclassical metastabil-
ity, we find that the corresponding quantum trajectories do
not exhibit the classical metastable phenomenology of fast
relaxation into metastable phases and rare transitions between
them. Instead, the unraveled dynamics features a slow mani-
fold within which they undergo continuous (slow) motion.

The existence of metastable DFS in quantum reset models
may be surprising, given the simplicity of the models. We
explained that this is possible because the DFS is “dark”
in that all jump rates vanish as ε → 0, within the relevant
subspace. This is also true for the nonreset model discussed
in Sec. VI A.

Quantum trajectories are highly relevant to experimental
setups, especially where systems undergo continuous mon-
itoring as is becoming increasingly implemented in modern
experiments [97–99]. Therefore, understanding their behavior
in nonclassically metastable systems, which exhibit phenom-
ena crucial for implementation of quantum technologies, is
an important task. We have investigated this in few-level sys-
tems, both reset and nonreset, where the trajectories behave
analogously to slow continuous classical dynamics within a
manifold of low activity. A natural next step is to build on this
work to consider many-body systems, which have a greater
range of practical applications [100–102].
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APPENDIX: THREE-STATE MODEL

1. Quantum master equation

Here we discuss the structure of the QME for the model of
Sec. III A. Writing the QME operator in the basis

{|2〉〈2|, |1〉〈1|, |0〉〈0|, σ x
01, σ

x
02, σ

x
12, iσ y

01, iσ y
02, iσ y

12

}
,
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where σ x
jk = | j〉〈k| + |k〉〈 j| and iσ y

jk = | j〉〈k| − |k〉〈 j|, we
obtain a matrix representation of L as

(A1)
This matrix has a block structure, the steady-state eigenvector
comes from the first block, while the eigenvalues of the sec-
ond block have strictly negative real parts and correspond to
decaying coherences.

To understand metastability at this level, recall that 2 =
εω2 and consider perturbation theory about ε = 0 by writing
L = L0 + εV . The first row and column of L0 are both full of
zeros, showing that ρ∗

D = |2〉〈2| is a (dark) steady state of the
model with ε = 0. There is a second (bright) steady state ρ∗

B
which is supported on |1〉〈1|, |0〉〈0|, and σ x

01.
For small positive ε one recovers a unique stationary state

which is well approximated by a linear combination of ρ∗
B

and ρ∗
D. The two zero eigenvalues are split as θ1 = 0 and

θ2 = O(ε2). (One might expect in general θ2 = O(ε) but there
is no such contribution here because Tr[ρ∗

BV (ρ∗
D)] = 0.)

2. Jumpless trajectories

We describe here the jumpless dynamics of the three-state
model, as defined in (17). For this, we require some properties
of G (or equivalently the effective Hamiltonian Heff = iG).
Working in the basis (|0〉, |1〉, |2〉), we have

G =
⎛
⎝ 0 1 2

−1 − κ1
2 0

−2 0 0

⎞
⎠. (A2)

Using also that 2 = εω2, the system can be analyzed per-
turbatively in ε. For ε = 0, the only nonzero elements of G
appear in a 2 × 2 block: the corresponding subspace of the
model’s Hilbert space corresponds to the bright phase and
the effective Hamiltonian is that of a two-level atom. The
eigenvectors of G at ε = 0 are |ϕ∗

a 〉 = |2〉 (the dark state) with
eigenvalue θ∗

a = 0, and

|ϕ∗
±〉 ∝ θ∗

∓|0〉 + 1|1〉, (A3)

where the coefficient of proportionality is fixed by normaliza-
tion and

θ∗
± =

−κ1 ±
√

κ2
1 − 162

1

4
(A4)

are the corresponding eigenvalues, which are of order unity.
For ε > 0, the eigenvectors of G are

|ϕ±〉 = |ϕ∗
±〉 + O(ε),

|ϕa〉 = |2〉 + O(ε). (A5)

The corresponding eigenvalues are θ± = θ∗
± + O(ε) and θa =

O(ε2). The perturbative corrections in (A5) are responsible for
weak coherences in the EMSs, as described in Sec. III B.

The eigenvalues θ± may be real, or a complex-conjugate
pair. We focus on the case κ � 41 in which case they are
both real. [In our numerical examples we take κ = 41 in
which case θ∗

± are degenerate, but they are split by the pertur-
bation, so θ± are real and distinct. Hence, the numerics reflect
qualitatively what occurs for all κ1 � 41.]

Restricting to this case we have 0 > θa > θ+ > θ− and
(17) becomes

|ψτ 〉 ∝ Aa|ϕa〉 + A+|ϕ+〉e−(θa−θ+ )τ + A−|ϕ−〉e−(θa−θ− )τ

(A6)
for suitable (real) constants Aa, A±; the constant of pro-
portionality is set by normalization and we assume Aa > 0
without loss of generality. Since the jumpless trajectory starts
from the reset state |0〉, we must have Aa|ϕa〉 + A+|ϕ+〉 +
A−|ϕ−〉 = |0〉. Note that G is not Hermitian, so its eigenvec-
tors are not orthogonal. Nevertheless, multiplying from the
left by 〈2| and using (A5) shows that Aa = O(ε), and similarly
the overlaps with 〈0| and 〈1| show that A± = O(1).

The exponential factors in (A6) are decaying with rates
of O(1), so for very long times we must have |ψτ 〉 ≈ |ϕa〉.
However, the small coefficient Aa = O(ε) means that this only
occurs for times τ � (θ+ − θa)−1 log(|A+|/ε) which diverges
as ε → 0. On the other hand, (θ+ − θ−) = O(1) so one sees
that for (θ+ − θ−)−1 � τ � (θ+ − θa)−1 log(|A+|/ε) one has
|ψτ 〉 ≈ |ϕ+〉. This state corresponds to the elbow in Fig. 3:
the jumpless trajectory moves slowly past this elbow because
the contribution of |ϕ−〉 decays almost to zero before the
contribution of |ϕa〉 becomes significant.

It is useful to identify the time τe at which the jumpless
trajectory “passes the elbow.” We define this via the relation

Aa = d|A+|e−(θa−θ+ )τe , (A7)

where d > 0 is a threshold that describes how far past the
elbow the trajectory must go: for times τ > τe, the relative
contribution of |ϕa〉 to |ψτ 〉 is at least d . Recalling that Aa =
O(ε) then τe diverges as log(1/ε). Now observe that once
|ψτ 〉 passes the elbow, the jumpless trajectory converges expo-
nentially fast into the dark state |ϕa〉 with rate (θ+ − θa)−1 =
O(1). This means that while transitions from the elbow to the
dark phase are rare (see below), the actual transition takes
place quickly.

To understand why these transitions are rare, it is useful to
estimate the probability that a trajectory starting from the reset
state |0〉 does actually pass the elbow before jumping back to
|0〉. This is exactly the survival probability of (9), evaluated at
τe. From the properties of G, this results in

S(τe ) ≈ A2
ae2θaτe + A2

+e2θ+τe , (A8)

where the approximate equality is due to subleading correc-
tions from (fast-decaying) exponential factors e−(θa−θ− )τ and
the fact that 〈ϕa|ϕ+〉 = O(ε). Using (A7) we obtain S(τe ) ≈
A2

a(1 + d−2)e2θaτe . For small ε then Aa = O(ε) and d = O(1)
and θaτe ∼ ε2 log(1/ε) → 0 so the probability that the condi-
tional state passes the elbow before jumping is

S(τe ) = O(ε2). (A9)
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In other words, there are typically O(ε−2) jumps within the
bright state before any transition to the dark state. This is
consistent with the bright state being metastable.

As a final comment in this Appendix, recall that we have
analyzed the behavior for κ1 � 41. For the opposite case
κ1 < 41, the jumpless trajectory does not feature an elbow.

For ε = 0 this trajectory describes circles in the plane 〈2|ψ〉 =
0. For ε > 0 these circles slowly spiral into |ψa〉. However,
the time-dependent overlap between |ϕa〉 to |ψt 〉 is similar to
the case already considered: it only becomes significant after
a time of order log(1/ε), after which the jumpless trajectory
converges exponentially into |ϕa〉 with a rate of O(1).
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