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Background. Lymphatic filariasis (LF) is a neglected tropical disease targeted for elimination as a public health problem by 
2030. Although mass treatments have led to huge reductions in LF prevalence, some countries or regions may find it difficult to 
achieve elimination by 2030 owing to various factors, including local differences in transmission. Subnational projections of 
intervention impact are a useful tool in understanding these dynamics, but correctly characterizing their uncertainty is challenging.

Methods. We developed a computationally feasible framework for providing subnational projections for LF across 44 sub- 
Saharan African countries using ensemble models, guided by historical control data, to allow assessment of the role of 
subnational heterogeneities in global goal achievement. Projected scenarios include ongoing annual treatment from 2018 to 
2030, enhanced coverage, and biannual treatment.

Results. Our projections suggest that progress is likely to continue well. However, highly endemic locations currently deploying 
strategies with the lower World Health Organization recommended coverage (65%) and frequency (annual) are expected to have 
slow decreases in prevalence. Increasing intervention frequency or coverage can accelerate progress by up to 5 or 6 years, 
respectively.

Conclusions. While projections based on baseline data have limitations, our methodological advancements provide 
assessments of potential bottlenecks for the global goals for LF arising from subnational heterogeneities. In particular, areas 
with high baseline prevalence may face challenges in achieving the 2030 goals, extending the “tail” of interventions. Enhancing 
intervention frequency and/or coverage will accelerate progress. Our approach facilitates preimplementation assessments of the 
impact of local interventions and is applicable to other regions and neglected tropical diseases.
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Lymphatic filariasis (LF) is a neglected tropical disease (NTD) 
caused by infection with mosquito-borne parasites. The para
sites dwell in the lymphatic system, leading to impaired lymph 
flow and eventually lymphoedema, elephantiasis, or hydrocele. 

For LF, the World Health Organization (WHO) called for its 
elimination as a public health problem (EPHP) in 1997 and 
launched the Global Programme to Eliminate Lymphatic 
Filariasis in 2000 [1]. The aims of the global program are to in
terrupt transmission by annually treating entire at-risk popula
tions with antifilarial drugs (termed mass drug administration 
or MDA) and to alleviate the suffering of people already affect
ed by filarial disease by providing disease management and hy
gienic measures [1].

More recently, WHO launched the road map for NTDs in 
2021–2030 [2], which sets a target for LF of EPHP in 58 (81%) 
of 72 endemic countries worldwide by 2030, while the remaining 
endemic countries (14 countries [19%]) should have completed 
their MDA programs and be in the posttreatment surveillance 
phase to validate elimination. MDA can be stopped if, after ≥5 
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rounds of MDA with good coverage (65% of the entire popula
tion receiving MDA treatment), the infection prevalence has 
dropped below the transmission assessment survey (TAS) 
thresholds set by WHO [3]. In sub-Saharan Africa, where 
Wuchereria bancrofti is endemic and Anopheles is the dominant 
vector of transmission, these thresholds effectively mean that 
prevalence of the disease must be below 1% microfilaria (mf) 
or 2% antigenemia in populations >5 years of age. Elimination 
can be validated by demonstrating that prevalence is sustained 
below this threshold in 2 repeated surveys, to be performed ap
proximately 2–3 years after the previous survey [3].

Despite the enormous progress made since the inception of the 
Global Programme to Eliminate Lymphatic Filariasis [4], there is 
a large amount of heterogeneity across sub-Saharan African 
countries in the progress to elimination, owing to several factors 
like variation in transmission conditions and in the implementa
tion of MDA. For example, prevalence levels before the introduc
tion of control programs vary significantly across regions, with 
some reporting precontrol prevalence as low as 0,% while others 
experience rates as high as 40% [5 ,6]. Implemented interventions 
also differ widely between and within countries. For instance, 
countries like Nigeria or Togo have had MDA programs running 
since the year 2000, while others like South Sudan or São Tomé 
and Príncipe started MDA only recently [7].

Different treatment regimens are also used across the conti
nent, depending on coendemicity of other filarial infections. 
Diethylcarbamazine plus albendazole is globally the preferred 
treatment regimen, which can also be combined with ivermectin 
to further boost efficacy. However, diethylcarbamazine cannot 
safely be used in onchocerciasis-endemic regions, so ivermectin 
plus albendazole is the mainstay of treatment in most of the 
African region. Neither diethylcarbamazine nor ivermectin can 
be used in loiasis-coendemic areas, which instead receive 
twice-yearly albendazole. Bed nets, which are primarily used 
for malaria control, can also contribute to the control of LF by 
reducing exposure to mosquito bites during peak transmission 
periods when infected mosquitoes are actively biting humans. 
The combined use of bed nets with MDA has been shown to re
duce transmission by Anopheles [8, 9], and it is possible that vec
tor control alone may be sufficient to achieve elimination, as 
suggested in the Gambia, where bed net programs alone were 
enough to interrupt W. bancrofti transmission [10]. Variation 
in bed net coverage, as well as the combination with MDA or 
not, contributes to further heterogeneity between locations [11].

Finally, the achieved coverage of MDA programs, which 
should be at least 65% per round, also varies across locations. 
As a result, the required treatment duration and expected 
end year of interventions vary strongly. In some areas, 5 or 6 
annual MDA rounds have been sufficient to interrupt transmis
sion, while in other areas transmission persisted even after >10 
years of MDA efforts [4]. Considering this heterogeneity in 
prevalence and intervention histories across African countries 

and regions, there is increasing interest in developing strategies 
that can integrate geographic information to help in evaluating 
the potential effectiveness of elimination programs for LF 
across regions and to explore potential alternatives that can 
be used to accelerate progress in specific areas where elimina
tion proves challenging.

Mathematical models of NTDs have been used to inform 
public health policy for many years [12]. One approach com
monly used is scenario-based modeling, which provides broad 
insights by defining generic settings. An example of this is the 
recent work modelling the delays in LF programs owing to the 
coronavirus disease 2019 (COVID-19) pandemic [13]. 
However, defining general scenarios means that the nuance 
of specific countries or subnational regions is not captured, 
such as their history of MDA programs and precontrol ende
micity levels. Studies have highlighted the significance of ad
dressing spatial heterogeneities in disease transmission 
dynamics [14, 15] and the need to address such heterogeneous 
dynamics for minimizing aggregation error when making pre
dictions at a coarse scale [16]. For example, Michael et al [16] 
developed a spatially hierarchical data-driven computational 
platform to tackle the problem of scaling up from local settings 
and enable predictions at regional levels by the discovery and 
use of locality-specific transmission models. Their findings 
contrast with previous national-level intervention modeling 
approaches, highlighting the need to account for heteroge
neous transmission dynamics across a spatial domain.

In the current study, we use a bayesian approach that com
bines fine-scale geostatistical maps of LF prevalence before 
MDA initiation with an ensemble of 3 disease transmission 
models, to facilitate the investigation of policy questions related 
to LF elimination in sub-Saharan Africa. While each model of
fers valuable insights independently, we use an approach that 
combines the 3 individual models to generate fine-scale ensem
ble projections. More specifically, we use this approach to fore
cast progress toward the 2030 goals using current interventions 
[17, 18], in order to provide prevalence estimates at fine spatial 
scales from 2021 to 2030 and identify areas where alternative 
interventions may be needed to accelerate progress toward 
elimination by 2030. Furthermore, we estimate the likely im
pact of such alternative interventions, including those that 
rely on increased MDA frequency or coverage. By assessing 
the impact of different strategies on LF elimination timelines 
across distinct areas, the proposed methods can serve as a valu
able tool for policy makers to optimize interventions and en
sure the effective control of LF tailored to local context.

METHODS

Pre-MDA Geostatistical Map

The starting point for the analysis was a pre-MDA geostatistical 
map of infection prevalence, which was generated through the 
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analysis of 2 markers: mf and antigenemia. As the first marker, 
mf are found in the blood of infected individuals and can be 
used as an indicator of transmission, as mosquitoes can ingest 
mf during blood meals from infected hosts. The mf diagnostic 
is also found more frequently in historic data. However, there 
are disadvantages associated with the use of mf counts, as these 
require specialized parasitological skills and night sampling (to 
capture parasite activity in the infected host). By contrast, 
antigenemia is easier to assess by using an antigenic immuno
chromatographic card test (ICT), which measures antigenic 
activity against adult parasites. In recent years, ICT has been 
mostly replaced by the filarial test strip, which is now the 
WHO-recommended diagnostic method for LF mapping, 
monitoring, and evaluation [19]. Since the transmission models 
used in this study have been more extensively validated against 
mf data than against ICT data, and our primary focus is on his
toric data, which are more frequent in the early years of the pro
gram, we generated a geostatistical estimate of mf prevalence.

We started by generating a 5 × 5-km scale pixel map of mf 
prevalence across sub-Saharan African countries before interven
tions, using a model-based geostatistical approach (detailed in the 
Supplementary Materials). Because the LF transmission models 
were calibrated using mf prevalence, we converted ICT preva
lence to mf prevalence, as reported elsewhere [20]. Given that 
the diagnostic tests are used only in individuals aged ≥5 years, 
the resulting map represents LF prevalence within this specific 
subpopulation. Furthermore, the map reflects the LF prevalence 
status at the baseline, which refers to the time point before the ini
tiation of MDA, termed here as precontrol prevalence 
(Supplementary Figure SG10 in the Supplementary Materials).

Combining Geostatistical Map With Transmission Models and 
Intervention Histories

The precontrol geostatistical map was then linked to transmis
sion models of LF through fitting of the models to the pixel level 
data, based on recently developed methods [21]. We used 3 
published mathematical models of LF transmission and con
trol: EPIFIL [22–25], a deterministic population-based model, 
and LYMFASIM [26–28] and TRANSFIL [29, 30], 2 stochastic 
individual-based model. The 3 models were used to estimate 
the impact of historical, current and future interventions, in
cluding vector control (bed nets) and MDA with different 
drug combinations, depending on the area.

The first step of the method is to generate a large number of 
simulations from the transmission models, which encompass 
the entire range of prevalences observed in the geostatistical 
model. This can be achieved by defining the parameters that 
spatially vary across Africa, such as vector density and aggrega
tion, and drawing them from a prior distribution informed 
from data, pilot simulations, and previous analyses (see the 
Supplementary Materials for a complete overview of all param
eter values and prior distributions for each model). An 

ensemble modeling approach is then used, in which simula
tions from all individual models are combined together to for
mulate a collective ensemble of simulations. These ensemble 
simulations are then weighted according to how closely they 
match the prevalence distribution and population size of each 
pixel. Population data for each pixel are extracted from the 
WorldPop website [31]. Finally, once the weights are calculat
ed, the transmission models are run forward in time, consider
ing the history of control in each pixel, to obtain future 
estimated distribution of projections across space.

Data on historical MDA campaigns in each region were ob
tained from the Expanded Special Project for Elimination of 
Neglected Tropical Diseases (ESPEN) website [32]. To reduce 
the number of alternative treatment histories modeled, we made 
several conservative assumptions. First, for MDA coverage, pixels 
were classified within regions according to year-by-year MDA 
coverage estimates, taking the true coverage to be 65% if the re
ported coverage exceeded this value, 15% if the reported value 
was between 15%–65%, and zero otherwise. Second, to incorpo
rate the contribution of vector control, we used the coverage 
data of insecticide-treated bed nets, which can be extracted from 
the Malaria Atlas Programme [11]. We classified this coverage 
into 4 different bins: 0%–24%, 25%–49%, 50%–74%, and 75%– 
100%. Note that in the current study we do not account for insec
ticide resistance in Anopheles mosquitoes when modeling bed net 
efficiency. However, we acknowledge the importance of this factor 
and plan to consider it in future work.

In addition to MDA and bed net coverage, we also accounted 
for the year that MDA started and duration of the program (see 
Supplementary Figure S9 in the Supplementary Materials). At 
the time of this analysis, complete historical information in in
terventions was available up to 2017. This information was 
available at the implementation unit (IU) level, which repre
sents either the first or the second level administrative unit, de
pending on each country. We assumed that programs that 
started before 2017 would continue, and we included MDA 
programs starting in 2018–2019 in the IUs where such data 
was available. Otherwise, we assumed that programs in all re
maining IUs started in 2020. Note that areas with estimated 
prevalence levels <1% mf (the target threshold for EPHP) by 
the end of 2017 (as indicated in the right panel of Figure 1), 
were considered nonendemic and were excluded from subse
quent analyses. Consequently, forward simulations were car
ried out only in areas classified as endemic in 2018.

For all programs that (re)start or continue after 2017, three 
possible intervention strategies at the IU level were considered: 
(1) long term, with continuation of current interventions, gen
erally consisting of annual MDA with 65% coverage; (2) in
creased coverage, in which the IU increases MDA coverage to 
80%; and (3) increased frequency, in which annual MDA is in
creased to biannual (2 rounds per year). As mentioned above, 
the drug combinations that countries use may vary, including 

S110 • CID 2024:78 (15 May) • Touloupou et al

http://academic.oup.com/cid/article-lookup/doi/10.1093/cid/ciae071#supplementary-data
http://academic.oup.com/cid/article-lookup/doi/10.1093/cid/ciae071#supplementary-data
http://academic.oup.com/cid/article-lookup/doi/10.1093/cid/ciae071#supplementary-data
http://academic.oup.com/cid/article-lookup/doi/10.1093/cid/ciae071#supplementary-data
http://academic.oup.com/cid/article-lookup/doi/10.1093/cid/ciae071#supplementary-data
http://academic.oup.com/cid/article-lookup/doi/10.1093/cid/ciae071#supplementary-data


albendazole alone, albendazole paired with ivermectin or 
diethylcarbamazine, or a combination of all 3 drugs (see 
Supplementary Figure S10 in the Supplementary Materials). 
Considering all the various backgrounds of historical treat
ments (MDA and/or bed nets) and drugs used, the total num
ber of scenarios simulated was 2611.

For each scenario, 100 000 simulations were generated from 
each of the 3 transmission models, using parameter values drawn 
from their prior distributions, to ensure that there was sufficient 
diversity in the runs to accurately capture the dynamics across all 
spatial locations under consideration. Adopting an ensemble ap
proach, the simulations from the 3 models were combined into a 
single set, resulting in a total of 300 000 simulations. These en
semble simulations were then weighted according to how closely 
they matched the characteristics of each pixel, such as population 
size and baseline prevalence, as described elsewhere [21].

Ensemble Predictions

Once the simulations were matched to the pixels at baseline, we 
simulated the transmission models forward in time, under the 3 
possible future intervention strategies described above, to de
termine the projected prevalence outcome locally (ie, by pixel). 
Since the campaigns were deployed at an IU level, the results 
from the ensemble model were aggregated for each IU by tak
ing the average of the 90% quantile of the prevalence distribu
tions of the pixels in it, weighted by population size. Therefore, 
we consider that an IU achieves the minimum condition to 
start validation of EPHP once this average falls below the 
TAS threshold (1% mf prevalence). Conversely, any IUs in 
which this average was above the TAS threshold were consid
ered not to have achieved the EPHP condition.

RESULTS

In this analysis, we start by describing the estimation of a base
line map that captures LF prevalence across sub-Saharan 
African countries at the fine scale before the introduction of 
MDA campaigns. The transmission models were then used to 
produce simulations that match this precontrol map, before be
ing run forward in time, accounting for all the historical treat
ment that has taken place until 2017.

Originally, one key objective of this project was to estimate 
the likelihood that different regions would achieve the elimina
tion targets set out in the 2012–2020 WHO NTD road map 
[33]. However, WHO has since released revised targets for LF 
elimination by 2030 in its new road map for NTDs 2021– 
2030 [2]. Therefore, we further extended our predictions under 
a range of potential intervention strategies between 2018 to 
2030, to identify regions where additional measures may be 
useful in accelerating progress toward LF elimination (see 
Methods for details).

Our findings show that before the implementation of control 
programs (estimated precontrol prevalence map; Figure 1, left), 
mf prevalence across sub-Saharan Africa was very heteroge
neous. For example, while most pixels have mf incidences 
<1% (ie, are nonendemic), some pixels have estimated preva
lences above 75%. By the time this analysis was performed, 
complete treatment histories were available up to 2017. 
When these are used to project mf prevalence from the baseline 
up to 2017, the map changes significantly. For example, only 
very few high prevalence pixels remain in the prevalence map 
at the end of 2017 (Figure 1, right). For some countries, such 
as Mali, Burkina Faso, or Mozambique, we find significant 
changes in estimated median mf prevalence between the 

Figure 1. Estimated median baseline microfilaria (mf) prevalence (left panel) and estimated median prevalence by the end of 2017 (right panel) at the pixel level (5 × 5 km2 

squares). Upper (97.5%) and lower (2.5%) quantiles are shown on the right-hand side in each panel. Inset in right panel shows the change in the median prevalence, per pixel, 
between precontrol and 2017 prevalence.
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baseline and 2017 maps, with some areas in these countries 
achieving reductions above 80% (Figure 1, inset right). 
However, despite such important reductions and although 
most pixels (66%) have an estimated median prevalence below 
1% in 2017, our results reveal some areas of high endemicity, 
suggesting that the historical rounds are not sufficient to ensure 
that LF will have achieved EPHP status across the whole region. 
Notably, projections for some of these areas, such as Kenya, are 
characterized by high uncertainty, which is likely due to uncer
tainty linked to the baseline estimates of LF prevalence.

For regions that were endemic by the end of 2017, we then 
carried out forward simulations under a range of scenarios, 
to determine when different IUs would achieve EPHP status. 
First, we modeled the likely impact of continuing to use the 
same interventions from 2018 onward. For this, we used the 
drug(s) of choice in each country and assumed a 65% coverage 

achieved with annual rounds of treatment, except for some IUs 
in Angola, Central African Republic, Cameroon, Democratic 
Republic of the Congo, Gabon, Equatorial Guinea, Nigeria, 
South Sudan, and Chad, where biannual rounds are expected 
to be carried out. Our simulations suggest that under this sce
nario most of sub-Saharan Africa will likely reduce mf preva
lence below the EPHP threshold of 1% mf by 2030 with 90% 
probability (Figure 2). Our simulations suggest that by 2030 
only 6 countries (Angola, Nigeria, Tanzania [Mainland], 
Burkina Faso, Mali, and Cameroon) may still have some IUs 
that fail to meet the EPHP condition. Furthermore, we find 
that many countries are likely to achieve EPHP before 2030, 
with 16 of 34 countries estimated to have reached prevalence 
below 1% mf in all IUs by 2026 (Figure 2).

We also simulated how alternative interventions are likely to 
affect the timeline to LF elimination across the different areas. 

Figure 2. Proportion of implementation units (IUs) not achieving elimination as a public health problem (EPHP) condition, estimated from the number of IUs with a <90% 
probability of being under the EPHP threshold. IUs are grouped by country (y-axis), with the start year of the program in each country also highlighted. Countries without a 
specified start year in the top panel had not started mass drug administration (MDA) by the end of 2017 (time frame for which we had data available). For these countries, we 
assume that MDA began in 2020.

S112 • CID 2024:78 (15 May) • Touloupou et al



For this, we compared the long-term intervention described 
above (mainly relying on annual MDA campaigns with 65% 
coverage) with improved interventions relying on increased 
coverage (80%) or frequency (biannual). The timeline for 
achieving the condition for EPHP was then estimated as the 
first year in which the probability of being below the TAS 
threshold is >90% (Figure 3).

Our findings show that such improved interventions can 
accelerate progress toward LF elimination. For example, 
while 15 IUs were estimated not to achieve the EPHP 

condition with the current strategy applied long term by 
2030, only one of them fails to meet this target when higher 
MDA coverage or frequency are used (Figure 3, top right and 
bottom left). As expected, our results show that changing the 
current MDA strategy is mostly needed in IUs estimated to 
have high prevalence at the baseline (Figure 1). Many of 
these IUs are also characterized by large uncertainty in the 
geospatial map (eg, those in Mali and Kenya) and sometimes 
also characterized by limited treatment histories (eg, Sudan), 
further increasing uncertainty.

Figure 3. Year of achieving the elimination as a public health problem (EPHP) condition across the implementation units (IUs) assessed. Gray areas were excluded, either 
because they are nonendemic or, in the enhanced frequency map, because the long-term intervention is already biannual (and it is thus not appropriate to increase frequency). 
Inset panels show the number of endemic IUs not achieving the EPHP condition over time. Counterfactual is defined as the scenario in which mass drug administration is 
halted in 2018.
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Moreover, our findings indicate that increasing the interven
tion frequency to biannual or enhancing the coverage to 80% 
can accelerate progress by up to 5 or 6 years (Figure 3, bottom 
right). In a comparison of the 2 modeled acceleration scenarios, 
the biannual MDA at 65% coverage is identified as the most ef
ficient, attaining elimination more quickly than the annual 
MDA with 80% coverage.

DISCUSSION

Our findings demonstrate the utility of integrating historical 
geostatistical data on LF prevalence with disease transmission 
models to better understand the likely impact of different inter
ventions on progress toward LF elimination at a fine spatial 
scale. A key finding from our analysis is that current interven
tions are highly efficacious in reducing LF endemicity across 
most geographies, as highlighted by estimated reductions in 
the median prevalence in some areas above 80% (Figure 1, right 
inset). These data agree with epidemiological data showing that 
existing interventions have driven major progress toward con
trol and elimination of LF in many countries, with a 36% reduc
tion in the population requiring MDA since 2000 [34].

Looking forward, even with conservative assumptions and 
relying on current interventions, progress in the continent is 
likely to lead to achieving the infection threshold for EPHP be
fore 2030 in 29 of the 34 endemic countries in Africa (Figure 2). 
The rationale for the TAS threshold is that it would effectively 
eliminate the incidence of disease, including lymphodema and 
hydrocele, and it is paired with criteria on effective programs to 
treat and alleviate the burden of disease. In our study we con
sidered only infection, owing to the challenges of quantifying 
the link between infection and disease, and we did not consider 
surgery or other treatment programs to alleviate disease.

It is also important to note that in the WHO road map for 
NTDs 2021–2030, the objective for LF is validation of EPHP, 
which requires countries to be below the TAS threshold at least 
4 years after stopping MDA (independently of whether it is 
measured as a 1% mf threshold, as used here, or a 2% antigene
mia threshold). Here, we assessed only the probability of differ
ent IUs reaching the TAS threshold, rather than remaining 
below it once MDA is interrupted. IUs that we have considered 
meet the EPHP condition would still need to maintain those 
prevalence levels for 4 years in the absence of MDA, so with 
our definition, only areas achieving the EPHP condition before 
2026 could be validated by 2030. In our analysis, 16 of the 34 en
demic countries meet our EPHP condition by 2026 and would 
thus be very likely to pass pre-TAS and achieve validation 
(Figure 2). It is also important to note that we use a very strict 
definition of the EPHP condition, with the need for an IU to 
have a ≥90% probability of mf prevalence being <1%. This 
means that IUs that we consider have not reached the EPHP con
dition by a certain date might still be able to pass pre-TAS.

While we find that most countries and regions are on track to 
meet the 2030 targets using current strategies, we also identified 
15 IUs where simply prolonging these interventions will be in
sufficient to achieve EPHP by 2030. By modeling the impact of 
enhanced interventions with increased MDA frequency (bian
nual vs annual) or coverage (80% vs 65%), we found that pro
gress toward LF elimination can be accelerated. Of note, our 
simulations show that the EPHP condition would likely be 
met in all but 1 IU (in Mali) under these alternative scenarios 
(Figure 3). Our analysis indicates that the acceleration scenario 
of increasing MDA frequency to biannual showed more rapid 
progress than enhancing the coverage to 80%. However, it is es
sential to underline that these strategies come with distinct op
erational challenges and cost implications. These critical factors 
should be considered and integrated within the local context to 
ascertain the most feasible and effective implementation strat
egy. Tailoring the approach to the unique circumstances and 
constraints of each location is essential to optimizing the im
pact and efficacy of the intervention strategies.

Furthermore, our results, which agree with those of previous 
studies showing the potential benefits of increasing MDA cov
erage and/or frequency [16, 18], demonstrate that the 2030 tar
get of eliminating LF across sub-Saharan Africa is feasible, 
although some additional efforts may be needed in regions of 
historically high endemicity. This aligns with studies indicating 
that the success of elimination programs can be influenced by a 
wide range of factors, such as initial levels of endemicity, the 
specific MDA regimen used, treatment frequency, duration, 
and population coverage, among others [35].

While the delays due to COVID-19 to some national programs 
have not been considered here, recent work suggests that the con
sequences might be limited, particularly if activities can be re
sumed quickly [13, 36, 37]. Undoubtedly, programs will be 
facing many challenges in the coming years, including reduced 
domestic revenues, cuts to funding from donors, and changes 
in transmission linked to climate change. Nonetheless, our find
ings not only highlight the great progress toward LF elimination 
made to date but also provide optimistic expectations for the fu
ture, demonstrating that while elimination of LF is an ambitious 
goal, it is certainly possible.

The main limitation of our approach is that we only model 
different scenarios from historical baseline mf prevalence be
fore the start of interventions. Therefore, the accuracy and rel
evance of our approach can be improved by incorporating 
more contemporary data on LF prevalence, although obtaining 
such data across such a wide range of countries and regions has 
associated challenges. Furthermore, data scarcity for some IUs 
results in high uncertainty in their prevalence estimates, which 
influences our projections and the determination of the likeli
hood that such areas will fulfill the EPHP condition.

A key limitation of our modeling approach is the exclusion of 
insecticide resistance in Anopheles mosquitoes, a factor that has 
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been increasingly recognized as a critical element in the efficacy 
of vector control strategies. For example, Hemingway et al [38] 
showed that bed net coverage does not necessarily equate to ef
fective transmission reduction in areas with prevalent resis
tance. In future work, we aim to incorporate insecticide 
resistance mapping with LF pixel prevalence data, enabling us 
to tailor recommendations for LF control more effectively by 
accounting for local variations in insecticide resistance and 
its impact on transmission dynamics.

Despite these limitations, our analysis demonstrates that the 
approach used here, which combines geospatially resolved 
prevalence data with an ensemble of transmission models, 
can be a powerful tool in evaluating the effectiveness of pro
posed intervention strategies at a fine spatial scale. By capturing 
the complexities of disease transmission and incorporating spa
tial information, our framework can account for differences in 
local context and provide valuable insights into the potential ef
fects of interventions, thereby more effectively supporting 
evidence-based decision making before the implementation 
of control and elimination measures.
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