
RecGraph: recombination-aware alignment of
sequences to variation graphs
Jorge Avila Cartes ,1, Paola Bonizzoni ,1 Simone Ciccolella ,1

Gianluca Della Vedova ,1∗ Luca Denti ,1 Xavier Didelot ,2 Davide Monti1

and Yuri Pirola 1

1Department of Computer Science, Univ. of Milano - Bicocca, Milano, viale Sarca 336, 20126, Milano, Italy

and 2School of Life Sciences, Univ. of Warwick, Gibbet Hill Road, CV47AL, Coventry, United Kingdom

∗Corresponding author. gianluca.dellavedova@unimib.it

FOR PUBLISHER ONLY Received on Date Month Year; revised on Date Month Year; accepted on Date Month Year

Abstract

Motivation: Bacterial genomes present more variability than human genomes, which requires important

adjustments in computational tools that are developed for human data. In particular, bacteria exhibit a

mosaic structure due to homologous recombinations, but this fact is not sufficiently captured by standard read

mappers that align against linear reference genomes. The recent introduction of pangenomics provides some

insights in that context, as a pangenome graph can represent the variability within a species. However, the

concept of sequence-to-graph alignment that captures the presence of recombinations has not been previously

investigated.

Results: In this paper, we present the extension of the notion of sequence-to-graph alignment to a variation

graph that incorporates a recombination, so that the latter are explicitly represented and evaluated in an

alignment. Moreover, we present a dynamic programming approach for the special case where there is at most

a recombination — we implement this case as RecGraph. From a modeling point of view, a recombination

corresponds to identifying a new path of the variation graph, where the new arc is composed of two halves,

each extracted from an original path, possibly joined by a new arc. Our experiments show that RecGraph

accurately aligns simulated recombinant bacterial sequences that have at most a recombination, providing

evidence for the presence of recombination events.

Availability: Our implementation is open source and available at https://github.com/AlgoLab/RecGraph

Contact: gianluca.dellavedova@unimib.it

Supplementary information: Supplementary data are available at Bioinformatics online.

Key words: computational pangenomics, variation graphs, sequence-to-graph alignment, dynamic programming,

recombinations

1. Introduction

Sequence-to-graph alignment is a fundamental computational prob-

lem in pangenomics (Computational Pan-Genomics Consortium,

2018). Despite its relevance, some basic questions, such as what

is a good sequence-to-graph alignment and what are its main de-

sired features, have not been fully investigated from a theoretical

viewpoint (Baaijens et al., 2022). Indeed, the focus so far has been

on practical heuristics that can scale to population-scale human

genomes and that are able to provide tools used by practitioners.

A seminal paper on the foundations of sequence-to-graph align-

ment is (Lee et al., 2002), where a notion of alignment of a sequence

against a directed acyclic graph has been introduced. The resulting

computational problem is the partial order alignment (POA). The

original goal was to provide a practical solution to the multiple se-

quence alignment (MSA) problem, by iteratively adding sequences

to the graph with a dynamic programming approach that extends

the Needleman-Wunsch algorithm (Needleman and Wunsch, 1970)

to directed acyclic graphs. In fact, a sequence-to-graph alignment

can be used to describe how to change the graph so that it is able

to also express the sequence. While this paper predates computa-

tional pangenomics, POA has recently gained a renewed interest

thanks to its ability to model and address the sequence-to-graph

alignment problem. Some practical improvements have recently

appeared, most notably abPOA (Gao et al., 2021), spoa, and

1

Page 1 of 12 Bioinformatics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 © The Author(s) 2024. Published by Oxford University Press.

This is an Open Access article distributed under the terms of the Creative Commons Attribution License

(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium,

provided the original work is properly cited.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/advance-article/doi/10.1093/bioinform
atics/btae292/7658945 by guest on 02 M

ay 2024

https://orcid.org/0000-0003-3425-2823
https://orcid.org/0000-0001-7289-4988
https://orcid.org/0000-0002-6469-4887
https://orcid.org/0000-0001-5584-3089
https://orcid.org/0000-0001-8786-2276
https://orcid.org/0000-0003-1885-500X
https://orcid.org/0000-0002-8479-7592
email:gianluca.dellavedova@unimib.itm
https://github.com/AlgoLab/RecGraph
gianluca.dellavedova@unimib.it

2 Avila Cartes et al.

Gwfa (Zhang et al., 2022) which incorporate recent advances in

dynamic programming algorithms and SIMD instructions.

If the pangenome graph has cycles, the alignment problem be-

comes more complex and some formulations are NP-complete (Jain

et al., 2020), for example when modifications in the graph are

allowed to avoid mismatches. On the other hand, if changes are

allowed only in the sequence, there is a O(|V | + q|E|)-time algo-

rithm, where q is the length of the sequence and each vertex of

the graph is labeled by a single character. Even outside compu-

tational pangenomics, approximate pattern matching in a graph

has attracted interests, starting from (Amir et al., 2000; Navarro,

2000) and going on with other important complexity results and

algorithms for different variants (Thachuk, 2013; Denti et al., 2018).

More recently, the field has found new challenges and important

contributions (Rautiainen et al., 2019; Sirén et al., 2021; Rautiainen

and Marschall, 2017; Garrison et al., 2018).

The distinction between variation graphs and sequence graphs

is crucial. In fact, variation graphs consider haplotype informa-

tion represented as distinguished paths (Sirén et al., 2021), while

sequence graphs do not distinguish paths (Gao et al., 2021). On

population-scale human pangenome graphs, the O(|V |+ q|E|) time

complexity of Jain et al. (2020) limits the practical usefulness of

that approach; in fact heuristics are much more common on those

data. Nevertheless, pangenomics is becoming relevant in the analy-

sis of bacterial and viral species since the degree of variability in

these species is even higher (Ding et al., 2018); while a in good

quality alignment between two human genomes only 1% of its

columns contain indels, when aligning two bacteria indels might

appear in up to 50% of the columns (Colquhoun et al., 2021).

Bacteria frequently import genes, or fragments of them, in place

of existing homologous genetic material in their genome, a process

that was first identified by the observation of mosaic genes at loci

encoding antigens or antibiotic resistance (Didelot and Maiden,

2010; Yahara et al., 2014). These exchanges of material are known

as homologous recombination (HG) and horizontal gene transfer

(HGT). There have been significant efforts to understand and study

bacterial pangenomes (Ding et al., 2018).

Pangenome graph structures for bacteria have been proposed

recently (Colquhoun et al., 2021). Nevertheless, a recombination-

aware alignment of a sequence against a pangenome graph has not

yet been defined. Some initial efforts in that direction (Makinen

and Valenzuela, 2014; Rizzi et al., 2019) focus on pairwise align-

ments of diploid genomes. An important challenge is to construct a

pangenome graph that expresses the mosaicism present in a species,

such as the problem of discovering founders haplotypes (Bonnet

et al., 2022), but that is not within the scope of our paper.

In this paper, we explore a first notion of sequence-to-graph

alignment that exploits the fact that a pangenome graph represents

a set of related individuals or species to highlight a phenomenon – in

our case, recombination – that require a pangenomic (or population-

based) approach for its detection. More precisely, we introduce

the possibility that the sequence has been sampled from a genome

that is the result of a recombination between two of the genomes

represented in the graph. In our case, we explicitly model a recom-

bination as a putative arc, and we describe a dynamic programming

approach to compute an optimal sequence-to-graph alignment that

allows a recombination, with a O(|V |2| · n+P |2 · |V |+ |V | · |P | · n)

time complexity, on a variation graph with |V | vertices, |P | paths,

and a string with length n. The idea of adding a variation as-

pect to sequence-to-panel alignment is not entirely new. In fact,

JALI (Spang et al., 2002) proposes a dynamic programming ap-

proach for aligning a query sequence against a multiple sequence

alignment (MSA), where the alignment can switch between differ-

ent panel sequences and discard some columns. Notice that this

approach is not fully general, since for example it does not allow to

jump backward in the MSA and thus it does not consider possible

column duplications. Another relevant approach is Tesserae (Zil-

versmit et al., 2013), where an HMM approach to infer mosaic

recombination is described together with the recurrence equation

describing the Viterbi algorithm used to find the max likelihood

path (Garimella et al., 2020).

We have implemented our approach in a tool called RecGraph,

with an experimental analysis on bacterial graph pangenomes.

Notice that, compared to state-of-art aligners to sequence graphs

such as GraphAligner (Rautiainen and Marschall, 2020), RecGraph

allows alignments that would require the addition of new arc in

the graph. Moreover, RecGraph takes into account in the alignment

the cost of a recombination event, modeled as a linear function of

the displacement of a recombination.

Even though a dynamic programming approach is unlikely to

scale to genome-wide graphs, that is not a great limitation of our

approach. In fact, almost all current alignment tools are based on

a seed-and-extend strategy, where some exact (errorless) matches

between the sequence and the graphs are first computed, those

matches are chained, and finally the gaps within matches are

filled in with a precise, but not necessarily fast, approach — e.g.

Giraffe (Sirén et al., 2021), a haplotype-aware sequence-to-graph

aligner. Our main focus has been on this final task, where scalability

to huge instances is not a requirement. Since recombination is par-

ticularly relevant in bacterial genomes, we explore the application

of RecGraph in computing alignments of new recombinant bacte-

rial sequences. Our main purpose is to assess the accuracy of the

alignments produced by RecGraph in presence of novel recombinant

genes. First we assess the high accuracy of alignments of RecGraph

to variation graphs when allowing recombination. Secondly, using

simulated recombination of the slpA gene of Clostridioides difficile,

we show that RecGraph pangenome alignments achieve a sensitivity

and specificity in reproducing the expected mosaic structure of

recombinants that is close to 100%. In particular, our graph-based

model of alignment recombination-aware achieves greater accuracy

compared to JALI (Spang et al., 2002), a MSA-based competitive

alignment model.

Finally, we assess the performance of RecGraph on real se-

quences of Clostridioides difficile; the phylogenetic trees confirm

the predicted recombinant events. These results demonstrate that

recombination-aware alignments against pangenome graphs open

new perspectives in analyzing bacterial genomes.

1.1. Preliminaries

Given an alphabet Σ, and s = s[1] · · · s[n] a string over Σ with

length n, the substring s[i : j] denotes the portion of s from the

i-th character to the j-th character, that is s[i : j] = s[i] · · · s[j].
The k-long prefix of s, that is the string s[1 : k] is denoted as s[: k],

while the k-long suffix of s, that is the string s[n − k + 1 : n] is

denoted as s[n− k + 1 :]. In this paper, we consider the notion of

a variation graph that is a directed acyclic vertex-labeled graph,

whose paths correspond to the genome sequences that we want to

encode (Baaijens et al., 2022; Garrison et al., 2018). We refer the

reader to (Diestel, 2005) for the terminology on graphs.

Page 2 of 12Bioinformatics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/advance-article/doi/10.1093/bioinform
atics/btae292/7658945 by guest on 02 M

ay 2024

RecGraph 3

Definition 1 (Variation graph) A variation graph G = ⟨V,A, P, λ⟩
is a directed acyclic graph whose vertices are labeled by nonempty

strings, with λ : V → Σ∗ being the labelling function, and

where A denotes the set of arcs and P denotes a nonempty set of

distinguished paths.

In the following we assume that a variation graph has a source

node s and a sink node t such that all paths in P start in s and end

in t. Moreover, the source and the sink are labeled by the empty

string, since their only meaning is to quickly identify the boundaries

of the genomes. In the literature, the notion of sequence graph is

sometimes used: this corresponds to a variation graph where P

consists of all possible source-to-sink walks (Baaijens et al., 2022).

Given a variation graph G = ⟨V,A, P, λ⟩ and one of its paths p, the

path label of p = ⟨p1, . . . , pk⟩ is the concatenation of the labels of the

nodes in the path p, that is the string λ(p1)λ(p2) · · ·λ(pk). With a

slight abuse of language, we use λ(p) to denote the path label of the

path p. Moreover, since we focus on acyclic variation graphs, there

is no path of a variation graph G = ⟨V,A, P, λ⟩ involving twice the

same vertex. Notice that this constraint involves all possible paths

of G, not only those in P . To simplify the presentation, we will only

consider canonical variation graphs, where each vertex is labeled

by a single character. It is possible to prove that considering only

those graphs is not restrictive. In fact, some software tools available

(e.g., abPOA (Gao et al., 2021)) convert the input graph into a

canonical graph.

An alignment of a string against a graph is a sequence of pairs

of positions of a path of the graph and of the string. Each pair can

have an empty position, denoted with −, in the case of a gap, but

a pair cannot have both elements that are empty.

Definition 2 (Alignment of a string against a variation graph)

Let G = ⟨V,A, P, λ⟩ be a canonical variation graph, and let s be a

string of length l. Then an alignment of s to G consists of (1) a

path p = ⟨v1, . . . vq⟩ of P excluding the unlabeled source and sink

of G and (2) a sequence ⟨(xi, yi)⟩ of k ordered pairs where each

xi ∈ [1, q] ∪ {−} and each yi ∈ [1, l] ∪ {−} such that:

1. for any 1 ≤ i < j ≤ k such that both xi, xj are different from

−, then xi < xj ;

2. for any 1 ≤ i < j ≤ k such that both yi, yj are different from

−, then yi < yj ;

3. each pair has at least an element that is not −, i.e. k ≤ q + l;

4. for each j ∈ [1, q] there is exactly one i such that xi = j, and

for each j ∈ [1, l] there is exactly one i such that yi = j.

Informally, the alignment is specified by pairs (xi, yi) of po-

sitions of the alignment that are consistent with a left-to-right

scan of both the string and the path p of the graph (conditions

(1) and (2) of Definition 2). More precisely, by condition (4) each

vertex vj of the path corresponds to exactly one position xi of the

alignment to which vj is assigned, and similarly each symbol s[j]

of the string s, is in exactly in a position yi of the alignment. Pairs

including symbol − correspond to the insertion of indels either in

the path or in the string in the alignment. In particular, condition

(3) corresponds to the usual requirement that no column of an

alignment contains only indels.

Notice that Definition 2 describes a global alignment, but it

can be extended to represent semi-global alignments that are more

common when mapping reads – in this case we need to allow p to

be a subpath of a path of P .

Given an alignment ⟨(xi, yi)⟩ with z ordered pairs, a graph gap

consists of a maximal interval [b, e] ⊆ [1, z] such that all xi with

b ≤ i ≤ e are equal to −, while a string gap consists of a maximal

interval [b, e] ⊆ [1, z] such that all yi with b ≤ i ≤ e are equal to −.

The length of such a gap is equal to e− b+ 1, and will be denoted

by l(b, e). In the following we will use the word gap to mean a

string gap or a graph gap. The value of an alignment depends also

on a score matrix d that assigns a value to each pair of characters,

and a penalty for each gap of length l. In practice, we will consider

only gap penalties that are proportional to its length, that is the

penalty has the form g · l for a given constant g

Definition 3 (Value of an alignment) Let s be a sequence, let

G = ⟨V,A, P, λ⟩ be a variation graph, and let p, ⟨(xi, yi)⟩ be an

alignment of s and G. Assume that ⟨(xi, yi)⟩ has z ordered pairs

and h gaps [b1, e1], . . . , [bh, eh], and let B = {j ∈ [1, z] : j /∈
[bi, ei] for any i ∈ [1, h]}. Then the value of the alignment is the

sum ∑
i∈B

d
(
λ
(
p[xi]), s[yi]

)
+

∑
1≤i≤k

g(l(bi, ei)).

In Definition 3, p[k] is the k-th vertex of the path p of the

alignment, see Definition 2. The first component of the value is

the sum of the values of all columns that are not part of a gap,

computed by using the score matrix d while the second part is the

sum of all gap penalties.

2. Methods

To describe our method, we need to describe how to compute an

optimal alignment without recombinations in a variation graph. We

then formally define the concepts of displacement and alignment

with a recombination (Sect. 2.1) and we propose an algorithm

for computing such alignments (Sect. 2.2). We finally discuss

(Supplementary Sect. 5.3) some possible improvements to avoid

recomputing parts of the matrix when multiple paths share the

same edge.

A trivial approach for computing an optimal alignment without

recombinations in a variation graph is to extract the sequences

corresponding to the paths and align the input string against each

of those sequences (Needleman and Wunsch, 1970; Marco-Sola

et al., 2021), but this approach does not exploit the fact that the

pangenome is stored as a graph. An alternative algorithmic ap-

proach that we adopt is extending the approach taken by POA (Lee

et al., 2002) to the case of a variation graph G = ⟨V,A, P, λ⟩. More

precisely, POA (Lee et al., 2002) represents a Multiple Sequence

Alignment (MSA) of a collection of sequences by a partial ordered

graph, called PO-MSA, where nodes of the graph are single letters

of the sequences and each sequence represents a path of the partial

ordered graph. Then POA extends Smith-Waterman DP to the

PO-MSA for aligning sequences to the acyclic graph.

Moreover, by Definition 2, the graph G = ⟨V,A, P, λ⟩ has a

nonempty set P of distinguished paths, among which we need

to find a path p ∈ P that gives the optimal score in the global

alignment of sequence s to G. Thus let M [v, i, p] be the optimal

score of the global alignment between the initial portion of the

path p ∈ P that ends in the vertex v and the i-long prefix s[: i] of

sequence s. We can describe the values of the matrix M with the

usual recurrence equation where, for simplicity, we denote with g

the penalty of an indel, with m the score of a match, and with m̄

the score of a mismatch:

Page 3 of 12 Bioinformatics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/advance-article/doi/10.1093/bioinform
atics/btae292/7658945 by guest on 02 M

ay 2024

4 Avila Cartes et al.

M [v, i, p] = max



M [u, i, p] + g (1a)

M [v, i− 1, p] + g (1b)

M [u, i− 1, p] + m̄ if λ(v) ̸= s[i] (1c)

M [u, i− 1, p] +m if λ(v) = s[i], (1d)

where λ(v) is the character labeling the vertex v and u is the

vertex preceding v in p. Moreover, (1) M [v0, 0, ·] = 0 if v0 is the

source of G, (2) M [v, 0, p] = M [u, 0, p] + g if v ̸= v0, v ∈ p, and

u is the vertex preceding v in p, (3) M [v0, i, p] = ig if i > 0, (4)

M [v, i, p] = −∞ if v /∈ p. Notice that we are actually interested in

M [vm, |s|, p∗], that is the optimal global alignment of s with the

path p∗ that maximizes M [vm, |s|, pi], for all paths pi ∈ P , where

vm is the sink of the graph G.

2.1. Alignments with recombinations

We can now extend the notion of alignment to also allow recom-

binations. The main idea is that the result of a recombination is

a mosaic of two subpaths, each extracted from a different path,

of the variation graph G. The next step is to formally define a

recombination.

Definition 4 (Recombination) Let G = ⟨V,A, P, λ⟩ be a canonical

variation graph. Then a recombination is a quadruple (p1, p2, ρ, ψ)

where p1 and p2 are two different paths of G = ⟨V,A, P, λ⟩, ρ and

ψ are two vertices, not necessarily distinct, respectively of p1 and

p2, called recombination vertices.

By Definition 4, a recombination may induce a new path in the

graph that connects the two paths p1 and p2 with the addition

of a “virtual” arc connecting the recombination vertices ρ and ψ.

Alternatively, the new path is induced by switching from path p1
to path p2 in the recombination vertex ρ, when ρ = ψ.

In the following we define the alignment with a single recombi-

nation. The main intuition is that a high-quality alignment using

a recombination is evidence that the variation graph G is lacking a

path that is consistent with the sequence.

Using a single recombination means that the sequence and the

graph are split into two parts: there is a standard alignment in

between the first parts, another standard alignment between the

second parts, and the recombination bridges the two parts. We can

easily represent this bridge with a ordered pair of vertices.

Definition 5 (Alignment to a variation graph with a recombina-

tion) Let G = ⟨V,A, P, λ⟩ be a canonical variation graph, and let

s be a string with length l. Let (p, q, ρ, ψ) be a recombination of

G = ⟨V,A, P, λ⟩. Then an alignment of s to G with the recombi-

nation (p, q, ρ, ψ) is obtained from: (1) an integer 1 ≤ j ≤ l; (2)

subpaths t1 of p and t2 of q, such that t1 ends in ρ and t2 starts in

ψ. The alignment consists of the concatenation of two alignments

against a path: one between t1 and s[: j], and one between t2 and

s[j + 1 :].

In order to assign a value to an alignment with a recombina-

tion, however, the following definition of branching vertex and of

consolidating vertex are needed to introduce the notion of displace-

ment of a recombination: it will be instrumental in computing the

penalty associated with a recombination. Notice that an alignment

of a sequence with a recombination represents a new path not

represented in the graph. Since the length of the new path may

change with respect to the length of the two existing paths that

are involved in the recombination, we need to assign a penalty to

the choice of a recombination. Indeed, an arbitrary recombination

may lead to a sub-optimal alignment when for example it consists

of two paths and two recombination vertices that are quite apart

from a the branching or consolidating vertex of the smallest bubble

induced by the two paths in the variation graph. More precisely,

given a recombination (p1, p2, ρ, ψ) on G = ⟨V,A, P, λ⟩, there exist

two vertices αp1,p2
(ρ, ψ) and βp1,p2

(ρ, ψ), called respectively the

branching vertex and the consolidating vertex of the recombina-

tion, such that (1) αp1,p2
(ρ, ψ) precedes ρ in p1 and ψ in p2, and

for each other vertex v that precedes vertex ρ on path p1 and ψ

on path p2, then v also precedes αp1,p2
(ρ, ψ), and (2) ρ precedes

βp1,p2
(ρ, ψ) in p1 and ψ precedes βp1,p2

(ρ, ψ) in p2, and for each

other vertex v such that is preceded by ρ in p1 and by ψ in p2,

then βp1,p2
(ρ, ψ) also precedes v. Whenever the paths p1, p2 and

the vertices ρ, ψ are clear from the context, we will omit them,

therefore using only α and β. The intuitive idea is that α and β are

respectively the initial and final vertices of the smallest bubble of

G = ⟨V,A, P, λ⟩ including both ρ and ψ. Such two vertices always

exist, since a variation graph has a distinguished source and a

distinguished sink. See Figure 1 for an example of an alignment

and of nodes α = αp1,p2
(ρ, ψ) and β = βp1,p2

(ρ, ψ).

Just as a gap is more expensive the longer it is, we need to

introduce a way to penalize differently recombinations connecting

positions that are far away from each other, therefore implying

a larger deletion or insertion. For this reason, we introduce the

notion of displacement that is the analogous of gap length, where

the length of a path is the number of its vertices.

Definition 6 (Displacement) Let (p1, p2, ρ, ψ) be a recombination.

Let α = αp1,p2
(ρ, ψ) and β = βp1,p2

(ρ, ψ). Let a1 be the subpath

of p1 from α to ρ, b1 be the subpath of p1 from ρ to β, a2 be the

subpath of p2 from α to ψ, b2 be the subpath of p2 from ψ to β.

Then the displacement of the recombination is ||a1| − |a2| + 1| +

||b1| − |b2| − 1| and is denoted as dp1,p2
(ρ, ψ).

The displacement of a recombination models how much the

alignments are affected by the recombination and it is the difference

of the distances of the vertices ρ and ψ respectively with α and β.

Observe that the values +1 and −1, added to |a1|−|a2| and to |b1|−
|b2| in Definition 6 are due to the fact that ψ is the vertex following

the vertex ρ in the recombination and a position is added to the

right of ρ and subtracted w.r.t. ψ. Notice that we can compute and

tabulate the displacement of all possible recombination in O(|P |2 ·
|V |) time by iterating over all pairs of paths and scanning in parallel

those paths. Details are provided in the supplementary section. We

focus our attention on a recombination penalty, defined by two

parameters do, called opening recombination penalty and de, the

extending recombination penalty, where the overall penalty is equal

to do + dr · de, where dr is the displacement of the recombination

as defined in Definition 6.

2.2. The algorithm

We describe a dynamic programming approach for solving the

following problem of computing a recombination-aware optimal

alignment under an affine recombination penalty. Our approach is

partly inspired by the linear-space dynamic programming algorithm

Page 4 of 12Bioinformatics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/advance-article/doi/10.1093/bioinform
atics/btae292/7658945 by guest on 02 M

ay 2024

RecGraph 5

G G G G C G G G C G C C C G G G

T T T T A A G G A A A

A A T C G G

A A A A G T T G T T T T

α βρ

ψ

1
1

2
2

3
3

4
4

5
5

6
−

7
−

8
6

9
7

10
8

11
9

12
10

13
11

14
12

15
13

16
14

17
15

−
16

18
17

19
18

G A A G A T C A A A G T T C T T G Gsequence

alignment

Figure 1: Example of alignment with a recombination of a sequence against a variation graph with three paths: p1 is red, p2 is green, and

p3 is blue. The recombination is represented by the thick black arc connecting two diamond-shaped vertices ρ and ψ with gray background.

The branching vertex α and the consolidating vertex β are represented by stars. The nodes of the path w have thick edges. Pairs with a

grey background correspond to mismatches.

for aligning two sequences (Hirschberg, 1975) (also called forward-

backward dynamic programming (Durbin et al., 1998)).

Problem 1 (Recombination-aware optimal alignment) Given a vari-

ation graph G = ⟨V,A, P, λ⟩ and a string s of length n, a score

matrix d, a gap penalty g, and a recombination penalty (do, de),

computes an alignment with optimal score to the variation graph

with at most one recombination (p, q, ρ, ψ), where p, q are two paths

of the graph and ρ and ψ are the recombination vertices, with ρ

eventually equal to ψ.

If the optimal alignment has no recombination, then we have

already described the recurrence equation for the optimal solution.

Alternatively, we run a complete forward pass and a complete back-

ward pass, then we combine those results to place a recombination.

More precisely, we define two DP matrices M [v, i, p] and R[v, i, p],

where: (a) M [v, i, p] is the optimal score of the global alignment

between the initial portion of the path p ∈ P that ends in the vertex

v and the i-long prefix s[: i] of the sequence s (forward pass); (b)

R[v, i, p] that is the optimal score of the global alignment between

the final portion of the path p ∈ P that starts in the vertex v and

the suffix s[i :] of the sequence s starting in position i (backward

pass).

Notice that the coefficient R[v, i, p] is defined by reversing the

direction of arcs in the graph G and considering the sink as the

source of the graph, and vice versa; thus the recurrence for comput-

ing R[v, i, p] is exactly the same given for computing M [v, i, p] and

has been given before as the Equation combining 1c, 1b, 1d and

1a cases. Clearly, the two matrices can be computed in parallel.

The value of an optimal alignment with at most one recombination

between s and G is given by the following equation where v0 and

vm respectively are the source and the sink of G and n is the length

of the string s.

max


M [vm, n, p] (2a)

max
(v,w),j

M [v, j, p] +R[w, j + 1, q] + do + ded(v,w)(p, q),(2b)

where p and q are respectively the paths maximizing M [v, j, ·]
and R[w, j + 1, ·]. If the maximum is achieved by case 2a, then

the optimal alignment is obtained without any recombination.

Otherwise there exists two paths p, q ∈ P , a position i ≤ n, and

two nodes v, w ∈ V such that the optimal alignment of the sequence

s against the graph G is made of the juxtaposition of the optimal

alignment of the subpath of p from node v0 to v against the

prefix s[: i] of s, the recombination (p, q, v, w), and the optimal

alignment of the subpath of q from node w to vm against the suffix

s[i+ 1 :] of s. Then the optimal score of the alignment is obtained

by summing the optimal score of the recurrence M and R plus

the displacement given by the value de · d(v,w) meaning that the

recombination corresponds to adding the virtual arc (v, w) if v ̸= w.

As already observed, v and w might be the same vertex. Notice

that we do not need to consider all possible paths. In fact, for each

vertex v and position i, we only consider the path p maximizing

M [v, i, p], since any other choice would result in a suboptimal

alignment. Symmetrically, for each vertex w and position i + 1,

we only consider the path q maximizing R[w, i + 1, q]. The time

complexity of the näıve algorithm exploiting equations 2a and 2b

is O(|V ||P |n+ |V |2n+ |P |2n), since the algorithm computes the

matrices M and R that have O(|V ||P |n) cells, plus some additional

data, in O(|V ||P |n) time and space. In the same time, we can also

determine, the paths maximizing M [v, i, p] and R[w, i+ 1, q]. To

compute the case 2b, we need to iterate over all possible pairs of

vertices and all positions in the query sequence, therefore requiring

O(|V |2n) time if we have precomputed all possible displacements

which requires O(|P |2n) time (the details of the latter step are in

the supplementary material).

3. Results

We implemented the method described in Section 2 in Rust and

the tool, named RecGraph, is available at https://github.com/

AlgoLab/RecGraph under the MIT license. RecGraph takes as input

a graph in GFA format and a set of sequences in FASTA format

and produces as output the optimal alignment of each sequence

against the graph in the GAF format. We tested RecGraph in two

different modes: in no-recombination mode it computes optimal

alignments against a variation graph, while in recombination mode

RecGraph computes optimal alignments against a variation graph

and allowing (but not requiring) a recombination of two paths.

Page 5 of 12 Bioinformatics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/advance-article/doi/10.1093/bioinform
atics/btae292/7658945 by guest on 02 M

ay 2024

https://github.com/AlgoLab/RecGraph
https://github.com/AlgoLab/RecGraph

6 Avila Cartes et al.

We designed an experimental evaluation divided in two parts,

both inspired by the idea of exploring the efficacy and possible

applications of an alignment to a graph that allows recombinations.

In the first experiment, we evaluated the quality of the align-

ments computed by RecGraph, measured by comparing the set of

vertices involved in the alignment with the set of vertices of the

true recombinant path.

In the second experiment, we focused on evaluating the accuracy

of RecGraph in producing alignments that identify (i) the correct

recombination breakpoint (by measuring the distance between the

predicted) and (ii) the two paths among which the recombination

took place.

All experiments were run on a 64bit Linux (Kernel 5.15.0)

system equipped with two AMD® Epyc 7301 processors and 128

GB of RAM. The scripts, the data, and the instructions needed to

reproduce the experiments are available at https://github.com/

AlgoLab/RecGraph-exps.

3.1. Experiment 1: Accuracy of graph alignments

We considered 5 bacterial species (Table S1 in Supplementary Ma-

terial) from the panX platform (Ding et al., 2018) and we simulated

the scenario where a novel recombinant strain has to be aligned to

the pangenome of some already-known strains. For each species,

we randomly selected 100 genes whose length is between the first

and third quartile (Table S1 in Supplementary Material), and we

created a directed acyclic sequence graph for each gene using the

make prg utility from Pandora (Colquhoun et al., 2021), which is

the most widely used graph construction tool tailored for bacterial

pangenomes. Since make prg produces sequence graphs, in order to

obtain a variation graph, we added the information of each input

strain by tracing each path that corresponds to an input strain and

assigning the proper sequence labelling. This results in a variation

graph for each gene.

To guarantee that we have the ground truth (i.e., the correct

path for each strain to align), we start from the variation graph GS

built on the set S of all the strains (paths), we identify a minimal

set K of paths (“known strains”) that cover all the edges of GS

and we remove the strains in S \K from GS , obtaining the graph

GK that we have used in the experiment. Notice that GS and GK

have the same vertices and edges since the paths corresponding to

strains in K cover all the edges in GS , but they differ in their set

of distinguished paths (see Definition 1). Set K is initially set to be

equal to S and then each strain (path) p ∈ K is iteratively removed

from K if path p does not cover (i.e., does not contain) at least an

edge of GS which is not covered by another strain of K. We finally

compute the set R ⊆ S \K of “recombinant strains” such that pi
belongs to R if pi = p′ip

′′
i and p′i and p′′i are subpaths of two strains

s′ and s′′ in K. Table S1 (supplementary material) reports the

number of recombinants simulated for each species. Additionally, we

also altered each recombinant with different mutation rates (from

0% to 10%) to test the robustness of RecGraph in the presence of

SNPs specific to the recombinant under analysis.

We aligned each recombinant strain using RecGraph to GK in no-

recombination mode and in recombination mode. We ran RecGraph

using a linear gap penalty model (match score: 2; mismatch penalty:

4; gap penalty: 4). When ran in recombination mode, we set the

recombination cost to 4 and the displacement multiplier to 0.1.

For a comparison, we also aligned each strain in R to GK with

GraphAligner (Rautiainen and Marschall, 2020), a state-of-art tool

for aligning sequences to a sequence graph. Since GraphAligner does

not align to a variation graph, it cannot limit or penalize the number

of the implied recombinations, nor it can find a recombination

whose recombination vertices are not the endpoint of an arc of the

graph. We also tried to align the recombinants with giraffe (Sirén

et al., 2021), whose behaviour should resemble that of RecGraph

in no-recombination mode, but it crashed on all instances. We

conjecture that it is due to the length of the input sequences that

have to be aligned since giraffe is designed to map short-reads

and not long sequences as it is in this case.

We evaluated the accuracy of the alignments using three mea-

sures. First, we evaluated the Jaccard similarity coefficient between

the set P of nodes of the path of the recombinant strain and the

set A of nodes of the computed alignment. As usual, the Jaccard

similarity is computed as |P∩A|
|P∪A| . We then evaluated each alignment

in terms of edit distance between the input recombinant and the

sequence expressed by the path it has been aligned to. Finally, we

computed the minimum number of recombinations that explain

the alignment by tracking the path and computing the number of

switches via dynamic programming.

Figure 2 shows the results of this analysis, grouped by simulated

mutation rate (ranging from 0% to 10%). Figure 2(a) shows that,

for all mutation rates, RecGraph in recombination mode computes

alignments that are more similar to the true alignment than both

GraphAligner and RecGraph in no-recombination mode. At muta-

tion rate 0% (i.e., no mutations introduced in the recombinant

strain sequences) both GraphAligner and RecGraph in recombina-

tion mode are able to perfectly reconstruct the path in at least the

75% of the cases. However, in 184 out of 3989 cases GraphAligner

computes a sub-optimal alignment (Jaccard similarity between

0.01 and 0.98), while in 126 cases does not compute alignments

at all. On the other hand, RecGraph always computed an align-

ment, and in all but 6 cases the alignment was correct. Manual

inspection of those 6 suboptimal alignments revealed that they

are due to repetitions in the labels of the vertices. As the muta-

tion rate increases, we observe that the Jaccard similarity of both

GraphAligner and RecGraph in recombination mode shifts towards

lower values. However, the shift for GraphAligner is noticeable

already at mutation rate 3% while for RecGraph in recombination

mode the shift is noticeable only at mutation rate 5% or more. A

more in-depth analysis shows that, as the mutation rate increases,

GraphAligner computes alignments with slightly lower edit dis-

tance at the expense of implicitly introducing an increasing number

of recombinations (on average, 1.04 at mutation rate 0% and 2.76

at mutation rate 10% - Figure 2(b)). On the other hand, RecGraph

in recombination mode exhibits on average a single recombination

per alignment without being penalized in terms of edit distance

whereas, as expected, RecGraph in no recombination mode never

introduced a recombination at the expense of higher edit distance.

A higher mutation rate resulted in higher edit distance for all

tools. However, even though GraphAligner is free to introduce any

number of recombinations in order to minimize the edit distance of

its alignments, its accuracy in terms of edit distance is very similar

to that of RecGraph in recombination mode. Remarkably, the edit

distance of the alignments computed by RecGraph in recombina-

tion mode when mutation rate is low is better than GraphAligner

edit distance. By manual inspecting these cases, we noticed that

GraphAligner, due to its heuristic nature, struggles in correctly

aligning a sequence in those regions of the graph comprising very

short nodes on which it cannot easily place any anchor. RecGraph,

instead, is able to compute an optimal solution even in those regions.

On the other hand, RecGraph in no recombination mode exhibits

Page 6 of 12Bioinformatics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/advance-article/doi/10.1093/bioinform
atics/btae292/7658945 by guest on 02 M

ay 2024

https://github.com/AlgoLab/RecGraph-exps
https://github.com/AlgoLab/RecGraph-exps

RecGraph 7

GA RG rec. RG no-rec.
(a)

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Ja
cc

ar
d

GA RG rec. RG no-rec.
(b)

0

25

50

75

100

125

150

175

Ed
it

Di
st

an
ce

GA RG rec. RG no-rec.
(c)

0

2

4

6

8

10

12

14

M
in

im
um

 E
xp

la
in

ab
le

 R
ec

om
bi

na
tio

ns

Mut. Rate
0
1
3
5
10

Figure 2: Results on alignments accuracy on simulated data. (a) Boxplot of Jaccard similarity coefficient between the real recombinant

path and the path computed by RecGraph in no-recombination mode (RG no-rec.), GraphAligner (GA), and RecGraph in recombination

mode (RG recomb.). (b) Boxplot of edit distance between the input recombinant sequence and the sequence spelled by the alignment

path. (c) Boxplot of minimum number of recombinations explaining the alignment reported by the three tools. Boxplots are grouped by

the mutation rate added to the input sequences (colors, from 0% to 10%).

higher edit distance in all cases (+1.5/2 on average, depending on

the mutation rate). In contrast with other approaches that can

introduce recombinations, RecGraph in no recombination mode is

forced to align a sequence to a single path of the graph and cannot

introduce any recombination to provide more accurate alignments

(Figure 2(c)). We recall, indeed, that we simulated data introduc-

ing a single recombination. Surprisingly, in 4.6% of the cases (the

outliers in Figure 2(c)), RecGraph in recombination mode reported

no recombination. The number of alignments with no recombina-

tion increases as the mutation rate increases. Manual inspection of

these cases revealed that, due to the chosen scores and penalties

and the presence of mutations, staying on the same path while

introducing the mismatches is more convenient than introducing

a recombination. Indeed, when the mutation rate is 0, RecGraph

in recombination mode always introduced a recombination. These

results support our hypothesis that allowing a recombination in the

alignment improves the accuracy of the computed alignments when

the input sequences are recombinant compared to approaches where

no recombination events are allowed (RecGraph in no-recombination

mode being an optimal representative) while achieving very similar

accuracy to approaches that do not exploit path information (e.g.,

GraphAligner) and producing more parsimonious results that are

easier to evaluate.

RecGraph in recombination mode took from a few seconds to 3

minutes depending on the input graph size. We remind that our

approach guarantees to find an optimal solution and that there are

several heuristics that can be applied to speed up the computation

– potentially forgoing this guarantee in a few cases. As expected,

RecGraph in recombination mode is more time consuming than

GraphAligner and its unrestricted and no-recombination counter-

parts, which took at most 10 seconds. All tested tools required less

than 4GB of memory.

3.2. Experiment 2: Accuracy of recombination detection and

breakpoint location

As opposed to the first experiment where recombinants are a

result of a mosaicism inferred from the variation graph, in this

experiment recombinants are simulated directly from real sequences.

Indeed the main purpose is that of reproducing a recombination

scenario in genes with high variability. Although the identification

of recombinations is not the main goal of this work, RecGraph in

recombination mode is applied here to evaluate its sensitiveness

in locating the mosaic structure of simulated recombinants. More

precisely, since recombinants are simulated from sequences, we have

been able to more carefully evaluate the capability of RecGraph in

aligning over a recombination breakpoint.

In Clostridioides difficile, the slpA gene encodes the main pro-

tein that constitutes the cell surface S-layer (Lanzoni-Mangutchi

et al., 2022). This gene has been found to exhibit high diversity,

with several clearly distinct variants identified in a phylogenetic

study (Dingle et al., 2012). Starting from 11 such variants, we

simulated a total of 994 new genes, each of which might be a

recombinant of two random variants, with a randomly generated

breakpoint. The location of the breakpoints was restricted to be

between 10% and 90% of the sequence length since recombinations

Page 7 of 12 Bioinformatics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/advance-article/doi/10.1093/bioinform
atics/btae292/7658945 by guest on 02 M

ay 2024

8 Avila Cartes et al.

can be located if and only if both the prefix and the suffix contain

at least a variation that distinguishes the two paths: if the prefix

(or the suffix) is too short, then there is a significant probability

that we do not have such a variation. Lastly, we randomly changed

about 1% of the positions, therefore introducing single nucleotide

variants only.

Each simulated sequence, of average length 2174 bp, was aligned

using RecGraph, which took about 5 minutes per sequence, to

the variation graph built from the 11 basis slpA sequences using

make prg. We ran RecGraph using a user-definable parameter to

allow the introduction of a recombination only in the middle 95%

of the input sequence. In this way we avoid to report alignment

with recombinations that have little support in terms of variants

that distinguish the two paths and, hence, that are likely false

positives. Score for a match was set to 2, while penalties were 4

for a mismatch and 8 for a gap (linear gap penalty).

We remark that the aim of RecGraph is that of aligning while

admitting and explicitly modeling the presence of a recombination:

the actual prediction of recombinations is a downstream analy-

sis effectively enabled by the alignments computed by RecGraph.

For every simulated sequence generated without a recombination

(n = 102), RecGraph computed an alignment that does not include

a recombination. Conversely, for every sequence simulated with

a recombination (n = 892), RecGraph computed an alignment ex-

hibiting the correct recombination. Furthermore, the location of the

breakpoint was estimated with high accuracy, with only on average

1.64 bp distance between the correct and inferred locations, with

a standard deviation of 1.55 and 98% of the detected breakpoints

within a distance of 5 bp.

To put results in perspective, we compared the accuracy of

RecGraph with that of JALI (Spang et al., 2002), a tool that com-

putes a “jumping alignment” of a sequence against a multiple

sequence alignment (MSA) of a set of sequences. A jumping align-

ment is an alignment of a given sequence against a given MSA

of a set of sequences where, at each position (column), there is

also the possibility to switch (jump) to another sequence (row)

of the MSA. Hence the jumps could indirectly model the pres-

ence of recombination events. This part of the experiment aims to

highlight the strengths and limitations of the MSA-based model

compared to the graph-based model we propose. The comparison

was performed on the set of 994 simulated sequences presented

before. To ensure a fair comparison, we allowed RecGraph to place a

recombination in the whole input sequence, rather than restricting

it to the middle 95% of the sequence and we set the recombination

extension penalty of RecGraph to 10−5 (effectively discarding the

contribution of displacement). Score for a match of RecGraph and

JALI was set to 2, while penalty for a mismatch was 4. JALI admits

affine gap penalty and we used 4 for gap opening and 2 for gap

extension penalties. RecGraph utilizes a linear gap penalty model

with a penalty value of 8.

Table 1 reports the results obtained by varying how the input

MSA was constructed from the 11 basis variants and by varying the

recombination opening and gap extension penalties. The purpose

is to assess how these choices affect the accuracy of the tools.

Accuracy is evaluated by counting alignment errors. An alignment

error is defined as a simulated sequence that is aligned with an

ordered set of the 11 basis variants different from the one used for

its simulation. In particular, JALI with gap extension penalty set

to 2 exhibits low accuracy across all three MSAs and all choices

for the recombination penalty (the number of errors ranges from

113 to 597 out of 994). We argue that this behaviour is mainly

Table 1. Comparison of RecGraph and JALI. The tools were run on 3

different MSAs (denoted with auto, sensitive, gappy) and using different

scores for gap extension and recombination. Last column reports the number

of computed alignments that do not match the basis sequences used for

the simulation of the input sequences.

MSA Tool Gap ext.

penalty

Recomb.

penalty

No. of

errors

auto JALI 2 4 511

28 188

40 145

48 128

0 4 189

28 10

40 4

48 9

RecGraph 2 4 14

28 0

sensitive JALI 2 4 481

28 176

40 130

48 113

0 4 179

28 16

40 10

48 12

RecGraph 2 4 14

28 0

gappy JALI 2 4 597

28 296

40 243

48 222

0 4 269

28 63

40 42

48 36

RecGraph 2 4 14

28 0

Note: MSAs were computed with mafft v7.520 with options:

“auto”: --auto

“sensitive”: --maxiterate 1000 --globalpair --op 4 --ep 2

“gappy”: --inputorder --anysymbol --allowshift

--unalignlevel 0.8 --leavegappyregion --maxiterate 2

--retree 1 --globalpair

due to the inherent characteristics of having a linear ordering of

the columns, as induced by the MSA: if the recombination implies

a jump between rows of the MSA and skipping some columns,

then the associated penalty could be greater than the penalties of

various jumps between rows without introducing gaps. Indeed, the

number of errors decreases as the recombination penalty increases.

However, even with the largest recombination penalty (48), the

number of errors remains high (113 out of 994 in the best case).

To further support our thesis, we ran JALI setting the gap

extension penalty to 0 (essentially switching to a constant gap

penalty, regardless of its length). With this choice, the accuracy of

JALI significantly improves, especially with recombination penalties

Page 8 of 12Bioinformatics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/advance-article/doi/10.1093/bioinform
atics/btae292/7658945 by guest on 02 M

ay 2024

RecGraph 9

greater than the default (4). For example, the number of errors

decreases by a factor of 18 for the first MSA with a recombination

penalty set to 28 (from 188 errors to 10). When the gap extension

penalty is fixed at 0, we can easily see that JALI is sensitive at

how the input MSA is computed, even if the set of sequences on

which the MSA has been computed does not change. Indeed, on

average, best results were obtained on the “auto” MSA, followed

by “sensitive”, and “gappy”. Interestingly, in terms of the number

of columns, the “auto” MSA is neither the smallest (which is

“sensitive”) nor the largest MSA (which is “gappy”), highlighting the

difficulty of defining MSA characteristics that improve alignment

accuracy.

Lastly, we observe that the choice of recombination penalty

significantly influences the accuracy: small values allow to introduce

many spurious recombinations to align the random mutations we

introduced, while large values (e.g., 48) make JALI unable to

introduce recombinations unless supported by several variants.

The extensive discussion we devoted to JALI accuracy contrasts

with a straightforward analysis about RecGraph accuracy. Indeed,

we can observe that the accuracy of RecGraph does not seem to be

sensitive to the input MSA (we recall that the graph given as input

to RecGraph is computed starting from the MSA) and that there is

no need to tune the gap penalty to compute the correct alignments.

Obviously, the recombination penalty plays an important role: a

value of 4 allowed to introduce recombinations in 14 input sequences

that were instead generated without recombinations. In these cases,

the recombinations were introduced near the ends of the sequences

and it sufficed to increase the recombination penalty to 28 (or to

limit the placement of a recombination in the middle 95% of the

sequence) to eliminate all spurious recombinations.

In conclusion, we argue that this experiment shows that the

graph-based model of alignments accounting for a recombination

achieves greater accuracy and is less sensitive to the choice of

the parameters compared to a MSA-based (hence, linear-based)

competitive alignment model.

3.3. Experiment 3: Application to real data

Finally we tested RecGraph on a set of 265 real sequences of C. diffi-

cile slpA genes. Unlike the simulated sequences, there is no ground

truth available on recombination events in the real sequences, thus

rendering a quantitative analysis unfeasible. To assess the quality

of the method we therefore run RecGraph and for each sequence in

which a recombination is found we constructed two phylogenetic

trees before and after the recombination point and checked the

similarity of the partial recombinants to the two parts of each query

sequence. RecGraph was run using a recombination cost of 28, while

leaving all the other as default – i.e. match score of 2, mismatch

penalty 4, gap open 4.

Each possibly recombinant query is aligned to the 11 slpA basis

variants using clustalw (Sievers et al., 2011), then two separate

phylogenies are constructed before and after the recombination

point reported by RecGraph using the UPGMA algorithm based on the

pairwise distance matrix. Figure 3 shows the pairs of phylogenies

constructed for the queries. For better visualization we clustered

together queries expressing the same recombination breakpoint

and recombinant basis variants. In each tree the query cluster

is represented by a green diamond, while the recombinant basis

variants are highlighted in red. In most of the cases the queries is

closely related to the first recombinant variant in the first phylogeny,

and to the second recombinant variant in the second phylogeny;

thus supporting the recombination event claimed by RecGraph.

We run JALI on the same dataset using two set of configura-

tions: default weights and optimized parameters chosen from the

simulated experiment to obtain results most similar to RecGraph;

respectively gap extension -2, recombination cost -4 (default) and

gap extension 0, recombination cost -28 (optimized).

In Figure 4 we show the total number of recombination events

reported by JALI in both configurations; however due to the high

number of such events it would be impossible to test the results

using a similar phylogenetic approach as we did for RecGraph. Most

notably, JALI is not designed to limit the number of recombinations,

therefore in a substantial fraction of the cases it finds many putative

recombinations. When we run it with its default parameters it finds

up to 16 recombinations. This seems likely to be an overestimation

since the slpA gene is only of length ∼ 2200bp.

Default (e=2, j=4)

0

2

4

6

8

10

12

14

16

Re
co

m
bi

na
tio

ns
 c

ou
nt

Optimized (e=0, j=28)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Figure 4: Number of recombinations found by JALI on the real

dataset. (Left) JALI run with default parameters of gap extension

(e) and recombination cost (j). (Right) JALI run with the optimized

parameters chosen from the simulated experiment to obtain results

most similar to RecGraph.

4. Discussion

We have extended the notion of aligning a sequence against a

variation graph to also incorporate recombinations, which are sub-

ject to an affine penalty. We have developed RecGraph to compute

sequence-to-graph alignments that allow a recombination, provid-

ing an experimental analysis that show that its alignments have

higher quality when the sequence is the result of an actual recom-

bination. This kind of alignment is especially relevant in bacteria

that are characterized by a high degree of recombination events

or horizontal gene transfer. In another experiment involving sim-

ulated recombinations, we showed that RecGraph can reconstruct

recombination events with high accuracy, by correctly inferring the

Page 9 of 12 Bioinformatics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/advance-article/doi/10.1093/bioinform
atics/btae292/7658945 by guest on 02 M

ay 2024

10 Avila Cartes et al.

 9

 11

 3

 5

 6

 1

 8
 4

 10

 2
 7

189
(Recombination position:1540, Recombinants:11>9)

 9

 11

 3

 4

 1
 2

 10

 8

 5

 6
 7

 11

 9

 3

 1

 8

 5
 4
 2

 6

 10
 7

24,25,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,164,173
(Recombination position:70, Recombinants:1>4)

 11
 9

 3

 1

 4

 5
 6
 8

 10

 2
 7

 11
 9

 3

 5
 6
 8

 1

 4

 2
 10

 7

69,130
(Recombination position:2009, Recombinants:2>1)

 4

 11
 9

 3

 1

 2
 8

 10

 5

 6
 7

 11

 9

 10

 7
 6

 3

 8

 1
 2

 4
 5

1,15,16,84,168,176,177,191,194,195,227
(Recombination position:76, Recombinants:2>7)

 11
 9

 3

 10

 1

 4

 8

 2

 7

 6
 5

 11

 9

 6

 7
 10

 3

 1

 5

 4

 8
 2

161
(Recombination position:81, Recombinants:4>2)

 11

 9

 3

 10

 5
 6

 4

 1

 8

 7

 2

 11

 9

 3

 8

 5

 4
 1

 2

 6

 10
 7

162,183
(Recombination position:80, Recombinants:5>2)

 11
 9

 3

 5
 6
 8

 4

 1

 2

 10
 7

 11

 3

 9

 10

 1

 5

 6

 4

 8

 2
 7

254
(Recombination position:1971, Recombinants:6>1)

 4

 11
 9

 3

 8

 1

 2

 10

 5

 6
 7

 11

 9

 6

 10

 7

 3

 4

 5

 1
 8

 2

251
(Recombination position:92, Recombinants:6>2)

 11

 9

 3

 10

 4

 5
 6
 7

 8

 1

 2

 11

 9

 7

 10

 6

 8
 5

 1
 4

 2
 3

57,150,163,230,231
(Recombination position:74, Recombinants:6>3)

 11
 9

 4

 5

 6

 10

 8

 1

 7
 2

 3

 11

 3

 9

 10
 2

 5
 6
 4

 8

 7
 1

58,146,149,165,167,186,193,240
(Recombination position:1680, Recombinants:6>9)

 11

 9

 3

 8

 10

 5

 6
 7

 4

 2
 1

 11

 9

 7

 10
 6

 3

 2

 8

 1

 4
 5

7,171,172
(Recombination position:80, Recombinants:7>10)

 11
 9

 3

 10

 4

 8

 1

 2
 7

 6
 5

 11

 3

 9

 8

 5

 6

 1

 4

 2
 7

 10

198
(Recombination position:1683, Recombinants:7>9)

 11

 4

 1
 2

 9

 3

 5
 6
 7

 8
 10

Figure 3: Trees computed before and after each recombination breakpoint found by RecGraph. The real sequences are aligned using

clustalw, and phylogenetic tree were constructed before and after the breakpoint position using the UPGMA algorithm. Real sequences

are clustered according to recombination paths and positions. In each pair of trees the cluster of sequences is indicated by the green

diamond, and the recombinant sequences are highlighted in red.

recombination breakpoints when such a recombination is present

(or determining that the sequence is not involved in a recombi-

nation). While the main contribution of the present work is to

present a recombination-aware sequence-to-graph aligner, detecting

recombination in bacterial genomes is an important task that re-

quires further developments of RecGraph. There are several reasons

why detecting recombination is important in bacterial genomics.

Firstly, recombination distorts the phylogenetic signal so that

reconstructing a tree without accounting for recombination can

lead to misleading results (Hedge and Wilson, 2014). A direct

application of RecGraph in this context would be to reconstruct

separate phylogenies for each genomic regions separated by recom-

bination breakpoints, the combination of which is equivalent to

the concept of ancestral recombination graph (Didelot et al., 2010).

Secondly, recombination events are often important evolutionary

events, associated for example with adaptation (Sheppard et al.,

2013), virulence (Wirth et al., 2006) and antibiotic resistance (Han-

age et al., 2009; Perron et al., 2012). Thirdly, recombination has

been shown to be linked with the concept of bacterial speciation

(Falush et al., 2006; Fraser et al., 2007).

While our treatment of alignment is on variation graphs, it is

immediate to extend our approach to sequence graphs — essen-

tially we have to remove the path from the dynamic programming

equation. In our opinion, such a modification is not very interesting,

since we would not be able to limit the number of recombinations,

but only the number of recombination arcs that do not appear in

the original sequence graph, since the sequence graph does not

contain the information associating a genome with a path.

A restriction of our problem is to compute an alignment against a

variation graphs that exhibits no recombination. An exact dynamic

programming formulation for this problem is in the supplementary

material and is implemented in RecGraph. Notice that the time

complexity this approach is smaller than the one of our main

algorithm, since the absence of recombinations means that we do

not compute an alignment on the suffix of the sequence.

An avenue for future research is the extension of RecGraph to

longer genomes and sequences. In fact, almost all fully-fledged

aligners employ a seed-and-extend heuristics to quickly identify

“easy”parts of the alignment, where the sequence and the genome

have a near-perfect match, then using a more refined, but slower,

approach to fill in the gaps (Darling et al., 2010). RecGraph has

been designed to work on those hard-to-solve parts of the alignment.

A second direction is the integration of RecGraph in methods for

the analysis of the mosaic structure of novel bacterial sequences

by leveraging the properties of pangenome graphs. Indeed, this

study is only the beginning of the investigation of the notion

of pangenome graphs and sequence comparison to such graphs

specialized for analyzing high variable genes in bacteria. This can

be thought of as an extension of previously described “copying

models” that have been popular to study recombination (Li and

Stephens, 2003; Yahara et al., 2014) which are unable to leverage

alignments before analysis. In this direction, a future work will

be the investigation of efficient algorithmic approaches that allow

more than one recombination in the sequence-to-graph alignment.

There are also some possible future developments that mostly

regard the algorithmic aspects of this paper. We can allow affine

gap penalties in the alignment formulation, exploiting the tech-

nique described in (Gotoh, 1982) to maintain the time complexity

of our approach, but essentially requiring three times as much

memory — a description is provided in the supplementary material.

Another direction is to investigate the application of Hirschberg’s

Page 10 of 12Bioinformatics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/advance-article/doi/10.1093/bioinform
atics/btae292/7658945 by guest on 02 M

ay 2024

RecGraph 11

technique (Hirschberg, 1975) to compute the M and R matrices.

In this case, the challenge is to avoid making the tool too slow.

5. Acknowledgments

The authors thank Francesco Porto for the helpful discussions on

the POA approach to sequence-to-graph alignment.

Funding

This research work has received funding from the European

Union’s Horizon 2020 Research and Innovation Staff Exchange

programme under the Marie Sk lodowska-Curie grant agreement

No. 872539 (Pangaia) and from the research and innovation pro-

gramme under the Marie Sk lodowska-Curie grant agreement No

956229 (Alpaca). This research work is also supported by the grant

MIUR 2022YRB97K, Pangenome Informatics: from Theory to

Applications (PINC).

References

A. Amir, M. Lewenstein, and N. Lewenstein. Pattern matching in

hypertext. J. of Algorithms, 35(1):82–99, 2000.

J. A. Baaijens et al. Computational graph pangenomics: a tutorial

on data structures and their applications. Natural Computing,

21(1):81–108, 2022.

K. Bonnet et al. Constructing founder sets under allelic and

non-allelic homologous recombination. In Algorithms in Bioin-

formatics (WABI 2022), volume 242 of LIPIcs, pages 6:1–23,

2022.

R. Colquhoun et al. Pandora: nucleotide-resolution bacterial pan-

genomics with reference graphs. Genome Biol, 22(1):1–30, 2021.

Computational Pan-Genomics Consortium. Computational pan-

genomics: status, promises and challenges. Briefings in

Bioinformatics, 19(1):118–135, 2018.

A. E. Darling et al. progressiveMauve: Multiple genome alignment

with gene gain, loss and rearrangement. PLoS One, 5(6):e11147,

2010.

L. Denti et al. ASGAL: aligning RNA-Seq data to a splicing graph

to detect novel alternative splicing events. BMC Bioinformatics,

19(1):1–21, 2018.

X. Didelot and M. C. Maiden. Impact of recombination on bacterial

evolution. Trends Microbiol, 18(7):315–322, 2010.

X. Didelot et al. Inference of homologous recombination in bacteria

using whole-genome sequences. Genetics, 186(4):1435–49, 2010.

R. Diestel. Graph Theory, volume 173 of Graduate Texts in

Mathematics. Springer-Verlag, Heidelberg, 3rd edition, 2005.

W. Ding et al. panx: pan-genome analysis and exploration. Nucleic

acids research, 46(1):e5, 2018.

K. E. Dingle et al. Recombinational Switching of the Clostridium

difficile S-Layer and a Novel Glycosylation Gene Cluster Revealed

by Large-Scale Whole-Genome Sequencing. The Journal of

Infectious Diseases, 207(4):675–686, 2012.

R. Durbin, S. R. Eddy, A. Krogh, and G. Mitchison. Biological

Sequence Analysis: Probabilistic Models of Proteins and Nucleic

Acids. Cambridge University Press, Cambridge, 1998. ISBN

978-0-521-62971-3.

D. Falush et al. Mismatch induced speciation in Salmonella: Model

and data. Philosophical Transactions of the Royal Society B,

361(1475):2045–53, 2006.

C. Fraser et al. Recombination and the nature of bacterial

speciation. Science, 315(5811):476–480, 2007.

Y. Gao et al. abPOA: an SIMD-based C library for fast partial

order alignment using adaptive band. Bioinformatics, 37(15):

2209–2211, 2021.

K. V. Garimella, Z. Iqbal, M. A. Krause, S. Campino, M. Kekre,

E. Drury, D. Kwiatkowski, J. M. Sá, T. E. Wellems, and

G. McVean. Detection of simple and complex de novo mu-

tations with multiple reference sequences. Genome Research, 30

(8):1154–1169, Aug. 2020. ISSN 1088-9051.

E. Garrison et al. Variation graph toolkit improves read map-

ping by representing genetic variation in the reference. Nature

biotechnology, 36(9):875–879, 2018.

O. Gotoh. An improved algorithm for matching biological sequences.

Journal of Molecular Biology, 162(3):705–708, Dec. 1982.

W. P. Hanage et al. Hyper-recombination, diversity, and antibiotic

resistance in Pneumococcus. Science, 324(5933):1454–1457, 2009.

J. Hedge and D. J. Wilson. Bacterial phylogenetic reconstruction

from whole genomes is robust to recombination but demographic

inference is not. mBio, 5(6):e02158–14, 2014.

D. S. Hirschberg. A Linear Space Algorithm for Computing Maxi-

mal Common Subsequences. Communications of the ACM, 18

(6):341–343, 1975.

C. Jain et al. On the complexity of sequence-to-graph alignment.

J. of Computational Biology, 27(4):640–654, 2020.

P. Lanzoni-Mangutchi et al. Structure and assembly of the S-layer

in C. difficile. Nature Communications, 13(1):970, 2022.

C. Lee et al. Multiple sequence alignment using partial order

graphs. Bioinformatics, 18(3):452–464, 2002.

N. Li and M. Stephens. Modeling linkage disequilibrium and

identifying recombination hotspots using single-nucleotide poly-

morphism data. Genetics, 165(4):2213–2233, 2003.

V. Makinen and D. Valenzuela. Recombination-aware alignment

of diploid individuals. BMC Genomics, 15(Suppl 6):S15, 2014.

S. Marco-Sola et al. Fast gap-affine pairwise alignment using the

wavefront algorithm. Bioinformatics, 37(4):456–463, 2021.

G. Navarro. Improved approximate pattern matching on hypertext.

Theor. Computer Science, 237(1-2):455–463, 2000.

S. B. Needleman and C. D. Wunsch. A general method applicable

to the search of similarities in the amino-acid sequence of two

proteins. J. of Molecular Biology, 48:443–453, 1970.

G. G. Perron et al. Bacterial recombination promotes the evolution

of multi-drug-resistance in functionally diverse populations. Pro-

ceedings of the Royal Society B: Biological Sciences, 279(1733):

1477–1484, 2012.

M. Rautiainen and T. Marschall. Aligning sequences to general

graphs in O(V +mE) time. bioRxiv, page 216127, 2017.

M. Rautiainen and T. Marschall. GraphAligner: rapid and versatile

sequence-to-graph alignment. Genome Biology, 21(1):253, 2020.

M. Rautiainen et al. Bit-parallel sequence-to-graph alignment.

Bioinformatics, 35(19):3599–3607, 2019.

R. Rizzi et al. Hardness of covering alignment: Phase transition in

post-sequence genomics. IEEE/ACM Trans. on Computational

Biology and Bioinformatics, 16(1):23–30, 2019.

S. K. Sheppard et al. Progressive genome-wide introgression in

agricultural Campylobacter coli. Molecular Ecology, 22:1051–

1064, 2013.

F. Sievers, A. Wilm, D. Dineen, T. J. Gibson, K. Karplus,

W. Li, R. Lopez, H. McWilliam, M. Remmert, J. Söding, J. D.

Thompson, and D. G. Higgins. Fast, scalable generation of

high-quality protein multiple sequence alignments using clustal

Page 11 of 12 Bioinformatics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/advance-article/doi/10.1093/bioinform
atics/btae292/7658945 by guest on 02 M

ay 2024

12 Avila Cartes et al.

omega. Molecular Systems Biology, 7(1), Jan. 2011.

J. Sirén et al. Genotyping common, large structural variations in

5,202 genomes using pangenomes, the Giraffe mapper, and the

vg toolkit. bioRxiv:2020.12.04.412486, 2021.

J. Sirén et al. Pangenomics enables genotyping of known structural

variants in 5202 diverse genomes. Science, 374(6574):abg8871,

2021.

R. Spang, M. Rehmsmeier, and J. Stoye. A novel approach to

remote homology detection: jumping alignments. J. Comput.

Biol., 9(5):747–760, 2002.

C. Thachuk. Indexing hypertext. J. of Discrete Algorithms, 18:

113–122, 2013.

T. Wirth et al. Sex and virulence in Escherichia Coli: An

evolutionary perspective. Mol Microbiol, 60(5):1136–51, 2006.

K. Yahara et al. Efficient inference of recombination hot regions

in bacterial genomes. Molecular biology and evolution, 31(6):

1593–1605, 2014.

H. Zhang et al. Fast sequence to graph alignment using the graph

wavefront algorithm. arXiv:2206.13574, 2022.

M. M. Zilversmit, E. K. Chase, D. S. Chen, P. Awadalla, K. P.

Day, and G. McVean. Hypervariable antigen genes in malaria

have ancient roots. BMC Evolutionary Biology, 13(1):1–11, Dec.

2013.

Page 12 of 12Bioinformatics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/advance-article/doi/10.1093/bioinform
atics/btae292/7658945 by guest on 02 M

ay 2024

