
Representational Capabilities of Feed-forward and Sequential Neural Architectures

Clayton Hendrick Sanford

Submitted in partial fulfillment of the
requirements for the degree of

Doctor of Philosophy
under the Executive Committee

of the Graduate School of Arts and Sciences

COLUMBIA UNIVERSITY

2024

© 2024

Clayton Hendrick Sanford

All Rights Reserved

Abstract
Representational Capabilities of Feed-forward and Sequential Neural Architectures

Clayton Hendrick Sanford

Despite the widespread empirical success of deep neural networks over the past decade, a

comprehensive understanding of their mathematical properties remains elusive, which

limits the abilities of practitioners to train neural networks in a principled manner. This

dissertation provides a representational characterization of a variety of neural network

architectures, including fully-connected feed-forward networks and sequential models like

transformers. The representational capabilities of neural networks are most famously

characterized by the universal approximation theorem, which states that sufficiently large

neural networks can closely approximate any well-behaved target function. However, the

universal approximation theorem applies exclusively to two-layer neural networks of

unbounded size and fails to capture the comparative strengths and weaknesses of different

architectures. The thesis addresses these limitations by quantifying the representational

consequences of random features, weight regularization, and model depth on feed-forward

architectures. It further investigates and contrasts the expressive powers of transformers

and other sequential neural architectures. Taken together, these results apply a wide range

of theoretical tools—including approximation theory, discrete dynamical systems, and

communication complexity—to prove rigorous separations between different neural

architectures and scaling regimes.

Table of Contents

Acknowledgments . viii

Dedication . xiv

Chapter 1: Introduction . 1

1.1 Historical context and background . 3

1.2 Overview of neural architectures . 7

1.3 Outline of results . 16

Chapter 2: Shallow random feature networks: dimensionality, smoothness, and width
trade-offs . 34

2.1 Introduction . 34

2.2 Preliminaries . 46

2.3 Positive results for Lipschitz targets . 57

2.4 Negative results for Lipschitz targets . 70

2.5 Positive and negative results for Sobolev targets 82

2.6 Conclusion . 89

Chapter 3: Powers of depth and the discrete dynamical systems lens 91

3.1 Introduction . 91

3.2 Depth-width tradeoffs via chaotic itineraries 106

i

3.3 Periods, phase transitions, and function complexity 128

3.4 Supplemental background on discrete dynamical systems and itineraries . . . 163

3.5 Conclusion . 169

Chapter 4: Intrinsic dimensionality of bounded-norm shallow neural network interpolants172

4.1 Introduction . 172

4.2 Preliminaries . 179

4.3 Intrinsic dimensionality of solutions to the variational problem for parity . . 188

4.4 Generalization properties of solutions to the variational problem 207

4.5 Generality of the averaging technique for minimizing R-norm 215

4.6 An alternative variational norm . 223

4.7 Conclusion . 227

Chapter 5: Associative capabilities of multi-headed attention layers 229

5.1 Introduction . 229

5.2 Preliminaries . 237

5.3 Sparse averaging and self-attention embedding dimension 240

5.4 Sparse averaging and limitations of alternative architectures 255

5.5 Pairwise and triple-wise tasks . 259

5.6 Conclusion . 280

Chapter 6: Parallelizability of deep transformer networks 282

6.1 Introduction . 282

6.2 Preliminaries . 286

ii

6.3 Relating transformers and MPC . 293

6.4 Transformers for k-hop induction heads . 319

6.5 Detailed empirical analysis of k-hop induction heads 327

6.6 Separations between transformers and alternative architectures 352

6.7 Proofs of low-level attention constructions 366

6.8 Conclusion and future work . 374

Epilogue . 376

References . 379

iii

List of Figures

2.1 Periodicity-inducing transform for proof of Lemma 2.10 63

3.1 Plots of sample piecewise-linear unimodal mappings 101

3.2 Oscillation frequencies of iterated piecewise-linear mappings 103

3.3 Several compositions of sample piecewise-linear mappings 104

3.4 Several compositions of sample logistic mappings 105

3.5 Oscillation frequencies of iterated logistic mappings 105

3.6 An asymmetric mapping with a 3-cycle that can be a efficiently approximated
by a two-layer network . 114

3.7 A non-concave mapping with a 3-cycle that can be a efficiently approximated
by a two-layer network . 115

3.8 Intervals I1, . . . , Ip−1 for proof of Lemma 3.5 119

3.9 Stefan p-cycle example with intervals defined for the proof of Lemma 3.9 . . 127

3.10 Examples of oscillations for proof of the base case of Proposition 3.22 135

3.11 Interval decomposition of the inductive step of the proof of Proposition 3.22
for q = 1 . 137

3.12 Reduction used to prove Lemma 3.24 . 140

3.13 Interval decomposition of the inductive step of the proof of Proposition 3.22
for the general case . 143

3.14 Interval decomposition for a special case of the proof of Proposition 3.29 . . 155

iv

3.15 Interval decomposition of a twice-iterated mapping in the proof of Proposi-
tion 3.29 . 158

3.16 Bifurcation diagrams of unimodal univariate mappings 168

3.17 Visualization of the proof of Proposition 3.35 169

4.1 Truncated ridge function for proof of Lemma 4.34 221

5.1 Sparse averaging construction intuition for proof of Theorem 5.4 242

5.2 Trained sparse averaging attention matrix 242

5.3 Overview of communication protocol used in proof of Theorem 5.6 244

5.4 Training and testing errors of sparse averaging experiments 250

5.5 Multiple trained sparse averaging attention matrices 251

5.6 Transformer-simulating Congest graph node categories 275

5.7 Transformer-simulating Congest graph with Alice and Bob 277

6.1 Formal execution of an MPC protocol . 287

6.2 Transformer construction that simulates route in proof of Lemma 6.4 299

6.3 Transformer construction that simulates MPC protocol in proof of Theorem 6.12304

6.4 MPC protocol that simualtes a transformer in the proof of Theorem 6.8 . . . 309

6.5 Accuracies of trained transformers on hopk as a function of k 322

6.6 Zoomed in version of Figure 6.5 . 332

6.7 Accuracies of trained transformers on hopk as a function of depth L 334

6.8 Table of accuracies of trained transformers on hopk 334

6.9 Accuracies of trained transformers of hopk, variable width 336

6.10 Sample hopk attention matrix outputs . 339

v

6.11 hop4 attention matrix correlations, depth-4 343

6.12 hop16 attention matrix correlations, depth-6 344

6.13 hop16 attention matrix correlations, depth-4 345

6.14 All hopk attention matrix correlations, depth-4 346

6.15 All hopk attention matrix correlations, depth-6 347

6.16 Accuracies of trained transformers of hopk, 3000 vs ∞ samples 349

6.17 Accuracies of trained transformers of hopk, 1000 vs ∞ samples 350

6.18 hop3 attention matrix correlations, depth-4, 1000 samples 351

6.19 hop3 attention matrix correlations, depth-6, 1000 samples 352

vi

List of Tables

2.1 Summary of minimum-width random feature network bounds 38

3.1 Base of exponent for width bounds in Lemma 3.5 108

3.2 Comparison of separation results of Section 3.2 to other works 116

3.3 Ordering of cyclic itineraries of Metropolis, Stein, and Stein (1973) 165

6.1 Multi-hop task hyperparameters . 329

6.2 Model and training hyperparameters . 331

6.3 All trained transformer hyperparameters . 331

vii

Acknowledgements

A Ph.D. is rarely completed alone, and mine is no exception. This degree was made pos-

sible by the care, guidance, and support of numerous mentors, friends, and family members,

and these few words cannot adequately express my gratitude to each of them.

Unlike previous stages of the academic journey, the Ph.D. is marked by ambiguity, with

few clear milestones, little external validation, and no set class of “interesting problems” to

solve. Throughout the Ph.D. process, I struggled with uncertainty about my personal and

professional future, and the support of an entire community was crucial to my ability to

persevere, determine my values, and complete the degree.

First and foremost, I am deeply indebted to my advisors, Professors Rocco Servedio and

Daniel Hsu, whose academic mentorship, unwavering support, and willingness to explore new

research areas have been instrumental to my growth as a researcher and a person. Rocco

and Daniel are not only brilliant scientists but generous mentors. Their time investments

in their students exceed any reasonable expectation, and the treatment of their students as

valued collaborators creates a compassionate and intellectually vibrant academic community.

Rocco and Daniel encourage us to pursue our interests while being unafraid to venture into

the technical weeds with us. They model exceptional communication skills and have finely

tuned senses of humor (Daniel’s understated and Rocco’s more boisterous). Both of my

advisors were remarkably patient with my shifting research interests and my occasional

bouts of existential dread and imposter syndrome. The academic freedom that they afforded

me was a gift that allowed me to develop my own voice, lens, and research agenda. For all

viii

of this and more, I am forever grateful.

I am also grateful to the members of my thesis committee, Professors Joan Bruna, Ma-

tus Telgarsky, and Christos Papadimitriou. I had the privilege of working with Joan and

Matus on research projects, and I am thankful for their research insights, their thoughtful

engagement with my work, and the inclusiveness of their academic communities. I served as

a teaching assistant for Christos, and I benefited from his guidance and the freedom he gave

me to experiment with my teaching style.

Throughout my graduate and undergraduate studies, I have been fortunate to have many

faculty mentors whose teaching, research mentorship, and career guidance positively shaped

my academic trajectory. I acknowledge the support of Professors Carly Klivans, Paul Valiant,

Björn Sandstede, Eli Upfal, Anna Lysyanskaya, Shriram Krishnamurthy, and Tal Malkin.

In particular, Carly’s persistence in encouraging me to pursue a Ph.D. was instrumental in

my decision to apply to graduate school.

My numerous research collaborators each individually fostered my growth as a researcher

and made the Ph.D. experience much more enjoyable. I thank my colleagues, including

but not limited to, Manolis Vlatakis-Gkaragkounis, Vaggos Chatziafratis, Navid Ardeshir,

Ioannis Panageas, Stelios Stavroulakis, Min Jae Song, Alberto Bietti, Anna Kwa, Oliver

Watt-Meyer, Christopher Bretherton, Cyril Zhang, Dylan Foster, Akshay Krishnamurthy,

Jieming Mao, Jon Schnieder, Bahar Fatemi, Ethan Hall, Vahab Mirrokni, Berkan Ottlik,

and Edward Ri. I would also like to extend my appreciation to those who provided me

with career guidance and advice throughout the graduate process, from Ph.D. application

to mid-Ph.D. crisis to the job market: Vaggos, Alberto, Cyril, Kiran Vodrahalli, Rajesh Ja-

yaram, Cyrus Cousins, Yee Sian Ng, Jasper Lee, Kevin Yeo, Siddharth Karamcheti, Mitchell

Wortsman, and Giannis Karamanolakis.

I am a proud product of the public school system, and I owe a debt of gratitude to the

numerous teachers who challenged me to pursue my interests and sparked my curiosity. I

would like to recognize the contributions of Ms. Joanne Roster, Mr. Todd Shaff, Ms. Anne

ix

Cervantes, Ms. Dion O’Reilly, Ms. Gail Alaimo, Mr. Dan Siddens, Ms. Marissa Ferejohn-

Swett, Ms. Robyn Miranda, and Ms. Branna Banks. I believe that my path to a Ph.D. would

have been impossible without the tireless mentorship of all of these educators inside and

outside the classroom and the specific opportunity to pursue more advanced mathematics in

middle and high school due to the efforts of Mr. Shaff.

Graduate school would be a far lonelier and more dispiriting experience without the sup-

port of my friends and colleagues, especially given the effects of the COVID-19 pandemic.

My childhood friends, including Justin Lang, Trevor Sanders, Steven Corona, Cameron

Fanthorpe, Kate Osterhoudt, Scott Kauker, Juan Castillo, Eric Wells, Christina Dooka, and

Amanda Favorite, have been a source of humor, joy, and grounding throughout my life, and I

am grateful for their continued friendship (and tolerance of my D&D machinations). My col-

lege friends near and far, including Olivia Kelly (and the entire Kelly family), Vince Kubala,

Kate Ferguson, Ethan Wright, JJ Ruth, Katie Scholl, and Lauren Montieth, have supported

me through the Ph.D. program, inspired me with their accomplishments, and challenged

me to think more deeply about my values and goals. My friends in New York City, includ-

ing Priya Patel, Egor Shakhnovsky, Surbhi Madan, Arun Drelich, Natalie Tsvetkova, Samir

Lavignia, Sarah McNeill, Pamela Mishkin, and Jimmy Lin, helped me explore the city, find

joy away from Columbia, and provided a deeply supportive community, before, during, and

after the pandemic. My Ph.D. co-adventurers and co-conspirators, including Tim Randolph,

Shivam Nadimpalli, Navid Ardeshir, Sam Deng, Jingwen Liu, John Hui, Vikram Nitin, Dan

Mitropolsky, Jason Milonis, Melanie Subbiah, Samir Gadre, Sachit Menon, Min Jae Song,

Kathy Jang, Alessio Mazzetto, Adam Block, John Bostanci, Santiago Gonzalez, and Natalie

Parham, form a resilient network of mutual support that has made the Ph.D. journey more

intellectually vibrant, emotionally bearable, and fun. While the path to a Ph.D. is steep

and stony, the positive memories far outweigh the negative ones due to the presence of these

individuals.

The final year of my Ph.D. was made infinitely more tolerable by Shuai Tang, whose

x

presence has been a consistent source of support, laughter, and joy. In a tumultuous year,

Shuai was a calming presence who helped me keep things in perspective. I appreciate how we

push each other to explore the city and that I’ve managed to take him hiking, he brought me

to Hadestown, and we both tried archery. I am grateful for Shuai’s patience and irreverence,

and I am excited to see what is next for us.

I am where I am today due to the many forms of love and support I have received

from my family. I am grateful for the many cousins, aunts, and uncles who supported me

throughout my life, including this most recent period, when I found homes away from home

in Boston, Philadelphia, Seattle, the Bay Area, Los Angeles, San Diego, and San Antonio.

As the second-youngest of many cousins, I have been inspired by the accomplishments of

those around me and am fortunate to receive advice and guidance about life and careers

from my relatives. I acknowledge in particular the support of my cousins Nate, Kelly, Eric,

David, Kim, and Annie, who helped me find my way at critical points in the Ph.D. process;

my Uncle Joe, whose dedication to his family inspires me and whose hospitality helped New

York City feel like home; and my aunts and uncles, Ellen and Chet, Barbara and Jeff, Fred

and Jolynn, Arthur and Michelle, Jane and Larry, and Brian and Linnea, who welcomed me

into their households and generously shared their wisdom and love.

I am indebted to the love and support of my grandmother, Barbara Hugus, who passed

away midway through my Ph.D. Grandma Barbara paved the path for all of us, earning a

Ph.D. in biology in the 1960s while raising four children and having an illustrious career in

cancer genomics research. She was an intellectual giant and a deeply caring grandmother

with an endless supply of love, wisdom, and warm hugs. Her support was critical to the

stability of my nuclear family and my ability to have a happy childhood and pursue my

interests. Without my grandmother, this Ph.D. would have been a distant dream, and this

thesis is dedicated to her memory.

My sister, Barbara Sanford (who was named after our grandmother), is also graduating

this spring with a bachelor’s degree, and I am immensely proud of her and grateful for our

xi

relationship. Barbara is mature, intelligent, and caring. In the past five years, I have leaned

on her for advice, support, and writing feedback. There are few stronger feelings of pride

than those experienced by an older sibling who watches his younger sibling grow up, travel

the world, find her place, and become someone he deeply admires. Barbara navigates her

life with uncommon wisdom. She cares deeply about those around her, going extraordinary

lengths to support her loved ones and make them feel valued. At the same time, her maniacal

grin, inexplicable sense of humor, and vast inner world have persisted and flourished since

childhood, and I treasure every glimpse I get. I hope she understands how much I appreciate

her.

And finally, my greatest debt is to my mother, Paula Sanford. My mother is the wisest

person I know. She is an empathetic listener, a curious mind, and a deeply moral individual.

My mom challenges me to be more compassionate and more thoughtful, a better friend,

brother, student, and partner. She did not choose to be a single parent, but circumstances

forced her to raise my sister and me on her own (with the support of both grandmothers and

our extended family) and she did so with extraordinary selflessness and unconditional love.

One of the most rewarding parts of the last five years has been watching her act on

her passion for early childhood education, earn a formal education in the field, and find an

infant care job that she loves. At one point in the pandemic, all three of us were writing

papers simultaneously, and I appreciated that new familial connection, as we all explored

our interests and planted seeds. I treasure the stories she tells me about the children she

cares for; they are evidence of a deep-seated love for those around her and a reminder never

to stop searching for what makes you happy. At one point in the Ph.D., when I was unsure

about my future plans, she told me that she did not find a profession that she truly loved

until very recently, after decades of different jobs. That conversation stuck with me and

helped me relax a little, feel grateful, and find comfort in ambiguity. Thriving in the face of

uncertainty is perhaps the most important skill for one to learn in a Ph.D. program, and I

am deeply appreciative that I learned that lesson from my mother, in addition to so many

xii

others.

xiii

Dedication

This thesis is dedicated to my grandmother, Barbara Hugus (1927 - 2021), whose

intellect, kindness, and unconditional love made this work possible.

xiv

Chapter 1: Introduction

Neural networks have emerged as the dominant machine learning paradigm over the past

decade, with applications in natural language processing, computer vision, protein folding,

and many other areas. With the rise of the transformer model of Vaswani et al. (2017) for

sequential learning tasks, this dominance has only further solidified, and the size of these

models and the computational resources required to train these models have grown at an

unprecedented rate. Designing a neural network to solve an ML task requires choosing an

architecture and setting numerous hyperparameters. Due to the high computational and

energy costs of training modern neural networks, the development of rigorous and empir-

ically validated approaches for choosing the right neural architecture is of broad practical

importance. Doing so in a principled way requires understanding the impact of the choice of

architecture (e.g. multi-layer perceptron, recurrent neural network, transformer) and hyper-

parameters (e.g. depth, width, weight initialization) on the representational, optimization,

and generalization properties of the corresponding network.

The field of neural network theory aims to provide a rigorous and empirically validated

understanding of the capabilities and limitations of these models and to guide the develop-

ment of new architectures and training algorithms. However, this theoretical understanding

has not kept pace with rapid empirical progress of machine learning, in part due to its inabil-

ity to capture the complexity of modern models. This dissertation aims to address this gap

between the empirical challenges of architectural design and the theoretical understanding

of neural networks by developing new mathematical tools and insights that are relevant to

modern architectures and training algorithms. The focus of this dissertation is on the rep-

resentational capabilities of neural networks, which quantifies the class of functions that a

network can approximate. Although representational capabilities are only one aspect of the

1

performance of a neural network, they are a fundamental building block for understanding

architectural properties.

At first glance, the representational capabilities of neural networks appear well-understood.

The celebrated universal approximation theorem (UAT) of Cybenko (1989), Hornik, Stinch-

combe, and White (1989), and Funahashi (1989) establishes the universality of two-layer

neural networks by showing that any continuous multivariate function can be approximated

by a two-layer network with a sufficiently large number of hidden units. However, these

results offer no upper bound on the number of hidden units required, which limits the prac-

tical utility of the theorem to neural networks of constrained size. Moreover, the UAT does

not provide insight into the comparative capabilities of neural networks with different ar-

chitectures; while two layers suffice for universal approximation, practical networks often

have many more layers and other architectural features that are not captured by the UAT.

Furthermore, these results have limited applicability to sequential models like transformers,

which operate on variable-length sequences (e.g. passages of text) as input, rather than

fixed-length vectors. This thesis aims to venture beyond the unbounded-size framing of the

UAT and to develop a more nuanced and fine-grained understanding of the representational

capabilities of modern neural network architectures.

The contributions of this dissertation (which are discussed in greater detail in Section 1.3)

are organized into two categories: (1) a more fine-grained understanding of the UAT for

feedforward neural networks and (2) a study of the representational capabilities of the trans-

former model. The first category includes works that draw contrasts between the expressive

powers of various classes of neural networks. These classes are defined based on whether

weights are randomly sampled (Chapter 2), the depth (Chapter 3), and the boundedness

of model weights (Chapter 4). The second category exhibits the unique capabilities of the

transformer model compared with other sequential models by quantifying the abilities of

multi-headed attention layers to draw associations between sequential inputs (Chapter 5)

and of deep transformers to implement parallelizable algorithms (Chapter 6).

2

1.1 Historical context and background

Despite their recent prominence, biologically inspired neural networks are not a new

idea, and the field has experienced several cycles of sensationalism and disillusionment.

The perceptron, introduced by McCulloch and Pitts (1943) and implemented by Rosenblatt

(1958) was the first widely studied neural network. A perceptron is a single-neuron model

that computes an affine function of the inputs and applies a nonlinear threshold function σ

to the result:

f(x) = σ(wTx+ b) (1.1)

where x ∈ Rd is the input, w ∈ Rd is a vector of weights, and b ∈ R is a bias term.

The parameters of the perceptron can be learned from labeled training samples with the

perceptron learning algorithm, which updates the weights and bias whenever the perceptron

makes a mistake. Rosenblatt famously made outlandish claims about the promise of the

perceptron model, deeming it a “machine capable of perceiving, recognizing, and identifying

its surroundings without any human training or control” (Lefkowitz, 2019).

However, enthusiasm over the potential of the perceptron was short-lived due to a concrete

description of its limitations by Minsky and Papert (1969). They showed that no perceptron

could represent the exclusive or (XOR) function, which takes two binary inputs, outputting 1

if and only if exactly one of the two inputs is 1. This counterexample concisely demonstrated

the representational limitations of the perceptron and crystallized the difficulty of realizing

Rosenblatt’s lofty ambitions. While this particular counterexample can be mitigated by

utilizing feature transformations or multiple perceptrons, this negative result relegated neural

networks to a niche subfield of artificial intelligence for several decades.

The study of neural networks experienced a resurgence in the 1980s and 1990s, driven

by the development of new architectures and training algorithms. This era saw a shift in

focus from the perceptron to more general feedforward neural networks or multi-layer per-

ceptrons (MLPs), which are composed of multiple layers that consist of an array of neurons,

3

alongside other architectures such as the long short-term memory (LSTM; Hochreiter and

Schmidhuber, 1997) and the convolutional neural network (CNN; Lecun et al., 1998). These

architectural innovations were accompanied by the development of training algorithms such

as back-propagation (Rumelhart, Hinton, and Williams, 1986) that made it possible to train

networks with many layers and neurons, albeit without the formal guarantees of convergence

or generalization that accompany other learning algorithms.

This second wave of neural network hype was accompanied by a body of theoretical

research that investigated the capabilities and limitations of these models. Most famous

among those works is the universal approximation theorem (UAT) of Cybenko (1989), Hornik,

Stinchcombe, and White (1989), and Funahashi (1989), which proves that any multivariate

function on a compact domain can be approximated by a sufficiently wide neural network

of depth two. In contrast to the impact of the revelation of the perceptron’s limitations by

the XOR function, the UAT was widely cited as a theoretical justification for the practical

application of multi-layer perceptrons.

Despite its status as a landmark theoretical result, the practical utility of the UAT was

limited. While representational results like the UAT promise the existence of neural networks

that fit any mapping of inputs to labels, they provide no insight into whether any learning

algorithm can actually find these networks (optimization) or whether these networks will

perform well on new inputs (generalization). Moreover, these representational results fail

to quantify the size of neural networks necessary and sufficient to fit particular datasets

and approximate certain target functions. Since these results focus on the universality of

two-layer networks in the arbitrary-width regime, they neither pinpoint the comparative

strengths and limitations of different neural architectures nor provide prescriptive insights

to practitioners.

Neural networks would again fall from prominence in the machine learning research com-

munity during the late 1990s and 2000s. While neural network research persisted in the

background during this period, neural networks were largely replaced in the literature by

4

approaches such as support vector machines, which were equipped with stronger optimiza-

tion guarantees and were reliably trainable (Cortes and Vapnik, 1995). These alternatives

were more amenable to mathematical analyses of convergence and generalization, making

them more attractive to the machine learning theory community.

Neural networks experienced another resurgence in the early 2010s as neural networks

established empirical dominance over other machine learning methods on a wide range of

benchmark tasks. This progress was most prominently demonstrated by the AlexNet com-

puter vision model (Krizhevsky, Sutskever, and Hinton, 2012a), which showcased the ability

of a convolutional neural network to outperform all contemporary alternatives on standard

computer vision tasks. Further refinements to the CNN architecture cemented this domi-

nance, which has since remained unchallenged by conventional machine learning algorithms.

Soon after, Sutskever, Vinyals, and Le (2014) and others demonstrated the dominance of

neural networks such as the LSTM in natural language processing tasks. Landmark demon-

strations of the powers of deep neural networks continued to emerge, perhaps most famously

with the AlphaGo agent for playing Go (Silver et al., 2016).

This wave was made possible by immense increases in parallel computation power, which

enabled researchers to design much larger models and train them on much larger datasets.

Indeed, the moniker “deep learning” was coined due to the sharp increase in the depth of

neural networks during this period. Past misgivings about the lack of algorithmic conver-

gence guarantees of gradient descent were largely dispelled by the practical success of these

models. In particular, these models were often so large as to be over-parameterized (hav-

ing more trainable parameters than training samples) and experienced benign overfitting, in

which the learning algorithm trains a neural model that perfectly fits the labeled training

samples and still has favorable generalization properties (e.g. Belkin et al., 2018).

This boom saddled machine learning theorists with several unsettling contradictions be-

tween classical learning theory and modern empirical results. First, while the UAT demon-

strates the capabilities of extremely wide two-layer models, the superior empirical perfor-

5

mance of much deeper models could not be rigorously explained using this representational

lens alone. Second, despite the non-convexity of the deep networks’ loss functions, which

makes theoretical convergence difficult to prove, empirical evidence demonstrates the ability

of gradient descent to produce networks that perfectly fit even samples with random labels

(Zhang et al., 2017); practical networks exceeded their theoretical expectations. Finally,

classical machine learning theory relies on establishing relationships between the expressiv-

ity of a concept class and its tendency to overfit. However, deep neural networks are an

arbitrarily expressive class that perfectly fits training samples and nonetheless performs well

on new samples.

In the late 2010s, theoreticians grappled with these contradictions and developed sev-

eral new research areas in the study of neural networks. For instance, the subfield of depth

separation (e.g. Telgarsky, 2016; Eldan and Shamir, 2016) emerged to justify the preference

of practitioners for increasing depth by demonstrating particular target functions that can

be approximated efficiently (i.e., with polynomial width) by deep models, but require expo-

nential width to be approximated by shallow networks. Others studied the neural tangent

kernel (NTK) to study a regime where neural networks behave similarly to kernel machines

and provably converge due to convexity (Jacot, Gabriel, and Hongler, 2018). The generality

and principles behind benign overfitting were theoretically exhibited in multiple alternative

learning models, including least squares regression (Bartlett et al., 2019). These approaches

ultimately struggled to provide practical insights for deep learning practitioners due to the

relative simplicity of the neural architectures they considered and the need for intensive

modeling assumptions to establish their results. However, these results encapsulated a new

era of neural network theory that adapted classical insights to novel learning settings that

capture certain aspects of empirical deep learning.

The deep learning boom of the 2010s has persisted in the early 2020s, with the number

of model parameters, training samples, and research papers increasing at a furious pace.

The rise of the transformer architecture (Vaswani et al., 2017) and subsequent progress in

6

large language models (LLMs) have been particularly emblematic of this era. Transformers,

like recurrent neural networks, are sequential models, which take as input a variable-length

series of tokens, such as a passage of text, and output a variable-length series of tokens, such

as a translation of the input passage. Unlike RNNs, transformers make much more efficient

usage of parallel computing infrastructure, which has enabled a dramatic increase in the sizes

of textual inputs to neural networks—from at most 4096 tokens in GPT-3 (Brown et al.,

2020) to 32,768 tokens in GPT-4 (OpenAI, 2023), and potentially up to 1,000,000 tokens

in the latest Gemini models. In addition to their widespread dominance in NLP tasks, the

capabilities of transformers have been demonstrated in a wide range of domains previously

not tackled with language models, besting CNNs in computer vision tasks (Dosovitskiy et al.,

2021), and alternative models in protein folding analysis (Jumper et al., 2021).

The recent proliferation of transformers across machine learning brings with it funda-

mental questions about the architecture. Is its parallelizable inference and training its sole

advantage, or does the architecture carry further representational benefits? Can the successes

of transformers be replicated by more computationally efficient alternatives? And are there

new generalization principles that govern which kinds of tasks are natural to learn? These

questions suggest the importance of novel theoretical approaches to draw inspiration from

the XOR counterexample of Minsky and Papert (1969) to establish straightforward contrasts

in neural architectures that crystallize their fundamental limitations and advantages.

1.2 Overview of neural architectures

Before we discuss the contributions of this dissertation, we provide a brief overview of

the neural architectures that this work studies. As discussed in the previous section, the

study of biologically inspired artificial neural networks began with the perceptron model of

McCulloch and Pitts (1943), which was designed to model the behavior of a single biological

neuron. Since then, a wide variety of neural architectures have been developed, each of which

contains a collection of neurons that are connected in distinct ways and that are designed

7

for different tasks.

At its most general, a neural network is a parameterized function fθ : X → Y with model

parameters θ ∈ Rp that maps some input x ∈ X to an output fθ(x) ∈ Y . In the case of

the perceptron model in Equation (1.1), the input x is a real-valued vector (i.e. X = Rd),

the output is a binary label (i.e. Y = {0, 1}), and the model parameters θ = (w, b) ∈ Rd+1

consist of a weight vector w ∈ Rd and a bias term b ∈ R. A neural architecture can be

thought of as a family of neural networks F = {fθ : θ ∈ Θ} over some set of parameters Θ.

Neural networks are trained on a finite training dataset {(x1, y1), . . . , (xn, yn)} by finding

parameters θ that minimize a loss function ℓ : Y × Y → R, which measures the difference

between the predicted output fθ(xi) and the true output yi for each training example (xi, yi).

Popular examples of loss functions include the squared loss ℓ(ŷ, y) = (ŷ − y)2 for regression

tasks and the cross-entropy loss ℓ(ŷ, y) = −y log ŷ−(1−y) log(1− ŷ) for binary classification

tasks. The parameters θ are retrieved by solving an optimization problem of the form

min
θ∈Rp

1
n

n∑
i=1

ℓ(fθ(xi), yi) + λR(θ), (1.2)

where R(θ) is a regularization function that penalizes overly complex parameter configura-

tions and λ > 0 is a hyperparameter that controls the strength of the regularization.

Machine learning theorists study the properties of neural architectures by quantifying

their representational, optimization, and generalization properties.

A neural architecture’s representational capabilities measure the types of learning rules

and datasets that can be fit by some neural network of that architecture. Concretely, for

architecture F and some concept class H containing functions of the form X → Y , we ask

whether for every target h ∈ H, there exists some neural network f ∈ F such that f has

approximately identical outputs to h. This may be measured with L∞ error, i.e.

sup
x∈X

|f(x) − h(x)| ≤ ϵ,

8

or with L2 error with respect to some measure µ over X , i.e.

E
x∼µ

[
∥f(x) − h(x)∥2

2

]
≤ ϵ.

For instance, the perceptron architecture with threshold activation σ(t) = 1 {t ≥ 0} can

perfectly approximate the family of linear threshold functions H = {x 7→ σ(vTx + c)}, but

it cannot approximate the XOR target x 7→ x1 + x2 − 2x1x2 on X = {0, 1}d.

The optimization properties of a neural architecture and a learning algorithm (such as

stochastic gradient descent) measure how well the algorithm can recover the parameters θ

that minimize the empirical risk in Equation (1.2). For the perceptron model, the perceptron

learning algorithm provably converges to a solution that perfectly classifies the training data

if the data is linearly separable, and the number of updates until convergence can be bounded

in terms of the largest linear threshold margin. When the empirical risk is a convex function

of the parameters θ, then the optimization problem is well-understood and can be solved

efficiently. However, non-convex optimization problems are more challenging to solve, and

most neural architectures have non-convex losses as a function of the parameters θ. This fact

has motivated a large body of research into the “optimization landscape” of neural networks,

which studies the geometry of the losses of parameterized networks as a function of θ and

its relationship to how gradient-based optimization algorithms traverse this landscape.

The generalization properties of a neural architecture assess how well the model performs

on unseen data. Most classical studies of generalization are concerned with generalization

within the same distribution, where both training samples and test samples are drawn from

the same distribution D. These studies often rely on the uniform convergence framework,

which bounds the gap between the empirical risk on training samples 1
n

∑n
i=1 ℓ(fθ(xi), yi)

and the expected risk on novel samples Ex∼D [ℓ(fθ(x), y)] as a function of the complexity

of the model class F (which can be quantified by measures such as the VC-dimension)

and the number of training samples n. This framework suggests a tension between the

9

expressivity of an architecture (which allows empirical risk to be small) and its tendency

to overfit (in which the generalization gap is nonetheless large). In the context of highly

expressive neural networks, this theory presents an overly pessimistic view, where rigorous

generalization bounds are difficult to obtain.

In the following sections, we present an overview of the feed-forward and sequential

neural architectures whose representational properties are studied in later chapters of this

dissertation.

1.2.1 Feed-forward neural networks

A feed-forward neural network or multi-layer perceptron (MLP) expands the perceptron

model to consider an ensemble of neurons whose outputs are computed both in parallel and

in series. Each neuron is parameterized similarly to a perceptron, with a nonlinear activation

function σ applied to an affine transform of the input. The width of an MLP refers to the

maximum number of neurons evaluated in a layer of parallel computation, and the depth

is the number of such parallel layers. While σ : R → R can be defined as a wide range

of nonlinear activations, we typically consider the case where σ is the Rectified Linear Unit

(ReLU), i.e.

σ(t) = ReLU(t) =

t if t ≥ 0

0 if t ≤ 0.

Unlike sequential architectures, we think of MLPs as a mapping from some fixed-dimensional

input space (X = Rd) to some fixed-dimensional output space (which is typically single-

dimensional, i.e. Y = R). The parameters of an MLP are the weights and biases of each

neuron. While a wide range of variations on the standard MLP architecture exist, we focus

on a simple version for this section, where there are no skip-layer connections and no batch

normalization.

10

1.2.1.1 Two-layer neural networks

We first consider the case of two-layer neural networks, which consist of a single “hidden

layer” of neurons between the input and output layers. The output of a two-layer ReLU

neural network fθ of width m is given by

fθ(x) =
m∑
i=1

uiReLU(wT
i x+ bi) = uTReLU(Wx+ b), (1.3)

where W ∈ Rm×d is a bottom-layer weight matrix with W = (w1, . . . , wm), b ∈ Rm is a

bias vector, and u ∈ Rm is a top-layer weight vector. The network parameters are θ =

(W, b, u) ∈ Rmd+m+m. This neural network can be thought of as a linear combination of m

“ReLU features” ReLU(wT
i x+bi), where each feature is an affine transformation of the input

x followed by a ReLU activation.

As discussed before, the universal approximation theorem of Cybenko (1989), Funahashi

(1989), and Hornik, Stinchcombe, and White (1989) implies that the family of two-layer

neural networks with ReLU activations (among other activation functions) can closely ap-

proximate any “nice” target function.

Theorem 1.1 (Universal approximation theorem). For any continuous target h : Rd → R,

any ϵ > 0, and any compact set K ⊆ Rd, there exists a two-layer ReLU neural network fθ

with finite width m such that

sup
x∈K

|fθ(x) − h(x)| ≤ ϵ.

Unlike the perceptron model, two-layer neural networks have a universality property

that allows them to approximate any function. Note that the nonlinear activation function

is critical for this result; if the ReLU function were replaced by a linear activation, then the

two-layer network would be equivalent to a linear model.

However, the universal approximation theorem has little to say about efficient approxi-

mation. This efficiency is typically measured by the minimum width m required to achieve

11

a given approximation error ϵ over some class of target functions H. This framework can

be used to study the limitations of the two-layer neural network architecture by provid-

ing certain target functions that can only be approximated by networks whose width m is

exponentially large in the input dimension d.

In contrast, other researchers quantify efficient approximation by the norm of parameters

θ required to achieve a given approximation error ϵ. While other chapters focus on the width

of the network, Chapter 4 of this dissertation considers the task of fitting a target dataset

with bounded weight norm ∥W∥2 + ∥u∥2.

When training a two-layer neural network, one typically minimizes the empirical risk as a

function of all parameters θ = (W, b, u) with a gradient-based optimization algorithm. This

“bilevel” optimization problem is non-convex, which makes optimization analysis challenging

for even the simplest neural architectures.

1.2.1.2 Two-layer random feature networks

A random feature network is a two-layer neural network whose bottom-layer weights and

biases are drawn from some probability distribution. That is, for some fixed distribution P

over Rd+1, the parameters of each bottom-layer neuron are drawn independently from P , i.e.

(wi,bi) ∼ P for each i ∈ [m]. The top-layer weights u ∈ Rm are learnable by minimizing

the empirical risk. An output of the neural network is given by

fθ(x) =
m∑
i=1

uiReLU(wT
i x+ bi) = uTReLU(Wx+ b). (1.4)

The expressiveness of this model is studied in detail in Chapter 2. Unlike standard

two-layer neural networks, the random bottom-layer weights and biases are fixed during

training. Since the resulting network is a linear combination of ReLU features, minimizing

the empirical risk of a random feature network with a convex loss function ℓ is a well-

understood convex optimization problem. Due to the connection between random feature

12

models and kernel methods, the generalization properties of random feature networks are

well-understood as well (Neal, 1996; Rahimi and Recht, 2008; Cho and Saul, 2009).

1.2.1.3 Deeper neural networks

In the theoretical literature, any MLP with more than two layers is considered a deep

neural network. We can define a deep neural network with L layers of width m recursively

as

f
(ℓ)
θ (x) =

x if ℓ = 0,

ReLU(W (ℓ)f
(ℓ−1)
θ (x) + b(ℓ)) if ℓ = 1, . . . , L− 1,

uTf
(L−1)
θ (x) if ℓ = L,

(1.5)

where W (1) ∈ Rd×m and W (2), . . . ,W (L) ∈ Rm×m are weight matrices, b(1), . . . , b(L) ∈ Rm are

bias vectors, and u ∈ Rm is a top-layer weight vector. The parameters of this model are

θ = (W (1), . . . ,W (L), b(1), . . . , b(L), u) ∈ Rdm+m2(L−1)+mL+m.

Increasing the depth of the network allows for targets with a “hierarchical” structure to

be approximated more efficiently. These relationships are made precise by Eldan and Shamir

(2016) and Telgarsky (2016) and in Chapter 3 of this dissertation. Proving optimization and

generalization properties of deep neural networks is even more challenging than for two-layer

networks, which makes the study of deep network representational properties one of the

highest potential directions for the study of deep models.

1.2.2 Sequential neural networks

In contrast to feed-forward neural networks, sequential neural networks are designed to

process variable-length sequential data, including passages of text, audio recordings, and

time-series data. The output of a sequential network may be another sequence or a fixed-

dimensional output. In this dissertation, we model a sequential neural network as a function

13

fθ : XN → YN that maps a sequence of N input vectors X = (x1, . . . , xN) ∈ XN to a

sequence of N output vectors Y = (y1, . . . , yN) ∈ YN with model parameters θ ∈ Rp. Unlike

feed-forward neural networks, we consider model parameterizations that do not scale super-

linearly with the sequence length N and therefore require some notion of parameter sharing

between sequence elements.

This section introduces of two popular families of sequential neural networks: recurrent

neural networks and transformers. Both architectures are designed to process sequential

data, but their overall structures and computational properties differ greatly.

1.2.2.1 Recurrent neural networks

Recurrent neural networks (RNNs) or state-space models (SSMs) are a family of sequential

neural networks that process a sequential input X ∈ XN by “unrolling” a sequence of neural

units gθ. We define RNNs very loosely to capture a wide range of models, including the

vanilla RNN, the long short-term memory (LSTM), and recent SSMs.

An RNN processes a sequence X = (x1, . . . , xN) ∈ XN iteratively updating a hidden

state z0, . . . , zN ∈ Rm and outputting a sequence fθ(X) = Y = (y1, . . . , yN) ∈ YN . For each

i ∈ [N], we compute

(yi, zi) = gθ(xi, zi−1),

where gθ : X ×Rm → Y ×Rm is a neural unit with parameters θ ∈ Rp and z0 is a fixed initial

state. As a result, the number of parameters in fθ is independent of the sequence length N .

This architecture is well-suited for processing temporal data, where the interactions be-

tween nearby elements in the sequence are most important. In the above formulation, each

output yi depends only on inputs x1, . . . , xi and the initial state z0; “bidirectional” or “multi-

pass” RNNs can alleviate this limitation if other dependencies are necessary for the sequence

processing task. However, as is discussed in Chapters 5 and 6, the RNN architecture is

limited by its hidden state, rendering it unable to capture long-range dependencies or pass

large amounts of information between distant sequence elements.

14

While RNNs are structurally intuitive, they are known to be difficult to train due to the

vanishing and exploding gradient problems, which are caused by the repeated application of

the same neural unit gθ. Furthermore, while the time complexity of an RNN scales linearly

with the sequence length N , the iterative nature of the RNN makes its computation difficult

to parallelize. The representational contrasts between these architectures are explored in

Chapters 5 and 6.

1.2.2.2 Transformers

The transformer architecture of Vaswani et al. (2017) is an alternative to the RNN whose

sequential mapping is determined by computed affinities between sequence elements. Rather

than processing the sequence element-by-element, the transformer processes the entire se-

quence simultaneously by passing the input through a collection of self-attention units.

Each self-attention unit computes a N different weighted averages of the input se-

quence, where the weights are determined by a learned affinity matrix. Concretely, on input

X = (x1, . . . , xN) ∈ RN×d, a self-attention unit computes query, key, and value sequences

XQ,XK,XV ∈ RN×m for linear transformations Q,K, V ∈ Rd×m. The ith output of the

self-attention unit is a weighted average of the value embeddings V Tx1, . . . , V
TxN ∈ Rm with

weights determined by the dot products of the queries and keys. That is, the output of the

self-attention unit is given by

softmax(XQKTXT)XV =
(
softmax(xT

i QK
Tx1, . . . , x

T
i QK

TxN)XV
)
i=1,...,N

∈ RN×m,

where softmax : RN → RN is the softmax function applied element-wise. The softmax

function ensures that the elements of the attention matrix XQKT ∈ RN×N sum to one and

are large if the inner product of the corresponding query and key is large.

A multi-headed self-attention layer computes the output of H self-attention units in

parallel and concatenates the results. A transformer model comprises a stack of L multi-

15

headed self-attention layers, each followed by an element-wise MLP, which applies a learnable

nonlinear function to each element individually. The output Y = fθ(X) of the transformer

is the output of the final MLP layer. The parameters θ of the transformer include all query,

key, and value matrices and the parameters of the MLPs.

Like an RNN, the parameterization of a transformer does not scale linearly with the

sequence length N . The non-iterative nature of the transformer allows for more natural rep-

resentations of long-range dependencies in the sequence than an RNN, enables more efficient

parallelization, and avoids the vanishing and exploding gradient problems. However, imple-

menting a self-attention unit requires computing an attention matrix of size N × N , which

causes a quadratic time complexity in the sequence length N . Several recent works have

proposed more computationally efficient alternatives to the full transformer architecture,

such as the Performer model of Choromanski et al. (2022).

1.3 Outline of results

This doctoral dissertation consists of a body of theoretical work that expands upon the

universal approximation theorem and contrasts the expressivity of modern neural architec-

tures. The contributions of this thesis fall into two broad categories: (1) those that expand

the understanding of the representational capabilities of feedforward neural networks of var-

ious depths, initializations, and constraints; and (2) those that introduce novel theoretical

lenses to the fundamental capabilities of transformers and other sequential architectures.

1.3.1 Parameter complexity and architectural trade-offs of feedforward networks

Chapters 2 to 4 build upon a large body of approximation theoretic work to draw sharp

contrasts between the representational capabilities of feedforward (or multi-layer perceptron)

architectures. While the universal approximation theorem guarantees the existence of neu-

ral network approximators of unbounded size, these chapters study the regime of efficient

approximation, where the size of approximator networks grow polynomially in the input

16

dimension and relevant complexity measures of the target functions.

Each chapter establishes representational separations between architectural choices that

reflect meaningful design decisions undertaken by deep learning practitioners. Chapter 2

characterizes the representational capabilities of bounded-width two-layer random feature

models—in which bottom layer weights are fixed and randomly sampled from a distribution,

and top layer weights can be chosen by some learning algorithm—and contrasts these abilities

with standard two-layer networks with learnable weights on both layers. Chapter 3 contrasts

the representational powers of networks as a function of depth by employing a novel connec-

tion to discrete dynamical systems. Chapter 4 considers two-layer networks with bounded

weights and potentially unbounded widths that interpolate training samples to assess the

representational impacts and intrinsic dimensionality of weight norm regularization. The

contributions of each chapter are briefly described in the following sections.

Shallow random feature networks: dimensionality, smoothness, and width trade-offs (Chap-

ter 2)

This chapter, which presents the work of Hsu, Sanford, Servedio, and Vlatakis-Gkaragkounis

(2021), characterizes the minimum width of a two-layer random feature MLP that approxi-

mates target functions that satisfy certain smoothness conditions.

The random feature model is a simple and well-known class of neural networks, which

takes the form of a linear combination of random features with a nonlinear activation function

ϕ : R → R:

x 7→
m∑
i=1

uiσ(wT
i x+ bi).

The bottom layer weights wi ∈ Rd and bi ∈ R are drawn independently from some fixed

distribution, and the top layer weights u ∈ Rm can take on any value When structured as a

learning problem, the bottom layer weights are fixed to their random initialization, and top

layer weights are learned by minimizing a loss function over a training dataset. This model

is a restriction of a more general family of two-layer neural networks with learnable weights

17

on both layers, and it serves as a bridge between kernel methods and neural networks, as

discussed by Rahimi and Recht (2008).

In recent years, the random feature model has been of particular interest due to its rel-

evance to the neural tangent kernel (NTK) regime of Jacot, Gabriel, and Hongler (2018).

In the NTK regime, the neural network weights are initialized with variances that ensure

that the bottom layer weights remain close to their random initialization, and the network’s

behavior is well-approximated by a random feature model. The tractability of this regime,

its amenability to convex analysis, and the overall relationship to a well-known learning

model are appealing to theoreticians. At the time of the work (Hsu et al., 2021), however,

the practical relevance of the NTK regime to the capabilities of neural networks was not well

understood. While works like Damian, Lee, and Soltanolkotabi (2022) would later demon-

strate the generalization limitations of the NTK regime in illustrative theoretical settings

(i.e. the inability of networks in the NTK regime to adapt to low-dimensional structure as

well as networks in the alternative mean-field regime), the weaknesses of the NTK are also

apparent in their representational limitations. We crystallize the capabilities and limitations

of this regime by studying the minimum width of random feature models that approximate

target functions of varying smoothness and dimensionality, and contrasting these results with

the capabilities of two-layer neural networks with arbitrary weights.

At a high level, we demonstrate that efficient approximation by random feature models

with the ReLU activation σ(t) = ReLU(t) = max(0, t) is possible if and only if the target is

either low-dimensional or highly smooth (e.g. 1-Lipschitz). We summarize the main results

(Theorems 2.1 and 2.2) as follows.

Informal Theorem 1.2. For any Lipschitz constant L and dimension d, the minimum-

width m of a random feature model f that approximates any L-Lipschitz target function h

18

over domain [−1, 1]d to constant accuracy satisfies

m ≤ poly(L) if d is constant,

m ≤ poly(d) if L is constant,

m ≥ exp(d) if L = Ω(
√
d).

Moreover, the negative result indicated by the final inequality can be realized even by

simple single-index target functions like x 7→ sin(d ⟨θ, x⟩) for ∥θ∥2 = 1, which are “intrin-

sically one-dimensional.” This target can be easily approximated by a two-layer MLP with

polynomial width but requires exponential width for a high-accuracy random feature model.

This result suggests that the NTK regime is ill-suited for approximating simple single-index

targets. Subsequent work (e.g. Bietti et al., 2022) would further demonstrate the general-

ization benefits of the mean-field regime for these single-index targets.

Although universal approximability had previously been established for random feature

models (Barron, 1993), the results of Hsu et al. (2021) are the first to establish an asymp-

totically tight characterization of the joint impact of dimension, smoothness, and accuracy

on the minimum width of random feature models. Previous theoretical work introduced

representational results that applied to either the constant smoothness regime (e.g. Yehudai

and Shamir, 2019; Andoni et al., 2014a) or the constant dimension regime (e.g. Ji, Telgarsky,

and Xian, 2019; Bach, 2017). In contrast, our results are distinguished by the applicability

to a wide range of scaling regimes and their capture of all such trade-offs with the same

construction and lower bound.

Our positive representational results apply a two-stage construction that first approxi-

mates the target function with a linear combination of low-frequency trigonometric functions

and then approximates these functions individually with a random feature model. The neg-

ative results are based on an intuitive linear algebraic argument: The dimensionality of the

span of the random features can be bounded by the number of features m, but it can be

19

shown that the dimension of the space of low-frequency trigonometric functions of bounded

smoothness grows exponentially with the smoothness measurement and input dimension.

These results are also extended to a different class of target functions that satisfy a notion

of Sobolev smoothness, as opposed to Lipschitzness.

The results discussed in Chapter 2 serve as a point of contrast for subsequent chapters in

the dissertation, which study the representational capabilities of neural networks with differ-

ent architectural constraints and inductive biases. Chapter 3 proves negative results about

a much broader class of bounded-depth neural networks. Chapter 4 considers the efficient

approximation capabilities of two-layer neural networks, except with a definition of efficiency

that requires bounded weight norms, rather than bounded width. The constructions used

in the positive results therein utilize random feature models to establish the existence of

neural network interpolants with the desired properties. Further, these chapters consider

single-index targets, just as Chapter 2 does.

Powers of depth and the discrete dynamical systems lens (Chapter 3)

Chapter 3, which presents the contributions of Sanford and Chatziafratis (2022), studies

the representational capabilities of feedforward neural networks of variable depth by drawing

a sharp separation between target functions that are easy to approximate with polynomial-

width two-layer networks and those that require much deeper models. In contrast to its

predecessor, these results apply to all feedforward neural networks with polynomial width,

rather than those with random features or bounded weights. Specifically, the results of

Sanford and Chatziafratis (2022) establish a sharp threshold of network depth needed to

approximate iteratively composed functions of the form x 7→ gk(x) = (g ◦ · · · ◦ g)(x), where

g : R → R is some continuous univariate mapping. These results rely on a novel connection

to bifurcation theory and discrete dynamical systems that establishes a phase transition

between a “stable regime” where gk can be approximated by a two-layer MLP, and a “chaotic

regime” where gk requires depth linear in k.

20

This work is motivated by a long-standing question posed by the empirical success of deep

neural networks: What are the theoretical benefits of depth, and what are the depth-vs-width

tradeoffs? This question gives rise to the subfield of neural network depth-separation, which

characterizes the class of functions that are representable (or approximately representable)

by a neural network of a certain depth, width, and activation. For instance, Eldan and

Shamir, 2016 presents a family of “radial” functions in Rd that are easily expressible with

three-layer feedforward neural nets of small width, but require any approximating two-layer

network to have exponentially (in dimension d) many neurons. In other words, they formally

show that depth—even if increased by 1—can be exponentially more valuable than width.

Towards this direction, one typically identifies a target function with a “measure of

complexity” to demonstrate the benefits of increasing the depth of a network or making

other architectural changes. For example, the seminal work by Telgarsky, 2016 relies on

the number of oscillations of a narrow family of triangle mappings on [0, 1] that can be

expressed recursively with deep neural networks. Other relevant notions of complexity to

the expressivity of neural networks include the VC dimension (Warren, 1968; Anthony and

Bartlett, 1999), the number of linear regions (Montufar et al., 2014; Arora et al., 2016) or

activation patterns (Hanin and Rolnick, 2019), the Fourier spectrum (Barron, 1993; Eldan

and Shamir, 2016; Daniely, 2017a; Bresler and Nagaraj, 2020), fractals (Malach and Shalev-

Shwartz, 2019), topological entropy (Bu, Zhang, and Luo, 2020), Lipschitzness (Savarese

et al., 2019; Hsu et al., 2021), global curvature and trajectory length (Poole et al., 2016;

Raghu et al., 2017).

We build new connections between deep learning theory and dynamical systems by ap-

plying results from discrete-time dynamical systems to obtain novel depth-width tradeoffs

for the expressivity of neural networks. Studying the chaotic itineraries of unimodal map-

pings reveals subtle connections between expressivity and different types of periods. These

itineraries shed new light on the benefits of depth in the form of enhanced width lower

bounds and stronger approximation errors.

21

Concretely, we extend the work of Telgarsky (2016) and subsequent works by Chatzi-

afratis et al. (2019) and Chatziafratis, Nagarajan, and Panageas (2020) that study the ex-

pressivity of neural networks as a function of the periodicity of the target function. Telgarsky

(2016) proves a separation between the representational power of networks with depth Θ(
√
k)

and Θ(k) by considering the task of approximating the iterated univariate tent map h = gk,

where g : [0, 1] → [0, 1] satisfies

g(x) =

2x x ∈ [0, 1

2],

2(1 − x) x ∈ [1
2 , 1].

He proves this result by showing that gk(x) oscillates 2k times as x increases from 0 to 1.

Since the number of oscillations produced by any ReLU neural network of depth L and width

m can be bounded as exp(O(L logm)), he concludes that no neural network of depth O(
√
k)

and width m = exp(O(
√
k)) can approximate gk.

A natural next step to this result is to ask whether the tent map is an exceptional map-

ping, or whether there exists a broader family of discrete dynamical systems g : [0, 1] → [0, 1]

that produce such a separation. This question was partially, but not systematically, answered

by (Chatziafratis et al., 2019; Chatziafratis, Nagarajan, and Panageas, 2020), which stud-

ied expressivity from the lens of discrete-time dynamical systems and extended Telgarsky’s

results to targets recursively defined by mappings g other than the tent map. Specifically,

they characterize the hardness of representing h = gk as a function of the periodicity of g.

g has a higher-order fixed point or periodic point x if that gp(x) = x for some p. If g has

some higher-order fixed point, then deeper neural networks can efficiently approximate h,

but shallower nets require exponential width, with an exponential base dependent on the

periodicity p of mapping g.

Our results establish that g’s periodicity alone is not the end of the story and that the

understanding of depth-width tradeoffs and connections between recurrent neural networks

22

and discrete dynamical systems is improved by considering the concept of cyclic itineraries.

The analysis of these itineraries produces nearly-optimal tradeoffs for NNs. In particular, the

oscillatory behavior of a large family of univariate mappings gk can be precisely characterized.

This leads to sharper and nearly-optimal lower bounds for the width of NNs that approximate

gk. The resulting lower bounds pertain to a stronger notion of approximation error than those

obtained by periodicity alone by Chatziafratis et al. (2019) and Chatziafratis, Nagarajan,

and Panageas (2020), which can be vacuous for particular choices of g. Finally, connections

between periodicity and other function complexity measures like the VC dimension and

the topological entropy (Alsedà, Llibre, and Misiurewicz, 2000) can be elucidated. These

measures undergo a phase transition that exactly coincides with the emergence of the chaotic

regime based on periods.

The principal results (Theorems 3.6 and 3.18) can be summarized as follows.

Informal Theorem 1.3. For any continuous univariate mapping g : [0, 1] → [0, 1] and any

k ∈ N, the following are equivalent:

1. The only cyclic itineraries of g are “doubling cycles” of length 2q for some q ∈ N.

2. The number of oscaillations of gk can be bounded by some poly(k).

3. gk can be approximated by a two-layer ReLU network of width poly(k).

4. The VC dimension of {gk : k ∈ N} is finite and bounded.

These results provide a new measurement of the complexity of target functions and link

the expressivity of neural networks to a rich literature on discrete dynamical systems and

bifurcation theory. Taken together, the results of Chapters 2 and 3 provide a more nuanced

understanding of the abilities of two-layer neural networks to represent oscillatory target

functions. While the former demonstrates that learnable weights are necessary to represent

poly(d)-oscillatory functions, the latter illuminates the conditions of target functions that

necessitate a scaling of depth linear in the number of oscillations. While repeatedly composed

23

target functions may seem like an artificial class of functions to approximate with feedforward

networks, our techniques were later applied to a study of the importance of a properly scaled

random initialization for deep recurrent neural networks (RNNs) (Chatziafratis, Panageas,

Sanford, and Stavroulakis, 2022), where iterative targets are more natural. Furthermore, the

targets described herein resemble sequential compositionality tasks that have been of interest

in the study of transformers and other sequential models, as discussed in Chapter 6.

Intrinsic dimensionality of bounded-norm shallow neural network interpolants (Chapter 4)

Chapter 4, which reflects the work of Ardeshir, Hsu, and Sanford (2023), characterizes

the properties of the inductive biases of two-layer neural networks with bounded weights and

potentially unbounded widths that interpolate training samples.

The study of inductive biases, or the preferences of learning algorithms for certain classes

of functions, is a central machine learning research topic due to its relevance to generalization.

The generalization properties of over-parameterized neural networks trained with gradient

descent have been of particular interest to researchers due to their exhibition of benign

overfitting, in which the learning algorithm produces a model that perfectly fits the training

sample and nonetheless has favorable generalization properties (Belkin et al., 2018). One

approach for understanding the generalization properties of neural networks is to study the

inductive biases of the learning algorithm and then relate these biases to the generalization

properties of the learned model.

Furthermore, a focus on how the inductive biases of neural networks interact with the

structure of the target function is of particular interest because real-world datasets are often

very high-dimensional, yet very structured. For instance, the spaces of “natural images” can

be modeled as a low-dimensional manifold embedded in a high-dimensional pixel space. This

theory of intrinsic dimensionality is supported by the successes of dimensionality reduction

techniques revealing low-dimensional structure in high-dimensional data (Roweis and Saul,

2000). While high-dimensional learning problems are often thought to be intractable due

24

to the curse of dimensionality, target functions with low-dimensional structures may be

learnable by sample-efficient algorithms.

Low intrinsic dimensionality can be studied in the context of multi-index models, in which

the target is a function of a k-dimensional projection of the input, for some k ≪ d, i.e.

x 7→ ϕ(Ux),

for U ∈ Rd×k and ϕ : Rk → R. Works like Damian, Lee, and Soltanolkotabi (2022) have

demonstrated that neural networks can adapt in a sample-efficient manner to this multi-

index structure in a way that kernel methods cannot. This conclusion is reinforced by

Chapter 2, which demonstrates that random feature models (and by extension, the NTK

regime) cannot even efficiently approximate simple single-index targets (having k = 1), which

are “intrinsically one-dimensional.”

The contents of Chapter 4 consider the inductive bias for two-layer neural networks

implied by a variational norm called the R-norm and characterize the interactions between

the R-norm-minimizing inductive bias and the intrinsic dimensionality of the target function.

The chapter focuses on the approximation and generalization consequences of preferring

networks with small R-norm in the context of learning explicit target functions.

It is well-known that the size of the weights can play a critical role in generalization

properties of neural networks (Bartlett, 1996), and weight-decay regularization is a common

practice in gradient-based training (Hinton, 1987; Hanson and Pratt, 1988). The R-norm was

introduced by Savarese et al. (2019) and Ongie et al. (2019) to capture the functional effect

of controlling the size of network weights. The R-norm of a target function f : Rd → R

(written as ∥f∥R) can be informally defined as the minimum weight norm of a two-layer

neural network that interpolates or perfectly fits f . Notably, the network that witnesses the

R-norm of the target is not required to have a bounded width. Consequently, the R-norm can

be regarded as a measure of complexity across the space of infinite-width, two-layer neural

25

networks. Due to this connection to weight-norm regularization, explaining the consequences

of the R-norm inductive bias can advance our understanding of generalization in practical

settings.

To consider the question of minimum R-norm interpolants, we formalize the varia-

tional problem of finding a neural network of minimum R-norm that interpolates a given

labeled dataset. While the solutions to this variational problem for one-dimensional datasets

have been fully characterized by Debarre et al. (2022) and Hanin (2021), the solutions for

multi-dimensional datasets remained largely unexplored. Given the importance of single-

index models and other target functions with low-intrinsic dimensionality, it is natural to

ask whether the R-norm inductive bias prefers neural networks that are themselves low-

dimensional when interpolating multi-dimensional datasets with low-intrinsic dimensional-

ity.

The principal approximation results discussed in Chapter 4 show that, even in cases

where the dataset can be perfectly fit by a single-index target function, the solutions f to

the R-norm-minimizing variational problem do not resemble the single-index interpolants

described by Savarese et al. (2019) and Hanin (2021). Rather, the R-norm is far better

minimized by a multi-directional1 neural network f that averages several ridge functions

pointing in different directions, each of which approximates a small fraction of the data.

The theorems are given for a dataset supported on the Boolean hypercube {−1, 1}d and

labeled by the parity function χ : {−1, 1}d → {−1, 1} with χ(x) = ∏d
i=1 xi.

Informal Theorem 1.4 (R-norm minimizers of the parity dataset are not ridge functions).

Any R-norm-minimizing neural network f that interpolates the parity dataset is not a single-

index function, and any single-index interpolate has a suboptimal R-norm by a factor of

Ω(
√
d).

This result is significant because χ is typically thought of as a single-index model whose
1By a multi-directional function, we mean a function that does not only depend on a one-dimensional

projection of its input—i.e., a function that is not a ridge function.

26

most “natural” interpolant is a single-index model that resembles a sawtooth. Rather, the

most R-norm-efficient way to interpolate the dataset with respect to the R-norm is with an

ensemble-based construction, which expresses χ as an average over random “partial sawtooth

functions.” These results are extensible to a broader family of periodic ridge functions.

Further results in Chapter 4 capture the generalization properties of the R-norm-minimizing

neural networks, which are shown to have a suboptimal generalization error for the parity

function.

This work offers an alternative perspective on neural network representation. In contrast

to Chapters 2 and 3, which study neural networks that approximate target functions over

a continuous domain, Chapter 4 studies neural networks that interpolate a discrete dataset.

As such, the results are more relevant to the study of neural network optimization and gen-

eralization, while the results of Chapters 2 and 3 capture more fundamental limitations of

particular architectures. These chapters also differ in their notion of efficient approximation:

Chapter 2 studies the minimum width of random feature models that approximate target

functions. In contrast, Chapter 4 studies the minimum R-norm of neural networks that in-

terpolate a dataset. Given the relevance of weight-norm regularization (implicit and explicit)

to neural network generalization and the fact that bounded-weight infinite-width networks

can be approximated themselves by random feature models, the R-norm-minimizing approx-

imation provides a useful alternative to the standard notion of efficient approximation.

1.3.2 Trade-offs and limitations of modern sequential architectures

The final two chapters of this thesis, Chapters 5 and 6, introduce novel theoretical lenses

to the fundamental capabilities of transformers and other sequential architectures Sequen-

tial architectures process length-N input sequences and parameterize functions of the form

XN → YN for potentially large sequence lengths N . While the differences in representa-

tional capabilities among feedforward networks are well understood and have been studied

for decades, basic questions about the variations in capabilities among sequential architec-

27

tures remain open. The answers to those representational questions are empirically relevant

due to the rapid proliferation of novel architectures—such as the transformer of (Vaswani

et al., 2017) and the Mamba state-space model of (Gu and Dao, 2023)—and the lack of

principled guidance for evaluating their tradeoffs.

Associative capabilities of multi-headed attention layers (Chapter 5)

Chapter 5 presents the research of Sanford, Hsu, and Telgarsky (2023) into the represen-

tational capabilities of single-layer transformer models, which are composed of multi-headed

self-attention units and element-wise multi-layer perceptrons. The chapter introduces a col-

lection of tasks designed to elucidate the expressive powers of attention units as a function of

their embedding dimension and to contrast transformers from other sequential models. The

tasks—sparse averaging, pairwise detection, and triple detection—are designed to measure

the abilities of attention units to compute functions that require identifying relationships

between collections of sequence elements. The analyses of these tasks include both positive

and negative results, which rely on a communication complexity framework.

In contrast to earlier chapters of this thesis, we assume that the sequence length N scales

exceedingly rapidly. We deem a sequential model an efficient solution to a task if it can

be computed with an embedding dimension and a number of heads that increase at a rate

at most logarithmical in N . These assumptions are motivated by the previously discussed

scaling of modern transformer models. By focusing on this scaling regime, the results pre-

sented in the chapter capture relevant expressivity trade-offs that cannot be understood by

considering worst-case or fixed-size models.

While a recent collection of work proves other theoretical results about the fundamental

limitations of transformer architectures, the results of Sanford, Hsu, and Telgarsky (2023) are

distinguished by a realistic scaling regime, a correspondence between positive and negative

results, and a reliance on communication complexity. For instance, Hahn (2020) established

that transformers of fixed size cannot represent certain hierarchical functions (like recognizing

28

Dyck languages with nested parentheses and brackets) as the sequence length N grows

arbitrarily large. In contrast, Dyck languages with a bounded nesting depth can be efficiently

represented by transformers (Yao et al., 2021). While illuminating, these results presuppose

that transformers are of fixed size and ought to be able to recognize arbitrarily long recursive

functions; in contrast, our results provide a quantitative lower bound on the embedding

dimension m in the regime where m can grow with sequence length N .

The sparse averaging task is used to characterize the expressive capabilities of individual

attention units for variable embedding dimension m. The task takes as input a sequence of

embeddings, each of which encodes a fixed vector and a set of q indices. Its output consists

of all averages of the vectors corresponding to the indices. This task is designed based on the

intuition that self-attention units act to associate each element of the input sequence with a

small number of other elements. Since the associations are captured by an attention matrix

obtained by applying the softmax function to the rank-m matrix XQTKXT ∈ RN×N , the

sparse averaging task measures the expressivity of these association matrices as a function

of m. The results of Theorems 5.4 and 5.6 establish an approximately linear relationship

between the embedding dimension m and the number of indices q that can be efficiently

averaged by a single attention unit.

Informal Theorem 1.5. There exists a self-attention unit with embedding dimension m =

O(q logN) that can approximate the q-sparse averaging task, and any self-attention unit that

approximates the task must have embedding dimension m = Ω(q).

Further theoretical results establish that these tasks cannot be efficiently solved by recur-

rent architectures or standard feedforward models without requiring a polynomial parameter

scaling with N .

The pairwise detection and triple detection evaluate the abilities of multi-headed attention

layers to identify relationships between different pairs and triples of elements in the input

sequence. Concretely, the pairwise detection task takes as input a sequence of integers

and returns as output a binary sequence that indicates whether each element sums to zero

29

with any other element. Similarly, the triple detection task outputs a binary sequence that

indicates whether each element sums to zero with any two other elements2. These tasks are

introduced to establish that self-attention units are natural candidates for solving problems

(such as the co-reference resolution linguistic task) that require assessing whether pairs of

elements are related, but that they cannot solve problems that pertain to triples. These

results are expressed in Theorems 5.16 and 5.22 and summarized as follows.

Informal Theorem 1.6. There exists a single self-attention unit that can efficiently com-

pute the pairwise detection task. However, any one-layer transformer composed of an H-

headed self-attention unit with embedding dimension m that computes the triple detection

task requires having mH ≥ NΩ(1).

While the scope of these results is limited to single-layer transformers, we conjecture

that the results extend to deeper transformers. This work also introduces a “triple-wise”

attention model that can efficiently solve the triple detection task by applying the softmax to

a third-order tensor, which suggests that attention-based models are not necessarily limited

to pair-wise associations.

Taken together, these tasks establish sharp trade-offs between different architectural

choices and scaling regimes. The sharp tradeoffs presented resemble those established in

Chapters 2 to 4, albeit with different modeling assumptions to capture modern sequential

architectures and novel proof techniques. The most significant omission of Chapter 5 is the

lack of a characterization of the representational capabilities of transformers with multiple

layers, which provided the impetus for the subsequent work of Sanford, Hsu, and Telgarsky

(2024).

Parallelizability of deep transformer networks (Chapter 6)

This chapter presents the work of Sanford, Hsu, and Telgarsky (2024), which extends

the preceding work to deep transformers. This work refines and solidifies the communica-
2These tasks are sequential analogs of the well-known 2SUM and 3SUM problems.

30

tion complexity perspective on transformers by demonstrating that deep transformers can

implement parallelizable algorithms with a small number of sequential steps and by relating

transformers to the massively parallel computation (MPC) model of Karloff, Suri, and Vas-

silvitskii (2010). Its primary technical contribution is a representational equivalence between

depth-L transformers and MPC algorithms that run in O(L) sequential steps. As a conse-

quence of that relationship, the work provides efficient constructions of algorithmic tasks

that can be implemented by logarithmic-depth transformers and establishes the optimality

of those constructions. Furthermore, they demonstrate that alternative architectures cannot

simulate this efficient parallel algorithm and require a polynomial depth to solve the same

task.

As in the previous section, our results apply to transformers with realistic parameter

scalings, where the sequence length N scales rapidly and the embedding dimension m, the

number of heads H, and the depth L are bounded as a function of N . While other theoretical

works relate deeper transformer models to automata (e.g. Liu et al., 2022), formal language

classes (e.g. Angluin, Chiang, and Yang, 2023), or circuit complexity classes (e.g. Merrill

and Sabharwal, 2023b), the results of Sanford, Hsu, and Telgarsky (2024) are distinguished

by their ability to capture non-constant depth and to provide a fine-grained characterization

of the parallelizability of transformers with matching lower and upper bounds. Our work

adds context to these results by examining how depth changes the tractability of various

tasks. For instance, graph connectivity—which is shown by Merrill and Sabharwal (2023b)

to be impossible to represent with constant-depth and polynomial-size transformers—can

indeed be represented by logarithmic-depth transformers, and we show that logarithmic-

depth transformers are optimal for this task.

The powers of transformers to implement parallelizable algorithms can be demonstrated

with the k-hop induction heads task, which generalizes the induction heads task of (Elhage

et al., 2021), which requires a transformer to perform a k-iteration “bigram-matching” tasks

sequentially. For instance, 2-hop induction heads task is to predict c for the final token:

31

baebcabebdea.

The k-hop induction heads task is a compositionality task similar to the LEGO task of Zhang

et al. (2023), where a sequential model must make several sequential associations between

tokens to solve the task.

While a naive solution to the k-hop induction heads task would require a transformer

to perform k iterations of bigram matching, we prove the existence of a logarithmic-depth

transformer that can solve the k-hop induction heads task by composing an iterated “pointer-

doubling” operation. This result captures a unique capability of transformers to perform

parallelizable algorithms, which is not shared by other sequential models like recurrent neural

networks or finite automata. Theorem 6.18 and Corollaries 6.19 and 6.26 are summarized

as follows.

Informal Theorem 1.7. For any k ≥ 1 and sequence length N , there exists a transformer

of depth L = O(log k) and embedding dimension m = O(N0.01) that can solve the k-hop

induction heads task with high accuracy. In contrast, any transformer of depth L = o(log k)

and any state-space model (including RNNs and Mamba models) of depth L = o(k) requires

embedding dimension m = Ω(
√
k) to solve the k-hop induction heads task.

The negative results also apply to certain sub-quadratic-time attention models (such

as the Performer model of Choromanski et al. (2022)). We empirically verify this charac-

terization of the powers of depth in transformers, which suggests that these pointer-passing

algorithms are not only a theoretical curiosity, but also a practical advantage of transformers

over other sequential models.

The communication complexity framework discussed in the previous is further developed

in this chapter by a detailed analysis of the ability of transformers to simulate MPC protocols

and vice versa. Rather than merely a technique for proving lower bounds, this chapter

asserts that the communication lens is theoretically necessary and empirically relevant to

32

the understanding of how transformers process sequential data. These results stress the

difficulty of replicating these parallel capabilities with alternative sequential architectures.

The newly introduced tasks such as k-hop induction heads can therefore be regarded as a key

benchmark for variations on the transformer architecture, which future novel architectures

should aim to match.

33

Chapter 2: Shallow random feature networks: dimensionality,

smoothness, and width trade-offs

This chapter considers the following question: how well can depth-two ReLU networks

with randomly initialized bottom-level weights represent smooth functions? We give near-

matching upper and lower bounds for L2-approximation as a function of the Lipschitz con-

stant, the desired accuracy, and the dimension of the problem, as well as similar results

in terms of Sobolev norms. These bounds suggest that target functions that are either

low-dimensional or “highly smooth” can be efficiently approximated by such random fea-

ture networks. Functions that lack these properties—including even seemingly simple ridge

functions—are inapproximable without exponential width. Our positive results employ tools

from harmonic analysis and ridgelet representation theory, while our lower bounds are based

on (robust versions of) dimensionality arguments.

The research presented in this chapter reflects the work of Hsu, Sanford, Servedio, and

Vlatakis-Gkaragkounis (2021).

2.1 Introduction

2.1.1 Background and motivation

Celebrated results of Cybenko (1989), Funahashi (1989), and Hornik, Stinchcombe, and

White (1989) establish the universality of depth-2 neural networks by showing that any

continuous function on Rd can be approximated by a neural network with a single hidden

layer. However, these results offer no upper bound (e.g., in terms of d) on the width (num-

ber of bottom-level gates) required, leaving unanswered many natural questions about the

approximation power of neural networks, including:

34

• Which functions can be approximated by two-layer neural networks of subexponential

width?

• Can tradeoffs be achieved between depth and width for neural network function ap-

proximation?

• Given the practical importance of random weight initialization, what are the represen-

tational capabilities of neural networks with some randomly drawn weights (say, at the

bottom level)?

The first two questions above have been studied intensely in the approximation-theoretic

and depth-separation literature; this chapter focuses on the third question. Random weight

initializations play an important role in training neural networks in practice, and are also of

theoretical interest; as we discuss later in this introduction, they have been well studied as

a way of understanding different aspects of approximation and generalization.

This chapter examines the representational ability of depth-2 random feature (RF) ReLU

networks. Such a network is equivalent to a linear combination of rectified linear units

(ReLUs), where the weight vector and bias of each ReLU are randomly and independently

chosen from a fixed distribution. The top-level combining weights of the ReLUs are allowed

to be arbitrary; we give precise definitions in Section 2.2.1. This particular setting is notable

because, as discussed later, several papers have given approximation-theoretic results in this

regime. The ReLU activation is employed due to its popularity in both theory and practice;

we expect that the results of our paper could be generalized to a range of other activation

functions.

Our main goal is to understand the abilities and limitations of depth-2 RF ReLU networks

for approximating smooth functions of various types. We focus on smooth functions because

they are a natural class of functions to consider, and because non-smooth functions are

difficult to approximate by various kinds of neural networks. Indeed, several authors (e.g.

Telgarsky, 2016; Daniely, 2017a) have established lower bounds on the width of neural

35

networks that approximate certain non-smooth functions by taking advantage of the fact

that such functions can be highly oscillatory (have many “bumps”) and can require many

gates to approximate each “bump.”

Our chief focus is on functions over the d-dimensional solid cube [−1, 1]d whose smooth-

ness is measured in two different ways. Our main results are about approximating functions

on [−1, 1]d with bounded Lipschitz constants; in Section 2.5, we also consider functions on

[−1, 1]d (satisfying certain periodicity conditions) with bounded Sobolev norms.

2.1.2 Our results

The main contribution of this work is to pose and answer the following question:

What is the minimum number of random ReLU features required so that (with

high probability) there exists some linear combination of those features that closely

approximates any sufficiently smooth function?

This minimum number of random ReLU features is equivalent to the minimum width re-

quired for a depth-2 RF ReLU network to approximate the smooth function in question. We

give full details about our setting in Section 2.2.1, and here only touch on some of the main

aspects:

• Random ReLU features are functions from Rd to R that are drawn independently

from some fixed distribution. These take the form x 7→ ReLU(⟨w, x⟩ + b) where

ReLU(z) := max(z, 0) and w and b are random variables taking values in Sd−1 and R

respectively.

• Our notion of close approximation refers to the L2 distance between functions over the

uniform distribution on the solid cube; we say that f is an ϵ-approximator for g if

∥f − g∥[−1,1]d :=
√

E
x∼Unif([−1,1]d)

[∥f(x) − g(x)∥2] ≤ ϵ.

36

• As mentioned above, we chiefly measure the smoothness of a function by its Lipschitz

constant. In Section 2.5, we extend our results to measure smoothness in terms of

Sobolev norms.

The main results provide tight upper and lower bounds on the minimum width required

for both Lipschitz and Sobolev smooth functions. The upper and lower bounds match up

to polynomial factors (equivalently, up to constant factors in the exponent). The sharpest

forms of our bounds involve the number of integer points in certain Euclidean balls; below,

we present informal statements of our upper and lower bounds for Lipschitz functions with

explicit asymptotics given for clarity:

Theorem 2.1 (Informal positive result for L-Lipschitz functions). For any ϵ, L > 0 with

L/ϵ ≥ 2, there exists a suitable distribution over ReLU features that satisfies the following

property. For any L-Lipschitz function h : [−1, 1]d → R and some width m satisfying

m = min
(
dÕ(L2/ϵ2), (L/ϵ)Õ(d)

)
,

there exists a two-layer m-width random ReLU feature network f that satisfies

∥f − h∥[−1,1]d ≤ ϵ,

with probability 0.9 over i.i.d. random ReLU features drawn from the distribution.

Theorem 2.2 (Informal negative result for L-Lipschitz functions). Fix any ϵ, L > 0. For

some width m satisfying

m = min
(
dΩ̃(L2/ϵ2), (L/ϵ)Ω̃(d)

)
,

there exists an L-Lipschitz function h : [−1, 1]d → R such that with probability at least 1
2

over a draw of m i.i.d. random ReLU features, g(1), . . . ,g(m), every two-layer random ReLU

37

feature network h of width m with those features as bottom-layer weights has

∥f − h∥[−1,1]d > ϵ.

Table 2.1 summarizes these results, as well as our analogs for functions in Sobolev balls.

Result Smoothness Minimum width m Theorem

Postive Lipschitz ≤L min(dÕ(L2/ϵ2), (L/ϵ)Õ(d)) Thm. 2.1 / 2.9
Negative Lipschitz ≤L min(dΩ̃(L2/ϵ2), (L/ϵ)Ω̃(d)) Thm. 2.2 / 2.15
Positive Hs norm ≤γ min(dÕ(sγ2/s/ϵ2/s), (γ/ϵ)Õ(d/s)) Thm. 2.25
Negative Hs norm ≤γ min(dΩ̃(sγ2/s/ϵ2/s), (γ/ϵ)Ω̃(d/s)) Thm. 2.27

Table 2.1: Our upper and lower bounds on the minimum width needed for a random ReLU
feature network to ϵ-approximate a function over L2([−1, 1]d) with either bounded Lipschitz
constant L, or bounded order-s Sobolev norm γ (and periodic boundary conditions).

2.1.3 Discussion

Relationship between Lipschitzness and depth separation. Our results shed light

on a question posed by Safran, Eldan, and Shamir, 2019 about the approximation power of

unconstrained two-layer networks. They ask whether there exists a d-dimensional 1-Lipschitz

function h that can be represented by a three-layer neural network with poly(d) neurons but

requires width exp(Ω(d)) to be approximated by a two-layer network. As one of their main

results, they answer this question in the negative for pointwise approximation when h is

a radial function (depending only on ∥x∥2) over the unit ball, by showing that any such

function can be efficiently approximated by a poly(d) width depth-2 network. Our results

imply that the answer is also negative for L2-approximation of arbitrary 1-Lipschitz functions

(which need not be radial) over [−1, 1]d; this follows from our upper bounds for the case that

L = 1 and ϵ is any constant, which establish the existence of approximators that are poly(d)-

width, two-layer random ReLU feature networks. Our results do not answer their question

outright, because showing that every 1-Lipschitz function can be approximated with respect

38

to the L2 norm over [−1, 1]d by a depth-2 network of poly(d) width does not imply that

every 1-Lipschitz function is uniformly approximable by such a network.

Implications for learnability with gradient descent. Our upper bounds on the width

that suffices to approximate Lipschitz functions are also useful for proving learnability hard-

ness results for neural networks with more than two layers. Malach et al. (2021b) establish

this connection between hardness of approximation and hardness of learning by showing

that any function that cannot be weakly approximated by a network with three layers can-

not be learned by gradient descent applied to a neural network of any depth, given certain

assumptions about the random weight initialization and bounds on the number of units in

the network and number of steps of gradient descent. Their result hinges on a technical

lemma (their Lemma B.2), which shows that L-Lipschitz functions can be approximated by

three-layer neural networks with bounded width. By replacing that lemma with our Theo-

rem 2.9, their result can be strengthened to say that any function not weakly approximable

by two-layer neural networks is not learnable by gradient descent for networks of any depth

that obey their assumptions.

Neural tangent kernel and random features. The neural tangent kernel (NTK) regime

of Jacot, Gabriel, and Hongler (2018) considers the behavior of neural networks in the

infinite-width limit, where the dynamics of the network are governed by a kernel. Networks

trained in this regime bear a close relationship to random feature models since bottom-layer

weights in the NTK regime remain close to their initialization throughout training. Our

results can be seen as modeling a finite-width version of the NTK regime, and the positive and

negative results of this work can be interpreted as capturing the capabilities and limitations of

the NTK regime. In particular, our negative results suggest that networks in the NTK scaling

regime cannot efficiently approximate certain smooth functions, including some single-index

targets (i.e., functions that depend only on a single coordinate of the input), such as the

sinusoidal functions we use in our lower bound construction. In contrast, target functions

39

with low-intrinsic dimension can be approximated and provably learned efficiently by neural

networks trained outside the NTK regime (e.g. Damian, Lee, and Soltanolkotabi, 2022; Bietti

et al., 2022).

2.1.4 Techniques

In this section, we give a high-level overview of the ideas that underlie our upper and

lower bounds.

2.1.4.1 Positive results

Our minimum-width upper bounds state that for any fixed function of the relevant sort,

given sufficiently many independent random ReLU features, some linear combination of those

features most likely approximates the function. These techniques bear similarity to the proof

approach of Bresler and Nagaraj (2020), who show similar positive results for approximating

smooth targets with two-layer neural networks using a random feature construction. We

argue this in three steps. (Below, we only discuss the Lipschitzness smoothness measure,

but the Sobolev case follows the same basic steps.)

1. The first step shows that for any L-Lipschitz target function h, there exists a low-degree

trigonometric polynomial P that closely approximates h. We establish the existence

of this trigonometric polynomial using the fact that any function in L2([−1, 1]d) can

be expressed as a (potentially infinite) linear combination of sinusoidal functions, due

to the existence of a Fourier representation for h. We use the Lipschitzness of h to

show that high-frequency terms have negligibly small coefficients in the representation,

which we drop to obtain a low-degree approximation P .

2. The second step expresses P as an infinite mixture of random ReLU features (à la

Barron, 1993; Murata, 1996; Rubin, 1998; Candès, 1999). That is, for some distribution

over biases b and weights w (which depends on L, ϵ, and d, but not h, and takes values

40

in R × Sd−1), P can be written as

P (x) = E
b,w

[h(b,w)ReLU (⟨w, x⟩ − b)]

for some function h(b,w). Intuitively, this is possible because each sinusoidal com-

ponent of P is a ridge function (a function that depends only on a one-dimensional

projection of its input).

3. Finally, using a standard concentration argument, we show that the empirical aver-

age of sufficiently many random ReLUs gives a close approximation to P with high

probability. Consequently, the overall weighted combination of random features closely

approximates h.

2.1.4.2 Negative results

Our lower bounds are proved using a dimensionality argument, stemming from the simple

observation that linear combinations ofm features (functions) can span at mostm dimensions

in the function space L2([−1, 1]d). The key is to give N ≫ m candidate functions φ1, . . . , φN

that are orthonormal in L2([−1, 1]d). With such a set of functions in hand, any fixed outcome

of a draw of m random features will be such that linear combinations of those m features

cannot closely approximate more than a small fraction of the N functions because no m-

dimensional subspace can be close to a large fraction of N orthonormal functions. (This kind

of dimensionality argument has been used in several prior works, including Barron, 1993;

Yehudai and Shamir, 2019; Kamath, Montasser, and Srebro, 2020 and elsewhere.)

Specializing to our context, to give a lower bound on the minimum width of random

ReLU feature networks needed to approximate L-Lipschitz functions, it suffices to construct

a large family of orthonormal L-Lipschitz functions. We do this with L-Lipschitz sinusoidal

functions of the form
√

2 sin (π ⟨K, x⟩) where K ∈ Zd. The quantity ∥K∥2 controls the

Lipschitz constant of these functions, and as our analysis shows, the tradeoff between the

41

number of functions in the family (which increases with the allowed range of ∥K∥2 and

controls our width bound m) and the Lipschitz constant L yields a lower bound that is quite

close to our upper bound for L-Lipschitz functions.

The simple dimensionality argument sketched above establishes that some function among

the N orthonormal functions is hard to approximate (in fact, that most of them are hard),

but it does not yield an explicit hard function. By requiring the N orthonormal functions

φ1, . . . , φN to satisfy a natural symmetry property with respect to the random ReLU fea-

tures, it is possible to get a lower bound for a single explicit function φ1. Following this

approach, we also give a quantitatively slightly weaker lower bound on the minimum width

that random ReLU networks need to approximate an explicit function φ1.

2.1.5 Related work

Since the pioneering universal approximation results for deterministic two-layer networks

(Cybenko, 1989; Funahashi, 1989; Hornik, Stinchcombe, and White, 1989) mentioned in the

introduction, many subsequent works have established quantitative bounds on the width that

such networks require to approximate certain functions.1 Random feature networks have also

been the subject of considerable study owing to their connection to kernel methods (Neal,

1996; Rahimi and Recht, 2008; Cho and Saul, 2009) and, in particular, the Neural Tangent

Kernel (NTK). Jacot, Gabriel, and Hongler (2018) argue that training neural networks with

gradient descent with small step-sizes results in a learning rule similar to that obtained by

a kernel method with the NTK. When the network weights are randomly initialized, then

a finite-width NTK corresponds to a linear combination of random ReLUs. Both random

ReLU feature networks and the finite-width NTK enjoy the same universal approximation

property of deterministic networks (Sun, Gilbert, and Tewari, 2018; Ji, Telgarsky, and Xian,

2019), and hence quantitative bounds on the network width required to approximate families
1Our discussion here focuses on works that give non-asymptotic bounds. Pinkus (1999, Section 6) gives

a review of asymptotic rates of approximation by neural networks of width r as r → ∞ (regarding the
dimension d as fixed).

42

of functions are of significant interest.

Positive results. A line of inquiry started by Barron (1993) (see also Klusowski and

Barron, 2018) investigates upper bounds on the width of deterministic two-layer networks

needed to approximate functions whose smoothness is measured in terms of their Fourier

transforms. Although these results do not deal with random feature networks and hence

are incomparable to ours, they do use randomization in the proof. Specifically, a target

function is represented as a mixture of activation functions drawn from a target-specific

distribution, and a finite-width depth-2 network approximating the function is obtained by

sampling. Our results use a similar overall approach, but with the crucial difference that

in our random feature setting, our distribution of ReLUs does not depend on the target

function.

Perhaps the works on random ReLU feature networks that are most closely related to

our own upper bounds are those of Andoni et al. (2014a), Yehudai and Shamir (2019), Bach

(2017), and Ji, Telgarsky, and Xian (2019), all of which prove approximation-theoretic results

by representing a target function as the expected value of weighted activation functions drawn

from some distribution.

• Theorem 3.1 of Andoni et al. (2014a) shows how neural networks with complex-valued

weights and exponential activation functions can approximate polynomials of bounded

degree. Their bounds have an exponential dependence on that degree, which translates

to an exponential dependence on the Lipschitz constant L even for constant dimension

d; in contrast, our bounds are exponential in min{d, L2/ϵ2}, which can be much better

if d is small.

• Yehudai and Shamir (2019) study two-layer random ReLU feature networks (as we

do), but like Andoni et al. (2014a) focus on approximating polynomials of bounded

degree. Since they consider a more stringent notion of L∞-approximation (over the

unit ball), their upper bounds on network width (see their Theorems 3.3 and 3.4) are

43

more pessimistic than ours and depend exponentially on the square of the polynomial

degree.

• Proposition 3 of Bach (2017) and Theorem E.1 of Ji, Telgarsky, and Xian (2019)

imply (or directly give) upper bounds on the width of two-layer random ReLU reature

networks (or finite-width NTK) to approximate Lipschitz functions. Similar to Yehudai

and Shamir (2019), they consider an L∞ notion of approximation, so they obtain upper

bounds that always are exponential in the dimension d.

Negative results. A number of recent and classical papers give width lower bounds for

arbitrary (deterministic-weight) two-layer networks that approximate certain types of multi-

variate functions. Maiorov (1999) gives asymptotically tight upper and lower bounds on the

error in approximating functions from a Sobolev class achieveable by any two-layer network

of a given width. The asymptotic nature of Maiorov’s results (and proof techniques) means

that the results do not imply lower bounds on the network width required to achieve a given

error rate ϵ unless ϵ is sufficiently small, possibly as a function of dimension. Our results

differs from Maiorov’s and other related results from the approximation theory literature

by elucidating the interplay between the dimension and the error in both upper- and lower

bounds.

More recently, Eldan and Shamir (2016) and Safran and Shamir (2017) give exp(d)-

type lower bounds on the width that depth-2 networks require to L2-approximate certain

simple functions under certain probability measures on Rd. In Eldan and Shamir (2016)

the function being approximated is not explicit, and in Safran and Shamir (2017) the lower

bound is only for very high-accuracy approximation (to error at most 1/d4). In both works

the relevant probability measures are rather involved. In contrast, our lower bounds hold only

for two-layer random feature networks, but they are for simple explicit functions, for large

(constant) values of the approximation parameter, and for L2-approximation with respect

to the uniform distribution over [−1, 1]d. In other relevant work on two-layer lower bounds,

44

Martens et al. (2013) and Daniely (2017a) give exp(d)-type (or better) width lower bounds

for depth-2 networks approximating certain functions with large Lipschitz constants, but

these lower bounds require a weight bound on the top-level combining gate. In contrast, our

lower bonds for random feature networks have no restrictions on the weights of the top-level

gate.

The work of Sonoda et al. (2020), which analyzes limitations on the approximation abil-

ities of two-layer networks of random ReLU activation functions, is relevant to our lower

bounds. Their lower bounds are independent of the width of the network; they give func-

tions that cannot be approximated by random feature networks of any (potentially infinite)

width. However, their lower bounds are for an extremely strong notion of approximation,

namely L2 approximation over all of Rd (without any weighting by a probability distribu-

tion).

Our lower bound idea of exploiting symmetry to obtain an explicit function that is difficult

to approximate was inspired by Yehudai and Shamir (2019). Our approach for non-explicit

lower bounds is quite similar to Theorem 19 of Kamath, Montasser, and Srebro (2020),

which bounds the dimension of the space of all linear combinations of feature functions;

similar to the lower bound of Kamath, Montasser, and Srebro (2020) (but unlike Yehudai

and Shamir (2019)), our lower bounds hold regardless of the size of the weights used in the

linear combination of the bottom-level random features.

Finally, we remark that while we do not consider networks of depth larger than two,

our paper was in large part inspired by results from the literature on depth separation.

Telgarsky (2016), Eldan and Shamir (2016), and Daniely (2017a) all prove lower bounds by

constructing highly oscillatory functions and showing that shallow networks must be wide in

order to approximate these functions. Safran, Eldan, and Shamir (2019) prove lower bounds

on 1-Lipschitz functions that are non-oscillatory, such as x 7→ max{0,−∥x∥ + 1}; however,

these bounds only hold in the high-accuracy regime with small ϵ. These works motivated

us to directly study the relationship between the Lipschitz constant of a target function and

45

the width needed to approximate it.

2.2 Preliminaries

For a positive integer d ∈ Z+, let [d] := {1, 2, . . . , d}. The vectors 0⃗ := (0, . . . , 0) ∈ Rd

and 1⃗ := (1, . . . , 1) ∈ Rd are, respectively, the all-zeros and all-ones vectors. Let Sd−1 :=

{x ∈ Rd : ∥x∥2 = 1} denote the unit sphere in Rd. Let ∥h∥Lip denote the Lipschitz constant

of h : Rd → R with respect to the Euclidean metric (i.e., the least L s.t. h is L-Lipschitz

w.r.t. ∥·∥2). We use bold font to denote random variables and write “x ∼ D” to indicate

that random variable x is distributed according to distribution D.

We use the following notations for a multi-index K ∈ Nd (where N := {z ∈ Z : z ≥ 0}).

Let |K| := ∑d
i=1 Ki, ∥K∥2 := (∑d

i=1 K
2
i)1/2, and K! := ∏d

i=1(Ki!). Let xK := ∏d
i=1 x

Ki
i for

x ∈ Rd. Lastly, let D(K)h be the order-|K| partial derivative of a function h(x) with respect

to xK .

2.2.1 Random ReLU feature neural network approximation

Throughout the paper, we treat a two-layer random ReLU feature network as a random

features model. The upper bounds in this paper demonstrate the representational powers

of linear combinations of these random features, while the lower bounds demonstrate their

limitations.

We define a family of distributions over the parameters of random ReLU activations. Note

that our lower-bounds in Theorems 2.15, 2.23, 2.27, and 2.28 hold for all such distributions

D, while our upper-bounds in Theorems 2.9 and 2.25 hold for some fixed D, which depends

on an upper bound on the Lipschitz norm of the target function but not on the target

function itself.

Definition 2.1 (Symmetric ReLU parameter distributions). A product distribution D :=

Dbias × Dweights over R× Sd−1 is a symmetric ReLU parameter distribution if the coordinates

46

of Dweights are invariant to permutation. That is, Dweights = π ◦ Dweights for any permutation

π of [d].

Given a distribution over random ReLU parameters, we now introduce the full random

ReLU features model. We define a notion of approximation and formalize the minimum

width of the network (or the minimum number of random features to combine) needed to

obtain a sufficiently accurate approximation with high probability.

Definition 2.2 (Minimum-width random ReLU feature network approximation). Consider

a symmetric ReLU parameter distribution D, a measure µ over Rd, and a network width

m ∈ Z+. For each i ∈ [m], we draw a random network feature g(i) ∈ L2(µ) independently by

drawing (b(i),w(i)) from D and letting g(i)(x) := ReLU(⟨w(i), x⟩ − b(i)).

Given ϵ, δ > 0 and a function h : Rd → R with bounded ∥h∥µ, we define MinWidthh,ϵ,δ,µ,D

to be the smallest m ∈ Z+ such that the following holds: With probability at least 1 − δ

over g(1), . . . ,g(m),

inf
f∈Span(g(1),...,g(r))

∥f − h∥µ ≤ ϵ.

2.2.2 Orthonormal basis for function space

We use ⟨·, ·⟩ to denote the standard Euclidean inner product in Rd (and occasionally

regard multi-indices K ∈ Nd as elements of Rd). For a probability measure µ on Rd, L2(µ)

denotes the space of square-integrable functions with inner product denoted by

⟨f, g⟩µ := E
x∼µ

[f(x)g(x)] =
∫
Rd
f(x)g(x)µ(dx).

Because many of the results of this chapter pertain to the uniform distribution over [0, 1]d,

we use the notations L2([−1, 1]d) and ⟨·, ·⟩[−1,1]d , and fix a particular orthonormal basis T =

{TK : K ∈ Zd} for L2([−1, 1]d) based on trigonometric polynomials. We define this basis and

prove properties related to its orthonormality (Section 2.2.2.2), derivatives (Section 2.2.2.3),

and cardinality (Section 2.2.2.4) in the following sections.

47

Recall the definition of an orthonormal basis for the space L2(µ):

Definition 2.3 (Orthonormal basis). A countable set G ⊂ L2(µ) is an orthonormal basis

for L2(µ) if ⟨g, g̃⟩µ = 1 {g = g̃} for all g, g̃ ∈ G and Span (G) = L2(µ).

We frequently apply the following standard facts about orthonormal bases:

Fact 2.3 (Facts about orthonormal bases). For some measure µ, let G be an orthonormal

basis for L2(µ). Any f, f̃ ∈ L2(µ) satisfy f = ∑
g∈G αgg and f̃ = ∑

g∈G α̃gg for some real

(αg)g∈G and (α̃g)g∈G. Furthermore:

• αg = ⟨f, g⟩µ;

• ∥f∥2
µ = ∑

g∈G α
2
g (Parseval); and

• ⟨f, f̃⟩µ = ∑
g∈G αgα̃g (Plancherel).

2.2.2.1 Trigonometric polynomial basis definition

We define the basis of trigonometric polynomials T as

T :=
{
TK : K ∈ Zd

}
,

where

TK(x) :=

1 K = 0⃗
√

2 sin (π ⟨K, x⟩) K ∈ Ksin

√
2 cos (π ⟨K, x⟩) K ∈ Kcos,

(2.1)

48

and Ksin and Kcos form a partition of Zd \ {⃗0}2 and are defined as

Ksin :=
{
K ∈ Zd \ {⃗0} : Ki > 0, where i = min {j ∈ [d] : xj ̸= 0}

}
,

Kcos :=
{
K ∈ Zd \ {⃗0} : Ki < 0, where i = min {j ∈ [d] : xj ̸= 0}

}
.

The set T is a useful family of functions for both our upper and our lower bounds on the

minimum-width random ReLU feature network needed to approximate Lipschitz functions.

The fact that T is an orthonormal basis for L2([−1, 1]d) (Fact 2.5) permits us to express

other functions in L2([−1, 1]d) as a linear combination of the elements of T . As we show

in Fact 2.6, those orthogonality properties of the elements of T are maintained even after

taking partial derivatives. In addition, every function in T is a ridge function (that is,

TK(x) = ϕK(⟨K, x⟩) for some ϕK : R → R), which, as we will see later, means (very usefully

for us) that TK is easily approximated by linear combinations of shifted ReLUs. Finally, the

Lipschitz constant of all functions in T is bounded: ∥TK∥Lip ≤
√

2π ∥K∥2.

2.2.2.2 Orthonormality of T

To prove that T is orthogonal, we rely on the following fact from integral calculus.

Fact 2.4 (Integrals of multivariate sinusoids). For each K ∈ Zd,

∫
[−1,1]d

cos (π ⟨K, x⟩) dx = 2d · 1{K = 0⃗} &
∫

[−1,1]d
sin (π ⟨K, x⟩) dx = 0.

Proof. We use a simple inductive argument on d to evaluate the first integral. The base

case d = 1 is straightforward, so assume d > 1 and define x−1 = (x2, . . . , xd) ∈ Rd−1 for any

x ∈ Rd. Assume inductively that

∫
[−1,1]d−1

cos (π ⟨K−1, x−1⟩) dx−1 = 2d−11{K−1 = 0⃗}.

2Note that this partition of Zd − {⃗0} is an arbitrary one. The only property this partition is designed
to satisfy is that if K corresponds to sin(π⟨K, x⟩), then −K must correspond to cos(−π⟨K, x⟩) (and vice
versa).

49

By the cosine addition formula, we have that:

∫
[−1,1]d

cos (π⟨K, x⟩) dx

=
∫

[−1,1]d
[cos (πK1x1) cos (π⟨K−1, x−1⟩) − sin (πK1x1) sin (π⟨K−1, x−1⟩)] dx

=
[∫ 1

−1
cos (πK1x1) dx1

] [∫
[−1,1]d−1

cos (π ⟨K−1, x−1⟩) dx−1

]

−
[∫ 1

−1
sin (πK1x1) dx1

] [∫
[−1,1]d−1

sin (π ⟨K−1, x−1⟩) dx−1

]

= 2 · 1{K1 = 0}
[∫

[−1,1]d−1
cos (π ⟨K−1, x−1⟩) dx−1

]
= 2d · 1{K = 0⃗}.

The second claim follows by a nearly identical inductive argument, which we omit.

Fact 2.5. T is an orthonormal basis for L2([−1, 1]d).

Proof. First, we make use of the well-known fact that the constant 1 function, along with

z 7→
√

2 sin(πkz) and z 7→
√

2 cos(πkz) for all k ∈ Z+, collectively form an orthonormal

basis for L2([−1, 1]). (For details, see Dym and McKean, 1972.) Thus, the d-fold Cartesian

product of this collection is an orthonormal basis for L2([−1, 1]d).3 Each function in this

basis is a product of d functions—one per variable, and each being either a constant, sine,

or cosine as above—and can be rewritten as a linear combination of functions from T using

basic product-to-sum trigonometric identities. Thus, Span (T) = L2([−1, 1]d).

To complete our proof, it remains to show that all elements of T are orthogonal and have

unit norm. It suffices to show that ⟨TK , TK′⟩[−1,1]d = 1{K = K ′} for all K,K ′ ∈ Zd. There

are six possible scenarios for this claim depending on which partitioning subsets of Zd contain

K and K ′: (1) K,K ′ ∈ Kcos; (2) K,K ′ ∈ Ksin; (3) K = K ′ = 0⃗; (4) K ∈ Kcos, K
′ = 0⃗ or

K = 0⃗, K ′ ∈ Kcos; (5) K ∈ Ksin, K
′ = 0⃗ or K = 0⃗, K ′ ∈ Ksin; and (6) K ∈ Ksin, K

′ ∈ Kcos

or K ∈ Kcos, K
′ ∈ Ksin. For the sake of simplicity, we only explicitly prove the claim for

scenario (1). The other cases can be proved with similar trigonometric arguments, all of
3This is also an orthonormal basis, so we could similarly represent functions in L2([−1, 1]d) as linear

combinations of the elements of this basis and apply the properties of Fact 2.3. However, this representation
is unhelpful for our analysis because its elements have large Lipschitz constants and are not ridge functions.

50

which involve applying Fact 2.4. For scenario (1), we observe that

⟨TK , TK′⟩[−1,1]d = 1
2d
∫

[−1,1]d
2 cos (π ⟨K, x⟩) cos (π ⟨K ′, x⟩) dx

= 1
2d
∫

[−1,1]d
[cos (π ⟨K −K ′, x⟩) − cos (π ⟨K +K ′, x⟩)] dx

= 1
2d
[
2d1 {K −K ′ = 0} − 2d1 {K +K ′ = 0}

]
= 1 {K = K ′} .

The last equality holds because if K +K ′ = 0, then either K or K ′ must belong to Ksin by

the definitions of Ksin and Kcos.

We additionally derive the following useful fact about the partial derivatives of elements

of the trigonometric basis T .

Fact 2.6 (Orthogonality of derivatives of T). For all M ∈ Nd and for all K,K ′ ∈ Zd,

〈
D(M)TK , D

(M)TK′

〉
[−1,1]d

= 1 {K = K ′} π2|M |K2M .

Proof. The partial derivatives of TK for every K ∈ Zd can be exactly characterized by

inductively taking derivatives of sin and cos functions:

D(M)TK(x) =

π|M |TK(x)KM |M | ≡ 0 (mod 4)

π|M |T−K(x)KM |M | ≡ 1 (mod 4) & K ∈ Ksin

−π|M |T−K(x)KM |M | ≡ 1 (mod 4) & K ∈ Kcos ∪ {⃗0}

−π|M |TK(x)KM |M | ≡ 2 (mod 4)

−π|M |T−K(x)KM |M | ≡ 3 (mod 4) & K ∈ Ksin

π|M |T−K(x)KM |M | ≡ 3 (mod 4) & K ∈ Kcos ∪ {⃗0}.

(2.2)

The conclusion follows by applying the orthonormality of trigonometric basis elements from

51

Fact 2.5 to Equation (2.2).

2.2.2.3 Derivatives and boundary conditions of T

To prove that a function h ∈ L2([−1, 1]d) can be represented by a linear combination of

sufficiently many random ReLUs, we first show that h can be approximated by a low-degree

trigonometric polynomial. To do so, we upper-bound the higher-order coefficients of the

trigonometric expansion of h. Obtaining these bounds requires taking partial derivatives of

h by differentiating term-by-term the trigonometric expansion of h. However, this is not

always possible; for instance, if h(x) = x1, the terms of the trigonometric expansion of

∂h/∂x1 do not correspond to the term-by-term derivatives of the expansion of h.4 We define

a notion of boundary periodicity that lets us perform term-by-term differentiation:

Definition 2.4 (Periodic boundary conditions). h ∈ L2([−1, 1]d) satisfies the periodic bound-

ary conditions if for all i ∈ [d] and for all x ∈ [−1, 1]d

h(x1, . . . , xi−1,−1, xi+1, . . . , xd) = h(x1, . . . , xi−1, 1, xi+1, . . . , xd).

Note that all basis elements in T satisfy the periodic boundary conditions. The next

lemma gives sufficient conditions for term-by-term differentiation of a function’s trigonomet-

ric representation.

Lemma 2.7 (Term-by-term differentiation of trigonometric basis representations). Consider

some h ∈ L2([−1, 1]d) and i ∈ [d] such that h satisfies the periodic boundary conditions, h

is differentiable with respect to xi, and ∂h/∂xi ∈ L2([−1, 1]d). Then, h and ∂h/∂xi have
4Because ∂h/∂x1 = 1, its trigonometric expansion ∂h/∂x1 =

∑
K∈Zd βKTK will have βK = 1{K = 0⃗}.

Because h =
∑

K∈Zd αKTK will have αK ̸= 0 for some K ̸= 0⃗, βK ̸= 0 if term-by-term differentiation were
possible. Since this contradicts the expansion of ∂f/∂x1, term-by-term differentiation is impossible in this
case.

52

trigonometric expansions of the form

h =
∑
K∈Zd

αKTK & ∂h

∂xi
=

∑
K∈Zd

βKTK ,

where their coefficients (αK)K∈Zd , (βK)K∈Zd are related as follows:

βK =

πKiα−K K ∈ Kcos

−πKiα−K K ∈ Ksin

0 K = 0⃗.

(2.3)

Therefore,
∂h

∂xi
=

∑
K∈Zd

αK
∂TK
∂xi

.

Proof. Without loss of generality, let i = 1. Because each of h and ∂h/∂x1 is in L2([−1, 1]d),

there exist α and β by Fact 2.5 such that h and ∂h/∂x1 are exactly represented by the

expansions given in the lemma statement. It remains to show that (2.3) holds. We fix any

K ∈ Kcos, where TK(x) =
√

2 cos(π ⟨K, x⟩) and ∂TK(x)/∂x1 = −
√

2πK1 sin(π ⟨K, x⟩). By

Fact 2.3, each coefficient of the representation is an inner-product: αK = ⟨h, TK⟩[−1,1]d and

βK = ⟨∂h/∂x1, TK⟩[−1,1]d . Moreover, βK is related to α−K , as shown in the following:

βK =
〈
∂h

∂x1
, TK

〉
[−1,1]d

=
√

2
2d

∫
[−1,1]d

∂h(x)
∂x1

cos(π ⟨K, x⟩) dx

=
√

2
2d

∫
[−1,1]d−1

∫ 1

−1

∂h(x)
∂x1

cos(π ⟨K, x⟩) dx1 dx−1

=
√

2
2d

∫
[−1,1]d−1

h(x) cos(π ⟨K, x⟩)
∣∣∣∣∣
1

−1
+
∫ 1

−1
h(x)πK1 sin(π ⟨K, x⟩) dx1

 dx−1 (2.4)

=
√

2
2d

∫
[−1,1]d

h(x)πK1 sin(π ⟨K, x⟩) dx (2.5)

= πK1 ⟨f, T−K⟩[−1,1]d = πK1α−K .

53

We integrate by parts for Equation (2.4) and take advantage of the periodic boundary condi-

tions of h and TK for Equation (2.5). A symmetric argument proves the claim for K ∈ Ksin.

When K = 0⃗, we repeat the above argument, and the periodic boundary conditions of h

imply that β0⃗ = 0.

2.2.2.4 Cardinality of subsets of T

We also consider certain finite-dimensional subspaces of L2([−1, 1]d) which are spanned by

a set of functions indexed by Kk,d := {K ∈ Zd : ∥K∥2 ≤ k}. These subspaces of L2([−1, 1]d)

of primary interest in our analysis are spanned by a set of orthonormal functions that are

indexed by the integer lattice points contained in given Euclidean balls. The next fact

places upper and lower bounds the number of such points (and hence the dimension of such

a subspace Qk,d := |Kk,d|).

Fact 2.8. For all d ∈ Z+ and k ≥ 1,

Qk,d = exp
(

Θ
(

min
(
d log

(
k2

d
+ 2

)
, k2 log

(
d

k2 + 2
))))

.

Proof. For the upper bound, we use the fact that ∥K∥1 ≤ ∥K∥2
2 for all K ∈ Zd:

Qk,d =
∣∣∣{K ∈ Zd : ∥K∥2 ≤ k

}∣∣∣ ≤
∣∣∣{K ∈ Zd : ∥K∥1 ≤ k2

}∣∣∣
≤
∣∣∣{K ∈ N2d : ∥K∥1 ≤ k2

}∣∣∣ (2.6)

≤
(

⌈k2⌉ + 2d− 1
⌈k2⌉

)
. (2.7)

Inequality (2.6) holds because we replace each integer in K from the previous line with two

natural numbers (there would be equality if we forced one of each pair of natural numbers

to equal zero). Line (2.7) follows from a standard stars-and-bars counting argument. Note

that (
⌈k2⌉ + 2d− 1

⌈k2⌉

)
=
(

⌈k2⌉ + 2d− 1
2d− 1

)
.

54

We show two separate upper bounds on that quantity, which together prove the claim:

Qk,d ≤
(

⌈k2⌉ + 2d− 1
2d− 1

)
≤
(
e ⌈k2⌉
2d− 1 + e

)2d−1

≤ exp
(

Θ
(
d log

(
k2

d
+ 2

)))
;

Qk,d ≤
(

⌈k2⌉ + 2d− 1
⌈k2⌉

)
≤
(

2ed
⌈k2⌉

+ e

)⌈k2⌉
≤ exp

(
Θ
(
k2 log

(
d

k2 + 2
)))

.

For the lower bound, we observe that

min
(
d log

(
k2

d
+ 2

)
, k2 log

(
d

k2 + 2
))

=

d log

(
k2

d
+ 2

)
if k2 ≥ d,

k2 log
(
d
k2 + 2

)
if k2 < d.

We will lower-bound Qk,d by the appropriate term in each of the two cases, k2 ≥ d and

k2 < d.

For the case k2 < d, we lower-bound Qk,d by a sum of binomial coefficients:

Qk,d =
∣∣∣∣∣
{
K ∈ Zd :

d∑
i=1

K2
i ≤ k2

}∣∣∣∣∣
≥
∣∣∣∣∣
{
K ∈ {0, 1}d :

d∑
i=1

Ki ≤ k2
}∣∣∣∣∣

=
(
d

0

)
+
(
d

1

)
+ · · · +

(
d

⌊k2⌋

)
.

If ⌊k2⌋ ≤ d/2, then the sum of binomial coefficients is at least the last one, which we bound

using

(
d

⌊k2⌋

)
≥ exp

(⌊
k2
⌋

ln d

⌊k2⌋

)
≥ exp

(
⌊k2⌋

2 ln
(

d

⌊k2⌋
+ 2

))
= exp

(
Θ
(
k2 ln

(
d

k2 + 2
)))

.

Otherwise, if d/2 < ⌊k2⌋ < d, the sum of binomial coefficients is at least 2⌊k2⌋, and

2⌊k2⌋ = exp
(
(ln 2)

⌊
k2
⌋)

≥ exp
(

ln 2
ln 4

⌊
k2
⌋

ln
(

d

⌊k2⌋
+ 2

))
= exp

(
Θ
(
k2 ln

(
d

k2 + 2
)))

.

55

When k2 ≥ d, we show that Qk,d grows at a rate similar to that of the volume of a

d-dimensional ball of sufficiently large radius Θ(k). To do so, we regard each K ∈ Kk,d as

an element of Rd, and define

Ak,d :=
{
x ∈ Rd : min

K∈Kk,d

∥x−K∥∞ ≤ 1
2

}
.

This is the Minkowski sum of Kk,d and the ℓ∞ ball of radius 1/2 in Rd. Note that Ak,d

has Lebesgue measure vol(Ak,d) = |Kk,d| = Qk,d. Let Bd
2(r) := {x ∈ Rd : ∥x∥2 ≤ r} be the

d-dimensional Euclidean ball of radius r. We claim that Bd
2(k−

√
d/2) ⊂ Ak,d, which in turn

implies

Qk,d ≥ vol
(
Bd

2

(
k −

√
d/2

))
.

To see why this claim holds, consider any x ∈ Bd
2(k −

√
d/2). We’ll show that x ∈ Ak,d.

Indeed, there exists some y ∈ Zd such that ∥x− y∥∞ ≤ 1/2, and hence this y also satisfies

∥x− y∥2 ≤
√
d/2. By the triangle inequality,

∥y∥2 ≤ ∥x∥2 + ∥x− y∥2

≤
(
k −

√
d

2

)
+

√
d

2 = k.

Thus, y ∈ Kk,d, which implies x ∈ Ak,d.

To complete our lower bound on Qk,d, we observe that

Qk,d ≥ vol
(
Bd

(
k − 1

2
√
d
))

≥ vol
(
Bd

(
k

2

))

= πd/2(k/2)d

Γ
(
d
2 + 1

) ≥
(

πk2

2d+ 4

)d/2

≥ exp
(

Θ
(
d log

(
k2

d
+ 2

)))
,

where Γ is the gamma function and we have used a standard bound on the volume of the

d-dimensional Euclidean ball.

56

2.3 Positive results for Lipschitz targets

Our upper bounds on the minimum-width random ReLU feature network that approxi-

mates a Lipschitz function are dominated by the quantity Qk,d, which represents the number

of integer points contained in a d-dimensional ball of radius k (see Section 2.2.2.4).

Theorem 2.9 (Formal version of Theorem 2.1: Upper-bound for L-Lipschitz functions). Fix

some δ ∈ (0, 1
2] and ϵ, L > 0 with L

ϵ
≥ 2. Then, there exists some symmetric ReLU parameter

distribution D such that for any h ∈ L2([−1, 1]d) with ∥h∥Lip ≤ L and |Ex [h(x)]| ≤ L,

MinWidthh,ϵ,δ,[−1,1]d,D ≤ O

(
L6d2

ϵ6 ln
(1
δ

)
Q2

2L/ϵ,d

)
.

Applying the asymptotics of Qk,d from Fact 2.8 reveals that the minimum width can also

be bounded by the term in Theorem 2.1. That expression shows that the minimum width is

polynomial in L
ϵ

when d is a fixed constant, and polynomial in d when L
ϵ

is a fixed constant.

This section contains the proof of Theorem 2.1. In Section 2.3.1, we give an high-level

overview of the argument and state Lemmas 2.10 and 2.12, which are sufficient to prove the

claim. We prove these lemmas in Sections 2.3.2 and 2.3.3.

2.3.1 Proof outline for Theorem 2.9

To prove Theorem 2.9, we break the process of approximating a Lipschitz function h with

an random ReLU feature network into two steps. We first approximate h with a bounded-

degree trigonometric polynomial P in Lemma 2.10 and then approximate P with an random

ReLU feature network in Lemma 2.12. We state the lemmas and discuss their proofs in

Sections 2.3.1.1 and 2.3.1.2 respectively. Section 2.3.1.3 gives a formal proof of Theorem 2.9.

In Section 2.5.1, we present and prove Theorem 2.25, a parallel result to Theorem 2.9

that instead considers the approximation of some function h that has a bounded Sobolev

norm and which (along with its derivatives) satisfies periodic boundary conditions. The

proof of Theorem 2.25 only differs from that of Theorem 2.9 by obtaining a trigonometric

57

polynomial approximation for f from Lemma 2.26 (stated and proved in Section 2.5.1) rather

than Lemma 2.10.

2.3.1.1 Approximating Lipschitz functions with bounded-degree trigonometric polynomials

Lemma 2.10. Fix some L, ϵ > 0 with L
ϵ

≥ 1 and consider any function h ∈ L2([−1, 1]d)

with ∥h∥Lip ≤ L and |Ex [h(x)]| ≤ L. Then, taking k = L
ϵ
, there exists a bounded-degree

trigonometric polynomial

P (x) =
∑

K∈Kk,d

βKTK

(
x

2

)

such that ∥h− P∥[−1,1]d ≤ ϵ. Moreover, |βK | ≤ L for all K.

We formally prove this lemma in Section 2.3.2. Here we highlight a central part of the

argument (used in the full proof) by stating and proving a special case of the lemma which

additionally requires that h satisfy periodic boundary conditions.

Lemma 2.11 (Approximating Lipschitz functions with periodic boundary conditions). Fix

some L, ϵ > 0 with L
ϵ

≥ 2. Consider any function h ∈ L2([−1, 1]d) such that h satisfies

periodic boundary conditions, ∥h∥Lip ≤ L, and |Ex [h(x)]| ≤ L
2 . Then, taking k = L

2ϵ , there

exists a bounded-degree trigonometric polynomial

P (x) =
∑

K∈Kk,d

βKTK (x)

such that ∥h− P∥[−1,1]d ≤ ϵ. Moreover, |βK | ≤ L
2 for all K.

To prove Lemma 2.11, we consider the representation of h as an infinite linear combination

of trigonometric basis elements from T . We show that h can only be L-Lipschitz if all high-

degree terms of this representation have vanishingly small coefficients. This requires the

term-by-term differentiation of the trigonometric representation of h, which is possible due

to its periodic boundary conditions (see Lemma 2.7 of Section 2.2.2).

58

Proof. By appealing to a standard approximation argument (e.g., Folland, 1999, Proposition

8.17), we may assume that f is differentiable. Because T is an orthonormal basis over

L2([−1, 1]d), we can express h as

h(x) =
∑
K∈Zd

αKTK(x).

The condition ∥h∥Lip ≤ L implies that ∥∇h(x)∥2 ≤ L for all x ∈ [−1, 1]d. Because h has

periodic boundary conditions, h is differentiable, and ∂h(x)/∂xi ∈ L2([−1, 1]d) for all i,

Lemma 2.7 can be applied to relate L to the coefficients (αK)K∈Zd :

L2 ≥ E
x∼[−1,1]d

[
∥∇h(x)∥2

2

]
=

d∑
i=1

E
x

(∂h(x)
∂xi

)2

=
d∑
i=1

E
x

 ∑
K∈Zd

αK
∂TK(x)
∂xi

2
 (2.8)

=
d∑
i=1

∑
K∈Zd

α2
K

∥∥∥∥∥∂TK∂xi

∥∥∥∥∥
2

[−1,1]d
+ 2

d∑
i=1

∑
K∈Zd

∑
K′ ̸=K

αKαK′

〈
∂TK
∂xi

,
∂TK′

∂xi

〉
[−1,1]d

=
d∑
i=1

∑
K∈Zd

α2
Kπ

2K2
i = π2∑

K

α2
K ∥K∥2

2 . (2.9)

Equations (2.8) and (2.9) follow from Lemma 2.7 and Fact 2.6 respectively. An imme-

diate consequence of the above inequality is that |αK | ≤ L/π ≤ L/2 as long as K ̸= 0⃗.

Because |Ex [h(x)]| ≤ L/2, |α0⃗| ≤ L/2 as well. We define the trigonometric polynomial

P = ∑
K∈Kk,d

βKTK by letting βK := αK for all K with ∥K∥2 ≤ k. Parseval’s identity (Fact

2.3) and the inequality ending on line (2.9) guarantee that

∥h− P∥2
[−1,1]d =

∑
K∈Zd\Kk,d

α2
K ≤

∑
K∈Zd\Kk,d

α2
K · ∥K∥2

2
k2 ≤ 1

k2

∑
K∈Zd

α2
K ∥K∥2

2

≤ L2

π2k2 ≤ L2

22k2 = ϵ2.

The proof of Lemma 2.10 is a reduction to Lemma 2.11. Instead of approximating

59

h with a low-degree trigonometric polynomial, we approximate h̃, a scaled, shifted, and

reflected version of h that has periodic boundary conditions and thus can be differentiated

term-by-term. The bulk of the proof involves transforming h into h̃ and transforming P̃

(the trigonometric polynomial obtained by applying Lemma 2.11 to h̃) back into P . This

scaling and reflection argument is why we approximate h with combinations of trigonometric

polynomials of the form TK(x/2), rather than TK(x).

2.3.1.2 Approximating bounded-degree trigonometric polynomials with random ReLU fea-

ture nets

Lemma 2.12. Fix some δ ∈ (0, 1/2], ϵ > 0, ρ ∈ (0, 1], k ≥ 1, and d ∈ Z+. Then, there exists

some symmetric ReLU parameter distribution Dk such that for any trigonometric polynomial

P (x) =
∑

K∈Kk,d

βKTK(ρx)

with |βK | ≤ βmax for all K ∈ Kk,d,

MinWidthP,ϵ,δ,[−1,1]d,Dk
≤ O

(
β2

maxd
2k4

ϵ2 Q2
k,d ln

(1
δ

))
.

We restate and prove this lemma in Section 2.3.3. We take advantage of the fact that

every low-degree trigonometric polynomial can be expressed as a linear combination of ridge

functions. As shown in Lemma 2.13, each of those ridge functions can in turn be represented

as an infinite mixture of ReLUs. We then represent the entire trigonometric polynomial as an

expectation over weighted random ReLU features with parameters drawn from a symmetric

ReLU parameter distribution Dk (Definition 2.5). By bounding the maximum norm of every

random ReLU drawn from Dk, a concentration bound (Lemma 2.14) can show that this

expectation can be closely approximated with a sufficiently large finite linear combination

of randomly sampled ReLUs.

60

2.3.1.3 Proof of Theorem 2.9

Consider any h ∈ L2([−1, 1]d) with ∥h∥Lip ≤ L and |Ex [h(x)]| ≤ L. By Lemma 2.10,

there exists a bounded-degree trigonometric polynomial P (x) = ∑
K∈Kk,d

βKTK (x/2) with

k := 2L/ϵ and |βK | ≤ L for all K ∈ Kk,d, such that ∥h− P∥[−1,1]d ≤ ϵ/2. By applying

Lemma 2.12 to P with ρ = 1/2,

MinWidthP,ϵ/2,δ,[−1,1]d,Dk
≤ O

(
β2

maxd
2k4

ϵ2 Q2
k,d ln

(1
δ

))
≤ O

(
d2L6

ϵ6 Q2
2L/ϵ,d ln

(1
δ

))
.

Thus (see Definition 2.2) there exists an random ReLU feature network f of width

m = MinWidthP,ϵ/2,δ,[−1,1]d,Dk

such that ∥P − f∥[−1,1]d ≤ ϵ/2. By the triangle inequality, ∥f − h∥[−1,1]d ≤ ϵ. We conclude

that

MinWidthf,ϵ,δ,[−1,1]d,Dk
= O

(
d2L6

ϵ6 Q2
2L/ϵ,d ln

(1
δ

))
.

2.3.2 Proof of Lemma 2.10

We restate and prove Lemma 2.10 by modifying the proof of Lemma 2.11.

Lemma 2.10. Fix some L, ϵ > 0 with L
ϵ

≥ 1 and consider any function h ∈ L2([−1, 1]d)

with ∥h∥Lip ≤ L and |Ex [h(x)]| ≤ L. Then, taking k = L
ϵ
, there exists a bounded-degree

trigonometric polynomial

P (x) =
∑

K∈Kk,d

βKTK

(
x

2

)

such that ∥h− P∥[−1,1]d ≤ ϵ. Moreover, |βK | ≤ L for all K.

Proof. To give a low-degree trigonometric polynomial approximation for h, we transform h

into a function h̃ that satisfies periodic boundary conditions, apply Lemma 2.11 to approx-

61

imate h̃ with trigonometric polynomial P̃ , and obtain P from P̃ . Roughly, the argument

proceeds as follows:

1. We define h̄ : [0, 1]d → R to be a rescaling and shift of h so that its domain is the cube

[0, 1]d. That is, for x ∈ [−1, 1]d and y ∈ [0, 1]d, h̄(y) = h(2y−1⃗) and h(x) = h̄((x+1⃗)/2).

Then it holds that ∥h̄∥Lip ≤ 2L and |Ey∼[0,1]d [h̄(y)]| = |Ex∼[−1,1]d [h(x)]| ≤ L.

2. We define h̃ : [−1, 1]d → R by reflecting h̄ across orthants as follows: h̃(x) = h̄(sign(x)⊙

x), where sign(x) := (sign(x1), . . . , sign(xd)) and ⊙ represents element-wise multipli-

cation. The function h̃ is 2L-Lipschitz, satisfies the periodic boundary conditions, and

has ∣∣∣∣∣ E
x∼[−1,1]d

[
h̃(x)

]∣∣∣∣∣ =
∣∣∣∣∣ E
y∼[0,1]d

[
h̄(y)

]∣∣∣∣∣ ≤ L.

3. We find a low-degree trigonometric polynomial P̃ that ϵ-approximates h̃ over [−1, 1]d.

4. Such a P̃ must ϵ-approximate h̃ in at least one of the 2d unit cubes contained in the

orthants of [−1, 1]d. Therefore, there exists some sign vector ν ∈ {−1, 1}d such that

h̄(y) is approximated by P̃ (ν ⊙ y) on [0, 1]d.

5. By shifting and rescaling P̃ (ν ⊙ y), we obtain a trigonometric polynomial P that ϵ-

approximates h on [−1, 1]d as desired.

Steps (1) and (2) are immediate.

Step (3) is a consequence of Lemma 2.11. Because h̃ is 2L-Lipschitz, h̃ satisfies the

periodic boundary conditions, |Ex∼[−1,1]d [h̃(x)]| ≤ L, and 2L/ϵ ≥ 2, Lemma 2.11 guarantees

the existence of some trigonometric polynomial

P̃ (x) =
∑

K∈Kk,d

β̃KTK(x)

such that ∥h̃− P̃∥[−1,1]d ≤ ϵ and |β̃K | ≤ L for all K.

62

−1 −0.5 0
0.5 1−1

0

1

−1

0

1

x1
x2

f
(x
)

−1 −0.5 0
0.5 1−1

0

1

−1

0

1

x1
x2

f̃
(x
)

−1 −0.5 0
0.5 1−1

0

1

−0.4

−0.2

0

0.2

0.4

x1
x2
P̃
(x
)

−1 −0.5 0
0.5 1−1

0

1

−0.4

−0.2

0

0.2

0.4

x1
x2

P
(x
)

Steps 1 & 2

(a) (b)

(c)(d)

Step 3

Steps 4 & 5

(a)

Figure 2.1: A depiction of the function transformations used to give an approximation of f
in Lemma 2.10. The original function f is in (a), which is scaled and reflected to yield a
function f̃ with periodic boundary conditions in (b), which is given a trigonometric polyno-
mial approximation P̃ in (c), which is in turn scaled and shifted to obtain P approximating
the original f in (d).

For step (4), if P̃ is an ϵ-approximator for h̃ over L2([−1, 1]d), then there must exist a

unit cube in some orthant corresponding to some ν ∈ {−1, 1}d where P̃ also ϵ-approximates

h̃. That is,

E
y∼[0,1]d

[(
P̃ (ν ⊙ y) − h̄(y)

)2
]

≤ ϵ2.

For step (5), by translating the distribution from [−1, 1]d to [0, 1]d and taking P (x) :=

P̃ (ν ⊙ (x+ 1⃗)/2), we obtain

E
x∼[−1,1]d

[
(P (x) − h(x))2

]
= E

y∼[0,1]d

[(
P̃ (ν ⊙ y) − h̄(y)

)2
]

It remains to show that we can represent P as a proper trigonometric polynomial with

halved frequencies and bounded coefficients. We do so by examining each term of the

63

expansion of P̃ . Fix any K ∈ Zd with ∥K∥2 ≤ k and K ∈ Ksin. Then, TK(y) =
√

2 sin(π⟨K, y⟩). Consider the term corresponding to K of P (x) represented as an expansion

of P̃ , β̃KTK(ν ⊙ (x + 1⃗)/2). By rearranging its inner product and applying sum-of-angles

trigonometric identities, we obtain the following identity:

TK

(1
2ν ⊙ (x+ 1⃗)

)
=

√
2 sin

(
π

2 ⟨ν ⊙K, x⟩ + π

2 ⟨ν ⊙K, 1⃗⟩
)

=

√
2 sin

(
π
2 ⟨ν ⊙K, x⟩

)
⟨ν ⊙K, 1⃗⟩ ≡ 0 (mod 4)

√
2 cos

(
π
2 ⟨ν ⊙K, x⟩

)
⟨ν ⊙K, 1⃗⟩ ≡ 1 (mod 4)

−
√

2 sin
(
π
2 ⟨ν ⊙K, x⟩

)
⟨ν ⊙K, 1⃗⟩ ≡ 2 (mod 4)

−
√

2 cos
(
π
2 ⟨ν ⊙K, x⟩

)
⟨ν ⊙K, 1⃗⟩ ≡ 3 (mod 4).

This yields the final representation for TK functions:

TK

(1
2ν ⊙ (x+ 1⃗)

)
=

Tν⊙K(x2) ⟨ν ⊙K, 1⃗⟩ ≡ 0 (mod 4)

T−ν⊙K(x2) ⟨ν ⊙K, 1⃗⟩ ≡ 1 (mod 4)

−Tν⊙K(x2) ⟨ν ⊙K, 1⃗⟩ ≡ 2 (mod 4)

−T−ν⊙K(x2) ⟨ν ⊙K, 1⃗⟩ ≡ 3 (mod 4).

Similarly,

T−K

(1
2ν ⊙ (x+ 1⃗)

)
=

T−ν⊙K(x2) ⟨ν ⊙K, 1⃗⟩ ≡ 0 (mod 4)

−Tν⊙K(x2) ⟨ν ⊙K, 1⃗⟩ ≡ 1 (mod 4)

−T−ν⊙K(x2) ⟨ν ⊙K, 1⃗⟩ ≡ 2 (mod 4)

Tν⊙K(x2) ⟨ν ⊙K, 1⃗⟩ ≡ 3 (mod 4).

Using these identities, we can rewrite P as its own trigonometric polynomial with coef-

ficients βK for all K ∈ Zd such that βK ∈ {β̃ν⊙K ,−β̃ν⊙K} if ⟨ν ⊙ K, 1⃗⟩ ≡ 0 (mod 2), and

64

βK ∈ {β̃−ν⊙K ,−β̃−ν⊙K} otherwise. Due to the existence of such βK coefficients, the following

trigonometric polynomial approximates h over [−1, 1]d:

P (x) =
∑

K∈Kk,d

β̃KTK

(1
2ν ⊙ (x+ 1⃗)

)
=

∑
K∈Kk,d

βKTK

(
x

2

)
.

2.3.3 Proof of Lemma 2.12

In this section, we prove Lemma 2.12 by employing general purpose lemma that bounds

the width needed to approximate trigonometric polynomials of bounded degree.

We first define the specific symmetric ReLU parameter distribution Dk used in the proof,

which can be shown to meet the symmetry criteria spelled out in Definition 2.1. (As a result,

the lower-bounds on the minimum width in Theorems 2.15 and 2.23 hold for Dk.)

Definition 2.5 (Symmetric ReLU parameter distribution Dk for [−1, 1]d upper-bounds).

Define Dk := Dbias × Dweights,k as a product distribution with the following components:

• Dbias is the uniform distribution over [−2
√
d, 2

√
d]; and

• Dweights,k is a distribution over weights w taking value in Sd−1. To draw w from

Dweights,k, draw K uniformly at random from Kk,d and let w := K/ ∥K∥2. (If K = 0⃗,

let w := 1⃗/
√
d.)

We also introduce notation to represent the set of vectors contained in Kk,d that generate

each w ∈ supp(Dweights,k) ⊂ Sd−1:

Kk,d,w :=

{K ∈ Kk,d : K = ηw, η ≥ 0} w = 1√

d
1⃗

{K ∈ Kk,d : K = ηw, η > 0} otherwise.

Note that every w ∈ supp(Dweights,k) is drawn with probability |Kk,d,w|/Qk,d, which is at least

1/Qk,d and at most (k + 1)/Qk,d.

65

To prove Lemma 2.12, we represent P as an expectation over random ReLU features

with parameters drawn from Dk. We first express each trigonometric basis element TK as

an expectation over random ReLUs. We leverage the fact that each individual TK is a ridge

function (that is, TK(x) = ϕ(⟨K, x⟩) for some ϕ). In the following lemma, we show that

every ridge function on [−1, 1]d can be represented as a mixture of ReLUs with random bias

terms b drawn from Dbias.

Lemma 2.13 (Representing ridge functions as a mixture of ReLUs). Let ϕ : [−
√
d,

√
d] → R

be twice differentiable and let f : [−1, 1]d → R be f(x) = ϕ(⟨v, x⟩) for some v ∈ Sd−1. Then,

for all x ∈ [−1, 1]d,

f(x) = E
b∼Dbias

[ψ(b)ReLU (⟨v, x⟩ − b)] ,

where

ψ(b) :=

4
√
da0 := 16√

d
ϕ(−

√
d) − 4ϕ′(−

√
d) b ∈ [−2

√
d,−3

2

√
d)

4
√
da1 := − 16√

d
ϕ(−

√
d) + 12ϕ′(−

√
d) b ∈ [−3

2

√
d,−

√
d)

4
√
dϕ′′(b) b ∈ [−

√
d,

√
d]

0 b ∈ (
√
d, 2

√
d].

Proof. We expand the expectation over b. For x ∈ [−1, 1]d, let z := ⟨v, x⟩ ∈ [−
√
d,

√
d]. We

66

have the following:

E
b∼Dbias

[ϕ(b)ReLU (⟨v, x⟩ − b)]

= a0

∫ − 3
2

√
d

−2
√
d

ReLU(z − b) db+ a1

∫ −
√
d

− 3
2

√
d

ReLU(z − b) db+
∫ √

d

−
√
d
ϕ′′(b)ReLU(z − b) db

= a0

(
zb− 1

2b
2
) ∣∣∣∣∣

− 3
2

√
d

−2
√
d

+ a1

(
zb− 1

2b
2
) ∣∣∣∣∣

−
√
d

− 3
2

√
d

+
∫ z

−
√
d
ϕ′′(b)(z − b) db

=
√
d

2 z (a0 + a1) + d

8 (7a0 + 5a1) + (ϕ′(b)(z − b))
∣∣∣∣∣
z

−
√
d

−
∫ z

−
√
d
ϕ′(b) · (−1) db

= zϕ′(−
√
d) + ϕ(−

√
d) +

√
dϕ′(−

√
d) − ϕ′(−

√
d)(z +

√
d) + ϕ(z) − ϕ(−

√
d)

= ϕ(z) = f(x).

Once P is represented as an expectation over random ReLUs with parameters drawn from

Dk, we conclude the proof by arguing that this expectation can be closely approximated with

high probability by a linear combination of sufficiently many randomly sampled ReLUs. We

do so by applying a concentration bound due to Yurinskii, 1976 for sums of independent

random variables taking values in a Hilbert space. We use a convenient version of the bound

from Rahimi and Recht (2009, Lemma 4):

Lemma 2.14 (Concentration inequality for Hilbert spaces). Let g(1), . . . ,g(m) be independent

random variables that take values in a Hilbert space with norm ∥·∥ such that ∥g(i)∥ ≤ M for

all i. Then, for any δ ∈ (0, 1), with probability at least 1 − δ,

∥∥∥∥∥ 1
m

m∑
i=1

g(i) − E
[

1
m

m∑
i=1

g(i)
]∥∥∥∥∥ ≤ M√

m

1 +
√

2 log
(1
δ

) .
We are now prepared to formally prove Lemma 2.12.

Lemma 2.12. Fix some δ ∈ (0, 1/2], ϵ > 0, ρ ∈ (0, 1], k ≥ 1, and d ∈ Z+. Then, there exists

67

some symmetric ReLU parameter distribution Dk such that for any trigonometric polynomial

P (x) =
∑

K∈Kk,d

βKTK(ρx)

with |βK | ≤ βmax for all K ∈ Kk,d,

MinWidthP,ϵ,δ,[−1,1]d,Dk
≤ O

(
β2

maxd
2k4

ϵ2 Q2
k,d ln

(1
δ

))
.

Proof. We first represent any trigonometric monomial TK as an expected value over weighted

ReLUs of the form ReLU(⟨K/ ∥K∥2 , x⟩ + b) for b ∼ Dbias. For each K, we have TK(ρx) =

ϕK(⟨K/ ∥K∥2 , x⟩), where

ϕK(z) =

√
2 cos(πρ ∥K∥2 z) K ∈ Kcos

√
2 sin(πρ ∥K∥2 z) K ∈ Ksin

1 K = 0⃗.

By Lemma 2.13,

TK(ρx) = E
b∼Dbias

[
ψK(b)ReLU

(
1

∥K∥2
⟨K, x⟩ − b

)]
,

where ψK is the function defined in Lemma 2.13 for ϕK . Because |ϕK(z)| ≤
√

2, |ϕ′
K(z)| ≤

√
2πρ ∥K∥2, and |ϕ′′

K(z)| ≤
√

2π2ρ2 ∥K∥2
2 for all z, we can bound ψK :

|ψK(z)| ≤ max
{

16√
d

·
√

2 + 12 ·
√

2πρ ∥K∥2 , 4
√
d
√

2π2ρ2 ∥K∥2
2

}
≤ 60

√
d
(
∥K∥2

2 + 1
)
.

Because any sinusoidal basis element TK can be expressed as an expectation of random

ReLUs and because P is a linear combination of a finite number of those basis elements, we

68

can also represent P as an expectation over ReLUs. We define g : R × Sd−1 → R as

g(b, w) = Qk,d

|Kk,d,w|
∑

K∈Kk,d,w

βKψK(b) = 1
Prw∼Dweights,k

[w = w]
∑

K∈Kk,d,w

βKψK(b),

and represent P (x) as an infinite mixture of ReLU functions weighted by g over all x ∈

[−1, 1]d.

E
b,w

[g(b,w)ReLU (⟨w, x⟩ − b)]

=
∑

w∈supp(Dweights,k)
E

b∼Dbias

 ∑
K∈Kk,d,w

βKψK(b)ReLU (⟨w, x⟩ − b)

=
∑

w∈supp(Dweights,k)

∑
K∈Kk,d,w

βK E
b∼Dbias

[
ψK(b)ReLU

(
1

∥K∥2
⟨K, x⟩ − b

)]

=
∑

K∈Kk,d

βK E
b∼Dbias

[
ψK(b)ReLU

(
1

∥K∥2
⟨K, x⟩ − b

)]

=
∑

K∈Kk,d

βKTK(ρx)

= P (x).

To conclude the proof, let (w(1),b(1)), . . . , (b(r),w(m)) be independent copies of (w,b),

and define g(i) ∈ L2([−1, 1]d) for i = 1, . . . ,m by

g(i)(x) := g(w(i),b(i))ReLU(⟨w(i), x⟩ − b(i)).

Now we apply Lemma 2.14 to the random variables g(1), . . . ,g(m). Note that

E
b(i),w(i)

[
g(i)(x)

]
= P (x).

To apply the lemma, we first bound ∥g(i)∥[−1,1]d :

69

∥∥∥g(i)
∥∥∥

[−1,1]d
≤ max

b∈[−2
√
d,2

√
d],w∈Sd−1,x∈[−1,1]d

|g(b, w)ReLU (⟨w, x⟩ − b)|

≤
(

max
b,w,x

|ReLU (⟨w, x⟩ − b)|
)(

max
b,w

|g(b, w)|
)

=
(

max
w,x

∥w∥2 ∥x∥2 + max
b

|b|
)max

b,w

Qk,d

|Kk,d,w|

∣∣∣∣∣∣
∑

K∈Kk,d,w

βKψK(b)

∣∣∣∣∣∣

≤ 3
√
dQk,d max

w

1
|Kk,d,w|

∑
K∈Kk,d,w

|βK | · 60
√
d
(
∥K∥2

2 + 1
)

≤ 360dQk,dβmaxk
2.

Therefore, with probability 1 − δ over the choice of g(1), . . . ,g(m), we have

inf
f∈Span(g(1),...,g(r))

∥f − P∥[−1,1]d ≤
∥∥∥∥∥ 1
m

m∑
i=1

g(i) − E
[

1
m

m∑
i=1

g(i)
]∥∥∥∥∥

[−1,1]d

≤ 360dβmaxk
2Qk,d√

m

1 +
√

2 ln 1
δ

 ≤ ϵ,

which holds as long as we choose m with

m ≥
3602d2β2

maxk
4Q2

k,d

ϵ2

1 +
√

2 ln 1
δ

2

.

Based on Definiton 2.2, this gives the desired upper bound on MinWidth.

2.4 Negative results for Lipschitz targets

This section consists of the statement and proof of two lower bounds on the minimum

width necessary for two-layer random ReLU feature networks to approximate certain families

of functions. Section 2.4.1 provides a formalization of the primary negative result of the

chapter (Theorem 2.2) and provides an overview of its proof strategy. Sections 2.4.2 to 2.4.4

contain the proofs of the key building blocks of this theorem. Finally, Section 2.4.5 states and

70

proves a modification of Theorem 2.2, which gives an explicit target function that random

ReLU feature networks cannot efficiently approximate, as opposed to proving the existence

on some target.

2.4.1 Proof outline for Theorem 2.15

We give lower-bounds on the minimum width needed to ϵ-approximate L-Lipschitz func-

tions using two-layer random ReLU feature networks. Below we present a formal statement

of Theorem 2.2, which shows that a particular family of “simple” functions must contain

some hard-to-approximate function. Like the upper-bounds in Section 2.3, the minimum

width is polynomial (in fact linear) in the quantity Qk,d, where k = Θ(L/ϵ).

Theorem 2.15. [Formal version of Theorem 2.2: Lower-bound for L-Lipschitz functions]

Fix any ϵ, L > 0 and fix any symmetric ReLU parameter distribution D. Then, there exists

some multi-index K ∈ Nd with ∥K∥2 ≤ L/18ϵ such that the function h(x) := 4ϵTK (recall

that TK ∈ T) satisfies ∥h∥Lip ≤ L and

MinWidthh,ϵ, 1
2 ,[−1,1]d,D ≥ 1

4QL/18ϵ,d.

The informal version, Theorem 2.2, follows by applying Fact 2.8 to lower-bound Qk,d.

We note that the function f used in the lower-bound aligns nicely with the approximation

techniques from Section 2.3 because h is (i) a ridge function and (ii) a scalar multiple of a

sinusoidal function from the trigonometric basis T .

We prove Theorem 2.15 in stages by proving a sequence of claims which are successively

more closely tailored to our random ReLU feature model.

2.4.1.1 Negative results for generic random feature models

In Section 2.4.2, we state and prove Theorem 2.18, which gives a general result about

the limitations of linear combinations of m random features. This theorem states that

71

a large fraction of any set of N orthonormal functions must be inapproximable by linear

combinations of m random features when N ≫ m. We state a simplified version of the

theorem below.

Theorem 2.16. Let Φ = {φ1, . . . , φN} ⊂ L2(µ) be a family of N functions such that

⟨φi, φi′⟩µ = 1 {i = i′}. Let g(1), . . . ,g(m) be i.i.d. copies of an L2(µ)-valued random vari-

able. Then, there exists some φi ∈ Φ such that

E
g(1),...,g(m)

[
inf

f∈Span(g(j))m
j=1

∥f − φi∥2
µ

]
≥ 1 − m

N
.

The proof hinges on an intuitive linear algebraic fact generalized to function spaces: N

orthogonal vectors cannot all be close to the span of m vectors when N ≫ m. It does so by

applying the Hilbert Projection Theorem (Fact 2.19). The full generality of Theorem 2.18

also includes function families Φ that are “nearly orthonormal” rather than strictly orthonor-

mal. It also proves the inapproximability of some explicit function φ1 when the family Φ

satisfies a suitable notion of symmetry relative to g(1), . . . ,g(m).

2.4.1.2 Lower bounds on minimum widths of random ReLU feature networks

Lemma 2.21 of Section 2.4.3 adapts Theorem 2.18 to our random ReLU features by

giving a lower-bound on the minimum-width random ReLU feature network needed to ϵ-

approximate some function for any ϵ > 0. Below is a simplified version of the lemma that is

restricted to orthonormal function families, considers only the uniform measure over [−1, 1]d,

and omits the special “symmetric case” for Φ.

Lemma 2.17. Let D be a symmetric ReLU parameter distribution. Fix any Φ =

{φ1, . . . , φN} ⊂ L2([−1, 1]d) such that ⟨φi, φi′⟩[−1,1]d = 1 {i = i′}. Then, for any ϵ > 0,

there exists some φi ∈ Φ such that MinWidth4ϵφi,ϵ,1/2,[−1,1]d,D ≥ N/4.

The proof combines a scaling argument with the definition of MinWidth to provide lower-

bounds for any choice of the error parameter ϵ.

72

2.4.1.3 Conclusion

We conclude the proof of Theorem 2.15 in Section 2.4.4. Lemma 2.22 shows the existence

of a low-degree element of the sinusoidal basis T that cannot be approximated over [−1, 1]d

by an random ReLU feature network of small width. It does so by defining the orthonormal

family of functions to be Φ := {TK ∈ T : K ∈ Kk,d} and invoking Lemma 2.21. The proof

of Theorem 2.15 only requires applying Lemma 2.22 for some k = Θ(L/ϵ) and showing that

all TK ∈ Φ have ∥TK∥Lip ≤ L.

Lemma 2.22 also yields an immediate proof of Theorem 2.27, the Sobolev analogue of

Theorem 2.15, in Section 2.5.2. Theorem 2.27 uses the same function family Φ, but must

bound the Sobolev norm of all functions in Φ rather than the Lipschitz constant.

2.4.2 Negative results for generic random feature models (Theorem 2.18)

In Theorem 2.18, we give the most general form of our lower-bound. In this setting, we

consider linear combinations of features drawn independently from some distribution over

functions (which are not required to be ReLUs or even ridge functions). We argue that the

span of any m such random functions in L2(µ) cannot cover more than m dimensions of that

function space and that we therefore cannot approximate most of the members of a family

of N orthonormal functions if N ≫ m.

If the family of N functions satisfies a suitable notion of symmetry with respect to the

random features, then we can additionally argue that each function in that family is equally

likely to be inapproximable. This makes it possible to construct a single explicit function that

cannot be approximated with high probability by linear combinations of random features.

We give the relevant notion of symmetry below:

Definition 2.6 (Symmetry of random functions). Let g be an L2(µ)-valued random variable

for some measure µ. We say g is symmetric with respect to the set of functions Φ =

{φ1, . . . , φN} ⊂ L2(µ) if the distribution of ⟨g, φi⟩µ is the same for all i = 1, . . . , N .

73

In fact, strict orthonormality of the hard functions is not needed for our approach; we

introduce a notion of “average coherence,”

which allows us to quantify how far the family is from being orthogonal and prove lower-

bounds that depend on this quantity.

Definition 2.7 (Average coherence). For any set of functions Φ = {φ1, . . . , φN} ⊂ L2(µ)

with ∥φi∥µ = 1 for all i = 1, . . . , N , its (average) coherence is κ(Φ) :=
√∑

i ̸=j⟨φi, φj⟩2
µ.

We are particularly interested in large collections of functions with low coherence. Note

that a collection of orthogonal functions has zero coherence. Our main approximation lower

bounds in Theorems 2.15 and 2.23 are achieved using an orthogonal collection. However,

our general lower bound (Theorem 2.18) extends to the case where the family of functions

has small (but nonzero) coherence.

The following general lower bound works for any distribution over random features that

meets the above symmetry condition and for any set of “nearly-orthonormal” functions that

have a bounded average coherence κ. It is akin to Theorem 19 of Kamath, Montasser, and

Srebro, 2020 although that result does not involve a symmetry notion (and hence does not

yield an explicit hard function).

Theorem 2.18 (Lower-bound for linear combinations of random features). Fix a family of

functions Φ = {φ1, . . . , φN} ⊂ L2(µ) with ∥φi∥2
µ = 1 for all i = 1, . . . , N . Let g(1), . . . ,g(m)

be i.i.d. copies of an L2(µ)-valued random variable. Then, there exists some φi ∈ Φ such

that

E
g(1),...,g(m)

[
inf

g∈Span(g(j))m
j=1

∥g − φi∥2
µ

]
≥ 1 − m (1+κ(Φ))

N
. (2.10)

In particular, for any α ∈ [0, 1],

Pr
g(1),...,g(m)

[
inf

g∈Span(g(j))m
j=1

∥g − φi∥2
µ ≥ α

(
1 − m (1+κ(Φ))

N

)]
≥ (1−α)

(
1 − m (1+κ(Φ))

N

)
.

(2.11)

Moreover, if g(1), . . . ,g(m) are symmetric with respect to Φ, then (2.10) and (2.11) hold for

74

i = 1.

We recall two tools that will be used in the proof of Theorem 2.18, namely the Hilbert

projection theorem and the Boas-Bellman inequality.

Fact 2.19 (Hilbert projection theorem (Rudin, 1987)). For some measure µ and

g(1), . . . , g(m) ∈ L2(µ), consider the subspace W = Span(g(1), . . . , g(m)) of L2(µ). For any

h ∈ L2(µ), it holds that

inf
f∈W

∥f − h∥2
µ = ∥ΠWh− h∥2

µ = ∥h∥2
µ − ∥ΠWh∥2

µ , (2.12)

where ΠW : L2(µ) → W is the orthogonal projection operator for W . Moreover, the orthog-

onal projection ΠWh depends on h only through (⟨g(1), h⟩µ, . . . , ⟨g(m), h⟩µ).

The following is a generalization of Bessel’s inequality due to Boas, 1941 and Bellman,

1944, specialized to our present context.

Fact 2.20 (Boas-Bellman inequality). For any h, φ1, . . . , φN ∈ L2(µ),

N∑
i=1

⟨h, φi⟩2
µ ≤ ∥h∥2

µ

(
max

1≤i≤N
∥φi∥2

µ + κ({φ1, . . . , φN})
)
. (2.13)

Proof of Theorem 2.18. By the Hilbert projection theorem (Fact 2.19), for all i ∈ [N] we

have that

E
g(1),...,g(m)

[
inf

f∈Span(g(j))m
j=1

∥f − φi∥2
µ

]
= 1 − E

g(1),...,g(m)

[∥∥∥ΠSpan(g(j))m
j=1
φi
∥∥∥2

µ

]
.

We now upper-bound the sum of the expected norms of the projections of each function

in Φ onto Span(g(j))mj=1. Let u1, . . . ,ud be an orthonormal basis for Span(g(j))mj=1, where

75

d := dim Span(g(j))mj=1. Then

N∑
i=1

∥∥∥ΠSpan(g(j))m
j=1
φi
∥∥∥2

µ
=

N∑
i=1

d∑
k=1

⟨uk, φi⟩2
µ =

d∑
k=1

N∑
i=1

⟨uk, φi⟩2
µ (Plancherel’s identity, Fact 2.3)

≤
d∑
k=1

(1 + κ(Φ)) = d · (1 + κ(Φ)) (Fact 2.20)

≤ m · (1 + κ(Φ)) (dim Span(g(j))mj=1 ≤ m).

Hence, we conclude by linearity of expectation that

1
N

N∑
i=1

E
g(1),...,g(m)

[
inf

f∈Span(g(j))m
j=1

∥f − φi∥2
µ

]
≥ 1 − m · (1 + κ(Φ))

N
. (2.14)

Therefore, there exists some i ∈ [N] such that

E
g(1),...,g(r)

[
inf

g∈Span(g(j))m
j=1

∥g − φi∥2
µ

]
≥ 1 − r · (1 + κ(Φ))

N
,

which gives us inequality (2.10). Inequality (2.11) follows by an application of Markov’s

inequality to the random variable 1−inff∈Span(g(j))m
j=1

∥f−φi∥2
µ (which is easily seen to be non-

negative), which by the first part of the theorem has expected value at most m·(1+κ(Φ))/N .

We conclude by proving the stronger version of the theorem, where we additionally assume

that the random features are symmetric. Suppose g(1), . . . ,g(m) are symmetric with respect

to Φ. As mentioned in Fact 2.19, the orthogonal projection ΠSpan(g(j))m
j=1
φ1 depends on φ1

only through the (random) vector (⟨g(1), φ1⟩µ, . . . , ⟨g(m), φ1⟩µ). Therefore, by the symmetry

assumption on the distribution of each g(i), the orthogonal projection ΠSpan(g(j))m
j=1
φ1 has the

same distribution as ΠSpan(g(j))m
j=1
φi for all i ∈ [N]. Then

E
g(1),...,g(m)

[∥∥∥ΠSpan(g(j))m
j=1
φ1

∥∥∥2

µ

]
= 1
N

N∑
i=1

E
g(1),...,g(m)

[∥∥∥ΠSpan(g(j))m
j=1
φi
∥∥∥2

µ

]
. (2.15)

76

Plugging Equation (2.15) into Inequality (2.14) proves that Inequalities (2.10) and (2.11)

hold for i = 1.

2.4.3 Lower bounds for minimum widths of random ReLU feature networks (Lemma 2.21)

Here, we specialize Theorem 2.18 to the case of ReLU networks, which prepares us to

prove the specific lower-bounds that will be given in the subsequent sections.

Lemma 2.21. Let D be a symmetric ReLU parameter distribution and µ be some measure

over Rd. Fix any Φ = {φ1, . . . , φN} ⊂ L2(µ) such that ∥φi∥2
µ = 1 for all i ∈ [N]. Then, for

any ϵ > 0, there exists some φi ∈ Φ such that

MinWidth4ϵφi,ϵ,
1
2 ,µ,D

≥ N

4 + 4κ(Φ) . (2.16)

Additionally, suppose that the functions in Φ are symmetric up to some permutation of

variables and µ is invariant to permutation of variables. That is, for all i, i′ ∈ [N] there

exists a permutation πi,i′ over [d] such that φi ◦ πi,i′ = φi′. Then, Inequality (2.16) always

holds for i = 1.

Proof. By applying Theorem 2.18 for any m ≤ N/(4 + 4κ(Φ)) and for α = 1/3, there exists

some i ∈ [N] such that

Pr
g(1),...,g(m)

[
inf

f∈Span(g(j))m
j=1

∥φi − f∥µ <
1
4

]
<

1
2 .

Note that for all h, there exists f ∈ Span(g(j))mj=1 with ∥f − h∥µ < ϵ if and only if there

exists f ′ ∈ Span(g(j))mj=1 with ∥h/4ϵ− f ′∥µ < 1/4. Thus, we conclude the following:

Pr
g(1),...,g(m)

[
inf

f∈Span(g(j))m
j=1

∥4ϵφi − f∥µ < ϵ

]
= Pr

g(1),...,g(m)

[
inf

f ′∈Span(g(j))m
j=1

∥φi − f ′∥µ <
1
4

]
<

1
2 .

To prove the stronger version of the theorem that assumes permutation symmetry for Φ,

77

we apply the stronger version of Theorem 2.18. To do so, we must show that each g(i) is

symmetric with respect to Φ.

Because the ReLU feature parameters b(i) are chosen independently w(i) and the distri-

bution of w(i) is invariant to variable permutation, each g(i) is drawn from a distribution that

is also invariant to permutation. We prove the symmetry property by showing that the inner

product distributions are identical for g(1), without loss of generality. Because each function

in φ1, . . . , φN is symmetric to a permutation of variables, there exists some permutation πi,i′

such that for all x ∈ µ, φi(x) = φi′(πi,i′(x)). To show that the two inner products induce

the same distribution, consider any z ∈ R. Then:

Pr
g(1)

[⟨g(1), φi⟩µ ≥ z]

= Pr
g(1)

[
E

x∼µ
[g(1)(x)φi(x)] ≥ z

]
= Pr

g(1)

[
E

x∼µ
[g(1)(x)φj(πi,i′(x))] ≥ z

]
(Existence of πi,i′)

= Pr
g(1)

[
E

x∼µ
[g(1)(πi,i′(x))φj(πi,i′(x))] ≥ z

]
(Symmetry of g(1)’s distribution)

= Pr
g(1)

[
E

x∼µ
[g(1)(x)φi′(x)] ≥ z

]
(Symmetry of µ)

= Pr
g(1)

[⟨g(1), φi′⟩µ ≥ z]

Hence, recalling Definition 2.6, g(1) is symmetric with respect to φ1, . . . , φN . By invoking

Theorem 2.18 with the additional symmetry assumption, inequality (2.16) holds when i =

1.

2.4.4 Proof of Theorem 2.15

To finalize the proof of Theorem 2.15, we first show that some low-degree trigonometric

polynomial cannot be approximated by a combination of random ReLU features.5

5We prove Lemma 2.22 separately from Theorem 2.15 since we also make use of Lemma 2.22 in Sec-
tion 2.5.2 when proving lower-bounds based on the Sobolev norm of a function, rather than its Lipschitz
constant.

78

Lemma 2.22. For any k > 0, any ϵ > 0, and any symmetric ReLU parameter distribution

D, there exists some K ∈ Nd with ∥K∥2 ≤ k such that

MinWidth4ϵTK ,ϵ,
1
2 ,[−1,1]d,D ≥ 1

4Qk,d.

Proof. Let Tk := {TK ∈ T : K ∈ Kk,d} be a subset of trigonometric basis elements with

bounded degree. Because T is an orthonormal family of functions, Tk is as well, and κ(Tk) =

0. Then, Lemma 2.21 implies the existence of some TK ∈ Tk such that

MinWidth4ϵTK ,ϵ,
1
2 ,[−1,1]d,D ≥ |Tk|

4 = 1
4Qk,d.

We prove Theorem 2.15 by applying Lemma 2.22 and bounding the Lipschitz constant

of the inapproximable function.

Theorem 2.15. [Formal version of Theorem 2.2: Lower-bound for L-Lipschitz functions]

Fix any ϵ, L > 0 and fix any symmetric ReLU parameter distribution D. Then, there exists

some multi-index K ∈ Nd with ∥K∥2 ≤ L/18ϵ such that the function h(x) := 4ϵTK (recall

that TK ∈ T) satisfies ∥h∥Lip ≤ L and

MinWidthh,ϵ, 1
2 ,[−1,1]d,D ≥ 1

4QL/18ϵ,d.

Proof of Theorem 2.15. Consider any TK ∈ T with ∥K∥2 ≤ k. Then, for all x, x′ ∈ [−1, 1]d,

|TK(x) − TK(x′)| ≤
√

2π⟨K, x− x′⟩ ≤
√

2π ∥K∥2 ∥x− x′∥2 ≤
√

2πk∥x− x′∥2.

Thus, ∥TK∥Lip ≤
√

2πk and ∥f∥Lip ≤ 4
√

2πkϵ ≤ 18kϵ. By applying Lemma 2.22 with

k := L/18ϵ, there exists a satisfactory h such that ∥h∥Lip ≤ L.

79

2.4.5 Negative result for an explicit L-Lipschitz target

The lower-bound established in Theorem 2.15 is non-explicit; it guarantees the existence

of some inapproximable function in T , but does not by itself let us deduce the specific

identity of a hard function. Since it is desirable to have a lower-bound for a fully explicit

function, we also give a variant that achieves this goal at only a small cost in the resulting

quantitative lower-bound:

Theorem 2.23. For some ϵ, L > 0, let ℓ := min(⌈d/2⌉, ⌊L2/32π2ϵ2⌋). Fix any symmetric

ReLU parameter distribution D. Then the function h(x) := 4
√

2ϵ sin(π∑ℓ
i=1 xi) satisfies

∥h∥Lip ≤ L and

MinWidthh,ϵ, 1
2 ,[−1,1]d,D ≥ 1

4

(
d

ℓ

)
≥ exp

(
Ω
(

min
(
L2

ϵ2 log
(
dϵ2

L2 + 2
)
, d

)))
.

Comparing the quantitative lower bounds of Theorem 2.15 and Theorem 2.23, we see

that the latter is weaker only by a logarithmic factor in the exponent.

The only difference between the proofs of Theorems 2.15 and 2.23 is in the last step.

Theorem 2.23 relies on Lemma 2.24, an analogue of Lemma 2.22, which invokes Lemma 2.21

with a different family Φ of trigonometric polynomials that are symmetric up to a permu-

tation of variables. That is, for every TK , TK′ ∈ Φ, there exists some permutation π over

[d] such that TK = TK′ ◦ π. (Roughly speaking, the larger family of orthonormal functions

used in the proof of Theorem 2.15 consists of functions of the form sin (π ⟨K, x⟩) where

K ∈ Nd is only constrained by having ∥K∥ satisfy some bound, whereas the smaller family

of orthonormal functions used in the proof of Lemma 2.24 consists of functions of the form

sin (π ⟨K, x⟩) where K is restricted to be a 0/1 vector of some specific Hamming weight. The

latter family is easily seen to satisfy symmetry with respect to any permutation π of the d

coordinates, whereas the former family does not satisfy such a symmetry condition.) This

symmetry condition makes it easy to argue that all functions in the symmetric family Φ are

“equally hard,” from which a lower bound follows straightforwardly.

80

Finally, we mention that Lemma 2.24 also supports a proof of the inapproximability

of an explicit function with bounded Sobolev norm; this is established in Theorem 2.28 of

Section 2.5.2.

As in the previous section, we prove Lemma 2.24 by applying Lemma 2.21 to a family of

orthonormal functions. In order to obtain an explicit function f that is hard to approximate,

we invoke the stronger version of Lemma 2.21, which requires showing that that the family

of functions exhibits symmetry up to a permutation of variables.

Lemma 2.24. For any ℓ ∈ Z+ with ℓ ≤ d, any ϵ > 0, and any symmetric ReLU parameter

distribution D, define h : Rd → R to be the function h(x) := 4
√

2ϵ sin(π∑ℓ
i=1 xi). Then,

MinWidthh,ϵ, 1
2 ,[−1,1]d,D ≥ 1

4

(
d

ℓ

)
.

Proof. We prove the claim by constructing a family of functions Φℓ with 1
4ϵh ∈ Φℓ and

applying Lemma 2.21. We define a family of functions

Φℓ :=
{
φS : x 7→

√
2 sin

(
π
∑
i∈S

xi

)
| S ⊆ [d], |S| = ℓ

}
.

Note that |Φℓ| =
(
d
ℓ

)
and that φ1 := 1

4ϵh = φ[ℓ] ∈ Φℓ. Because Φℓ ⊆ T and T is an orthonor-

mal basis for L2([−1, 1]d) (Fact 2.5), the functions in Φℓ are orthonormal and κ(Φℓ) = 0.

Thus, because the Φℓ satisfies the symmetry conditions for the special case of Lemma 2.21,

MinWidthh,ϵ, 1
2 ,[−1,1]d,D ≥ 1

4

(
d

ℓ

)
.

Proof of Theorem 2.23. This is immediate from Lemma 2.24 and from the fact that ∥h∥Lip =

4πϵ
√

2ℓ ≤ L. The right-hand side of the bound follows by lower-bounding
(
d
ℓ

)
for our choice

of ℓ.

81

If ℓ = ⌈d/2⌉ and d ≥ 2,6 then

(
d

ℓ

)
≥
(

d

⌈d/2⌉

)⌈d/2⌉

≥
(3

2

)d/2
≥ exp (Θ(d)) .

Otherwise, ℓ < d/2 and

(
d

ℓ

)
≥
(
d

ℓ

)ℓ
≥ exp

(
Θ
(
ℓ log

(
d

ℓ
+ 2

)))
= exp

(
Θ
(
L2

ϵ2 log
(
dϵ2

L2 + 2
)))

.

This matches the exponent asymptotically up to logarithmic factors of the corresponding

Lipschitz upper-bound, Theorem 2.9.

2.5 Positive and negative results for Sobolev targets

In this section, we present upper and lower bounds on the width required for depth-2

RBL ReLU approximation of functions in a larger family of smooth functions, namely the

order-s Sobolev functions. Sobolev spaces are normed function spaces arising in the study

of partial differential equations, and their norms quantify the effective “bumpiness” of their

constituent functions in terms of their weak derivatives. Let µ denote the uniform probability

measure on an open subset of Rd. Following Leoni (2017), we denote the order-s Sobolev

space of functions in L2(µ) for s ∈ N by7

Hs(µ) :=
{
h : Rd → R : D(M)h ∈ L2(µ), ∀M ∈ Nd s.t. |M | ≤ s

}
.

The norm on this space is

∥h∥Hs(µ) :=
√ ∑

|M |≤s
∥D(M)h∥2

µ.

6There is no need to consider the d = 1 case, because then MinWidthf,ϵ, 1
2 ,[−1,1]d,D ≥ 1

4 = exp(Θ(1)),
which satisfies the claim.

7Technically, D(M)h is interpreted as the M -th weak partial derivative of h. However, it satisfies the
integration-by-parts formulas that appear in the proof of Lemma 2.7, which is all we require.

82

(We do not consider Sobolev spaces in Lp(µ) for p ̸= 2 since we rely on Hilbert space

structure.)

We focus on the classical spaces Hs(µ) in L2(µ), where µ is the uniform product proba-

bility measure on the torus Td and T = R/(2Z). As a short-hand, we refer to this space as

Hs(Td) in L2(Td). Recall that T is obtained by identifying points in R that differ by 2z for

some z ∈ Z. Functions on Td can be regarded as functions on [−1, 1]d, which, along with their

derivatives, satisfy the periodic boundary conditions. Note that T is also an orthonormal

basis for Td, because all of the trigonometric polynomials in T and all their derivatives have

periodic boundary conditions and because the probability density of the uniform distribution

on Td is the same as the density over the uniform distribution on [−1, 1]d.

2.5.1 Upper-bounds for functions in Hs(Td)

We prove an analogue to Theorem 2.9 that places an upper-bound on the minimum-width

random ReLU feature network that approximates a function with bounded order-s Sobolev

norm.

Theorem 2.25. Fix some δ ∈ (0, 1/2], ϵ, γ > 0, and s ∈ Z+. Let k :=
√
sγ1/s/ϵ1/s. Then,

there exists some ReLU parameter distribution D such that for any fixed h ∈ Hs(Td) that

satisfies ∥h∥Hs(Td) ≤ γ, we have

MinWidthh,ϵ,δ,Td,D ≤ O

(
s2γ2+4/sd2

ϵ2+4/s Q2
k,d ln

(1
δ

))
.

Remark 2.1. When s = 1,

MinWidthh,ϵ,δ,Td,D ≤ O

(
γ6d2

ϵ6 Q2
γ/ϵ,d ln

(1
δ

))
,

which is a near-perfect match to the upper-bound for Lipschitz functions in Theorem 2.9.

This is unsurprising, because all L-Lipschitz functions h with |E [h]| ≤ L have a squared

83

1-order Sobolev norm with the following bound:

∥h∥2
Hs(Td) = ∥h∥2

T + E
x∼Td

[
∥∇h(x)∥2

]
≤ O(L2).

Thus, the two theorems give nearly identical upper-bounds for L-Lipschitz functions that

satisfy periodic boundary conditions.

Remark 2.2. Applying Fact 2.8 to Theorem 2.25 implies that

MinWidthh,ϵ,δ,Td,D ≤ ln
(1
δ

)
exp

(
O

(
min

(
d log

(
sγ2/s

dϵ2/s + 2
)
,
sγ2/s

ϵ2/s log
(
dϵ2/s

sγ2/s + 2
))))

.

Like the proof of Theorem 2.9, we first show that every function in Hs(Td) can be

approximated by low-degree trigonometric polynomial in Lemma 2.26, which is a parallel

result to Lemma 2.10. Unlike Theorem 2.9, however, we require that h and its first s

derivatives satisfy the periodic boundary conditions, which is assured by the fact that h ∈

Hs(Td). Thanks to this assumption, we eliminate the need for the “reflection” trick from

Lemma 2.10, which simplifies the proof.

Lemma 2.26 (Approximating Sobolev functions with low-degree trigonometric polynomi-

als). Fix any values γ, ϵ > 0 and s ∈ Z+. Consider any h ∈ Hs(Td) with ∥h∥Hs(Td) ≤ γ. Let

k :=
√
sγ1/s/(2ϵ)1/s. Then, there exists a trigonometric polynomial

P (x) =
∑

K∈Kk,d

βKTK(x)

such that ∥h− P∥Td ≤ ϵ. Moreover, |βK | ≤ ∥h∥Td ≤ γ for all K ∈ Kk,d.

Proof. Because T is an orthonormal basis over Td, we express h as the expansion

h =
∑
K∈Zd

αKTK .

Since h can be regarded as a function on [−1, 1]d whose first s partial derivatives satisfy

84

boundary conditions, Lemma 2.7 implies that this expansion of h can be differentiated

term-by-term. By taking term-by-term partial derivatives of h, applying Parseval’s iden-

tity (Fact 2.3), and using the known norms of partial derivatives of TK (Fact 2.6), we obtain

the following closed-form L2(Td) norm for D(M)h for all M ∈ Nd with |M | ≤ s:

∥∥∥D(M)h
∥∥∥2

Td
=

∑
K∈Zd

α2
K(πK)2M .

Therefore, the squared Hs(Td)-norm of h can be written as

∥h∥2
Hs(Td) =

∑
|M |≤s

∥∥∥D(M)h
∥∥∥2

Td
=

∑
|M |≤s

∑
K∈Zd

α2
K(πK)2M =

∑
K∈Zd

α2
KcK,s, (2.17)

where

cK,s :=
∑

|M |≤s
(πK)2M .

We lower-bound cK,s in terms of s and ∥K∥2 with the multinomial theorem:

cK,s ≥
∑

|M |=s
(πK)2M ≥ π2s

s!
∑

|M |=s

s!
M !K

2M = π2s

s! ∥K∥2s
2 ≥

(
π2 ∥K∥2

2
s

)s
.

We define βK := αK for all K ∈ Kk,d and βK := 0 for all other K ∈ Zd. Note that if

K ∈ Zd has ∥K∥2 > k ≥
√
sγ1/s/πϵ1/s, then cK,s > γ2/ϵ2. By Parseval’s identity, we have

β2
K ≤ ∥h∥2

Td . Moreover,

∥h− P∥2
Td =

∑
K∈Zd\Kk,d

α2
K ≤

∑
K∈Zd:

cK,s>γ
2/ϵ2

α2
K ≤

∑
K∈Zd:

cK,s>γ
2/ϵ2

α2
K · cK,S

γ2/ϵ2 ≤ ϵ2

γ2

∑
K∈Zd

α2
KcK,s ≤ ϵ2.

Above, the first equality uses Parseval’s identity, and the final equality uses Equation (2.17).

Proof of Theorem 2.25. This proof is identical to the proof of Theorem 2.9 in Section 2.3.1.3,

except that we make use of Lemma 2.26 instead of Lemma 2.10, and instead set k :=

85

√
sγ1/s/ϵ1/s and ρ := 1.

2.5.2 Lower-bounds for functions in Hs([−1, 1]d)

Similar to Section 2.4, we give lower-bounds on the width of random ReLU feature neural

networks required to approximate certain functions (now ones with bounded s-order Sobolev

norm). As before, we present two variants of the lower-bound, one non-explicit tight bound

and one looser explicit bound.

• Theorem 2.27 is analogous to Theorem 2.15. It shows the existence of some sinusoidal

function with bounded Sobolev norm which matches the upper-bound Theorem 2.25

by depending on the same combinatorial term.

• Theorem 2.28, like Theorem 2.23, offers an explicit sinusoidal function with bounded

Sobolev norm whose minimum width can be bounded by a term that differs from the

asymptotics of the exponent of the upper-bound by a logarithmic factor.

These results follow from proofs that directly apply Lemmas 2.22 and 2.24 respectively

and bound the s-order Sobolev norms of the resulting functions.

2.5.2.1 A tight lower-bound

We give a bound on the minimum width two-layer random ReLU feature network needed

to approximate some function with bounded Sobolev norm, which is a scaled version of

some function in T . The family of functions is identical to that of Theorem 2.27; the only

difference is that we parameterize the bounds by the s-order Sobolev norm of the function,

rather than its Lipschitz constant.

Theorem 2.27. Fix some ϵ, γ > 0 and s ∈ Z+ with γ2/ϵ2 ≥ 16(s+ 1). Let

k := 1
π

·
(

γ

4ϵ
√
s+ 1

)1/s

.

86

Then, there exists some K ∈ Kk,d such that for h := 4ϵTK and for any symmetric ReLU

parameter distribution D,

MinWidthh,ϵ, 1
2 ,T

d,D ≥ 1
4Qk,d,

and ∥h∥Hs(Td) ≤ γ.

Remark 2.3. By invoking Fact 2.8, we have

MinWidthh,ϵ,1/2,Td,D ≥ exp
(

Ω
(

min
(
d log

(
γ2/s

dϵ2/s + 2
)
,
γ2/s

ϵ2/s log
(
dϵ2/s

γ2/s + 2
))))

.

Note that we can drop (s + 1)1/s terms from the asymptotics of the exponent, because (s +

1)1/s ∈ (1, 2] for all s ∈ Z+. The asymptotics of the exponents match the upper-bound on

the minimum width presented in Remark 2.2, when δ = 1/2 and s is regarded as a small

constant.

Proof. To prove the existence of h, we need only invoke Lemma 2.22 for our choice of k.

It remains to bound the s-order Sobolev norm of h. We do so by expanding the squared

Sobolev norm of h and applying Fact 2.6 to obtain an exact representation of the norms of

derivatives of the basis elements TK ∈ T .

∥h∥2
Hs(Td) =

∑
M :|M |≤s

∥∥∥D(M)h
∥∥∥2

Td
= 16ϵ2 ∑

M :|M |≤s

∥∥∥D(M)TK
∥∥∥2

Td

= 16ϵ2 ∑
M :|M |≤s

π2|M |K2M = 16ϵ2
s∑

m=0
π2m ∑

|M |=m
K2M

≤ 16ϵ2
s∑

m=0
π2m ∑

|M |=m

m!
K!K

2M = 16ϵ2
s∑

m=0
π2m ∥K∥2m

2

≤ 16ϵ2
s∑

m=0

(
π2k2

)m
= 16ϵ2

s∑
m=0

(
γ2/s

161/sϵ2/s(s+ 1)1/s

)m

Because of our assumed lower-bound on γ2/ϵ2, the final term of the sum cannot be smaller

than any preceding terms. Therefore, we conclude with the following trivial bound on the

87

sum.

∥h∥2
Hs(Td) ≤ 16ϵ2

s∑
m=0

(
γ2/s

161/sϵ2/s(s+ 1)1/s

)m
≤ 16ϵ2(s+ 1)

(
γ2/s

161/sϵ2/s(s+ 1)1/s

)s
= γ2.

2.5.2.2 A lower-bound for an explicit sinusoidal function

We give an explicit lower-bound that bounds the Sobolev norm of the function f used in

Lemma 2.24. In that way, it is nearly identical to Theorem 2.23.

Theorem 2.28. Fix some ϵ, γ > 0 and s ∈ Z+ with γ2/ϵ2 ≥ 16(s+ 1). Let

ℓ := min
(⌈

d

2

⌉
,

⌊
γ2/s

π2161/sϵ2/s(s+ 1)1/s

⌋)
.

Fix any symmetric ReLU parameter distribution D. Then, the function

h(x) := 4
√

2ϵ sin
(
π

ℓ∑
i=1

xi

)

satisfies ∥h∥Hs(Td) ≤ γ and

MinWidthh,ϵ, 1
2 ,T

d,D ≥ 1
4

(
d

ℓ

)
≥ exp

(
Ω
(

min
(
γ2/s

ϵ2/s log
(
dϵ2/s

γ2/s + 2
)
, d

)))
.

Proof. The width bound is immediate from Lemma 2.24 and from the lower-bounds on
(
d
ℓ

)
shown in the proof of Theorem 2.23. Note that h can be written as h = 4ϵTK for some K

with

∥K∥2 =
√
ℓ ≤ γ1/s

π41/sϵ1/s(s+ 1)1/2s .

Thus, we conclude that ∥h∥Hs(Td) ≤ γ by applying the same chain of inequalities from

Theorem 2.27, making use of our lower-bound on γ2/ϵ2.

88

2.6 Conclusion

This chapter discusses the results of Hsu, Sanford, Servedio, and Vlatakis-Gkaragkounis

(2021), which investigates the representational capabilities and limitations of two-layer neural

networks with random ReLU features. We show that the expressivity of these models can be

characterized by a trade-off between the input dimensionality, the smoothness of the target

function, and the width of the network. If either the input dimensionality is small or the

target function is smooth, then the width of the random feature model can be polynomially

bounded. This asymptotically tight characterization relies on a relationship between the

dimensionality of the functional space spanned by the random features and an orthogonal

decomposition of the target function.

These results serve as an apt first chapter to the dissertation, as they capture the key

themes of the thesis. This chapter produces a tight separation between the expressivity of

different neural architectures—in this case, two-layer random feature models and general

neural networks of variable width—that depends on some complexity measure of the target

function. Later chapters of the thesis will similarly explore separations between shallow

and deep models (Chapter 3), between bounded-weight networks and unrestricted networks

(Chapter 4), and between different sequential architectures (Chapters 5 and 6). Akin to

this result, each of these results constructs a particular target function that certifies the

separation between the models and captures the intuitive limitations of the simpler model.

In this case, that target function—a single-index sinusoidal function—exhibits an exponential

gap in expressivity between the random feature model and unrestricted neural networks.

More personally, this chapter was the first work completed by the author in graduate

school, the first theoretical work that the author led, and the first in machine learning

theory. While future papers written by the author (and subsequent chapters of this thesis)

would study more intricate neural architectures and apply different mathematical tools, the

research project presented in this chapter had a significant impact in the author’s lens on

89

machine learning theory and his taste in research problems.

90

Chapter 3: Powers of depth and the discrete dynamical systems

lens

This chapter investigates the core representational question of whether a shallow neural

network can approximate a given target function f . Previous works (e.g. Chatziafratis et

al., 2019; Chatziafratis, Nagarajan, and Panageas, 2020) examined this basic question on

neural network expressivity from the lens of dynamical systems and provide novel “depth-vs-

width” trade-offs for a large family of functions f . They suggested that such trade-offs are

governed by the existence of periodic points or cycles in f . This chapter, by further deploying

dynamical systems concepts, illuminates a more subtle connection between periodicity and

expressivity: we prove that periodic points alone lead to suboptimal depth-width trade-offs

and we improve upon them by demonstrating that certain “chaotic itineraries” give stronger

exponential trade-offs, even in regimes where previous analyses only imply polynomial gaps.

Contrary to prior works, these bounds are nearly optimal, tighten as the period increases,

and handle strong notions of inapproximability (e.g., constant L1 error). More broadly, we

identify a phase transition to the chaotic regime that exactly coincides with an abrupt shift

in other notions of function complexity, including VC-dimension and topological entropy.

The research presented in this chapter reflects the work of Sanford and Chatziafratis

(2022).

3.1 Introduction

Whether a neural network (NN) succeeds or fails at a given task crucially depends on

whether or not its architecture (depth, width, types of activation units, etc.) is suitable

for the task at hand. For example, a “size-inflation” phenomenon has occurred in recent

91

years, in which neural networks tend to have more layers and parameters. Recall that

in 2012, AlexNet had 8 layers. In 2015, ResNet won the ImageNet competition with 152

layers (Krizhevsky, Sutskever, and Hinton, 2012b; He et al., 2016). This trend continues,

with modern models using billions (or possibly trillions) of parameters (Brown et al., 2020).

The empirical success of deep neural networks motivates researchers to ask: What are the

theoretical benefits of depth, and what are the depth-vs-width tradeoffs?

This question gives rise to the study of neural network expressivity, which characterizes

the class of functions that are representable (or approximately representable) by a neural

network of certain depth, width, and activation. For instance, Eldan and Shamir (2016)

propose a family of “radial” functions in Rd that are easily expressible with 3-layered feed-

forward neural nets of small width but require any approximating 2-layer network to have

exponentially (in d) many neurons. In other words, they formally show that depth—even if

increased by 1—can be exponentially more valuable than width.

Not surprisingly, understanding the expressivity of NNs was an early question asked in

1969 when Minsky and Papert showed that the Perceptron can only learn linearly separable

data and fails on simple XOR functions (Minsky and Papert, 1969). The natural question

of which functions can be expressed by two-layer ensembles of Perceptrons (i.e., multilayer

feed-forward NN) was addressed later by Cybenko (1989) and Hornik, Stinchcombe, and

White (1989) in the so-called universal approximation theorem. This states, roughly, that

just one hidden layer of standard activation units (e.g., sigmoids, ReLUs, etc.) suffices to

approximate any continuous function arbitrarily well. Taken at face value, any continuous

function is a two-layer (i.e., containing one hidden layer) network in disguise, and hence, there

is no reason to consider deeper networks. However, the width required can grow arbitrarily,

and many works in the following decades quantify those depth-vs-width tradeoffs.

Towards this direction, one typically identifies a function with a “measure of complexity”

to demonstrate the benefits of depth. For example, the seminal work by Telgarsky (2015) and

Telgarsky (2016) relies on the number of oscillations of a narrow family of triangle mappings

92

on [0, 1] that can be expressed recursively with deep neural networks. Other relevant notions

of complexity to the expressivity of NNs include the VC dimension (Warren, 1968; Anthony

and Bartlett, 1999; Schmitt, 2000), the number of linear regions (Montufar et al., 2014;

Arora et al., 2016) or activation patterns (Hanin and Rolnick, 2019), the dimension of

algebraic varieties (Kileel, Trager, and Bruna, 2019), the Fourier spectrum (Barron, 1993;

Eldan and Shamir, 2016; Daniely, 2017a; Lee et al., 2017; Bresler and Nagaraj, 2020),

fractals (Malach and Shalev-Shwartz, 2019), topological entropy (Bu, Zhang, and Luo, 2020),

Lipschitzness (Safran, Eldan, and Shamir, 2019; Hsu et al., 2021), global curvature and

trajectory length (Poole et al., 2016; Raghu et al., 2017).

This work builds upon recent papers (Chatziafratis et al., 2019; Chatziafratis, Nagarajan,

and Panageas, 2020), which study expressivity from the lens of discrete-time dynamical

systems and extend Telgarsky’s results beyond triangle (tent) maps. At a high level, their

idea is the following: if the initial layers of a neural network output a real-valued function f ,

then concatenating the same layers k times one after the other outputs fk := f ◦ f ◦ . . . ◦ f ,

i.e., the composition of f with itself k times. By associating each discrete timestep k to

the output of the corresponding layer in the network, one can study expressivity via the

underlying properties of f ’s trajectories. Indeed, if f contains higher-order fixed points,

called periodic points, then deeper NNs can efficiently approximate fk, but shallower nets

would require exponential width, governed by f ’s periodicity.

Inspired by these novel connections to discrete dynamical systems, we pose the following

natural question:

Apart from periodicity, are there other properties of f ’s trajectories that govern

the expressivity tradeoffs?

We prove that f ’s periodicity alone is not the end of the story, and we improve on the known

depth-width tradeoffs from several perspectives. We exhibit functions of the same period

with very different behaviors (see Section 3.1.4) that can be distinguished by the concept

of “chaotic itineraries.” We analyze these here to achieve nearly optimal tradeoffs for NNs.

93

Our work highlights why previous works that examine periodicity alone only obtain loose

bounds. More specifically:

• We accurately quantify the oscillatory behavior of a large family of functions f . This

leads to sharper and nearly optimal lower bounds for the width of NNs that approxi-

mate fk.

• Our lower bounds cover a stronger notion of approximation error, i.e., constant sep-

arations between NNs, instead of bounds that become small depending heavily on f

and its periodicity.

• At a conceptual level, we introduce and study certain chaotic itineraries, which super-

sede Sharkovsky’s theorem (see Section 3.1.2).

• We elucidate connections between periodicity and other function complexity measures

like the VC-dimension and the topological entropy (Alsedà, Llibre, and Misiurewicz,

2000). We show that all of these measures undergo a phase transition that coincides

with the emergence of the chaotic regime based on periods.

To the best of our knowledge, we are the first to incorporate the notion of chaotic

itineraries from discrete dynamical systems into the study of NN expressivity. Before stating

and interpreting our results, we provide some basic definitions.

3.1.1 Function Approximation and NNs

This chapter employs three notions of approximation to compare functions f, g : [0, 1] →

[0, 1].

• L1(f, g) = ∥f − g∥1 =
∫ 1

0 |f(x) − g(x)| dx.

• L∞(f, g) = ∥f − g∥∞ = supx∈[0,1] |f(x) − g(x)| .

94

• Classification error RS,t: For some sample S = {x1, . . . , xn} ⊆ [0, 1] and threshold

t ∈ [0, 1], let RS,t(f, g) be the fraction of samples that classifiers derived by thresholding

f and g disagree on. That is, RS,t(f, g) = 1
n

∑n
i=1 1 {[[f(xi)]]t ̸= [[g(xi)]]t} for [[x]]t =

1 {x ≥ t}.

While L1 and L∞ directly measure the ability of a hypothesis to approximate a fixed function,

RS,t measures the difference between functions by framing the question as a classification

problem.

For what follows, let N (u, ℓ) be the family of feedforward NNs of depth ℓ and width at

most u per layer with ReLU activation functions.1 All our results also hold for the more

general family of semialgebraic activations (Telgarsky, 2016).

3.1.2 Discrete Dynamical Systems

To construct families of functions that yield depth-separation results, we rely on a stan-

dard notion of unimodal functions from dynamical systems (Metropolis, Stein, and Stein,

1973).

Definition 3.1. Let f : [0, 1] → [0, 1] be a continuous and piece-wise differentiable function.

We say f is a unimodal mapping if:

1. f(0) = f(1) = 0, and f(x) > 0 for all x ∈ (0, 1).

2. There exists a unique maximizer x′ ∈ (0, 1) of f , i.e., f is strictly increasing on the

interval [0, x′) and strictly decreasing on (x′, 1].

Our constructions rely on unimodal functions that are concave and also symmetric around
1
2 (i.e., f(x) = f(1−x) for all x ∈ [0, 1])2. We note that the resulting function family is fairly

general, already capturing the triangle waves of Telgarsky (2016) and the logistic map used in

previous depth-separation results (Schmitt, 2000). Moreover, the study of one-dimensional
1Recall ReLU(x) = max(x, 0).
2Throughout, symmetric f refers to such functions that are symmetric around 1

2 .

95

discrete dynamical systems by applied mathematicians explicitly identifies unimodal map-

pings as important objects of study (Metropolis, Stein, and Stein, 1973; Alsedà, Llibre, and

Misiurewicz, 2000).

Recall that a fixed point x∗ of f is a point where f(x∗) = x∗. A more general notion of

higher-order fixed points is that of periodicity.

Definition 3.2. For some p ∈ N, we say that x1 ∈ [0, 1] is a point of period p if fp(x1) = x1

and fk(x1) ̸= x1
3 for all k ∈ [p−1].4 The sequence x1, f(x1), . . . , f p−1(x1) is called a p-cycle,

and f has periodicity p if such a cycle exists.

For example, the identity map f(x) = x has a fixed point (or a point of period 1) at any

x ∈ [0, 1]. Likewise, f(x) = 1 − x has a fixed point at x = 1
2 and a point of period 2 at any

other choice of x. The triangle map f(x) = min(2x, 2(1 − x)) has a fixed point at x = 2
3 ; a

2-cycle with x1 = 2
5 and x2 = 4

5 ; and a 3-cycle with x1 = 2
9 , x2 = 4

9 and x3 = 8
9 (among other

cycles of higher periodicity).

Does the existence of some p-cycle in f have any implications about the existence of

other cycles? These relations between the periods of f are of fundamental importance to

dynamical systems analysis. In particular, Li and Yorke (1975) proved that “period 3 implies

chaos” in their celebrated work, which also introduced the term “chaos” to mathematics and

later spurred the development of chaos theory. Interestingly, an even more general result was

already obtained a decade earlier in Eastern Europe, by Sharkovsky (1964) and Sharkovsky

(1965):

Theorem 3.1 (Sharkovsky’s Theorem). Let f : [0, 1] → [0, 1] be continuous. If f contains

period p and p ▷ p′, then f also contains period p′, where the symbol “ ▷” is defined based on

the following (decreasing) ordering:

3 ▷ 5 ▷ 7 ▷ . . . ▷ 2 · 3 ▷ 2 · 5 ▷ 2 · 7 ▷ . . .
3Throughout the chapter, fk means composition of f with itself k times, or fk = f ◦ f ◦ · · · ◦ f︸ ︷︷ ︸

k

.

4As is common, [m] = {1, 2, . . . , m}.

96

. . . ▷ 22 · 3 ▷ 22 · 5 ▷ 22 · 7 ▷ . . . ▷ 23 ▷ 22 ▷ 2 ▷ 1.

This total ordering, called Sharkovsky’s ordering, sorts all natural numbers by defining l▷r

whenever l is to the left of r. The maximum number in this ordering is 3; if f contains period

3, then it also has all other periods, which is also known as Li-Yorke chaos. Chatziafratis

et al. (2019) and Chatziafratis, Nagarajan, and Panageas (2020) apply this theorem to

obtain depth-width tradeoffs based on periods and obtain their most powerful results when

p = 3. We go beyond Sharkovsky’s theorem and prove that tradeoffs are determined by the

“itineraries” of periods.5

Definition 3.3 (Itineraries). For a p-cycle x1, . . . , xp, suppose that xa1 < · · · < xap for

aj ∈ [p]. The itinerary of the cycle is the cyclic permutation of xa1 , . . . , xap induced by f ,

which we represent by the string a = a1 . . . ap. Because cyclic permutations are invariant to

rotation, we assume (without loss of generality) that a1 = 1.

Definition 3.4 (Chaotic Itineraries). A p-cycle is a chaotic itinerary or an increasing cycle

if its itinerary is 12 . . . p. That is, x1 < · · · < xp.

Examining chaotic itineraries circumvents the limitations of prior works based on periods

and yields sharper exponential depth-width tradeoffs. For example, there are two distinct

itineraries of 4-cycles on unimodal maps: a = 1234 and a = 1324. The former is chaotic,

and repeatedly applying the function yields a complex function that is hard to approximate;

the latter does not guarantee hardness of approximation, and there exist easily approximable

functions fk derived recursively from mappings f that have the 1324 itinerary. We discuss

this case more thoroughly in Section 3.1.4 and explore other examples of chaotic itineraries

in Section 3.4.1. Unlike other function complexity properties, the existence of a chaotic

itinerary is easily verifiable (see Section 3.4.3).
5These are called “patterns” by Alsedà, Llibre, and Misiurewicz (2000).

97

3.1.3 Our Main Contributions

Our principal goal is to use knowledge about f ’s itineraries to quantify the number of

oscillations of fk more accurately. The number of oscillations (equivalent to the monotone

pieces of sufficient size, formally defined in Definitions 3.5 and 3.6) is the relevant function

complexity measure for our depth-width trade-offs, which we relate to other complexity

measures. Section 3.2 produces sharper and more robust NN approximability tradeoffs than

prior works by leveraging chaotic itineraries and unimodality. Section 3.3 shows how a phase

transition in VC-dimension and topological entropy of f occurs exactly when the growth rate

of oscillations shifts from polynomial to exponential.

While previous works count oscillations too, they either construct too narrow a range

of functions6, obtain loose depth-width tradeoffs7, or have unsatisfactory approximation

error. 8 In Section 3.2, we improve along these three directions by taking advantage of the

unimodality and itineraries of f . The unimodality of f allows us to quantify both the number

of piecewise monotone pieces of fk (i.e., oscillations) and the corresponding height between

the highest and lowest values of fk’s oscillations. This improvement on the height enables

stronger notions of function approximation (e.g., constant error rates with no dependence on

f or its period p). Chaotic itineraries allow an improved analysis of the number of oscillations

in fk. The existence of these itineraries provide sharper exponential lower bounds on the

width of any shallow net g approximating fk.

We say that our results are nearly optimal because we exhibit a broad family of functions

f that are inapproximable by shallow networks of width O(ρk) for ρ arbitrarily close to

2. Because no unimodal function f can induce more than 2k oscillations in fk, we cannot

aspire to tighter exponent bases in this setting.9 On the other hand, none of the bounds
6e.g., Telgarsky (2016) analyze only a restricted family of surjective triangle mappings constructed from

neural networks with semi-algebraic gates.
7e.g., Chatziafratis et al. (2019) and Chatziafratis, Nagarajan, and Panageas (2020) have a suboptimal

dependence on p under stringent Lipschitz assumptions.
8e.g., Chatziafratis et al. (2019), Chatziafratis, Nagarajan, and Panageas (2020), and Bu, Zhang, and

Luo (2020) do not obtain constant error rates.
9Our results also transfer to non-unimodal functions via the observation that for bimodal g, there is some

98

from previous works (except the narrow bounds of Telgarsky (2016)) produce width bounds

of more than Ω(ϕk), where ϕ ≈ 1.618 is the Golden Ratio. To demonstrate our sharper

tradeoffs, we state a special case of our results for the L∞ error.

Theorem 3.2. For p ≥ 3 and k ∈ N, consider any symmetric, concave unimodal mapping

f with an increasing p-cycle and any g ∈ N (u, ℓ) with width

u ≤ 1
8

(
max

(
2 − 4

2p , ϕ
))k/ℓ

Then, L∞(fk, g) = Ω(1), independent of f, p, k.

When g is shallow with depth ℓ = O(k1−ϵ) (e.g., ℓ = k0.99), then its width must be

exponentially large to approximate fk closely. This exponential separation in k is sharper

than prior works (Chatziafratis et al., 2019; Chatziafratis, Nagarajan, and Panageas, 2020),

and quickly becomes sharper (tending to 2) with larger values of p. This is counterintuitive

as Sharkovsky’s ordering implies that period 3 is the most chaotic and prior works recover a

suboptimal rate of at most ϕ ≈ 1.618 (see Table 3.1).

Our approximation error is constant independent of all other parameters f, k, p. Previous

results (Chatziafratis et al., 2019; Chatziafratis, Nagarajan, and Panageas, 2020; Bu, Zhang,

and Luo, 2020) obtain a gap that depends on f, p and may be arbitrarily small. Moreover,

we have required nothing of the Lipschitz constant of f , unlike the strict assumptions on

the Lipschitz constant L of f by Chatziafratis, Nagarajan, and Panageas, 2020 (e.g., they

require L = ϕ for period p = 3). Indeed, Propositions 3.12 and 3.13 in the Section 3.2.4

illustrate how their lower bounds break down for large L and how their L∞ bounds can

shrink, becoming arbitrarily weak for certain 3-periodic f .

We also present analogous results for the classification error and L1 error in Theorems 3.6

and 3.7. Furthermore, Theorems 3.10 and 3.11 offer an improvement on the results of

Chatziafratis, Nagarajan, and Panageas (2020) by giving constant-accuracy L∞ lower bounds

unimodal f such that the number of oscillations of g is at most twice those of f .

99

without needing a chaotic itinerary.

In addition, Section 3.3 relates our chaotic itineraries to standard notions of function

complexity like the VC dimension and the topological entropy (for precise definitions, see

Sec. 3.3). The types of periodic itineraries of f give rise to two regimes: the doubling regime

and the chaotic regime. In the former, we have a polynomial number of oscillations, while the

latter is characterized by an exponential number of oscillations. Here we show the following

correspondence:

Informal Theorem 3.3. The transition between these two regimes coincides with a sharp

transition in the VC-dimension of the iterated mappings fk for fixed f (from bounded to

infinite) and the topological entropy (from zero to positive).

Our Techniques To quantify the oscillations of fk, we use its chaotic itineraries to de-

compose the [0, 1] interval into several subintervals {Ij}j=p−1
j=1 . We count the number of

times fk “visits” each Ij, by identifying a suitable matrix A whose spectral radius is a lower

bound on the growth rate of oscillations. The associated characteristic polynomial of A is

λp − 2λp−1 + 1 and has a larger spectral radius than that of prior works for all periods.

Moreover, the corresponding oscillations of at least one of the subintervals Ij do not shrink

in size, giving a bound on the total number of oscillations of a sufficient size. This provides

a lower bound on the height between the peak and the bottom of these oscillations that later

provides constant approximation errors for small shallow NNs.

More broadly, our work builds on the efforts to characterize large families of functions that

give depth separations and addresses questions raised by Eldan and Shamir (2016), Telgarsky

(2016), Poole et al. (2016), and Malach and Shalev-Shwartz (2019) about the properties of

hard-to-represent functions. Similar to periods, the concept of chaotic itineraries can serve as

a certificate of complexity, which is also easy to verify for unimodal f (see Proposition 3.35).

100

Figure 3.1: Plots of unimodal mappings with different itineraries f1234, f1324, and f123. De-
spite their similarities, f1234 leads to the most oscillations and sharpest depth-width tradeoffs
(see Fig. 3.2).

3.1.4 Warm-up examples

This section presents illustrative examples and instantiates our results for some sim-

ple cases. These highlight the limitations of exclusively considering periodicity of cycles

alone—and not itineraries—when developing accurate oscillation/crossing bounds (see also

Def. 3.5, 3.6) and sharp expressivity tradeoffs.

Consider the three unimodal mappings in Figure 3.1, fa with itineraries

a ∈ {1324, 1234, 123}.

Observe that f1234 has the cycle (1
5 ,

2
5 ,

3
5 ,

4
5), f1324 has (1

5 ,
3
5 ,

2
5 ,

4
5), and f123 has (1

4 ,
1
2 ,

3
4).

Despite their similarities, they give rise to significantly different behaviors in fka .

What do prior works based on NN approximation with respect to periods and Sharkovsky’s

theorem alone tell us? Chatziafratis et al. (2019) and Chatziafratis, Nagarajan, and Panageas

(2020) show that the 3-cycle of f123 ensures that fk has Ω(ϕk) oscillations, where ϕ ≈ 1.618

is the golden ratio. However, their theorems do not imply anything for f1324 and f1234, since

4 is a power of 2, and they require odd periods.

As it turns out, f1234 leads to exponential oscillations and f1324 leads only to polynomial

101

oscillations:

• A mapping with a 1324-itinerary is guaranteed to have no cycles besides the 2-cycle

and a fixed point (Metropolis, Stein, and Stein, 1973). Sharkovsky’s theorem and

Chatziafratis et al. (2019) predict this outcome, since 4 is the third-right-most element

of the Sharkovsky ordering, and its existence alone promises nothing more. The or-

dering of itineraries introduced by Metropolis, Stein, and Stein (1973) (see Table 3.3)

indicates that the particular 1324-itinerary only implies periods 2 and 1, and confirms

this intuition. We categorize this itinerary as part of the doubling regime and prove in

Theorem 3.18 that any fk with a maximal 1324-itinerary (that is, there is no 8-cycle)

cannot exhibit sharp depth-width tradeoffs: for any ϵ > 0, there exists a two-layer

ReLU neural network g of width O(k3

ϵ
) such that L∞(fk1324, g) ≤ ϵ.

• Beyond Sharkovsky’s theorem, a mapping with a 1234-itinerary—even though it is of

period 4—is guaranteed to contain a 3-cycle (see Table 3.3). Hence, “itinerary-1234

implies period-3, implies chaos,” and fk1234 has at least Ω(ϕk) oscillations and is hard to

approximate by small shallow NNs. Moreover, Theorem 3.6 and Table 3.1 show that

fk1234 actually has Ω(ρk) oscillations for ρ ≈ 1.839 > ϕ. A corollary is that any NN g of

depth
√
k and width O(1.839

√
k) has L∞(fk1234, g) = Ω(1), which is a stronger separation

(constant error) than the ones given by Chatziafratis et al. (2019) and Chatziafratis,

Nagarajan, and Panageas (2020).

The reverse is not true: Sharkovsky’s Theorem guarantees that a period-3 cycle implies

the existence of a period-4 cycle. However, the respective 4-cycle is the non-chaotic 1324-

itinerary, which was already shown to lead to minimal function complexity.

Furthermore, as p increases, the existence of a chaotic itinerary 12 . . . p on f ensures that

fk has Ω(ρk) oscillations for ρ → 2.10 Figure 3.2 demonstrates these differences in oscillations
10Similarly to Telgarsky (2016), the optimal achievable rate is ρ ≤ 2 if we start with a unimodal f (e.g.,

tent map). If one used multimodal functions as a building block (e.g., starting with f ′ = f2 or f ′ = f3), we
could achieve larger rates (e.g., 4 or 8 respectively).

102

Figure 3.2: The chaotic itinerary f1234 has more oscillations than f123 even though 3 ▷ 4 by
Sharkovsky’s Theorem. Itineraries f1234 and f1324 (both of period 4) differ dramatically in
oscillation count, showing why periodicity alone fails to capture the optimal tradeoffs. The
1234 itinerary produces a more “complex” function with more monotone pieces than 123,
despite the Sharkovsky analysis from Chatziafratis et al., 2019 arguing that 3-cycles are the
most powerful when determining iteration counts. Moreover, the number of monotone pieces
in the 1234 and 123 itineraries increases exponentially, while that of the 1324 itineraries does
not.

(by counting the number of monotone pieces in functions fka with a maximal itinerary-a).

As indicated theoretically, the number of oscillations of f1324 is polynomially bounded, while

the others grow exponentially fast, with f1234 being closer to 2k.

We further visualize two types of chaotic itineraries, Figures 3.3 and 3.4 demonstrate two

emblematic cases with piecewise-linear and logistic unimodal mappings respectively where

the differences in function complexity of f123, f1234, and f1324 are most evident. Both figures

provide a function for each fa that has a maximal itinerary of a. (That is, there is no

“higher-ranked” itinerary from Table 3.3 present in fa; all other cycles are induced by the

existence of a cycle with itinerary a.)

1. Figures 3.2 and 3.3 visualize the sensitive dependence of the oscillation patterns of

compositions of piecewise-linear unimodal mappings on the periodicity of the map-

pings. The plots visualize a simple case where the elements of the cycles are evenly

spaced (1
4 ,

1
2 ,

3
4 for f123; 1

5 ,
2
5 ,

3
5 ,

4
5 for f1234, f1324). Even though f1234 and f1324 have the

same maximum value, they exhibit substantially different fractal-like patterns, which

103

produce exponentially more oscillations for f1234.

2. Figures 3.4 and 3.5 instead considers logistic maps of the form flog,r(x) = 4rx(1 − x)

for the values of r where itinerary a is super-stable, or when nearby iterates converge to

the cycle exponentially fast. These functions are concave, symmetric, and unimodal.

Here, complexity strictly increases with the maximum value of flog,r. Indeed, f1234, f123

and f1324 ordered by height is the order by which they exhibit most to least chaotic

behavior.

Figure 3.3: A comparison of the function complexity (as measured by the number of mono-
tone pieces) in fk for unimodal mappings f having cycles with different itineraries. The left
shows f , f 2, f 5, and f 10 for a function with a 1234 4-cycle. The center has a 1324 4-cycle.
The bottom has a 123 3-cycle. Figure 3.2 shows how the number of monotone pieces in fk

increases with k for each mapping.

Generally, prior constructions where the oscillation count of fk increases at a rate faster

than ϕk were too narrow (including only the triangle map). Because f1234 breaks the barrier,

we abstract away the details and point to chaotic itineraries as the main source of complexity,

leading to sharper depth-width tradeoffs.

While periodicity tells a compelling story about why fk123 is difficult to approximate, it

fails to explain why fk1234 is even more complex. The exponential-vs-polynomial gap in the

104

Figure 3.4: Demonstrates the same ideas as Figure 3.3, except instead of using asymmetric
and non-concave piecewise functions, we use the scaled logistic map, flog,r. Using Table 1 of
Metropolis, Stein, and Stein (1973), we set the parameter r to 3.96, 3.50, and 3.83 respectively
to ensure that a super-stable 1234, 1324, and 123 cycle exists.

Figure 3.5: Like Figure 3.2, visualizes the differences in the number of monotone pieces for
the logistic mappings described in Figure 3.4.

105

function complexity of f1234 and f1324 depends solely on the order of the elements of the cycle

and distinguishes functions that NNs can easily approximate from those they cannot.

The remainder of the chapter addresses the question introduced here—when does the

itinerary tell us much more than the length of the period—in a general context that explores

a “hierarchy” of such chaotic itineraries, strengthens a host of NN inapproximability bounds

(Sec. 3.2), and reveals tight connections with other complexity notions, like the VC-dimension

and topological entropy (Sec. 3.3).

3.2 Depth-width tradeoffs via chaotic itineraries

We give our main hardness results on the inapproximability of functions generated by

repeated compositions of f to itself when f has certain cyclic behavior. We define the relevant

notions of monotonicity and present basic preliminaries in Section 3.2.1. Section 3.2.2 applies

insights about chaotic itineraries to prove constant L∞ and L1 lower bounds on the accuracy

of approximating fk when f has an increasing cycle. Section 3.2.3 strengthens previous

bounds on the number of oscillations when f has an odd cycle, which is not necessarily

increasing.

Subsequent sections contextualize and prove these results. Section 3.2.4 justifies the

assumptions that f be symmetrical and concave by showing that shallow networks can

approximate fk when these assumptions are violated. Section 3.2.5 presents Table 3.2,

which exhaustively compares our separation results to prior work. Section 3.2.6 contains the

proofs of the section’s main results.

3.2.1 Preliminaries and notation

To measure the function complexity of fk, we count the number of times fk oscillates.

We employ two notions of oscillation counts. The first is relatively weak and counts every

interval on which f is either increasing or decreasing, regardless of its size.

106

Definition 3.5. Let f : [0, 1] → [0, 1]. M(f) represents the number of monotone pieces of

f . That is, it is the minimum m such that there exists x0 = 0 < x1 < · · · < xm−1 < xm = 1

where f is monotone on [xj−1, xj] for all j ∈ [m].

The second instead counts the number of times a fixed interval of size b− a is crossed:

Definition 3.6. Let f : [0, 1] → [0, 1] and [a, b] ⊆ [0, 1]. Ca,b(f) represents the number of

crossings of f on the interval [a, b]. That is, it is the maximum c such that there exist

0 ≤ x1 < x′
1 ≤ x2 < x′

2 ≤ · · · ≤ xc < x′
c ≤ 1

where for all j ∈ [c], f([xj, x′
j]) ⊂ [a, b] and either f(xj) = a and f(x′

j) = b or vice versa.

Characteristic Polynomials The base of the exponent of our width bounds is shown to

equal the largest root of one of two polynomials:

Pinc,p(λ) = λp − 2λp−1 + 1,

Podd,p(λ) = λp − 2λp−2 − 1.

Let ρinc,p and ρodd,p be the largest roots of Pinc,p and Podd,p respectively. Table 3.1 illus-

trates that as p grows, ρinc,p increases to 2, while ρodd,p drops to
√

2. Note that ρodd,p ∈

(
√

2,
√

2 + 2/2p/2) (Alsedà, Llibre, and Misiurewicz, 2000). We bound the growth rate of

ρinc,p with the following:

Fact 3.4. ρinc,p ∈ [max(2 − 4
2p , ϕ), 2), where ϕ = 1+

√
5

2 is the Golden Ratio.

We prove Fact 3.4 in Section 3.2.6.2.

3.2.2 Inapproximability of Iterated Functions with Increasing Cycles

Our inapproximability results that govern the size of neural network g necessary to ad-

equately approximate fk when f has an increasing cycle (like Theorem 3.2) rely on a key

107

Table 3.1: Approximate values of ρinc,p, the lower bound on ρinc,p in Fact 3.4, and ρodd,p (for
odd p).

p ρinc,p Fact 3.4 ρodd,p

3 1.618 1.618 1.618
4 1.839 1.75 n/a
5 1.928 1.875 1.513
6 1.966 1.938 n/a
7 1.984 1.969 1.466
8 1.992 1.984 n/a
9 1.996 1.992 1.441
10 1.999 1.996 n/a

lemma that bounds the number of constant-size oscillations of fk.

Lemma 3.5 (Oscillation Bound for Increasing Cycles). Suppose f is a symmetric, concave

unimodal mapping with an increasing p-cycle for some p ≥ 3. Then, there exists [a, b] ⊂ [0, 1]

with b− a ≥ 1
18 such that Ca,b(fk) ≥ 1

2ρ
k
inc,p for all k ∈ N.

We prove Lemma 3.5 in Section 3.2.6.1. For an increasing p-cycle x1, . . . , xp, we lower-

bound M(fk) (the total number of monotone pieces, regardless of size) by relating the

number of times fk crosses each interval [xj, xj+1] to the number of crossings of fk−1. Doing

so entails analyzing the largest eigenvalues of a transition matrix, which gives rise to the

polynomial Pinc,p. We prove that the intervals crossed must be sufficiently large due to the

symmetry, concavity, and unimodality of f .

Remark 3.1. If one does not wish to assume that f is unimodal, symmetric, or concave,

then the proof can be modified to show that Ca,b(fk) = Ω(ρk) for the same ρ, but for b − a

dependent on f . These results are similar in flavor to those of Chatziafratis et al. (2019),

Chatziafratis, Nagarajan, and Panageas (2020), and Bu, Zhang, and Luo (2020), and they

suffer from the same drawback: potentially vacuous approximation bounds when a and b are

close. Section 3.2.4 shows natural functions that are either not symmetric or not concave,

whose oscillations shrink in size arbitrarily.

108

3.2.2.1 L∞ Approximation and Classification

Our first result is a restatement of Theorem 3.2 that quantifies inapproximability in terms

of both L∞ and classification error, which are comparable to the respective results of Bu,

Zhang, and Luo, 2020 and Chatziafratis et al., 2019.

Theorem 3.6. Suppose f is a symmetric concave unimodal mapping with an increasing p-

cycle for some p ≥ 3. Then, any k ∈ N and g ∈ N (u, ℓ) with u ≤ 1
8ρ

k/ℓ
inc,p have ∥fk − g∥∞ =

Ω(1).

Moreover, there exists S with |S| = 1
2⌊ρk/ℓinc,p⌋ and t ∈ (0, 1) such that RS,t(fk, g) ≥ 1

4 .

The proof follows from our main Lemma 3.5 above and Theorem 3.15/Corollary 3.16 in

Section 3.2.6.3 (two previous inapproximability bounds based on oscillations).

Despite relying on unimodality assumptions and the existence of increasing cycles, The-

orem 3.6 obtains much stronger bounds than its previous counterparts:

• The assumption that f has an increasing cycle causes a much larger exponent base

for the width bound. Chatziafratis et al. (2019) and Chatziafratis, Nagarajan, and

Panageas (2020) only prove that the existence of 3-cycle mandates a width of Ω(ϕk/ℓ).

We exactly match that bound for p = 3, and improve upon it when p > 3. As illustrated

by Table 3.1, increasing p pushes the base ρinc,p rapidly to 2, which is the maximum

exponent base for the increase of oscillations of any unimodal map. (And the maximal

topological entropy of a unimodal map.) This also approximately matches the bases

from Bu, Zhang, and Luo, 2020, which scale with the topological entropy of f .

• As illustrated in Section 3.2.4, the inaccuracy of neural networks with respect to the L∞

approximation in Chatziafratis et al., 2019; Chatziafratis, Nagarajan, and Panageas,

2020; Bu, Zhang, and Luo, 2020 may be arbitrarily small for certain choices of f . Our

unimodality assumptions ensure that the oscillations of fk are large and hence, that

the inaccuracy of g is constant.

109

3.2.2.2 L1 Approximation

We also strengthen the bound on L1-inapproximability given by Chatziafratis, Nagarajan,

and Panageas (2020) by again introducing a stronger exponent and applying unimodality to

yield a constant-accuracy bound.

Theorem 3.7. Consider any L-Lipschitz f : [0, 1] → [0, 1] with an increasing p-cycle for

some p ≥ 3. If L = ρinc,p, then for any k ∈ N, any g ∈ N (u, ℓ) with u ≤ 1
16ρ

k/ℓ
inc,p has

∥fk − g∥1 = Ω(1).

The proof follows again from Lemma 3.5 and is a consequence of Theorem 3.17.

We make Theorem 3.7 more explicit by showing that many tent maps meet the Lipschitz-

ness condition. Let ftent,r = 2rmin(x, 1 − x) be the tent map, parameterized by r ∈ (0, 1).

Our result improves upon Chatziafratis, Nagarajan, and Panageas, 2020, by obtaining con-

stant approximation error and using the larger ρinc,p rather than ρodd,p.

Corollary 3.8. For any p ≥ 3 and k ∈ N, any g ∈ N (u, ℓ) with u ≤ 1
16ρ

k/ℓ
inc,p has ∥fktent,ρinc,p

−

g∥1 = Ω(1).

We prove Corollary 3.8 in Section 3.2.6.4. The only non-trivial part of the proof involves

proving the existence of an increasing p-cycle that causes fk to have Ω(ρkinc,p) oscillations.

3.2.3 Improved Bounds for Odd Periods

While Theorems 3.6 and 3.7 give stricter bounds on the width of neural networks needed

to approximate iterated functions fk than Chatziafratis et al. (2019) and Chatziafratis,

Nagarajan, and Panageas (2020), they also require extra assumptions about the cycles—

namely, that the cycles are increasing. However, more powerful inapproximability results

with constant error are still possible even without additional assumptions. Specifically, we

leverage unimodality to improve the desired inaccuracy to a constant without compromising

width.

110

As before, the results hinge on a key technical lemma that bounds the number of interval

crossings.

Lemma 3.9. For some odd p ≥ 3, suppose f is a symmetric concave unimodal mapping with

an odd p-cycle. Then, there exists [a, b] ⊂ [0, 1] with b− a ≥ 0.07 such that Ca,b(fk) = ρk−p
odd,p

for any k ∈ N.

We prove Lemma 3.9 in Section 3.2.6.5. The challenging part is to find a lower bound

on the length of the intervals crossed.

Like before, we provide lower-bounds on approximation up to a constant degree.

Theorem 3.10. For some odd p ≥ 3, suppose f is a symmetric, concave unimodal mapping

with any p-cycle. Then, any k ∈ N and any g ∈ N (u, ℓ) with u ≤ 1
8ρ

(k−p)/ℓ
odd,p have ∥fk−g∥∞ =

Ω(1).

Moreover, there exists S with |S| = 1
2⌊ρkodd,p⌋ and t ∈ (0, 1) such that RS,t(fk, g) ≥ 1

4 .

The proof is immediate from Lemma 3.9, Theorem 3.15, and Corollary 3.16.

An analogous result for the L1 error can be obtained as follows.

Theorem 3.11. Consider any L-Lipschitz f : [0, 1] → [0, 1] with a p-cycle for some odd p ≥

3. If L = ρodd,p, then, any k ∈ N and g ∈ N (u, ℓ) with u ≤ 1
16ρ

(k−p)/ℓ
odd,p have ∥fk −g∥1 = Ω(1).

We impose strict conditions on the Lipschitz constant because the bounds are vacuous

or impossible for functions with other Lipschitz constants. By Lemma 3.1 of Chatziafratis,

Nagarajan, and Panageas, 2020, there are no L-Lipschitz interval mappings f whose iterates

fk have Ω(ρodd,p)k oscillations when L < ρodd,p. On the other hand, if L > ρodd,p, then

our proofs would yield vacuous lower bounds because they depend on (ρodd,p

L
)k, which is

arbitrarily small for large k. See Section 3.1 of Chatziafratis, Nagarajan, and Panageas,

2020 for a more thorough treatment of this issue.

The proof is immediate from Lemma 3.5 and Theorem 3.17.

111

3.2.4 Necessity of Symmetry and Concavity Assumptions in Theorems 3.6 and 3.7

We demonstrate the weakness of the bounds promised by Chatziafratis et al. (2019),

Chatziafratis, Nagarajan, and Panageas (2020), and Bu, Zhang, and Luo (2020) and argue

that our assumptions of symmetry and concavity are necessary in order to avoid such non-

vacuous bounds. To do so, we exhibit two families of functions in Propositions 3.12 and 3.13

which contain functions with increasing p-cycles for every p that produce large numbers of

oscillations, yet are trivial to approximate because their oscillations can be made arbitrarily

small. The functions considered in both cases are unimodal and lack symmetry and concavity

respectively.

These expose a fundamental shortcoming of other approaches to the hardness of neural

network approximation in the aforementioned works because they all rely on showing that

for every mapping f meeting some condition (e.g. odd period, positive topological entropy),

there exists some [a, b] ∈ [0, 1] where Ca,b is exponentially large, and hence no poly-size

shallow neural network g can obtain L∞(fk, g) ≤ P (b−a) for some polynomial P . However,

because [a, b] depends on f , their difference can potentially be arbitrarily small. The propo-

sitions show that this concern is significant and that [a, b] indeed becomes arbitrarily narrow

for simple 3-periodic functions. While Chatziafratis et al., 2019 avoid addressing this issue

head-on by focusing on classification error over L∞ error, their classification lower-bounds

rely on misclassification of points whose actual distance can be shrinking (see for example

Figure 3.6).

The implications of these propositions contrast with the more robust hardness results

we present in Theorems 3.6, 3.7, 3.10, and 3.11, which leverage unimodality, symmetry, and

concavity to ensure that the accuracy of approximation can be no better than some constant

(independent on f, p) when the neural network g is too small. We show here that those

assumptions are necessary by exhibiting functions that satisfy all but one, and become easy

to L∞-approximate with small depth-2 ReLU networks.

112

Proposition 3.12. For p ≥ 3 and for sufficiently small ϵ > 0, there exists a concave

unimodal mapping f with a chaotic p-cycle such that for any k, there exists g ∈ N (3, 2) with

L∞(fk, g) ≤ ϵ.

Proof. For all j ∈ [p], let xj = 1 − p−j+1
p

ϵ. Define f to be a piecewise-linear function with

p+ 1 pieces chosen with boundaries that satisfy

f(0) = 0, f(x1) = x2, f(x2) = x3, . . . , f(xp−1) = xp, f(xp) = x1, f(1) = 0.

We visualize f for p = 3 in Figure 3.6. f is unimodal because it increases on [0, xp−1]

and decreases on [xp−1, 1]. It is concave because f ′(x) does not increase as x grows, since

f ′(x) =

1− p−1
p
ϵ

1−ϵ > 1 x ∈ [0, x1)

1 x ∈ (x1, xp−1)

−p+ 1 x ∈ (xp−1, xp)

−1−ϵ
ϵ

x ∈ (xp, 1],

as long as 1−ϵ
ϵ
> p− 1.

We show inductively that for all k, there exists ak < bk such that fk(ak) = fk(bk) = 1−ϵ,

fk([ak, bk]) ∈ [1 − ϵ, 1], and fk has exactly one linear piece for each of the intervals [0, ak]

and [bk, 1].

These are true for the base case k = 1 for a1 ∈ (0, x1) and b1 = xp.

If the claim holds for k, then there is some ak+1 ∈ (0, ak) and bk+1 ∈ (bk, 1) such that

f(ak+1) = f(bk+1) = ak. Then, fk+1(ak+1) = fk+1(bk+1) = 1 − ϵ and fk+1([0, ak+1]) =

fk+1([bk+1, 1]) = [0, 1 − ϵ]. For all x ∈ [0, ak+1], f j(x) ≤ 1 − ϵ for all j ≤ k + 1. Hence, fk+1

is linear on [0, ak+1] (and also [bk+1, 1]). Because f([x1, xp]) = [x1, xp], fk+1([ak+1, bk+1]) ⊆

[x1, xp] ⊆ [1 − ϵ, 1]. The claim then holds for k + 1.

113

Figure 3.6: Plots the asymmetric function with a p-cycle referenced in Proposition 3.12 for
p = 3 and ϵ = 0.1. While f oscillates frequently, f can be trivially 0.1-approximated by three
ReLUs. As ϵ → 0, the L∞ approximation hardness guarantees implied by Chatziafratis et
al., 2019 become vacuous because the oscillations, even though they are exponentially many,
they shrink in size.

Thus, the piecewise linear mapping g with boundaries g(0) = 0, g(ak) = 1 − ϵ, g(bk) =

1 − ϵ, and g(1) = 0 is an ϵ-approximation of f . Because g has three pieces and contains the

origin, it can be exactly represented by a linear combination of four ReLUs, and hence as a

depth-2 neural network of width 3.

Proposition 3.13. For p ≥ 3 and for sufficiently small ϵ > 0, there exists a symmetric

unimodal mapping f with a chaotic p-cycle such that for any k, there exists g ∈ N (3, 2) with

L∞(fk, g) ≤ ϵ.

Proof. Let xj = 1
2 − p−1−j

2(p−1)ϵ for all j ∈ [p − 1] and xp = 1
2 + ϵ

2 . Let f be a piecewise-linear

function with boundaries

f(0) = 0, f
(1

2 − ϵ

2

)
= 1

2 − p− 2
p− 1 · ϵ2 , f

(
1
2 − ϵ

2(p− 1)

)
= 1

2 , f
(1

2

)
= 1

2 + ϵ

2 ,

f

(
1
2 + ϵ

2(p− 1)

)
= 1

2 , f
(1

2 + ϵ

2

)
= 1

2 − p− 2
p− 1 · ϵ2 , f(1) = 0.

We visualize f for p = 3 in Figure 3.7. Note that f is symmetric and unimodal and has

114

Figure 3.7: Another example of a function with a 3-cycle that can be ϵ-approximated for
arbitrarily small ϵ. (Here, ϵ = 0.1.) This function corresponds to the one in Proposition 3.13
and the Chatziafratis et al., 2019 bounds are again vacuous for small ϵ. Unlike Figure 3.6,
this function is symmetric, but not concave.

an increasing p-cycle x1 < · · · < xp. It is not concave because f ′(x) = 1 for x ∈ [x1, xp−2]

and f ′(x) = 2(p− 1) for x ∈ [xp−2, xp−1].

Using a very similar argument to argument from the proof of Proposition 3.12, for all k,

there exists ak < bk such that fk is linear on [0, ak] and [bk, 1] and fk([ak, bk]) ∈ [1
2 − ϵ, 1

2 + ϵ].

As before, there exists a piecewise linear function with three pieces (which can be thought

of as a depth-2 neural network of width 3) that ϵ-approximates f .

3.2.5 Comparison with prior works

Given the large number of results presented in this paper and the many axes of comparison

one can draw between these results and their predecessors in Telgarsky, 2016; Chatziafratis et

al., 2019; Chatziafratis, Nagarajan, and Panageas, 2020, we provide Table 3.2 to illuminate

these comparisons. It reinforces our key contributions, namely that (1) the presence of

increasing cycles makes a function more difficult to approximate than a 3-cycle alone; (2)

requiring that f satisfy unimodality constraints gives lower-bounds to constant accuracy that

cannot be made vacuous by adversarial choices of f ; and (3) the key distinction between

“hard” and “easy” functions is the existence of non-primary power-of-two cycles.

We provide context for each column to clarify what its cells mean and how to compare

115

Condition Appx. Uni? Conc? Sym? L ≤ ρ? Acc. Exp. Hard? Source

1 Maximal PO2 L∞ Yes No Yes No Ω(1) Any No Thm 3.18
2 htop(f) ≥ ρ L∞ No No No No ϵ(f) ρ Yes BZL Thm 16
3 Non-primary Cls. No No No No 1

4 (1, ϕ] Yes CNPW Thm 1.6,
Remark 3.2

4 Non-primary L∞ No No No No ϵ(f) (1, ϕ] Yes CNPW Thm 1.6,
Remark 3.2,
BZL Thm 16

5 Non-PO2 Cls. No No No No 1
4 (1, ϕ] Yes CNPW Thm 1.6

6 Non-PO2 L∞ No No No No ϵ(f) (1, ϕ] Yes CNPW Thm 1.6,
BZL Thm 16

7 Odd cycle Cls. No No No No 1
4 (

√
2, ϕ] Yes CNP Thm 1.1

8 Odd cycle L∞ No No No No ϵ(f) (
√

2, ϕ] Yes CNP Thm 1.1,
BZL Thm 16

9 Odd cycle L∞ Yes Yes Yes No Ω(1) (
√

1, ϕ] Yes Thm 3.10
10 Odd cycle L1 No No No Yes ϵ(f) (

√
2, ϕ] Yes CNP Thm 1.2

11 ftent,ρp/2 L1 Implied Implied Implied Implied Ω(1) (
√

2, ϕ] Yes CNP Lemma 3.6
12 Odd cycle L1 Yes Yes Yes Yes Ω(1) (

√
2, ϕ] Yes Thm 3.11

13 Inc. Cycle Cls. No No No No 1
4 [ϕ, 2) Yes Thm 3.6, Re-

mark 3.1
14 Inc. Cycle L∞ No No No No ϵ(f) [ϕ, 2) Yes Thm 3.6, Re-

mark 3.1
15 Inc. Cycle L∞ Yes Yes No No Ω(1) [ϕ, 2) No Prop 3.12
16 Inc. Cycle L∞ Yes No Yes No Ω(1) [ϕ, 2) No Prop 3.13
17 Inc. Cycle L∞ Yes Yes Yes No Ω(1) [ϕ, 2) Yes Thm 3.6
18 Inc. Cycle L1 No No No Yes ϵ(f) [ϕ, 2) Yes Thm 3.7,

CNP Thm 1.2
19 Inc. Cycle L1 Yes Yes Yes Yes Ω(1) [ϕ, 2) Yes Thm 3.7
20 ftent,ρp/2 L1 Implied Implied Implied Implied Ω(1) [ϕ, 2) Yes Cor 3.8
21 ftent,1 L1 Implied Implied Implied Implied Ω(1) 2 Yes Telgarsky

Table 3.2: Compares the conditions and limitations of the theoretical results presented in
this paper and its predecessors. New results are bolded.

their values.

• Condition specifies what must be true of the complexity of f in order for the relevant

bounds to occur. All but the latter two conditions describe a very broad array of

functions, while the last two focus only on a restricted subset of tent mappings.

– “Maximal PO2” means that the maximal cycle of f is a primary11 p-cycle where

p is a power of two. This means that f lies in the doubling regime described in

Theorem 3.18.
11See Section 3.4.2.

116

– “htop(f) ≥ ρ” considers any f with a lower-bound on its topological entropy for

some ρ > 1. Notably, all conditions other than “Maximal PO2” satisfy this for

some ρ.

– “Non-primary” means that any non-primary cycle exists in f . That is, if f is

known to have a non-primary power-of-two cycle, then the results apply.

– “Non-PO2” refers to any f that has a p-cycle where p is not a power of two.

– “Odd cycle” includes any f that has a p-cycle where p is odd.

– “Inc. cycle” means that f has an increasing p-cycle for some p, i.e. a cycle with

itinerary 12 . . . p.

– ftent,ρp/2 refers to families of tent maps scaled by ρp solving the polynomials from

Chatziafratis, Nagarajan, and Panageas, 2020 Lemma 3.6 (for odd periods) and

Corollary 3.8 (for increasing cycles).

– The last row refers exclusively to the tent map of height 1 and slope 2.

• Appx. refers to how difference between neural network g and iterated map fk is

measured. The options are L1, L∞, and classification error. It’s easier to show that g

can L1-approximate fk than it is to show that g can L∞-approximate f ; conversely,

it’s most impressive to show lower bound results with respect to the L1 error than it

is for the L∞ error.

Chatziafratis et al., 2019; Chatziafratis, Nagarajan, and Panageas, 2020 consider classi-

fication error, Bu, Zhang, and Luo, 2020 focus on L∞ approximation, and Chatziafratis,

Nagarajan, and Panageas, 2020 also consider L1 approximation. We routinely trans-

late classification errors to L∞ errors using Corollary 3.16, which draws on Theorem 16

of Bu, Zhang, and Luo, 2020.

• Uni?, Conc?, and Sym? indicate whether f satisfying the respective precondition is

necessary for the results to hold. We mark “Implied” if the value of Condition already

ensures that the property is satisfied and the requirement need not be enforced.

117

• “L ≤ ρ?” is “Yes” if the results only hold if f is chosen with a Lipschitz constant less

than the rate of growth of its oscillations. This is a very restrictive condition met by

very few functions (including no logistic maps with cycles).

• Acc. specifies the desired accuracy of the hardness result. “Ω(1)” means that there

exists some constant ϵ such that for any choice of f in the category, any neural network

g will be unable to approximate f up to accuracy ϵ. “ϵ(f)” means that the degree of

approximation may depend on the chosen function f (and the period p) that belongs

to the category; these bounds may be vacuous by an adversarial choice of f . As a

result, hardness results with “Ω(1)” are more impressive.

• Exp. refers to the base of the exponent of the lower-bound on the width necessary to

approximate fk using a shallow network g. Larger values indicate stronger bounds.

• Hard? denotes whether every f satisfying the conditions to the left cannot be ap-

proximated up to the specified accuracy by any neural network g.

• Source denotes where to find the result. Some of the less interesting results are not

given their own theorems and rather are immediate implications of several theorems

across this body of literature. For the sake of space, we use “CNPW” to refer to

(Chatziafratis et al., 2019); “CNP” for (Chatziafratis et al., 2019); “BZL” for (Bu,

Zhang, and Luo, 2020); and “Telgarsky” for (Telgarsky, 2016).

3.2.6 Proofs of depth-width trade-offs

3.2.6.1 Proof of Lemma 3.5

We restate and prove the lemma. This is the main technical lemma that we use to obtain

the sharper depth-width tradeoffs and the improved notion of constant approximation.

Lemma 3.5 (Oscillation Bound for Increasing Cycles). Suppose f is a symmetric, concave

unimodal mapping with an increasing p-cycle for some p ≥ 3. Then, there exists [a, b] ⊂ [0, 1]

118

x

f(x)

xp−1 xpx1 x2 x3 xp−2

I1 I2 Ip−2 Ip−1

I1
. . .

I2 I3 Ip−2 Ip−1

Figure 3.8: Visualizes the intervals I1, . . . , Ip−1 defined in the proof of Lemma 3.5 and which
intervals f maps to one another when f has an increasing p-cycle.

with b− a ≥ 1
18 such that Ca,b(fk) ≥ 1

2ρ
k
inc,p for all k ∈ N.

Proof. We first lower-bound the total number of oscillations that will appear an increasing

p-cycle is present. Later, we show that the size of the oscillations is large as well.

Because we have an increasing cycle of itinerary 12 . . . p, we assume (wlog) that the cycle

is (x1, . . . , xp) with x1 < x2 < · · · < xp. Define intervals Ij := [xj, xj+1] for j ∈ {1, . . . , p−1}.

Because f is continuous, we conclude that Ij+1 ⊂ f(Ij) for all j < p and Ij ⊂ f(Ip−1) for all

j. Figure 3.8 visualizes these relationships.

Using the methods of Chatziafratis et al. (2019), we define y(k) ∈ Np−1 such that y(k)
j is

a lower bound on the number of times fk passes through interval Ij, or

Cxj ,xj+1(fk) ≥ y
(k)
j .

We can then encode the interval relationships above with y(k+1) = Apy
(k) where y(0) is a

119

vector of all ones and and Ap ∈ {0, 1}(p−1)×(p−1) with (Ap)i,j = 1 {j = p− 1 or i = j + 1}.

We get the following adjacency matrix for the intervals, capturing the mapping relationships

(under f) between them:

Ap =

0 0 0 · · · 0 1

1 0 0 · · · 0 1

0 1 0 · · · 0 1

0 0 1 · · · 0 1
...

0 0 0 · · · 1 1

.

We find the characteristic polynomial of Ap and lower-bound y(k+1) with the spectral

radius of Ap. We show by induction on p ≥ 3 that

det(Ap − λI) = (−1)p−1

λp−1 −
p−2∑
i=0

λi

 .
For the base case p = 3, we have:

det(A3 − λI) =

∣∣∣∣∣∣∣∣
−λ 1

1 1 − λ

∣∣∣∣∣∣∣∣ = λ2 − λ− 1,

which satisfies the desired form.

Now, we show the inductive step by expanding the determinant of Ap − λI.

120

det(Ap − λI) = −λ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−λ 0 · · · 0 1

1 −λ · · · 0 1

0 1 · · · 0 1
...

0 0 · · · −λ 1

0 0 · · · 1 1 − λ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 0 · · · 0 1

1 −λ · · · 0 1

0 1 · · · 0 1
...

0 0 · · · −λ 1

0 0 · · · 1 1 − λ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

The left determinant exactly equals det(Ap−1 − λI), which we can expand using the

inductive hypothesis. The second equals (−1)p−2, because p − 2 row swaps (which are

elementary row operations) can be used to move the first row to the bottom and make the

matrix upper-triangular with diagonals of one. We conclude the inductive step below.

det(Ap − λI) = −λ det(Ap−1 − λI) − (−1)p−2

= −λ(−1)p−2

λp−2 −
p−3∑
i=0

λi

+ (−1)p−1 = (−1)p−1

λp−1 −
p−2∑
i=0

λi

 .
We find the eigenvalues of Ap by finding the roots of the polynomial

P (x) = λp−1 −
p−2∑
i=0

λi = 0.

Observe that there must be a root greater than 1 because P (1) = 2−p < 0 and P (2) = 1 > 0.

Equivalently, if λ ̸= 1,

P (x) = λp−1 − 1 − λp−1

1 − λ
= λp − 2λp−1 + 1

λ− 1 = 0.

Hence, finding the largest root of P is equivalent to finding the largest root of λp−2λp−1+

1, which is ρinc,p by definition.

121

This implies that the spectral radius of Ap, sp(Ap) = ρinc,p > 1, and hence, we also have

sp(Akp) = sp(Ap)k = ρkinc,p. Since all the elements in Ap and in Akp are non-negative, then

the infinity norm of Akp is by definition the maximum among its row sums. Since the last

column of Ap is the all 1’s vector, the largest row sum in Akp appears at its last row:

||Akp||∞ =
p−1∑
j=1

(Akp)p−1,j

We can now use the fact that the infinity norm of a matrix is larger than its spectral

norm:

||Akp||∞ ≥ ρkinc,p

We conclude that there exists at least one interval Ij∗ (e.g., the interval Ip−1) which is crossed

at least ρkinc,p times by fk, so Cxj∗ ,xj∗+1(fk) ≥ ρkinc,p.

Thus, for some a′, b′ we get Ca′,b′(fk) ≥ ρkinc,p. But can we find a′, b′ with large difference

b′ − a′?

Now, we show that the intervals traversed are sufficiently large, in order to lower-bound

Ca,b(fk) with b−a ≥ 1
18 . By Lemma 3.14, there exists some j with xj+1 −xj ≥ 1

18 . It suffices

to show that fk traverses the interval Ij sufficiently many times.

From earlier in the proof, there exists some j∗ such that f crosses Ij∗ at least N := ρkinc,p

times. We conclude by showing that every other interval is traversed at least half as often

as this most popular interval, which suggests that Cxj ,xj+1(f) ≥ N
2 .

For A ∈ R(p−1)×(p−1) as defined earlier in the section and for y(k) := Ak1⃗, we argue

inductively that the elements of y(k) are non-decreasing and that y(k)
p−1 ≤ 2y(k)

1 . For the base

case, this is trivially true for k = 0.

Suppose it holds for k. By construction, we have y(k+1)
1 = y

(k)
p−1 and y

(k+1)
j = y

(k)
j−1 + y

(k)
p−1

for all j > 1. By the inductive hypotheses,

y
(k+1)
1 ≤ y

(k+1)
2 ≤ · · · ≤ y

(k+1)
p−1 ≤ 2y(k+1)

1 .

122

Therefore, fk crosses interval Ij at least N
2 times, and Ij has width at least 1

18 . The claim

immediately follows.

Lemma 3.14. For some p ≥ 3, consider a symmetric concave unimodal function f with an

increasing p-cycle of x1 < · · · < xp. Then, there exists j ∈ [p− 1] such that xj+1 − xj ≥ 1
18 .

Proof. By the continuity of f , note that [x1, xp] ⊂ f 3([xp−3, xp−2]). There then exists some

y1 ∈ [xp−3, xp−2] such that f 3(y1) = y1, y2 := f(y1) ∈ [xp−2, xp−1], and y3 := f(y2) ∈

[xp−1, xp]. Thus, if f has a maximal p-cycle, then f also has a 3-cycle corresponding to

xp−3 < y1 < y2 < y3 < xp.

We now show that y3 − y1 must be sufficiently large by concavity. For f to be concave,

the following inequality must hold:

f(y1) − f(0)
y1 − 0 ≥ f(y2) − f(y1)

y2 − y1
> 0 > f(y3) − f(y2)

y3 − y2
≥ f(1) − f(y3)

1 − y3
,

or equivalently,
y2

y1
≥ y3 − y2

y2 − y1
> 0 > −y3 − x1

y3 − y2
≥ − y1

1 − y3
.

In addition, note that y1 <
1
2 and y3 >

1
2 . If the former were false, then f(y2) ≤ f(y1)

(by unimodality), which contradicts y3 > y2. If the latter were false, then f(y3) > f(y2),

which contradicts y1 < y3.

We consider two cases and show that either way, the interval must have width at least 1
6 .

• If y2 − y1 ≤ 2
5(y3 − y1), then y3−y2

y2−y1
≥ 3

2 , which mandates that y1 ≤ 2y2
3 to ensure

concavity. Thus,

y3 − y1 ≥ y3 − 2y2

3 ≥ y3

3 ≥ 1
6 .

• If y2 −y1 ≥ 2
5(y3 −y1), then y3−y1

y3−y2
≥ 5

3 , and thus y1 ≥ 5
3(1−y3) and y3 ≥ 1− 3y1

5 . Then,

y3 − y1 ≥ 1 − 3y1

5 − y1 = 1 − 8y1

5 ≥ 1
5 .

123

Thus, we must have

max{xp−2 − xp−3, xp−2 − xp−1, xp − xp−1} ≥ 1
18 .

3.2.6.2 Proof of Fact 3.4

Fact 3.4. ρinc,p ∈ [max(2 − 4
2p , ϕ), 2), where ϕ = 1+

√
5

2 is the Golden Ratio.

Proof. Let Pinc,p(λ) = λp − 2λp−1 + 1.

First, observe that ρinc,p < 2, because Pinc,p(λ) > 0 whenever λ ≥ 2. We lower-bound

ρinc,p by finding some λ for each p such that Pinc,p(λ) ≤ 0 or equivalently λp−1(2 −λ) ≥ 1 for

all p ≥ 3, which bounds ρinc,p by the Intermediate Value Theorem.

Consider λ = 2 − 4
2p . Then,

λp−1(2 − λ) =
(

2 − 4
2p
)p−1

· 4
2p = 2

(
1 − 2

2p
)p−1

≥ 2
(

1 − 2(p− 1)
2p

)
= 2 − 2 · p− 1

2p−1

≥ 2 − 2 · 1
2 = 1.

3.2.6.3 Prior Results about Hardness of Approximating Oscillatory Functions

We rely on prior results from Chatziafratis et al. (2019) and Chatziafratis, Nagarajan, and

Panageas (2020) to show that an iterated function fk is inapproximable by neural networks.

These results hold if fk has sufficiently many crossings of some interval. We apply these

results later with improved bounds on both the number and the size of crossings.

Chatziafratis et al. (2019) show that the classification error of fk can be bounded if there

are enough oscillations.

Theorem 3.15 (Chatziafratis et al. (2019), Section 4). Consider any continuous f : [0, 1] →

[0, 1] and any g ∈ N (u, ℓ). Suppose there exists a < b such that Ca,b(f) = Ω(ρt) and suppose

124

u ≤ 1
8ρ

k/ℓ. Then, for t = a+b
2 , there exists S with |S| = 1

2

⌊
ρk
⌋

samples such that

RS,t(fk, g) ≥ 1
2 − (2u)ℓ

n
.

We adapt that claim to lower-bound the L∞ approximation of fk by g.

Corollary 3.16. Consider any continuous f : [0, 1] → [0, 1] and any g ∈ N (u, ℓ). Suppose

there exists a < b such that Ca,b(f) = Ω(ρt) and suppose u ≤ 1
8ρ

k/ℓ. Then,

∥∥∥fk − g
∥∥∥

∞
≥ b− a

2 .

Proof. By Theorem 3.15, there exists some x ∈ [0, 1] such that (wlog) fk(x) ≤ a and

g(x) ≥ a+b
2 . The conclusion for the L∞ error is immediate by definition.

Chatziafratis, Nagarajan, and Panageas (2020) give a lower bound on the ability of a

neural network g to L1-approximate fk, provided a correspondence between the Lipschitz

constant of f and the rate of oscillations ρ.

Theorem 3.17 (Chatziafratis, Nagarajan, and Panageas, 2020 Theorem 3.2). Consider any

L-Lipschitz f : [0, 1] → [0, 1] and any g ∈ N (u, ℓ). Suppose there exists a < b such that

Ca,b(f) = Ω(ρt). If L ≤ ρ and u ≤ 1
16ρ

k/ℓ, then

∥∥∥fk − g
∥∥∥

1
= Ω((b− a)2).

The Lipschitzness assumption is extremely strict, especially because they show in their

Lemma 3.1 that L ≥ ρ whenever f has a period of odd length.

3.2.6.4 Proof of Corollary 3.8

Corollary 3.8. For any p ≥ 3 and k ∈ N, any g ∈ N (u, ℓ) with u ≤ 1
16ρ

k/ℓ
inc,p has ∥fktent,ρinc,p

−

g∥1 = Ω(1).

125

Proof. This theorem follows from Theorem 3.7 and Lemma 3.5. Because ftent,ρp/2 is ρp-

Lipschitz, it remains only to prove that there exists an increasing p-cycle. We show that

1
2 , f

(1
2

)
, . . . , f p−1

(1
2

)

is such a cycle.

By definition of the tent map, f(1
2) = ρinc,p

2 and f 2(1
2) = ρinc,p(1 − ρinc,p

2). If we assume

for now that f j(1
2) ≤ 1

2 for all j ∈ {2, . . . , p− 1}, then

fp
(1

2

)
= ρp−1

inc,p

(
1 − ρinc,p

2

)
= −1

2
(
ρpinc,p − 2ρp−1

inc,p + 1
)

+ 1
2 = 0 + 1

2 .

Because fp(1
2) = 1

2 and we assumed that f j+1(1
2) = ρinc,pf

j(1
2) for j ≥ 2 and ρ > 1, it

must be the case that f j(1
2) ≤ 1

2 for all j ∈ {2, . . . , p− 1}.

Lemma 3.5 thus implies that fk has Ω(ρkinc,p) crossings, which enables us to complete the

proof by invoking Theorem 3.7, since the Lipschitzness condition is met.

3.2.6.5 Proof of Lemma 3.9

Lemma 3.9. For some odd p ≥ 3, suppose f is a symmetric concave unimodal mapping with

an odd p-cycle. Then, there exists [a, b] ⊂ [0, 1] with b− a ≥ 0.07 such that Ca,b(fk) = ρk−p
odd,p

for any k ∈ N.

Proof. By Theorems 2.94 and 3.11.1 of Alsedà, Llibre, and Misiurewicz (2000), there exists

a p-cycle of the form

xp < xp−2 < · · · < x3 < x1 < x2 < x4 < · · · < xp−1,

which is known as a Stefan cycle. The analysis of Section 3.2 of Chatziafratis, Nagarajan,

and Panageas (2020) shows that C[x1,x2](fk) ≥ ρkodd,p. Their exploitation of the relationships

between intervals is visualized in Figure 3.9. By the continuity of f , applying f an additional

126

x

f(x)

xp−1
xp xp−2 x3

xp−3

I1 I2
I(p−1)/2

I1
. . .

I2

Ip−2Ip−1

xp−4 x1

x2

x4

xp−5

I(p+1)/2

I(p+3)/2

Ip−3

Ip−1

. . .

I(p−3)/2 I(p−1)/2

I(p+1)/2I(p+3)/2

Figure 3.9: Gives an example of a Stefan p-cycle (which is relied upon in Lemma 3.9 and
demonstrates the interval relationships). Analogous to Figure 3.8.

p− 1 times gives C[xp,x1](fk+p−1) ≥ ρkodd,p. Because [xp−2, x1] ⊂ [xp, x1], applying f one more

time gives C[x2,xp−1](fk+p) ≥ ρkodd,p.

Hence, by redefining k, we have

max{C[x1,x2](fk), C[x2,xp−1](fk), C[xp,x1](fk)} ≥ ρk−p
odd,p.

Since [xp, xp−1] is the disjoint union of [x1, x2], [x2, xp−1], and [xp, x1], there exists [a, b] ⊂

[xp, xp−1] with b− a ≥ 1
3(xp−1 − xp) such that C[a,b](fk) ≥ ρk−p

odd,p.

The problem reduces to placing a lower bound on xp−1 − xp. To do so, we derive con-

tradictions on the concavity and symmetry of f . Let r = f(1
2) ∈ (xp, 1) be the the largest

outcome of f , and let

a = sup
x,x′∈[1−r,r]

∣∣∣∣∣f(x) − f(x′)
x− x′

∣∣∣∣∣

127

be the maximum absolute slope of f on [1 − r, r]. a must be finite by the concavity and

continuity of f , and if f is differentiable, a = f ′(1 − r) = −f ′(r). Thus, f is a-Lipschitz on

that interval.

Because f([xp, xp−1]) ⊆ [xp, r] ⊂ [1 − r, r], it follows that |f 2(x) − f 2(x′)| ≤ a2 |x− x′|.

Thus, x2 − xp ≤ a2(xp−2 − xp) and x2 − xp ≤ x4 − xp ≤ a2(x2 − xp−2). Averaging the two

together, we have x2 − xp ≤ a2

2 (x2 − xp), which means a ≥
√

2.

To satisfy concavity, the following must be true:

f(1 − r) − f(0)
1 − r − 0 = f(r)

1 − r
≥ a ≥

√
2.

We rearrange the inequality and apply properties of monotonicity to lower-bound r away

from 1
2 :

r ≥ 1 − f(r)√
2

≥ 1 − f(xp−1)√
2

= 1 − xp√
2
> 1 − 1

2
√

2
.

It also must be the case for any x ∈ [1
2 , 1], that:

∣∣∣∣∣∣
f(x) − f

(
1
2

)
x− 1

2

∣∣∣∣∣∣ ≤ 2.

Otherwise, the concavity of f would force f(1
2) > 1.

We finally assemble the pieces to lower-bound the gap between xp−1 and xp:

xp−1 − xp ≥ xp−1 − 1
2 ≥ −1

2

(
f(xp−1) − f

(1
2

))
= r

2 − xp
2

>
1
2 − 1

4
√

2
− 1

4 = 1
4 − 1

4
√

2
> 0.07.

3.3 Periods, phase transitions, and function complexity

We formalize the correspondence between different notions of function complexity in dy-

namical systems and learning theory: neural network approximation, oscillation count, cycle

itinerary, topological entropy, and VC-dimension. We make Informal Theorem 3.3 rigorous

128

by presenting two regimes into which unimodal mappings can be classified—the doubling

regime and the chaotic regime—and show that all of these measurements of complexity

hinge on which regime a function belongs to.12

The following two theorems split most of the space of unimodal mappings into one of two

regimes and show that the doubling regime (so called because all cycles have power-of-two

lengths and their itineraries are not chaotic) is intrinsically simpler from an approximation

theoretic and a function complexity standpoint than the chaotic regime (where there exist

chaotic itineraries). The pair of theorems combined known facts about approximation and

topological entropy with new ideas about VC dimension. They support the claim that

the phase transition that separates mappings with chaotic itineraries from those without is

meaningful, because it also separates functions fk that cannot be tractably approximated

from those that can and separates highly expressive iterates fk from those that cannot

express complex data patterns.

Some components of the claims regarding the topological entropy are the immediate

consequences of other results; however, we include them to give a complete picture of the

gap between the two regimes. We believe the upper bound on monotone pieces of fk in the

doubling regime and both VC-dimension bounds below to be novel.

We define VC-dimension and introduce topological entropy in Section 3.3.2, along with

the proofs of both theorems. For the VC-dimension, we consider the hypothesis class Hf, t :=

{[[fk]]t : k ∈ N}, which corresponds to the class of iterated fixed maps.

Theorem 3.18. [Doubling Regime] Suppose f is a symmetric unimodal mapping whose

maximal cycle is a primary cycle of length p = 2q. That is, there exists a p-cycle but no

2p-cycles (and thus, no cycles with lengths non-powers-of-two). Then, the following are true:

1. For any k ∈ N, M(fk) = O((4k)q+1).
12These two regimes correspond to different settings of the parameters r in the bifurcation diagram of

Figure 3.16. The doubling regime is the left-hand-side, where the stable periods routinely split in two before
the first chaos is encountered. The chaotic regime is to the right-hand-side, which is characterized by chaos
punctuated by intermittent stability.

129

2. For any k ∈ N, there exists g ∈ N (u, 2) with u = O((4k)q+1/ϵ) such that
∥∥∥g − fk

∥∥∥
∞

≤

ϵ. Moreover, if f = ftent,r, then there exists g ∈ N (u, 2) with u = O((4k)q+1) and

g = fk.

3. htop(f) = 0.

4. For any t ∈ (0, 1), VC(Hf, t) ≤ 18p2.

The proof of Theorem 3.18 relies on a recursive characterization of fk whenever f has

a maximum cycle length of 2q. To prove the first claim, we use this recursive structure to

bound the number of monotone regions by relating the number of monotone regions of fk

to some g2k, where g has a maximum cycle length no more than 2q−1. The second and third

claims are implications of the first. The fourth claim relies on a different recursive argument

which shows that the family of iterated maps fk for fixed f are unable to shatter certain

subsets of points.

Theorem 3.19. [Chaotic Regime] Suppose f is a unimodal mapping that has a p-cycle where

p is not a power-of-two. Then, the following are true:

1. There exists some ρ ∈ (1, 2] such that for any k ∈ N, M(fk) = Ω(ρk).

2. For any k ∈ N and any g ∈ N (u, ℓ) with ℓ ≤ k and u ≤ 1
8ρ

k/ℓ, there exist samples S

with |S| = 1
2

⌊
ρk
⌋

such that RS,1/2(fk, g) ≥ 1
4 .

3. htop(f) ≥ ρ > 0.

4. There exists a t ∈ (0, 1) such that VC(Hf, t) = ∞.

Remark 3.2. As discussed in Section 3.4, any non-primary cycle implies the existence of a

cycle whose length is not a power of two. Thus, these results also apply if there exists any

non-primary power-of-two cycle, such as the 1234-itinerary 4-cycle.

The first three claims are implications of the proofs from previous sections of paper and

previous works. The fourth claim relies on applying Sharkovsky’s theorem to prove the

130

existence of an infinitely large number of cycles with coprime lengths. Then, by considering

a set of points each contained in a cycle of different coprime lengths, we show that a large

number of iterates k is sufficient to “shatter” the points by realizing every possible labeling.

3.3.1 Preliminaries and notation

Before reintroducing and proving the theorems about the doubling and chaotic regime,

we introduce topological entropy and define VC-dimension.

3.3.1.1 Topological Entropy

Topological entropy is a well-known measure of function complexity in dynamical systems

that measures the “bumpiness” of a mapping. Like we do with chaotic itineraries, Bu, Zhang,

and Luo (2020) draw analogies between the neural network approximability of fk and the

topological entropy of f . We do not give a rigorous definition of topological entropy, but we

include a well known result connecting topological entropy to the number of monotone pieces

(not constant-sized crossings), which is stated as Lemma 3 of the aforementioned work.

Lemma 3.20. [Misiurewicz and Szlenk, 1980; Young, 1981] If f : [0, 1] → [0, 1] is continuous

and piece-wise monotone, then the topological entropy of f satisfies the following:

htop(f) = lim
k→∞

1
k

logM(fk).

3.3.1.2 VC-Dimension

We capture the complexity of the mappings produced by repeated application of f , by

measuring the capability of a family of iterates to fit arbitrarily-labeled samples with the

VC-dimension. For some threshold parameter t ∈ (0, 1), we first define a hypothesis class

that we use to cast this family of iterated functions as Boolean-valued.

131

Definition 3.7. For some unimodal f : [0, 1] → [0, 1] and threshold t ∈ (0, 1), let

Hf,t := {[[fk]]t : k ∈ N}

be the Boolean-valued hypothesis class of classifiers of composed functions.

The following is the standard definition of the VC-dimension:

Definition 3.8 (Vapnik and Chervonenkis, 1968). For some hypothesis class H containing

functions [0, 1] → {0, 1}, we say that H shatters samples x1, . . . , xd ∈ [0, 1] if for every

labeling of the samples σ1, . . . , σd ∈ {0, 1}, there exists some h ∈ H such that h(xi) = σi

for all i ∈ [d]. The VC-dimension of H, VC(H) is the maximum d such that there exists

x1, . . . , xd ∈ [0, 1] that H shatters.

VC(Hf,t) will be a useful measurement of complexity of the mapping f , which as we

show is tighly connected with the notion of periodicity and oscillations. Notably, this is a

measurement of the complexity of iterated maps and is not a typical formulation of VC-

dimension for neural networks, since those typically would consider a fixed depth and a fixed

width, but variable values for the weights, rather than fixed f and variable k.

3.3.2 Proofs of Theorems 3.18 and 3.19

Theorem 3.18. [Doubling Regime] Suppose f is a symmetric unimodal mapping whose

maximal cycle is a primary cycle of length p = 2q. That is, there exists a p-cycle but no

2p-cycles (and thus, no cycles with lengths non-powers-of-two). Then, the following are true:

1. For any k ∈ N, M(fk) = O((4k)q+1).

2. For any k ∈ N, there exists g ∈ N (u, 2) with u = O((4k)q+1/ϵ) such that
∥∥∥g − fk

∥∥∥
∞

≤

ϵ. Moreover, if f = ftent,r, then there exists g ∈ N (u, 2) with u = O((4k)q+1) and

g = fk.

3. htop(f) = 0.

132

4. For any t ∈ (0, 1), VC(Hf, t) ≤ 18p2.

Proof. Claim 1 follows from a somewhat involved argument in Section 3.3.2.1 that uses an

inductive argument to compare the behavior of a mapping with a maximal p-cycle to one

with a maximal p
2 -cycle. By categorizing intervals of [0, 1] based on how fk behaves on that

interval, we analyze how fk+1 in turn behaves, which leads to a bound on the monotone

pieces M(fk).

Claim 2 is a simple consequence of Claim 1, by using the fact that a ReLU network can

piecewise approximate each monotone piece of fk. This argument appears in Section 3.3.2.2.

Claim 3 follows easily from Claim 1 and Lemma 3.20. We note that this derivation about

the topological entropy and the periodicity of f is a known fact in the dynamical systems

community.

Claim 4 relies on another recursive argument that frames VC-dimension in terms of the

possible trajectories of fk(x) for fixed x and changing k. We characterize these trajectories

by making use of Regular Expressions and by bounding the corresponding VC dimension in

Section 3.3.2.3.

Theorem 3.19. [Chaotic Regime] Suppose f is a unimodal mapping that has a p-cycle where

p is not a power-of-two. Then, the following are true:

1. There exists some ρ ∈ (1, 2] such that for any k ∈ N, M(fk) = Ω(ρk).

2. For any k ∈ N and any g ∈ N (u, ℓ) with ℓ ≤ k and u ≤ 1
8ρ

k/ℓ, there exist samples S

with |S| = 1
2

⌊
ρk
⌋

such that RS,1/2(fk, g) ≥ 1
4 .

3. htop(f) ≥ ρ > 0.

4. There exists a t ∈ (0, 1) such that VC(Hf, t) = ∞.

Proof. Claims 1 and 2 are immediate implications Theorems 1.5 and 1.6 of Chatziafratis

et al. (2019). Claim 3 follows by applying Lemma 3.20 to Claim 1 (again this derivation

about the topological entropy is basic in the literature on dynamical systems).

133

The most interesting part of the theorem is the last claim. We prove Claim 4 in Sec-

tion 3.3.2.4 by showing that the VC-dimension of the class is at least d for all d ∈ N.

The argument relies on the existence of an infinite number of cycles of other lengths, as

guaranteed by Sharkovsky’s Theorem.

3.3.2.1 Proof of Theorem 3.18, Claim 1

We restate Claim 1 of the theorem as the following proposition and prove it.

Proposition 3.21 (Claim 1 of Theorem 3.18). Suppose f is a symmetric unimodal mapping

whose maximal cycle is of length p = 2q. Then, for any k ∈ N, M(fk) = O((4k)q+1).

In order to bound the number of times f oscillates based on its power-of-two periods, we

categorize f by its cyclic behavior and the bound the number of local maxima and minima

f has based on its characterization.

Definition 3.9 (Category). For q ≥ 0 and z ∈ {0, 1}, let Fq,z contain the set of all symmetric

unimodal functions f such that (1) f has a 2q-cycle, (2) f does not have a 2q+1-cycle, and

(3) [[f 2q(1
2)]]1/2 = z.

We abuse notation to let M(Fk
q,z) = maxf∈Fq,z M(fk). Thus, for f given in the theorem

statement with a 2q-cycle, but not a 2q+1-cycle, our final bound is obtained by

M(fm) ≤ max{M(Fm
q,0),M(Fm

q,1)}.

We let M(f, a, b) represent the number of monotone pieces of f on the sub-interval [a, b] ⊂

[0, 1].

We build a large-scale inductive argument by first bounding base cases M(Fk
0,0) and

M(Fk
0,1). Then, we relate M(Fk

q,z) to M(Fk
q−1,1−z) to get the desired outcome.

Before beginning the proof, we state a slight refinement of the part of the theorem, which

takes into account the newly-introduced categories, from which the claim follows.

134

Figure 3.10: The base case results of Proposition 3.22 demonstrate the number of oscillations
of fk increases when f moves from F0,0 to F0,1. The plots show f and f 5 for f ∈ F0,0
(f = flog,0.45) on the left and f ∈ F0,1 (f = flog,0.775) on the right.

Proposition 3.22. For any k ∈ N, q ≥ 0, and z ∈ {0, 1},

M(Fk
q,z) ≤

2(3q)k q is even, z = 0, or q is odd, z = 1

2(3q)k+1 q is even, z = 1, or q is odd, z = 0.

Thus, proving Proposition 3.22 completes the proof of Proposition 3.21. The remainder

of the section proves Proposition 3.22.

Proof of Proposition 3.22 if q = 1 We show that M(Fk
0,0) = 2 and M(Fk

0,1) = 2k.

For fr as defined above, we characterize the number of oscillations that are added by

increasing r past 1
2 , where super-stability of a fixed point exists. Figure 3.10 illustrates those

results.

To analyze the oscillation patterns of fk, we define several “building blocks,” which

represent disjoint pieces of fk. That is, the interval [0, 1] can be partitioned into several

sub-intervals, each of which has fk follow certain simple behavior that we categorize. We

argue that any iterate can be decomposed into those pieces and then show how applying

f to fk modifies the pieces in order to analyze fk+1. Here are the function pieces that we

analyze, which map interval [a, b] ⊆ [0, 1] to [0, 1]:

135

Definition 3.10. For any f : [0, 1] → [0, 1] and for any [a, b] ⊆ [0, 1], f is referred to on

interval [a, b] as:

• a increasing crossing piece Ic if f is strictly increasing on [a, b] and has f(a) = 0,

f(b) > 1
2 , and f ′(b) > 0;

• a decreasing crossing piece Dc if f is strictly decreasing on [a, b] and has f(a) > 1
2 ,

f(b) = 0, and f(a) < 0;

• a up peak Up if there exists some c ∈ (a, b) that maximizes f on [a, b], f is strictly

increasing on [a, c), f is strictly decreasing on (c, b], and f(x) > 1
2 for all x ∈ [a, b];

• a up valley Uv if there exists some c ∈ (a, b) that minimizes f on [a, b], f is strictly

decreasing on [a, c), f is strictly increasing on (c, b], and f(x) > 1
2 for all x ∈ [a, b]; and

• a down peak Dp if there exists some c ∈ (a, b) that maximizes f on [a, b], f is strictly

increasing on [a, c), f is strictly decreasing on (c, b], and f(x) ≤ 1
2 for all x ∈ [a, b].

If there exists a sequence of intervals J1, . . . , Jm such that f is piece ηi on Ji, then we

represented f with the string η1 . . . ηm.

We specify an invariant for each part of the theorem, such that proving the invariant is

sufficient to prove the proposition:

1. If f ∈ F0,0, then fk is a down peak on [0, 1] for all k, and fk has two monotone pieces.

2. If f ∈ F0,1, f is represented by Ic(UpUv)k−1UpDc. That is, [0, 1] can be partitioned into

2k+ 1 subsequent intervals J1, . . . J2k+1 such that fk is an increasing crossing piece on

J1, a decreasing crossing piece on J2k+1 (if k ̸= 0), an up peak on J2j for j ∈ {1, . . . , k},

and a up valley on J2j+1 for j ∈ {1, . . . , k − 1}. Hence, fk has k distinct maxima and

2k monotone pieces. Figure 3.11 illustrates this invariant.

Base Case:

136

Figure 3.11: For f ∈ F0,1 (f = flog,0.775), visualizes the decomposition of f , f 2, and f 3 into
IcUpDc, IcUpUvUpDc, and Ic(UpUv)2UpDc respectively.

1. For f ∈ F0,0, f 1 = f is trivially a down peak on [0, 1] by the definition of F0,0, since 1
2

maximizes f .

2. For f ∈ F0,1, f can be represented by IcUpDc. That is, [0, 1] can be decomposed into

intervals I1, I2, and I3, on which fr is an increasing crossing piece, an up peak, and a

decreasing crossing piece respectively.

Inductive Step:

We examine what happens to each function piece when f is applied to it. We can use the

following analysis, along with the inductive hypothesis to show that fk+1 can be decomposed

as we expect it to be.

1. Examining the down peak proves first invariant for the case when f ∈ F0,0. Because

f strictly increases on [0, 1
2] and because f([0, 1]) ⊆ [0, 1

2] if fk is a down peak, f ◦ fk

also supports a down peak on [0, 1].

137

Because we inductively assume that fk is a low peak on [0, 1], it then follows that fk+1

is also a down peak on [0, 1].

2. We first prove a claim, which implies that f has no down peaks for f ∈ F0,1. Let

xmax = f(1
2),

Claim 3.23. If f ∈ F0,1, then f((1
2 , xmax]) ⊆ (1

2 , xmax].

Proof. Because 1
2 maximizes f , f(x) ≤ xmax for all x ∈ [1

2 , xmax]. Since f monotonically

decreases, on [1
2 , xmax], the claim can only be false if f(xmax) < 1

2 . We show by

contradiction that this is impossible.

Because f is continuous and monotonically increases on [0, 1
2] and ranges from 0 to

xmax ≥ 1
2 , there exists some x′ ≤ 1

2 such that f(x′) = 1
2 and f 2(x′) = xmax.

Let g(x) = f 2(x) − x. By assumption, g(1
2) = f(xmax) − 1

2 < 0. By definition of x′,

g(x′) = 1
2 − x′ ≥ 0. Because g is continuous, the Intermediate Value Theorem implies

the existence of x′′ ∈ [x′, 1
2) such that g(x′′) = 0 and f 2(x′′) = x′′. Since f has no two-

cycles, it must be the cause that f(x′′) = x′′ and x′′ = 1
2 . However, this contradicts

our finding that x′′ < 1
2 , which means that f(xmax) ≥ 1

2 and the claim holds.

Now, we proceed with analyzing each of the function pieces on some interval [a, b] ⊆

[0, 1] when f ∈ F0,1. The transformations are visualized in Figure 3.11.

• Increasing crossing piece: If fk has an Ic on [a, b], then fk+1 can be represented

by IcUp on [a, b].

There exist c and d such that a < d < c < 1
2 < b, fk(c) = 1

2 , and fk(d) = c. Then,

[a, 1
2(c+d)] supports an increasing crossing piece on f ◦fk—because f(fk(a)) = 0,

f(fk(1
2(c + d))) > 1

2 , and f ◦ fk is strictly increasing on that interval since f is

increasing before reaching 1
2 . [0.5(c + d), b] supports a high peak—because c is

a local maxima on f ◦ fk, and f ◦ fk is strictly increasing before c and strictly

decreasing after c.

138

• Decreasing crossing piece: For the same arguments, fk+1 can represented by

UpDc on [a, b] if fk is represented by Dc on [a, b].

• Up peak: Because f strictly decreases for x > 1
2 and because fk([a, b]) ⊆ (1

2 , xmax]

if Up represents fk on [a, b], c becomes a local minimum for f ◦ fk, and fk+1 is a

high valley Uv on [a, b].

• Up valley: Because f strictly decreases for x > 1
2 and because fk([a, b]) ⊆

(1
2 , xmax] if Uv represents fk on [a, b], c becomes a local maximum for f ◦ fk, and

fk+1 is a high peak Up on [a, b].

Now, consider the inductive hypothesis. Because fk can be represented by

Ic(UpUv)k−1UpDc,

applying the above transformations to each piece implies that fk+1 can be represented

by

Ic(UpUv)kUpDc.

Hence, the inductive argument goes through.

Proof of Proposition 3.22 generally The argument proceeds inductively. We show that

if we have some f ∈ Fq,k, then we can find some other function h ∈ Fq−1,1−k and characterize

the behavior of f in terms of the behavior of h.

Since we assume that q ≥ 1, there will always exist some x∗ > 1
2 that is a fixed point of

f .13 By symmetry, f(1 − x∗) = x∗. Let ϕ : [0, 1] → [1 − x∗, x∗] be a decreasing isomorphism

with ϕ(x) = x∗ − x(2x∗ − 1), and let

h = ϕ−1 ◦ f 2 ◦ ϕ.
13Sharkovsky’s Theorem yields this by showing that the existence of a 2q-cycle implies the existence of

any 2j-cycle, for all j ∈ {0, . . . , q − 1}. x∗ > 1
2 by our assumption that a 2-cycle x1 < x2 exists. It must be

true that x2 > 1
2 ; otherwise, f(x2) > x2 > x1, which breaks the cycle. Because f(1

2) > 1
2 and f(x2) < x2,

there exists x∗ ∈ (1
2 , x2) such that f(x∗) = x∗ by the Intermediate Value Theorem.

139

Figure 3.12: Visualizes the analogy between mappings in Fq,z and Fq−1,1−z. The left plots
the first 4 iterates of f = flog,0.9 ∈ F4,1 (has a maximal 4-cycle with f 4(1

2) > 1
2), while the

right plots those of f = flog,0.85 ∈ F2,0 (has a maximal 2-cycle with f 2(1
2) < 1

2 . The purple
highlighted regions on the left behave qualitatively similar to flog,0.85, while the green regions
are similar to f 2

log,0.85.

h is a useful construct, because its behavior resembles simpler versions of f , with fewer cycles

and oscillations. We use properties of h to relate pieces of fk to those of hk/2. We illustrate

this recursive and fractal-like behavior in Figure 3.12.

Note that hk = ϕ−1 ◦ f 2k ◦ ϕ.

Lemma 3.24. h is a symmetric unimodal mapping with h ∈ Fq−1,1−z.

Proof. We verify the conditions for f to be unimodal mapping.

1. h is continuous and piece-wise differentiable on [0, 1] because f 2 is, and h is merely a

linear transformation of f 2.

2. h(0) = h(1) = 0. h((0, 1)) is strictly positive because f((1 − x∗, x∗)) = (x∗, xmax),

f 2((1 − x∗, x∗)) = (f(xmax), x∗), and f(xmax) < f(x∗) = x∗ by f being decreasing on

140

[1
2 , 1].

3. h is uniquely maximized by 1
2 because 1

2 minimizes f 2 on the interval [1 − x∗, x∗]. f

maps both [1 − x∗, 1
2] and [1

2 , x
∗] onto [x∗, xmax] and is increasing and decreasing on

the respective intervals. Because f maps [x∗, xmax] onto [f(xmax), x∗] and f(xmax) < x∗

and is decreasing on [x∗, xmax], f 2 is increasing on [1 − x∗, 1
2] and decreasing on [1

2 , x
∗].

Thus, h is maximized by 1
2 , increases before 1

2 , and decreases after 1
2 .

4. We must also show that h is well-defined, which entails proving that h(x) ≤ 1 for all

x ∈ [0, 1]. Suppose that were not the case. Then, h(1
2) > 1, and there exists some

x′ ≤ 1
2 with h(x′) = 1. There also exists some x∗∗ ∈ [1 − x′, 1] with h(x∗∗) = x∗∗ by

the Intermediate Value Theorem.

Let g(x) = h3(x) − x and note that g is continuous on [0, x′]. Observe that g(1 −

x∗∗) = 2x∗∗ − 1 > 0 and g(x′) = −x′ < 0. Thus, there exists x′′ ∈ [1 − x∗∗, x′] with

g(x′′) = 0. Because h is increasing on [0, x′] and x′ > 1 − x∗∗, it must be the case that

h(x′) > x∗∗ > x′. Thus, x∗∗ is not a fixed point and must be on a 3-cycle in h.

However, if x∗∗ is on a 3-cycle in h, then ϕ(x∗∗) must be part of a 6-cycle in f . This

contradicts the assumption that f cannot have a 2q+1-cycle, because Sharkovsky’s

Theorem states that a 6-cycle implies a 2q+1-cycle.

We show that h is symmetric.

h(x) = ϕ−1(f 2(ϕ(x))) = ϕ−1(f 2(1 − ϕ(x))) = ϕ−1(f 2(1 − x∗ + x(2x∗ − 1)))

= ϕ−1(f 2(x∗ − (1 − x)(2x∗ − 1))) = ϕ−1(f 2(ϕ(1 − x))) = h(1 − x).

If f 2q(1
2) ≥ 1

2 , then h2q−1(1
2) ≤ 1

2 , and if f 2q(1
2) ≤ 1

2 , then h2q−1(1
2) ≥ 1

2 . Thus,

[[h2q−1(1
2)]]1/2 = [[f 2q(1

2)]]1/2. By Lemma 3.25, h has a 2q−1-cycle and does not have a

2q-cycle. Thus, h ∈ Fq−1,1−z.

Lemma 3.25. For p ∈ Z+, h has a p-cycle if and only if f has a 2p-cycle.

141

Proof. Suppose x1, . . . , xp is a p-cycle for h. Then, ϕ(x1), . . . , ϕ(xp) is a p-cycle for f 2. If

x1, . . . , xp are distinct, then so must be ϕ(x1), . . . , ϕ(xp), since ϕ is an isomorphism. Thus,

ϕ(x1), f(ϕ(x1)), . . . , ϕ(xp), f(ϕ(xp))

is a 2p-cycle for f .

Conversely, if x1, . . . , x2p is a 2p-cycle for f , then x1, x3, . . . , x2p−1 is a p-cycle for f 2 and

ϕ−1(x1), . . . , ϕ−1(x2p)

is a p-cycle for h.

We proceed with a proof similar in structure to the one in the last section, where we

divide each fk into intervals and monitor the evolution of each as k increases. We define

the classes of the pieces of some 1-dimensional map fk on interval [a, b] below. We visualize

these classes in Figure 3.13.

• fk is an approach A on [a, b] if f is strictly increasing, fk(a) = 0, and fk(b) = 1 − x∗.

• Similarly, fk is a departure D on [a, b] if fk is strictly decreasing, fk(a) = 1 −x∗, and

fk(b) = 0.

• fk is an i-Left Valley Lvi on [a, b] if fk : [a, b] → [f(xmax), x∗] and if there exists some

strictly increasing and bijective σ : [a, b] → [1 − x∗, x∗] such that fk = ϕ ◦ hi ◦ ϕ−1 ◦ σ

on [a, b]. Note that fk(a) = fk(b) = x∗—unless i = 0, in which case fk(a) = 1 − x∗

and fkr (b) = x∗.

• fk is analogously a i-Right Valley Rvi if the same condition holds, except that σ is

strictly decreasing.

• fk is an i-Left Peak Lpi on [a, b] if fk−1 is Lvi−1 on [a, b]. It follows that fk :

[a, b] → [x∗, xmax], that there exists some c ∈ [a, b] such that fk(c) = xmax (because

142

Figure 3.13: Similar to Figure 3.11, visualizes the classifications of f, f 2, f 3, f 4 for
f = flog,0.9 ∈ F4,1, and demonstrates that the decompositions are ALv0Lp0Rv0D,
ALv0Lp1Lv1Rp1Rv0D, ALv0Lp1Lv1Lp2Rv1Rp1Rv0D, and ALv0Lp1Lv1Lp2Lv2Rp2Rv1Rp1Rv0D re-
spectively.

1
2 ∈ [f(xmax), x∗]), and that fk(a) = fk(b) = x∗.

• fk is an i-Right Peak Rpi on [a, b] if fk−1 is Rvi−1 on [a, b]. The same claims hold as

Lpi.

Now, the proof of the number of oscillations proceeds in two steps. (1) We analyze how

each of the above pieces evolves with each application of f . (2) We show how many maxima

and minima each translates to.

Lemma 3.26. When f ∈ Fq,z for q ≥ 1 and for all k ∈ Z+, fk can be decomposed into

143

2k + 3 pieces η1, . . . , η2k+3 such that

ηi is

A if i = 1

Lvj if i = 2j + 2 for j ∈ {0, 1, . . . , ⌊k/2⌋}

Lpj if i = 2j + 1 for j ∈ {1, . . . , ⌊(k + 1)/2⌋}

Rvj if i = 2k − 2j + 2 for j ∈ {0, 1, . . . , ⌊(k − 1)/2⌋}

Rpj if i = 2k − 2j + 3 for j ∈ {1, . . . , ⌊k/2⌋}

D if i = 2k + 3

That is, if k is even, then f can be represented by

ALv0Lp1Lv1 . . . Lvk/2−1Lpk/2Lvk/2Rpk/2Rvk/2−1 . . .Rv1Rp2Rv0D.

If k is odd, then f is represented by

ALv0Lp1Lv1 . . . Lp(k−1)/2Lv(k−1)/2Lp(k+1)/2Rv(k−1)/2Rp(k−1)/2 . . .Rv1Rp2Rv0D.

Proof. This lemma is proved inductively. f can be decomposed into the pieces ALv0Lp1Rv0D.

• By unimodality and symmetry, f is strictly increasing on [0, 1
2) and strictly decreasing

on (1
2 , 1]. There exists some x1 such that [0, x1] is strictly increasing and f(x1) = 1−x∗

(because 1 − x∗ < x∗ < xmax). Thus, f is A on [0, x1]. Similarly, [1 − x1, 1] is strictly

decreasing and f(1 − x1) = 1 − x∗, which implies that f is D on [1 − x1, 1].

• Note that x1 < 1 − x∗ < x∗ < 1 − x1, and f is increasing on [x1, 1 − x∗] and decreasing

on [x∗, 1 − x1].

Because [x1, 1−x∗] is monotone, there exists continuous and increasing σ : [x1, 1−x∗] →

[1 − x∗, x∗] such that f(x) = σ(x). Since h0 is the identity map, it trivially also holds

that f(x) = ϕ(h0(ϕ−1(σ(x)))). Because f(x1) = 1 − x∗ and f(x∗) = x∗, it follows that

144

f is Lv0 on [x1, 1 − x∗].

By a similar argument, f is Rv0 on [x∗, 1 − x1], with the only difference being that σ

needs to be strictly decreasing for it to hold.

• [1−x∗, x∗] is Lp1 because [1−x∗, x∗] is Lv0 on the identity map f 0. This trivially holds

using the identity σ map.

Now, we prove the inductive step, which can be summed up by the following line:

A → ALv0; D → Rv0D; Lvj → Lpj+1; Lpj → Lvj; Rvj → Rpj+1; Rpj → Rvj.

We show each part of the relationship as follows:

• If fk is A on [0, b], then there exists some c ∈ (0, b) such that fk+1(c) = 1 − x∗ because

fk is an isomorphism between [0, b] and [0, x∗].

It follows that fk+1 is A on [0, c] because fk+1 is strictly increasing on the interval from

0 to 1 − x∗.

[c, b] is Lv0 because there must exist some increasing σ such that fk+1(x) = σ(x) on

that interval. Thus, it follows that fk+1 = ϕ ◦ h0 ◦ ϕ−1 ◦ σ on [0, b].

• The same argument holds for D. If fk is D on [a, 1], then there exists c ∈ (a, 1) such

that [a, c] is Rv0 and [c, 1] is D.

• If fk is Lvj on [a, b], then fk+1 is Lpj+1 on the same interval by the definition of Lpj+1.

• Similarly, if fk is Rvj on [a, b], then fk+1 is Rpj+1 on the same interval by the definition

of Rpj+1.

• If fk is Lpj on [a, b], then fk−1 is Lvj−1 and hence fk−1 maps to [f(xmax), x∗] on the

interval. Therefore, there exists σ such that fk−1 = ϕ ◦ hj−1 ◦ ϕ−1 ◦ σ on the interval.

145

We use the properties of h to show that fk+1 is Lvj on [a, b]. Note that f 2 = ϕ◦h◦ϕ−1

on [f(xmax), x∗].

fk+1 = f 2 ◦ fk−1 = ϕ ◦ h ◦ ϕ−1 ◦ ϕ ◦ hj−1 ◦ ϕ−1 ◦ σ = ϕ ◦ hj ◦ ϕ−1 ◦ σ

Thus, fk+1 satisfies the condition to be Lvj.

• By a identical argument, if fk is Rpj on [a, b], then fk+1 is Rvj.

The remainder of this argument follows by applying the above transition rules for each piece

to the inductive hypothesis about the ordering of pieces in fk to obtain the ordering for

fk+1.

Now, we determine how many local maxima and minima are contained in each type of

piece. Let maxima(f) and minima(f) represent the number of local maxima and minima

respectively on mapping f on interval [0, 1]. We bound the total number of monotone pieces

with these bounds by using M(f) = 2maxima(f). We similarly abuse notation to bound the

number of maxima and minima in a category with maxima(Fk
q,z) and minima(Fk

q,z), and in

the interval [a, b] with maxima(f, a, b) and minima(f, a, b).

By the base case in the previous section maxima(Fk
0,0) = 1, minima(Fk

0,0) = 2, maxima(Fk
0,1) =

k, and minima(Fk
0,1) = k + 1. We obtain recurrences to represent maxima(Fk

q,z) and

minima(Fk
q,z).

For each part, we rely on the following facts: If σ is a strictly increasing bijection, then

maxima(f ◦ σ, a, b) = maxima(f, a, b). If σ is strictly decreasing, then minima(f ◦ σ, a, b) =

maxima(f, a, b). (The reverse are true for minima of f .)

We analyze each type of piece individually, considering what happens when f has some

kind of piece on interval [a, b].

• Because A and D segments are strictly increasing or decreasing, maxima(f, a, b) = 0

when f has either piece on [a, b]. minima(f, a, b) = 1 because segments that support

146

A contain 0 and segments with D have 1, each of which f maps to 0.

• Because each Lvi segment of fk on [a, b] can be represented as ϕ ◦ hi ◦ ϕ−1 ◦ σ, and

because ϕ is strictly decreasing, maxima(fkr , a, b) = minima(hi) and minima(fkr , a, b) =

maxima(hi). By Lemma 3.24, h ∈ Fq−1,1−z, maxima(fkr , a, b) ≤ minima(F i
q−1,1−z) and

minima(fkr , a, b) ≤ maxima(F i
q−1,1−z).

The same analysis holds for each Rvi segment.

• Consider an Lpi segment of fk on [a, b], which has output spanning the interval

[x∗, xmax]. Because x∗ > 1
2 , f is strictly decreasing on the domain [x∗, xmax]. Thus,

fk+1 must satisfy maxima(fk+1
r , a, b) = minima(fkr , a, b) and minima(fk+1

r , a, b) =

maxima(fkr , a, b).

Note by the definition of Lpi that [a, b] must also support an Lvi−1 segment on fk−1

and an Lvi segment on fk+1. From the previous bullet, the Lvi segment must have at

most minima(F i
q−1,1−z) maxima and maxima(F i

q−1,1−z) minima. Because there must

be a one-to-one correspondence between minima of fk+1 and maxima of fk on the

interval and vice versa, the Lpi segment has maxima(fkr , a, b) ≤ maxima(F i
q−1,1−z) and

minima(fkr , a, b) ≤ minima(F i
q−1,1−z).

The same analysis hold for each Rpi segment.

Therefore, we can construct a recurrence relationship for the number of maxima and

minima for fkr based on the sequences found in Lemma 3.26.

147

maxima(Fk
q,z) ≤

⌊k/2⌋∑
i=0

minima(Fk
q−1,1−z)︸ ︷︷ ︸

Lvi

+
⌊(k−1)/2⌋∑

i=0
minima(Fk

q−1,1−z)︸ ︷︷ ︸
Rvi

+
⌊(k+1)/2⌋∑

i=1
maxima(Fk

q−1,1−z)︸ ︷︷ ︸
Lpi

+
⌊k/2⌋∑
i=1

maxima(Fk
q−1,1−z)︸ ︷︷ ︸

Rpi

minima(Fk
q,z) = 2︸︷︷︸

A&D

+
⌊k/2⌋∑
i=0

maxima(Fk
q−1,1−z)︸ ︷︷ ︸

Lvi

+
⌊(k−1)/2⌋∑

i=0
maxima(Fk

q−1,1−z)︸ ︷︷ ︸
Rvi

+
⌊(k+1)/2⌋∑

i=1
minima(Fk

q−1,1−z)︸ ︷︷ ︸
Lpi

+
⌊k/2⌋∑
i=1

minima(Fk
q−1,1−z)︸ ︷︷ ︸

Rpi

We bound maxima(Fk
q,z) and minima(Fk

q,z) by induction to prove Proposition 3.22. We

use the following inductive assumption over all k, q, and z, which suffices to prove the claim:

maxima(Fk
q,z),minima(Fk

q,z) ≤

(4q)k q is even, z = 0, or q is odd, z = 1

(4q)k+1 q is even, z = 1, or q is odd, z = 0.

By the previous section, the claim holds for q = 0 and all k and z, which gives the base

case.

Moving forward, we assume that the claim holds for all values of q′ with q′ ≤ q and any

k and z. We prove that it holds for q + 1 with any choices of k and z.

We show that the bound holds for minima(Fk
q+1,z) when q+ 1 is even and z = 1, or q+ 1

is odd and z = 0. The other cases are nearly identical. Since the bounds are trivial for

k = 1, we prove them below for k ≥ 2.

148

minima(Fk
q+1,z) ≤ 2 +

⌊k/2⌋∑
i=0

(4i)q+1 +
⌊(k−1)/2⌋∑

i=0
(4i)q+1 +

⌊(k+1)/2⌋∑
i=0

(4i)q+1 +
⌊k/2⌋∑
i=0

(4i)q+1

≤ 4 · k2 · (2k)q+1 + (2(k + 1))q+1 ≤ (2k)q+2 + (3k)q+1 ≤ (4k)q+2.

3.3.2.2 Proof of Theorem 3.18, Claim 2

We restate the claim:

Proposition 3.27 (Claim 2 of Theorem 3.18). Suppose f is a symmetric unimodal mapping

whose maximal cycle is of length p = 2q. For any k ∈ N, there exists g ∈ N (u, 2) with width

u = O((4k)q+1/ϵ) such that L∞(fk, g) ≤ ϵ. Moreover, if f = ftent,r, then there exists g of

width O((4k)q+1) with g = fk.

Proof. This part follows the bound on monotone pieces of fk given in Proposition 3.21 and

a simple neural network approximation bound.

Lemma 3.28. Consider some continuous f : [0, 1] → [0, 1] with M(f) ≤ m. For any

ϵ ∈ (0, 1), there exists g ∈ N (u, 2) of width u = O(m
ϵ
) such that L∞(f, g) ≤ ϵ.

Proof. A monotone function mapping to [0, 1] can be ϵ-approximated by a piecewise-linear

function with O(1
ϵ
) pieces, and hence, a 2-layer ReLU network of width O(1

ϵ
).

Every monotone piece can be approximated as such, which means that g has width

O(m
ϵ
).

For the case where f = ftent,r for some r, it is always true that
∣∣∣ d
dx
fktent,r(x)

∣∣∣ = (2r)k,

except when x is a local maximum or minimum. Thus, every monotone piece of fk is linear,

and f can be exactly expressed with a piecewise linear function with O((4q)k+1) pieces, and

also a ReLU neural network of width ((4q)k+1).

149

3.3.2.3 Proof of Theorem 3.18, Claim 4

Recall that for unimodal f : [0, 1] → [0, 1] and threshold t ∈ (0, 1),

Hf, t := {[[fk]]t : k ∈ N}

is the hypothesis class under consideration.

Proposition 3.29 (Claim 4 of Theorem 3.18). Suppose f is a symmetric unimodal mapping

whose maximal cycle is of length p = 2q. For any t ∈ (0, 1), VC(Hf, t) ≤ 18p2.

This proof is involved and requires new notations and concepts.

Proof notations and preliminaries. Let {0, 1}N represent all countable infinite se-

quences of Boolean values, and let {0, 1}∗ represent all finite sequences (including the empty

sequence).

For y ∈ {0, 1}N, let yi:j = (yi, . . . , yj) ∈ {0, 1}j−i+1 and yi: = (yi, yi+1, . . .) ∈ {0, 1}N.

For w ∈ {0, 1}n, w′ ∈ {0, 1}n′ , let ww′ = w ◦ w′ ∈ {0, 1}n+n′ be their concatenation. Let

wj = w ◦ w ◦ · · · ◦ w ∈ {0, 1}jn.

Before we give the main result, we give a way to upper-bound the VC-dimension of

countably infinite hypothesis classes H = {h1, h2, . . . , } ⊆ ([0, 1] → {0, 1}). For some x ∈ X ,

define sH : [0, 1] → {0, 1}N as sH(x) = (hi(x))i∈N. We denote all patterns expressed by

elements of the concept class H over all choices of x ∈ [0, 1]:

SH = {sH(x) : x ∈ [0, 1]} ⊂ {0, 1}N.

With this notation, H shatters d points if and only if there exist y(1), . . . , y(d) ∈ SH such that

|{(y(1)
j , . . . , y

(n)
j) : j ∈ N}| = 2d. We equivalently say that y(1), . . . , y(d) are shattered.

Here’s where the idea of Regular Expressions (Regexes) comes in. If we can show all

elements in SH are represented by some infinite-length Regex, then we can upper-bound

150

the number of points H can shatter, which is necessary to bound the expressive capacity of

unimodal functions with recursive properties.

To that end, we first introduce a different notion of shattering. Then, we’ll give an

upper-bound for the VC-dimension of H when we have a Regex for SH.

Definition 3.11. We say that H (or SH) weakly shatters d points if there exist w(1) ◦

y(1), . . . , w(d) ◦ y(d) ∈ SH for w(1), . . . , w(d) ∈ {0, 1}∗ such that y(1), . . . , y(d) are shattered. Let

the weak VC-dimension of H represent the maximum number of points H can weakly

shatter and denote it VCweak(H) = VCweak(SH).

Using this notation, we can extend our notion of weak VC-dimension to any subset of

{0, 1}N, whether or not it corresponds to a hypothesis class. If H ⊂ S ⊂ {0, 1}N, then

VCweak(H) ≤ VCweak(S).

Note that if H shatters d points, then it also trivially weakly shatters d points. We can

get this by taking w1 = . . . , wd to be the empty strings. Thus, the VC(H) ≤ VCweak(H).

A Regex is a recursively defined subset of {0, 1}N that can be represented by a string.

We describe how a Regex R ⊆ {0, 1}N can be defined below.

• One way to define a Regex is with a repeating sequence w∞ for w ∈ {0, 1}n. That is,

w∞ = {y ∈ {0, 1}N : yin+1:(i+1)n = w,∀i ∈ N}.

For instance, (011)∞ = {(0, 1, 1, 0, 1, 1, 0, 1, 1, . . .)}.

• For w ∈ {0, 1}n, if R is a Regex, then wR is also a Regex. This means satisfying

sequences must start with w and then the remainder of the bits must satisfy R.

wR = {y ∈ {0, 1}N : y1:n = w, yn+1: ∈ R}.

• w∗R is also a Regex, where w∗ represents any number of recurrences of the finite

151

sequence s. That is,

w∗R = ∪∞
j=0w

jR.

• If R′ is also a Regex, then so is R ∪R′.

• If R′ is also a Regex, then so is R ⊕ R′, where the odd entries of sequences in R ⊕ R′

concatenated together must be in R and the even entries must be in R′.

R ⊕R′ = {y ∈ {0, 1}N : y1,3,5,... ∈ R, y2,4,6,... ∈ R′}.

Now, we can create a recursive upper-bound on the number of points H can weakly

shatter. To do so, we assume that H ⊆ R for some Regex R and bound the weak VC

dimension of R.

Lemma 3.30. Consider infinite-length Regexes R,R′, R′′ and w ∈ {0, 1}n.

1. If R = w∞, then VCweak(R) ≤ log2 n.

2. If R = wR′, then VCweak(R) ≤ VCweak(R′) + log2 n+ 1.

3. If R = w∗R′, then VCweak(R) ≤ VCweak(R′) + log2 n+ 1.

4. If R = R′ ∪R′′, then VCweak(R) ≤ VCweak(R′) + VCweak(R′′).

5. If R = R′ ⊕R′′, then VCweak(R) ≤ 4 max(VCweak(R′),VCweak(R′′)) + 2.

Proof. 1. If R = w∞, then the set Y = {y : w ◦ y ∈ w∞, w ∈ {0, 1}∗} contains at most n

elements. Hence, ∣∣∣{(y(1)
j , . . . , y

(d)
j) : j ∈ N}

∣∣∣ ≤ n

for any fixed y(1), . . . , y(d) ∈ Y , and no more than d = log2 n points can be weakly

shattered.

152

2. Suppose R weakly shatters d points, so y(1), . . . , y(d) are shattered for some w(1) ◦

y(1), . . . , w(d) ◦ y(d) ∈ R. If Y = {(y(1)
j , . . . , y

(d)
j) : j ∈ N} and Yn = {(y(1)

j , . . . , y
(d)
j) :

j ≤ n}, then |Y | = 2d and |Yn| ≤ n. There exists some v ∈ {0, 1}1+log2 n such that

v ◦ σ ∈ Y \ Yn for all σ ∈ {0, 1}d−1−log2 n. Therefore,

|{(y(2+log2 n)
j , . . . , y

(d)
j) : j > n}| = 2d−1−log2 n,

and there exist d− 1 − log2 n points that can be weakly shattered by R′, since none of

the labelings with w are necessary.

3. Once again, suppose R weakly shatters d points, y(1), . . . , y(d) for w(1) ◦ y(1), . . . , w(d) ◦

y(d) ∈ R. Because each w(i) ◦ y(i) ∈ w∗R′, there exists an index ℓi such that (w(i) ◦

y(i))1:ℓi = wℓi/n and (w(i)◦y(i))ℓi+1: ∈ R′. Without loss of generality, assume y(1), . . . , y(d)

are ordered such that ℓi −
∣∣∣w(i)

∣∣∣ decreases. That is, the first 1 + log2 n sequences are

the ones that “leave w∗ last.” Let ℓ∗ := ℓ1+log2 n −
∣∣∣w(1+log2 n)

∣∣∣. Define Y and Yℓ∗

analogously to the previous part and note that |Y | = 2d. Because Yℓ∗ corresponds only

to labelings where the first 1 + log2 n elements come from subsets of w∞, there exists

some v ∈ {0, 1}1+log2 n such that v ◦ σ ∈ Y \ Yℓ∗ for all σ ∈ {0, 1}d−1−log2 n. As before,

there exist d− 1 − log2 n points that can be weakly shattered by R′

4. There is no set of VCweak(R′) + 1 and VCweak(R′′) + 1 points that can be weakly

shattered by R′ and R′′ respectively. Any VCweak(R′) + VCweak(R′′) + 1 points in R

must have at either VCweak(R′) + 1 points in R′ or VCweak(R′′) + 1 points in R′′. Thus,

at least one subset cannot be shattered.

5. Suppose without loss of generality that d := VCweak(R′) ≥ VCweak(R′′). Consider any

w(1) ◦ y(1), . . . , w(d) ◦ y(4d+3) ∈ R. WLOG, assume that
∣∣∣w(1)

∣∣∣ , . . . , ∣∣∣w(2d+2)
∣∣∣ are even,

which implies that w(1)
odd ◦ y(1)

odd, . . . w
(2d+2)
odd ◦ y(2d+2)

odd ∈ R′ and w(1)
even ◦ y(1)

even, . . . w
(2d+2)
even ◦

153

y(2d+2)
even ∈ R′′. Therefore,

∣∣∣{(y(1)
j , . . . , y

(4d+3)
j) : j ∈ N}

∣∣∣
≤ 22d+1

∣∣∣{(y(1)
j , . . . , y

(2d+2)
j) : j ∈ N}

∣∣∣
≤ 22d+1

(∣∣∣{(y(1)
j , . . . , y

(2d+2)
j) : j ∈ Nodd}

∣∣∣+ ∣∣∣{(y(1)
j , . . . , y

(2d+1)
j) : j ∈ Neven}

∣∣∣)
≤ 22d+1 · 2

d∑
i=0

(
2d+ 2
i

)
< 22d+2 · 22d+1 = 24d+3.

The last line follows by the Sauer Lemma. Thus, R cannot shatter 4d+ 3 points if R′

and R′′ cannot shatter d points.

Here’s an example of how to apply our regex rules:

VCweak(1∗0(01)∞ ∪ 10∞) ≤ VCweak(1∗0(01)∞) + VCweak(10∞)

≤ 1 + VCweak(0(01)∞) + 1 + VCweak(0∞)

≤ 2 + 1 + VCweak((01)∞)

≤ 3 + 1 = 4.

Proof of Proposition 3.29 Recall that we consider the hypothesis class

Hf,t := {[[fk]]t : k ∈ N}

for symmetric unimodal f and t ∈ (0, 1).

To build up the argument, we first bound the VC-dimension for two simple cases.

• First, we consider the case when f has no fixed point. Thus, for all x ∈ (0, 1], f(x) < x,

which means that the sequence f(x), f 2(x), . . . is decreasing.

If the threshold t is 0 or is greater than f(1
2), then the sequence will be all 0’s or

1’s, which will imply that VC(Hf,t) = 0. Thus, the only interesting thresholds are

154

x

f(x)

x1

I0 I1

I0 I1 I2

x2 1/2 1 − x2 1 − x1

I2 I ′
2 I ′

1 I ′
0

I ′
0 I ′

1 I ′
2

Figure 3.14: A plot of the domain of some f with two fixed points—both smaller than 1
2—

subdivided into intervals. The relationships of which intervals f maps onto one another are
also visualized.

t ∈ (0, f(1
2)]. Because the sequence is decreasing, SHf,t

= 1∗0∞. From Lemma 3.30,

VC(Hf,t) ≤ VCweak(Hf,t) ≤ 1.

• Let x1 < · · · < xm be all the fixed points of f . Suppose xm ≤ 1
2 . By symmetry, for all

j ∈ [m], f(1 − xj) = xj.

To analyze this function, we partition [0, 1] into 2m + 2 intervals: I0 = [0, x1), I ′
0 =

(1 − x1, 1], Im = [xm, 1
2], I ′

m = (1
2 , 1 − xm], Ij = [xj, xj+1), and I ′

j = (1 − xj+1, 1 − xj]

for all j ∈ {1, . . . ,m− 1} (visualized in Figure 3.14).

Because f is unimodal and because the edges of all intervals map to fixed points, for

all j ∈ {0, . . . ,m}, f(I ′
j) = f(Ij) = Ij. In this case, it must be the case that q = 0

because f cannot have a 2-cycle. Such a cycle is impossible because it would have to

be contained entirely in some Ij. In those intervals, it must be the case that either

∀x ∈ Ij, f(x) ≥ x, or ∀x ∈ Ij, f(x) ≤ x (if this were not the case, then this would

imply the existence of a fixed point other than xj in Ij). Thus, cyclic behavior within

an interval is impossible.

Thus, we can construct a Regex to represent the itinerary of any x ∈ [0, 1]: ⋃mj=0 I
∞
j .14

14This is a massive abuse of notation, but we use the same Regex notation to denote the intervals that
are traversed as we use to denote the values of Boolean sequence.

155

Now, we consider all possible locations of threshold t:

– If t ∈ Ij, such that f(x) ≥ x for x ∈ Ij, then SHf,t
⊆ 0∗1∞ ∪ 0∞ ∪ 1∞. By Lemma

3.30, VCweak(Hf,t) ≤ 1.

– If t ∈ Ij, such that f(x) ≤ x for x ∈ Ij, then SHf,t
⊆ 1∗0∞ ∪ 0∞ ∪ 1∞. By

Lemma 3.30, VCweak(Hf,t) ≤ 1.

– If t ∈ ⋃m
j=0 I

′
j, then SHf,t

= 0∞, and VCweak(Hf,t) = 0.

Now, we give a lemma, which relates the VC-dimension of complex functions to that

of simpler ones. Let Fq refer to the family of symmetric unimodal functions that have a

2q-cycle but not a 2q+1-cycle.

Lemma 3.31. For any f ∈ Fq with fixed point x∗ > 1
2 and any t ∈ [0, 1],

VCweak(Hf,t) ≤ 4 max
g∈Fq−1,t′∈[0,1]

VCweak(Hg,t′) + 10.

Proof. Consider some such f . Let x1 < · · · < xm be the fixed points of f where xm = x∗ > 1
2 .

Because 1
2 maximizes f , f(1

2) ≥ xm > 1
2 . This fixed point must the only fixed point no

smaller than 1
2 ; the existence of another such fixed point would contradict the fact that f is

decreasing on (1
2 , 1]. Thus, x1, . . . , xm−1 <

1
2 .

We build a recursive relationship by considering f 2 and relating some its output on some

segments of [0, 1] to other maps with smaller q. For now, we instead attempt to upper-bound

the VC-dimension of Hf2,t.

For all j ∈ [m], unimodality implies that xj and 1 − xj are the only points that map to

xj and that the following ordering holds.

0 < x1 < . . . , < xm−1 < 1 − xm <
1
2 < xm < 1 − xm−1 < . . . , 1 − x1 < 1.

By the Intermediate Value Theorem, there exists some x′
m ∈ (xm, 1 − xm−1) such that

f(x′
m) = f(1 − x′

m) = 1 − xm and f 2(x′
m) = f 2(1 − x′

m) = xm.

156

We define intervals as follows:

• I0 = [0, x1) and I ′
0 = (1 − x1, 1].

• For all j ∈ [m− 2], Ij = [xj, xj+1) and I ′
j = (1 − xj+1, 1 − xj].

• Im−1 = [xm−1, 1 − x′
m) and I ′

m−1 = (x′
m, 1 − xm−1].

• Im = [1 − x′
m, 1 − xm) and I ′

m = (xm, x′
m].

• Im+1 = [1 − xm,
1
2), and I ′

m+1 = [1
2 , xm].

For any j ∈ {0, . . . ,m + 1}, f is increasing on all intervals Ij and decreasing on I ′
j. By

symmetry, f(Ij) = f(I ′
j). For all j ∈ {0, . . . ,m − 2}, f(Ij) = Ij. f(Im−1) = Im−1 ∪ Im,

f(Im) = Im+1 ∪ I ′
m+1, and f(Im+1) ⊆ I ′

m, because f(1
2) ∈ [xm, x′

m).15

From there, we obtain additional properties for f 2: f 2(Im−1) = Im−1 ∪ Im ∪ Im+1 ∪ I ′
m+1,

f 2(Im) ⊆ I ′
m, and f 2(Im+1) ⊂ Im+1 ∪ I ′

m+1. This suggests that there is recurrent structure

that we can take advantage of to count all of the patterns.

Let Jm+1 := Im+1 ∪ I ′
m+1. We create a Regex to track the behavior of iterates f 2, which

we visualize in Figure 3.15:

m−2⋃
j=0

I∞
j ∪ I∗

m−1ImI
′∞
m ∪ I ′∞

m ∪ I∗
m−1J

∞
m+1.

When an iterate of f 2 gets “stuck” in one of I0, I1, . . . , Im−1, it must either be at a fixed

point, be strictly increasing, or be strictly decreasing. To suggest otherwise would imply the

existence of another fixed point in those intervals, because f 2 is monotonically increasing or

decreasing in all of those and either all x yield f 2(x) ≥ x or f 2(x) ≤ x.

For the remaining intervals, one might notice in Figure 3.15 that zooming in on the in-

tervals Im, Jm+1, and I ′
m for f 2 gives what looks like unimodal maps.16 We take advantage

15This must be the case for the assumptions to be met. If f(1
2) < xm, then xm cannot be a fixed point

because 1
2 maximizes f . If f(1

2) > x′
m, then there exists a 3-cycle with points in Im+1, I ′

m−1, Im, which
contradicts the assumption that we only have power-of-two cycles.

16We use similar techniques here to those used in Section 3.3.2.1.

157

x

f(x)

x1

I0 I1

I0 I1 I2

1/2 x2 1 − x1

I2 I ′
2 I ′

1 I ′
0

I ′
0 I ′

1 I ′
2

1 − x2

x2

x1

1 − x2

x′
21 − x′

2

I ′
3I3

J3

J3

f 2(x)

1 − x′
2

1
2

x′
2

f :

I0 I1 I2

I ′
0 I ′

1 I ′
2

J3
f :

Figure 3.15: Like Figure 3.14, plot of f and f 2 with m = 3 fixed points with xm > 1
2 and

visualizes the mappings between intervals.

of that structure to bound the complexity of the 0/1 Regexes for those intervals. We can

formalize this by defining symmetric unimodal mappings hm and hm+1 and bijective mono-

tonic mappings ϕm : I ′
m → (0, 1] (increasing) and ϕm+1 : Jm+1 → [0, 1] (decreasing) such

that:

• For x ∈ Im, f 2(x) = ϕ−1
m ◦ hm ◦ ϕm(1 − x).

• For x ∈ I ′
m, f 2(x) = ϕ−1

m ◦ hm ◦ ϕm(x).

• For x ∈ Jm+1, f 2(x) = ϕ−1
m+1 ◦ hm+1 ◦ ϕm+1(x).

Because f cannot have a cycle of length 2q+1, hm and hm+1 may not have cycles of length

2q. Thus, we can reason inductively about how iterates behave when they’re trapped in

those intervals.

We do another case analysis of the 0/1 Regexes induced by different choices of t.

• If t ∈ Ij for j ∈ {0, . . . ,m − 1}, then SHf2,t
⊆ 0∞ ∪ 1∞ ∪ 0∗1∞ ∪ 1∗0∞ because a

sequence of iterates only crosses t if it enters the correct interval Ij, where the iterate

158

then will be stuck and must monotonically increase or decrease. By Lemma 3.30,

VCweak(Hf2,t) ≤ 2.

• If t ∈ I ′
j for j ∈ {0, . . . ,m− 1}, then SHf2,t

= 0∞, and VCweak(Hf2,t) = 0.

• If t ∈ Im, then SHf2,t
= 0∞ ∪ 1∞ ∪ 0∗1∞. Then, VCweak(Hf2,t) ≤ 1.

• If t ∈ Jm+1, then SHf2,t
= 0∞ ∪ 0∗1∞ ∪ 0∗J∞

m+1. Because hm+1 has at most a cycle of

length 2q−1, we have that

VCweak(Hf2,t) ≤ 2 + max
t′

VCweak(Hhm+1,t′).

• If t ∈ I ′
m, then SHf2,t

= 0∞ ∪ 0∗I ′∞
m . This gives us that

VCweak(Hf2,t) ≤ 1 + max
t′

VCweak(Hhm,t′).

To get VCweak(Hf,t), notice that SHf,t
= SHf2,t

⊕SH′
f2,t

, where H′
f2,t refers to the outcome

of all odd iterates of f . We show that SH′
f2,t

⊆ SHf2,t
because the latter could induce all

sequences produced by the former by starting with some x′ such that f 2(x′) = f(x). Thus,

by Lemma 3.30,

VCweak(Hf,t) ≤ 4 max
t′

VCweak(Hf2,t′) + 2

≤ 4 max(2 + max
t′

VCweak(Hhm+1,t′), 1 + max
t′

VCweak(Hhm,t′)) + 2

≤ 4 max
g∈Fq−1,t′

VCweak(Hg,t′) + 10.

Now, we prove a bound on the VC-dimension for arbitrary q by induction with Lemma

3.31 to show that for VC(Hf,t) ≤ 18 · 4q.

This holds when q = 0. There are two possible cases for the fixed point of such an

f . If the the largest fixed point is smaller than 1
2 , then, by the simple cases explored at

159

the beginning, VCweak(Hf,t) ≤ 1. Otherwise, we apply Lemma 3.31 along with the the

other simple case—which tells us what happens when there are no fixed point—to get that

VCweak(Hf,t) ≤ 4(1) + 10 = 14. This trivially satisfies the proposition.

For the inductive step for arbitrary q, we iteratively apply Lemma 3.31 to obtain the

final bound.

VC(Hf,t) ≤ 4 max
g∈Fq−1,t′

VCweak(Hg,t′) + 10

≤ 4q max
g∈F0,t′

VCweak(Hg,t′) + 10
q−1∑
i=0

4i

≤ 14 · 4q + 10
3 4q ≤ 18 · 4q.

3.3.2.4 Proof of Theorem 3.19, Claim 4

Proposition 3.32. Suppose f is a symmetric unimodal function with a 2qm-cycle for odd

m. Then for

K = exp (O (q + d log(d+m))) ,

VC(Hf,K) ≥ d for Hf,K =
{
[[fk]]1/2 : k ∈ [K]

}
.

The claim holds by this proposition, since the VC-dimension of Hf is larger than every

d and hence must be infinite.

Proof. The proof of this claim relies on the existence of a lemma that describes a character-

istic of odd-period cycles of unimodal functions.

Lemma 3.33. Let f be a symmetric unimodal function with some odd cycle x1, x2, . . . , xm

of length m > 1 such that f(xi) = xi+1 and f(xm) = x1. Then, there exists some i such that

xi <
1
2 and f(xi) ≥ 1

2 .

Proof. To prove the claim, it suffices to show that the following two cases are impossible:

(1) x1, . . . , xm < 1
2 and (2) x1, . . . , xm ≥ 1

2 .

160

1. Suppose x1, . . . , xm < 1
2 . By unimodality xj < xj′ implies that f(xj) < f(xj′). If x1

is the smallest element of the cycle, then f(x1) > x1. For any other xj, f(xj) > x1,

which means that x1 cannot be part of a cycle, which contradicts the odd cycle.

2. Suppose instead that x1, . . . , xm ≥ 1
2 .

For this to be the case, f(1
2) > 1

2 by unimodality. This fact paired with f(1) < 1

implies the existence of some x∗ ∈ (1
2 , 1) with f(x∗) = x∗. Because f is decreasing on

[1/2, 1], f([1/2, x∗)) ⊆ (x∗, 1] and f((x∗, 1]) = [0, x∗).

If x1 ∈ [1
2 , x

∗), then x2 ∈ (x∗, 1], and x3 ∈ [1
2 , x

∗). If apply this fact repeatedly, the

oddness of m implies that xm ∈ [1
2 , x

∗) and x1 ∈ (x∗, 1], a contradiction.

We show that VC(Hf2q
,K/2q) > d. If f has a cycle of length 2q · m, then f 2q has a cycle

of length m. By Sharkovsky’s Theorem, for all odd m′ > m, f 2q also has a cycle of length

m′. Let p1 < · · · < pd be the smallest prime numbers greater than m. According to Lemma

3.34, pd ≤
(
K
2q

)1/d
for

K = 2q (O(max(d log d,m))d = exp (O (q + d log(d+m))) .

For j ∈ [m], let x(j) be the point guaranteed by Lemma 3.33 with f 2q ·pj (x(j)) = x(j),

x(j) < 1
2 , and f 2q(x(j)) ≥ 1

2 . Therefore, it follows that f 2q ·ℓpj (x(j)) < 1
2 and f 2q(ℓpj+1)(x(j)) ≥ 1

2

for all ℓ ∈ Z≥0.

To show that Hf2q shatters x(1), . . . , x(d), we show that for any labeling σ ∈ {0, 1}d, there

exists h ∈ Hf2q
,K/2q such that h(x(j)) = σj.

• If σ = (0, . . . , 0), then consider f 2q ·k, where k = ∏n
j=1 pj. Then, for all j, f 2q ·k(x(j)) < 1

2 .

Because k ≤ pdd ≤ K
2q , there exists some h ∈ Hf2q

,K/2q that assigns zero to every x(j).

• Similarly, if σ = (1, . . . , 1), we instead consider f 2q ·k for k = 1+∏n
j=1 pj. Now, for all j,

f 2q ·k(x(j)) ≥ 1
2 , and k ≤ pdd ≤ K

2q , which means there exists satisfactory h ∈ Hf2q
,K/2q .

161

• Otherwise, assume WLOG that (σ1, . . . , σℓ) = (0, . . . , 0) and (σℓ+1, . . . , σd) = (1, . . . , 1)

for ℓ ∈ (1, d). We satisfy the claim for f 2q ·k if we choose some k with k = q1
∏ℓ
i=1 pi =

1 + q2
∏d
i=ℓ+1 pi, for some q1, q2 ∈ Z+.

We find q1 ∈ [∏d
i=ℓ+1 pi] and q2 ∈ [∏ℓ

i=1 pi] by choosing them such that:

q1

ℓ∏
i=1

pi ≡ 1 (mod
d∏

i=ℓ+1
pi)

q2

d∏
i=ℓ+1

pi ≡ −1 (mod
ℓ∏
i=1

pi).

This is possible because p1, . . . , pd are prime, and gcd
(∏ℓ

i=1 pi,
∏d
i=ℓ+1 pi

)
= 1.

Because k ≤ ∏d
i=1 pi ≤ pdd ≤ K

2q , there must exist some satisfactory h ∈ Hf2q
,K/2q .

Lemma 3.34. For m ≥ 3 and any d ≥ 0, there exist d primes such that m ≤ p1 < · · · < pd

for

pd = O(max(d log d,m)).

Proof. Let π(x) = |{y ∈ [x] : y is prime}| be the number of primes no larger than x. By the

Prime Number Theorem,

x

log(x) + 2 ≤ π(x) ≤ x

log(x) − 4 ,

for all x ≥ 55 (Rosser, 1941). Thus, for some m′ = O(max(d log d,m)), the number of prime

numbers smaller than m′ is

Ω
(

d log d
log(d log d) + m

logm

)
= Ω

(
d+ m

logm

)
,

and the number between m and m′ is Ω(d). Thus, pd ≤ m′.

162

3.4 Supplemental background on discrete dynamical systems and itineraries

In this section, we provide background information from the discrete dynamical sys-

tems literature that may aid the reader in understanding and contextualizing the results of

previous sections. Section 3.4.1 provides more examples of unimodal mappings with charac-

terizations of their cyclic itineraries. Section 3.4.2 discusses the ordering of cycle itineraries,

as characterized by Metropolis, Stein, and Stein (1973). Finally, Section 3.4.3 provides a

proof that the existence of an increasing p cycle can be numerically validated.

3.4.1 Examples of Itineraries

Let the tent map and logistic map be defined by ftent,r(x) = 2rmax(x, 1 − x) and

flog,r(x) = 4rx(1 − x) respectively, for parameter r ∈ (0, 1).

Example 3.1. For all r ∈ (1
2 , 1], there is a two-cycle C of itinerary 12 (which is the only

itinerary for a 2-cycle) in ftent,r with

C =
(

2r
1 + 4r2 ,

4r2

1 + 4r2

)
.

Example 3.2. When r = 1+
√

5
4 , there is a two-cycle C of flog,r with

C =
(

1
2 ,

1 +
√

5
4

)
.

Example 3.3. When r ∈ [1+
√

5
4 , 1], ftent,r has a three-cycle C of itinerary 123 with

C =
(

2r
1 + 8r3 ,

4r2

1 + 8r3 ,
8r3

1 + 8r3

)
.

Note that this and Example 3.1 are consistent with Sharkovsky’s Theorem; whenever there

exists a three-cycle, there also exists a two-cycle.

163

Example 3.4. When r ∈ [1
2 , 1], there also exists a four-cycle C of itinerary 1324 for ftent,r

with

C =
(

8r3 − 4r2 + 2r
16r2 + 1 ,

16r4 − 8r3 + 4r2

16r2 + 1 ,
16r4 − 8r3 + 2r

16r2 + 1 ,
16r4 − 4r2 + 2r

16r2 + 1

)
.

Again, this reaffirms Sharkovsky’s Theorem, since this cycle always exists when the above

three-cycle exists.

Example 3.5. However, when r ∈ (0.9196 . . . , 1], there also exists a four-cycle C of itinerary

1234 for ftent,r with

C =
(

2r
16r2 + 1 ,

4r2

16r2 + 1 ,
8r3

16r2 + 1 ,
16r4

16r2 + 1

)
.

This demonstrates a relationship beyond Sharkovsky’s theorem: whenever a 1234 four-cycle

exists, a 123 three-cycle also exists. This will be integral to the bounds we show.

Example 3.6. The triangle map from Telgarsky, 2016, ftent,1 has an increasing p-cycle Cp

for every p ∈ N with

Cp =
(

2
1 + 2p ,

22

1 + 2p , . . . ,
2p

1 + 2p

)
.

Thus Theorem 3.15 and Fact 3.4 retrieve the fact used by Telgarsky that M(ftent,1) = Ω(2k).

3.4.2 Orderings of Itineraries

As has been mentioned before, the existence of some cycles can be shown to imply the

existence of other cycles. Sharkovsky’s Theorem famously does this by showing that if p▷p′,

then the existence of a p-cycle implies the existence of a p′-cycle. Proposition 3.35 can be

used to imply that the existence of a chaotic p-cycle implies the existence of a chaotic (p−1)-

cycle. These pose a broader question: Is there a complete ordering on all cycle itineraries

that can appear in unimodal mappings? And does this ordering coincide with the amount

of “chaos” induced by a cycle?

164

Researchers of discrete dynamical systems have thoroughly investigated these questions;

we refer interested readers to Metropolis, Stein, and Stein, 1973; Alsedà, Llibre, and Misi-

urewicz, 2000 for a more comprehensive survey. We introduce the basics of this theory as it

relates to our results.

Metropolis, Stein, and Stein, 1973 present a partial ordering over cyclic itineraries present

in unimodal mappings, which serves as a measurement of the complexity of the function.

That is, two itineraries a and a′ may be related analogously to Sharkovsky’s Theorem with

a ▷ a′, if f having itinerary a implies that f has itinerary a′. This ordering for all cycles of

length at most 6 is illustrated in Table 3.3. For instance, if a unimodal map has a cycle with

itinerary 12435, then it also has a cycle with itinerary 135246.

Table 3.3: For any unimodal function f , let fr(x) := rf(x) for r > 0. As r increases, any
such family obtains new cycles in the same order, and those cycles are super-stable in the
same order. This translates Table 1 of Metropolis, Stein, and Stein, 1973 to our notation
and shows at what values of r, flog,r has various super-stable cycles of length at most 6.

Cycle length p Itinerary Regime Super-stable r Cycle Type
2 12 Doubling 0.8090 Primary
4 1324 Doubling 0.8671 Primary
6 143526 Chaotic 0.9069 Primary
5 13425 Chaotic 0.9347 Stefan, Primary
3 123 Chaotic 0.9580 Stefan, Increasing, Primary
6 135246 Chaotic 0.9611
5 12435 Chaotic 0.9764
6 124536 Chaotic 0.9844
4 1234 Chaotic 0.9901 Increasing
6 123546 Chaotic 0.9944
5 12345 Chaotic 0.9976 Increasing
6 123456 Chaotic 0.9994 Increasing

We make several observations about the table and make connections to the itineraries

discussed elsewhere in the paper.

• The table does not contradict Sharkovsky’s Theorem. Note that 3 ▷ 5 ▷ 6 ▷ 4 ▷ 2, and

order in which the first itinerary occurs of a period is the same as the Sharkovsky

165

ordering:

12 ◁ 1324 ◁ 143526 ◁ 13425 ◁ 123.

• The last cycle to occur for a given period is its increasing cycle and it occurs as p

increases (not with the Sharkovsky ordering of p):

12 ◁ 123 ◁ 1234 ◁ 12345 ◁ 123456.

• The first cycle to appear for every odd period is its Stefan cycle (123, 13425). This is

proved by Alsedà, Llibre, and Misiurewicz, 2000 and justifies why Theorem 3.10 relies

on the existence of a Stefan cycle whenever there is an odd period.

• There exist cycles of power-of-two length (e.g. 1234) that induce non-power-of-two

cycles (e.g. 123).

Following the last bullet point, we distinguish between the 2q-cycles that only induce

cycles of length 2i for i < q and those that induce non-power-of-two cycles. To do so, we

say that the itinerary of a p-cycle is primary if it induces no other p-cycle with a different

itinerary.

We say that an itinerary a′ = a′
1 . . . a

′
2p of a 2p-cycle is a 2-extension of itinerary a =

a1 . . . ap of a p-cycle if

ai =
⌈
a′
i

2

⌉
=
⌈
a′
i+p

2

⌉

for all i. For instance, 12 is a 2-extension of 1, 1324 is of 12, 15472638 is of 1324, and 135246

is of 123.

Theorem 2.11.1 of Alsedà, Llibre, and Misiurewicz (2000) characterizes which itineraries

are primary. It critically shows that a power-of-two cycle is primary if and only if it is

composed of iterated 2-extensions of the trivial fixed-point itinerary 1. As a result, 1324

is a primary itinerary and 1234 is not. This sheds further light on the warmup example

166

given in Section 3.1.4, where fk1324 has a polynomial number of oscillations, while fk1234 has

an exponential number.

According to Theorem 2.12.4 of Alsedà, Llibre, and Misiurewicz (2000), the existence a

non-primary itinerary of any period implies the existence of some cycle with period not a

power of two. Hence, f can only be in the doubling regime (where all periods are powers

of two) if all of those power-of-two periods are primary. The existence of any non-primary

power-of-two period (such as 1234 or 13726548) implies that the f is in the chaotic regime.

This ordering can also be visualized using the bifurcation diagrams in Figure 3.16. The

diagram plots the convergent behavior of fkr (x) for large k, where r is some parameter and

reflects the complexity of the unimodal function fr. (When r = 0, fr = 0; when r = 1,

xmax = 1, and C0,1(fk) = 2k.) As r increases, the number of oscillations of fkr increases

and with it, new cycles are introduced. Each new cycle has a stable region over parameters

r where fkr (x) converges to the cycle, and the bifurcation diagram visualizes when each of

these stable regions occurs. While the three functions families fr have different underlying

unimodal functions, they produce qualitatively identical bifurcation diagrams that feature

the same ordering of itineraries.

Our discussions of the doubling and chaotic regimes in Section 3.3 are inspired by these

bifurcation diagrams. Parameter values r are naturally partitioned into two categories: those

on the left side of the diagram where the plot is characterized by a branching of cycles (the

doubling regime) and those on the right side where there are extended regions of chaos,

interrupted by small stable regions (the chaotic regime).

3.4.3 Identifying Increasing Cycles in Unimodal Maps

It is straightforward to determine whether a symmetric and unimodal f has an increasing

p-cycle. Algorithmically, one can do so by verifying that f(1
2) > 1

2 and counting how many

consecutive values of k ≥ 2 satisfy fk(x0) < 1
2 .

Proposition 3.35. Consider some p ≥ 2 and a symmetric unimodal mapping f . f has an

167

Figure 3.16: Bifurcation diagrams—which display the qualitative behavior of a family of
functions fr as the parameter r ∈ [0, 1] changes—showing the convergence behavior for
iterates fkr (x) for large k. For fixed r on the horizontal axis, the points plotted correspond to
fk(x0) for very large k. Regions of r where a vertical slice contains p discrete points indicates
the existence of a stable p-cycle, since fk(x0) converges exclusively to those points. Regions
where the slice has a dispersed mass of points exhibit chaos. As r increases, cycles of different
itineraries appear and experience stability in the same order indicated by Table 3.3. In the
first plot, fr is the logistic map fr(x) = flog,r(x) = 4rx(1 −x). The second fr is the“flat tent
map,” fr(x) = min{5rx

2 , r,
5rx
2 (1 − x)}, and the third is the sine map, fr(x) = r sin(πx). The

three are qualitatively identical and exhibit self-similarity.

increasing p-cycle if

f 2
(1

2

)
< · · · < fp

(1
2

)
≤ 1

2 < f
(1

2

)
,

then f has an increasing p-cycle.

Proof. Refer to Figure 3.17 for a visualization of the variables and inequalities defined.

Let x′ = f(1
2). By the unimodality of f and the fact that x′ > 1

2 , there exists some

x′′ > 1
2 such that

f(x′′) < f 2(x′′) < · · · < fp−1(x′′) = 1
2 .

Because f is monotonically increasing on [0, 1
2], the following string of inequalities hold.

f(x′) ≤ f(x′′) < f 2(x′) ≤ f 2(x′′) < · · · < fp−1(x′) ≤ fp−1(x′′) = 1
2 (3.1)

It then must hold that x′ ≥ x′′.

Let g(x) = fp(x) − x and note that g is continuous. Because 1
2 maximizes f , it must be

the case that fp(x′) ≤ x′ and g(x′) ≤ 0. Because fp(x′′) = x′ and x′′ ≤ x′, g(x′′) ≥ 0. Hence,

168

1/2 x′′f(x′′)f2(x′′)fp−2(x′′)
x′f(x′) f2(x′) fp−1(x′)

x∗f (x∗)f2 (x∗)fp−2 (x∗)fp−1 (x∗)

x

f(x)

Figure 3.17: Visualizes the proof of Proposition 3.35.

there exists x∗ ∈ [x′′, x′] such that g(x∗) = 0 and fp(x∗) = x∗.

Since x∗ ∈ [x′′, x′], it must also be the case that f j(x∗) ∈ [f j(x′), f j(x′′)] for j ∈ [p − 1].

By Equation (3.1), it follows that

f(x∗) < f 2(x∗) < · · · < fp−1(x∗) < fp(x∗) = x∗.

Hence, there exists an increasing p-cycle.

3.5 Conclusion

This chapter shares the connections drawn by Sanford and Chatziafratis (2022) between

deep learning theory and dynamical systems. By applying a characterization of discrete

dynamical systems by Metropolis, Stein, and Stein (1973), we obtain novel depth-width

tradeoffs for the expressivity of neural networks. While prior works relied on Sharkovsky’s

169

theorem and periodicity to provide families of functions that are hard to approximate with

shallow neural networks, we go beyond periodicity. Studying the chaotic itineraries of uni-

modal mappings, we reveal subtle connections between expressivity and different types of

periods, and we use them to shed new light on the benefits of depth in the form of enhanced

width lower bounds and stronger approximation errors. More broadly, we believe that it

is an exciting direction for future research to exploit similar tools and concepts from the

literature of dynamical systems to improve our understanding of neural networks, e.g., their

dynamics, optimization, and robustness properties.

These results complement those of Chapters 2 and 4 investigating the impact of depth on

the expressivity of neural networks. Those chapters similarly consider intrinsically univariate

targets with a measure of complexity associated with the frequency of oscillations, but these

shallow models cannot utilize compositionality to fit the target function. This chapter pro-

vides a broad characterization of compositionality-based targets that can only be efficiently

approximated by deep networks. These results reveal a fine line between targets that can be

efficiently approximated by shallow models and those that require a linear scaling in network

depth to achieve a given approximation error.

After employing dynamical systems to characterize a phase transition between different

learning regimes, the authors would later identify another phase transition in the weight

initialization of recurrent neural networks (Chatziafratis et al., 2022). Just as a small increase

in the maximum value of a logistic mapping can introduce a chaotic itinerary that makes its

iterates hard to approximate, a small perturbation to the variance of the initialization of an

RNN can introduce exploding or vanishing gradients that make it hard to train. This later

work captures this phase transition by applying similar tools from dynamical systems, such

as Sharkovsky’s theorem.

Finally, these results inspired the work in Chapter 6, where the importance of depth in

modern sequential architectures is rigorously characterized by compositional target tasks.

While these results use a different mathematical toolset and apply to a different class of

170

neural networks, they both share the core insight that certain iterated tasks can be solved

much more efficiently with depth than with width.

171

Chapter 4: Intrinsic dimensionality of bounded-norm shallow

neural network interpolants

This chapter studies the structural and statistical properties of R-norm minimizing in-

terpolants of datasets labeled by specific target functions. The R-norm is the basis of an

inductive bias for two-layer neural networks, recently introduced to capture the functional

effect of controlling the size of network weights, independently of the network width. We

find that these interpolants are intrinsically multivariate functions, even when there are

ridge functions that fit the data, and also that the R-norm inductive bias is not sufficient for

achieving statistically optimal generalization for certain learning problems. Altogether, these

results shed new light on an inductive bias connected to practical neural network training.

The research presented in this chapter reflects the work of Ardeshir, Hsu, and Sanford

(2023).

4.1 Introduction

Research on neural network inductive biases is important for theoretical understanding

and developing practical guidance in network training. Recent theories of generalization rely

on inductive biases of training algorithms to explain how neural nets that (nearly) interpolate

training data can be accurate out-of-sample (Neyshabur, Tomioka, and Srebro, 2015; Zhang

et al., 2021). When inductive biases are made explicit and their effects are elucidated, they

can be incorporated into training procedures when deemed appropriate for a problem.

In this chapter, we study the inductive bias for two-layer neural networks implied by a

variational norm called the R-norm, introduced by Savarese et al. (2019) and Ongie et al.

(2019) to capture the functional effect of controlling the size of network weights. (A definition

172

is given in Section 4.2.2.1.) We focus on the approximation and generalization consequences

of preferring networks with small R-norm in the context of learning explicit target functions.

It is well-known that the size of the weights can play a critical role in generalization properties

of neural networks (Bartlett, 1996), and weight-decay regularization is a common practice

in gradient-based training (Hinton, 1987; Hanson and Pratt, 1988). Thus, explicating the

consequences of the R-norm inductive bias may advance our understanding of generalization

in practical settings.

We investigate the d-dimensional variational problem (VP), which seeks a neural net

g : Bd → R of minimum R-norm among those that perfectly fit a given labeled dataset

{(xi, yi)}i∈[n] ⊂ Bd × R:

inf
g : Bd→R

∥g∥R s.t. g(xi) = yi ∀i ∈ [n]; (VP)

as well as a variant (ϵ-VP) that only requires g to uniformly approximate labels up to error

ϵ ∈ (0, 1):

inf
g : Bd→R

∥g∥R s.t. |g(xi) − yi| ≤ ϵ ∀i ∈ [n]. (ϵ-VP)

Here, Bd ⊂ Rd is a d-dimensional domain of interest. We study the structural and statistical

properties of solutions to these problems for datasets labeled by specific target functions in

high dimensions.

The recent introduction of the R-norm and its connections to weight-decay regularization

have catalyzed research on the foundational properties of solutions to (VP). In particular,

solutions in the one-dimensional (d = 1) setting have been precisely characterized and their

generalization properties are now well-understood by their connections to splines (Debarre

et al., 2022; Savarese et al., 2019; Parhi and Nowak, 2021a; Hanin, 2021). However, far less is

known about the solutions of R-norm-minimizing interpolants for the general d-dimensional

case.

173

Key message. Inductive biases based on certain variational norms, such as the R-norm,

are believed to offer a way around the curse of dimensionality suffered by kernel methods

because they are adaptive to low-dimensional structures. Researchers have pointed to this

adaptivity property in non-parametric settings (Bach, 2017; Parhi and Nowak, 2021b) and

specific learning tasks with low-dimensional structure (Wei et al., 2019) as mathematical

evidence of the statistical advantage of neural networks over kernel methods. One may hy-

pothesize that the R-norm inductive bias achieves this advantage by favoring functions with

low-dimensional structure. Indeed, many other forms of inductive bias used in statistics and

machine learning are known to explicitly identify relevant low-dimensional structure (Candès,

Romberg, and Tao, 2006; Donoho, 2006; Candès and Recht, 2009; Bhojanapalli, Neyshabur,

and Srebro, 2016; Barak et al., 2022; Damian, Lee, and Soltanolkotabi, 2022; Frei, Chatterji,

and Bartlett, 2022; Mousavi-Hosseini et al., 2022; Galanti et al., 2022). Our results provide

theoretical evidence that this is not always the case with the R-norm inductive bias and

that this inability becomes more pronounced in higher dimensions.

We show that, even in cases where the dataset can be perfectly fit by an intrinsically

one-dimensional function, the solutions g to (VP) or (ϵ-VP) are not necessarily the piecewise-

linear ridge functions described in previous works (Savarese et al., 2019; Hanin, 2021).

Rather, the R-norm is far better minimized by a multi-directional1 neural network g that

averages several ridge functions pointing in different directions, each of which approximates

a small fraction of the data.

4.1.1 Our contributions

Our results are summarized by the following informal theorems concerning the structural

and generalization properties of R-norm interpolation. Together, they show that the R-

norm inductive bias (1) leads to interpolants that are qualitatively different from those that

minimize the width or intrinsic dimensionality of the learned network, and (2) is insufficient
1By a multi-directional function, we mean a function that does not only depend on a one-dimensional

projection of its input—i.e., a function that is not a ridge function (defined in Section 4.2.1).

174

for obtaining optimal generalization for a well-studied learning problem.

Informal Theorem 4.1 (R-norm minimizers of the parity dataset are not ridge functions).

Suppose the dataset {(xi, yi)}i∈[n] ⊂ {−1, 1}d × {−1, 1} used in (VP) and (ϵ-VP) is the

complete dataset of 2d examples labeled by the d-variable parity function.

• The optimal value of (VP) is Θ(d).

• The optimal value of (ϵ-VP) for any ϵ ∈ [0, 1/2)—with the additional constraint that

g be a ridge function—is Θ(d3/2).

This result is presented formally in Section 4.3. In Section 4.3.1, we show that every ridge

function satisfying the constraints of (ϵ-VP) has R-norm at least Ω(d3/2); this bound is tight

for ridge functions, as there is a matching upper bound. Using an averaging strategy, we

show in Section 4.3.2 the existence of multi-directional interpolants g of the parity dataset

with ∥g∥R = O(d), and we also establish the optimality of this construction in Section 4.3.3.

These results characterize the optimal value of (VP) in terms of the dimension d, and

also establish the R-norm-suboptimality of ridge function interpolants. (In Section 4.5, we

extend the averaging strategy to other types of target functions, expanding the scope of our

structural findings.)

Informal Theorem 4.2 (Min-R-norm interpolation is sub-optimal for learning parities).

Suppose the dataset {(xi, χ(xi))}i∈[n] ⊂ {−1, 1}d × {−1, 1} used in (VP) is an i.i.d. sample,

where xi ∼ Unif({−1, 1}d) is labeled by the d-variable parity function χ for all i ∈ [n]. If the

sample size is n = o(d2/
√

log d), then with probability at least 1/2, every solution to (VP)

has mean squared error at least 1 − o(1) for predicting χ over Unif({−1, 1}d).

This result is presented formally in Section 4.4.1, and it is complemented by a sample

complexity upper bound in Section 4.4.2. The results are stated for the parity function on

all d variables, but the same holds for any parity function over Ω(d) variables. It is well-

known that an i.i.d. sample of size O(d) is sufficient for learning parity functions exactly

175

(Helmbold, Sloan, and Warmuth, 1992; Fischer and Simon, 1992), and hence we conclude

that the R-norm inductive bias is insufficient for achieving the statistically optimal sample

complexity for this learning problem.

4.1.2 Related work

Variational norms and inductive biases of optimization methods. Many variational

norms (such as R-norm) from functional analysis can be regarded as representational costs

that induce topologies in the space of infinitely wide neural networks with certain activation

functions. Prior works have analyzed these norms for homogeneous activation functions like

ReLU (e.g., Kurková and Sanguineti, 2001; Mhaskar, 2004; Bach, 2017; Savarese et al.,

2019; Ongie et al., 2019); see Siegel and Xu (2021) and references therein for a comparison.

In particular, the work of Ongie et al. (2019) provided analytical descriptions of R-norm

in terms of the Radon transform of the function itself. This work was extended to higher

powers of ReLU by Parhi and Nowak (2021a).

The variational norms are also connected to the implicit biases of optimization methods

for training neural networks. In the context of univariate functions, the dynamics of gradient

descent were shown to be biased towards (adaptive) linear or cubic spline depending on the

optimization regime (Williams et al., 2019; Shevchenko, Kungurtsev, and Mondelli, 2021;

Maennel, Bousquet, and Gelly, 2018), and these results have been partially extended to the

multivariate case (Jin and Montúfar, 2020). For classification problems, the implicit bias

of gradient descent was connected to a variational problem related to R-norm with margin

constraints on the data (Bach and Chizat, 2021).

Solutions to the variational problem. Debarre et al. (2022) and Hanin (2021) fully

characterized the form of all solutions of (VP) for one-dimensional datasets (as discussed

above). However, pinning down even a single solution for general multidimensional datasets

appears to be difficult; Ergen and Pilanci (2021) was able to do so for rank-one datasets,

176

where all the feature vectors lie on a line. The datasets we study do not satisfy the rank-one

condition of Ergen and Pilanci (2021), and thus we require different techniques to analyze

multi-directional functions.

Adaptivity. In the context of non-parametric regression, it is well-known that (deep)

neural networks achieve minimax-optimal rates in the presence of low-dimensional structure

in the target function (e.g., Schmidt-Hieber, 2020; Bauer and Kohler, 2019; Kohler and

Krzyżak, 2005; Györfi et al., 2002). The convergence rates in these works depend only

on the intrinsic dimension of the target function (and not the ambient dimension) and

are achieved by optimally trading off accuracy and regularization in certain deep neural

network architectures. Recent works (Klusowski and Barron, 2016; Parhi and Nowak, 2021b;

Bach, 2017) consider two-layer neural networks with variational norm (similar to R-norm)

regularization, which also allows for adaptivity to low-dimensional structures. That is, a

function g : Rd → R depending only on a k-dimensional projection of its input x, i.e., g(x) =

ϕ(Ux) for some U ∈ Rk×d (with orthonormal rows) and ϕ : Rk → R has variational norm

no greater than that of the corresponding low-dimensional function ϕ (Bach, 2017). In

particular, Bach (2017) and Klusowski and Barron (2016) studied minimax rates under

ridge target functions where k = 1. Our results on generalization are of a different flavor:

rather than striking a careful balance between fitting and regularization to achieve minimax

rates, we study the behavior of R-norm-minimizing interpolation.

Regularization based on weight decay (equivalent to R-norm for shallow networks) has

also been used to obtain minimax rates for learning smooth target functions. Parhi and

Nowak (2021b) do so by drawing analogies to spline theory, while Wang and Lin (2021)

consider a connection to the Group Lasso. Zhang and Wang (2022) exploits depth to promote

stronger sparsity regularizes. This is distinct from the low-dimensional structures studied in

this work and mentioned above.

177

Learning ridge functions and parity functions with neural nets. Target functions

that depend on low-dimensional projections of the input (of which ridge functions are the

simplest case) have been long studied in statistics (see, e.g., Li, 2018), and learning such func-

tions is one of the simplest problems where neural network training demonstrates adaptivity.

Such demonstrations typically require going beyond the neural tangent kernel regime and

have been used to explain the “feature learning” ability of neural networks (Frei, Chatterji,

and Bartlett, 2022; Damian, Lee, and Soltanolkotabi, 2022; Mousavi-Hosseini et al., 2022;

Bietti et al., 2022). Several recent works have considered the prospects of learning (sparse)

parity functions by training neural nets with gradient-based algorithms (Abbe and Sandon,

2020; Daniely and Malach, 2020; Malach et al., 2021a; Barak et al., 2022; Telgarsky, 2022).

The positive results express parities as low-weight linear combinations of (random) ReLUs,

which motivates our focus on the variational norm of approximating neural nets. Our sample

complexity lower bound shows that, even if computational and optimization considerations

are set aside, the inductive bias imposed by the R-norm may lead to suboptimal statistical

performance.

Averaging and ensembling. Neural networks have been interpreted as forms of averaging

or ensemble methods to explain their statistical properties (e.g., Bartlett, 1996; Baldi and

Sadowski, 2013; Gal and Ghahramani, 2016; Olson, Wyner, and Berk, 2018). Our use of

averaging is distinguished by its use as an approximation technique for achieving smaller

R-norm.

Weight lower bounds for other explicit functions. Representation costs for two-

layer neural networks to approximate other explicit functions have been explored in several

prior works (Martens et al., 2013; Daniely, 2017b; Safran and Shamir, 2017; Safran, Eldan,

and Shamir, 2019). These works establish exponential lower bounds on the width of two-

layer networks needed to approximate functions represented more compactly by three-layer

networks. These results also imply lower bounds on the size of second-layer weights in a

178

two-layer network after fixing the width of the network. In contrast, our results hold for

networks of unbounded width and for a target function that can be exactly represented by

two-layer networks of poly(d) width.

4.2 Preliminaries

4.2.1 Notation

In this work, we consider real-valued functions over the radius-
√
d Euclidean ball

Bd =
{
x ∈ Rd : ∥x∥2 ≤

√
d
}
.

Let ParS : Bd → {−1, 1} denote the multi-linear monomial ParS(x) := ∏
i∈S xi over variables

indexed by S ⊆ [d], and let Par := Par[d]. On input x ∈ {−1, 1}d, ParS(x) computes the

parity of {xi : i ∈ S}.

We say g : Bd → R is a ridge function if g(x) = ϕ(vTx) for some unit vector v ∈ Sd−1 and

function ϕ : [−
√
d,

√
d] → R. A function ϕ : R → R is ρ-periodic if ϕ(z + ρ) = ϕ(z) for all

z ∈ R. We say that g : Bd → R is k-index if there exists a matrix U ∈ Rk×d and ϕ : Rk → R

such that g(x) = ϕ(Ux) for all x ∈ Bd. (A ridge function is 1-index.)

For a matrix M ∈ Rm×n, we denote the i-th largest singular value of M by σi(M) for

i = 1, . . . ,min{m,n}.

4.2.2 Neural networks and R-norm

We consider two-layer neural networks (of infinite and finite width) with ReLU activations

ReLU(z) := max{0, z}. Let M denote the space of signed measures over Sd−1 × [−
√
d,

√
d].

For µ ∈ M, let gµ : Bd → R denote the infinite-width neural network given by

gµ(x) :=
∫
Sd−1×[−

√
d,

√
d]

ReLU(wTx+ b)µ(dw, db).

179

The total variation norm of µ is

|µ| :=
∫
Sd−1×[−

√
d,

√
d]

|µ| (dw, db),

where |µ| (dw, db) is the corresponding total variation measure (somewhat abusing notation).

The bias-corrected network ḡµ is given by ḡµ(x) := gµ(x) − gµ(0); equivalently,

ḡµ(x) =
∫

(ReLU(wTx+ b) − ReLU(b))µ(dw, db).

The width-m neural network gθ with parameters θ = (a(j), w(j), b(j))j∈[m] ∈ (R × Sd−1 ×

[−
√
d,

√
d])m is given by

gθ(x) :=
m∑
j=1

a(j)ReLU(w(j)Tx+ b(j)).

We regard gθ as an infinite-width neural network with the “sparse” atomic measure

µθ =
m∑
j=1

a(j)δ(w(j),b(j)).

Observe that gθ = gµθ
and |µθ| = ∑m

j=1 |a(j)| = ∥a∥1.

Our constructions frequently use sawtooth functions, a family of ridge functions that are

composed of t+ 1 repetitions of a triangular wave that draw inspiration from a construction

of Yehudai and Shamir (2019, Proposition 4.2). For t ∈ {0, . . . d} with t ≡ d (mod 2) and

w ∈ {−1, 1}d, let

sw,t(x) := (−1)d−tPar(w)ϕt(wTx),

where ϕt : R → R is a function that forms a piecewise affine interpolation between the points

{(−t− 1, 0)} ∪ {(t− 2τ, (−1)τ) : τ ∈ {0, . . . , t}} ∪ {(t+ 1, 0)} ,

180

and ϕt(z) = 0 for all z ≤ −t − 1 and z ≥ t + 1. We refer to t as the width of the sawtooth

function sw,t. Note that sw,t is
√
d-Lipschitz and sw,t(x) = Par(x)1{

∣∣∣wTx
∣∣∣ ≤ t} for all

x ∈ {−1, 1}d. Also, sw,t can be expressed as a neural network gθ with width m ≤ O(t + 1)

and |a(i)| ≤ O(
√
d) for each i ∈ [m].

Let ν := Unif({−1, 1}d) denote the uniform distribution on {−1, 1}d, and let νn denote

the empirical distribution on x1, . . . ,xn ∼iid ν. We use the following inner products and

norms over the vector space of real-valued functions on {−1, 1}d with respect to a distribution

ν0 (such as ν or νn):

⟨g, h⟩L2(ν0) := E
x∼ν0

[g(x)h(x)], ∥g∥L2(ν0) := ⟨g, g⟩1/2
L2(ν0) , ∥g∥L∞(ν0) := max

x∈supp(ν0)
|g(x)|.

4.2.2.1 R-norm and the variational problem

We now recall the definition of the R-norm of a function g : Bd → R, presented here in a

variational form as the minimum cost of representing g as an infinite-width neural network

with a “skip-connection”:

∥g∥R := inf
µ∈M,v∈Rd,c∈R

|µ| s.t. g(x) = gµ(x) + vTx+ c ∀x ∈ Bd. (R-norm)

Indeed, ∥·∥R is a semi-norm on the space of functions with finite R-norm. It was initially

introduced by Ongie et al. (2019) along with explicit characterizations in terms of the Radon

transform. See the works of Ongie et al. (2019), Parhi and Nowak (2021a), and Siegel and Xu

(2021) for more discussion about the R-norm and its connections to other function spaces.

The appearance of the affine component vTx+ c in the definition of R-norm has implica-

tions for how the bias terms are treated. Notice that a neuron x 7→ ReLU(wTx+b) with bias

|b| ≥
√
d behaves as an affine function over the domain of interest Bd, so it can be absorbed

into the “free” affine component (in the definition of R-norm) so as to not be counted to-

wards the R-norm. Other works (e.g., Siegel and Xu, 2021) consider a different variational

181

norm, ∥·∥V2
, which does not have “free” affine components, but instead permits biases b to be

in the larger range [−2
√
d, 2

√
d]. These differences in the way affine components are accom-

modated do not lead to different function spaces (see Parhi and Nowak, 2021b, Theorem 6),

and the results of this paper for R-norm also hold for these other variational norms, as we

demonstrate in Section 4.6.

Although the R-norm is defined in terms of an infimum, it has been shown by Parhi

and Nowak (2021b, Lemma 2) that the infimum is always achieved by a particular signed

measure µ ∈ M.

Proposition 4.3 (Lemma 2 in Parhi and Nowak, 2021b). For any g : Bd → R with ∥g∥R <

∞, there exists an even Radon measure2 µ over Sd−1 × [−
√
d,

√
d], and v ∈ Rd, c ∈ R, such

that g admits an integral of the form

g(x) =
∫
Sd−1×[−

√
d×

√
d]

ReLU(wTx+ b)µ(dw, db) + vTx+ c ∀x ∈ Bd.

Moreover, µ attains the (R-norm), i.e., ∥g∥R = |µ|.

Since the total variation norm is sparsity-inducing, the objective in (VP) favors finite-

width networks. It can be shown, using an extension of Caratheodory’s theorem (Rosset

et al., 2007), that (VP) in fact always has a finite-width solution. That is, (VP) is solved

by the sum of an affine function x 7→ vTx + c and a width-m neural network, for some

m ≤ max{0, n− (d+ 1)}. The following theorem of Parhi and Nowak (2021b) formalizes the

fact that the R-norm-minimizing interpolant of a d-dimensional dataset can be represented

as a finite-width neural network. Thus, considering finite-width neural networks is sufficient

to determine the value of (VP).3

Theorem 4.4. For any dataset {(xi, yi)}i∈[n] from Bd ×R, the infimum in (VP) is achieved
2Evenness of µ should interpreted in the distributional sense, but it roughly means µ(w, b) = µ(−w, −b)

when µ has a density.
3We note that the finite-width solution to (VP) is not necessarily unique; Hanin (2021) discusses this

issue in the one-dimensional case (d = 1) under general data models.

182

by the sum of an affine function x 7→ vTx+ c and a finite-width neural network g of the form

g(x) =
m∑
j=1

a(j)ReLU(w(j)x+ b(j)) + vTx+ c,

with m ≤ max{0, n− (d+ 1)} and (wj, bj) ∈ Sd−1 × [−
√
d,

√
d] for all i ∈ [m].

Proof. By Theorem 5 of Parhi and Nowak (2021b) (see also the proof of Theorem 1 of Parhi

and Nowak (2021a) which covers the interpolation form of the optimization problem), there

exists a neural network x 7→ ∑m′

j=1 a
(j)ReLU(w(j)Tx+ b(j)) of width m′ ≤ n− (d+ 1), and an

affine function x 7→ v(0)Tx+ c(0), such that their sum achieves the infimum in (VP). We can

divide neurons of the neural network into two sets based on whether their corresponding bias

term is smaller or larger than
√
d in absolute value. Since every x ∈ Bd satisfies ∥x∥2 ≤

√
d,

without loss of generality (by possibly flipping the sign of some a(j) and w(j)), assume the

first m neurons satisfy
∣∣∣b(j)

∣∣∣ ≤
√
d and the rest satisfy b(j) >

√
d. Then we have

g(x) =
m∑
j=1

a(j)ReLU(w(j)Tx+ b(j)) +
m′∑

j=m+1
a(j)ReLU(w(j)Tx+ b(j)) + v(0)Tx+ c(0)

=
m∑
j=1

a(j)ReLU(w(j)Tx+ b(j)) +
m′∑

j=m+1
a(j)(w(j)Tx+ b(j)) + v(0)Tx+ c(0)

=
m∑
j=1

a(j)ReLU(w(j)Tx+ b(j)) +
(
v(0) +

m′∑
j=m+1

a(j)w(j)

︸ ︷︷ ︸
=:v

)T
x+

m′∑
j=m+1

b(j) + c(0)

︸ ︷︷ ︸
=:c

.

Therefore, g has the desired form with m ≤ m′ ≤ n− (d+ 1).

The following lemma, which is a minor elaboration on Lemma 25 of Parhi and Nowak

(2021a), relates the R-norm of a finite-width network to the ℓ1-norm of its top-layer weights.

Lemma 4.5. Let v ∈ Rd, c ∈ R, and θ = (a(j), w(j), b(j))j∈[m] ∈ (R × Sd−1 × [−
√
d,

√
d])m be

the set of parameters of a finite neural network where (w(i), b(i)) ̸= (w(j), b(j)) for all i ̸= j.

183

(i) The R-norm of the sum of gθ and an affine function vTx+ c satisfies

∥∥∥gθ(x) + vTx+ c
∥∥∥

R
≤ ∥a∥1 = |a(1)| + · · · + |a(m)|. (4.1)

(ii) Moreover, if the measure µθ is even in a distributional sense, that is

µθ(w, b) = µθ(−w,−b),

then the inequality in (4.1) holds with equality.

Note that our assumption that µθ is even in Lemma 4.5(ii) precludes the case where

a(i) = −a(j) and (w(i), b(i)) = (−w(j),−b(j)) for some i ̸= j. This is needed because if

such a case were allowed, we would have a(i)ReLU(w(i)Tx + b(i)) + a(j)ReLU(w(j)Tx + bj) =

a(i)(w(i)Tx + b(i)) for all x ∈ Bd—an affine function. After ruling out these cases, we can

apply the argument of Parhi and Nowak (2021a) to prove Lemma 4.5(ii).

4.2.2.2 R-norm of ridge functions

Prior works illuminate precise formulations of the R-norm, and characterize solutions to

(VP), albeit only for the one-dimensional setting (Hanin, 2021; Savarese et al., 2019; Ergen

and Pilanci, 2021). These results are nevertheless useful for analyzing ridge functions in

d-dimensional space.

Theorem 4.6. For any ridge function g : Bd → R of the form g(x) = ϕ(wTx) where w ∈ Sd−1

and ϕ : [−
√
d,

√
d] → R is Lipschitz, we have

∥g∥R = ∥ϕ′∥TV := ess sup
−

√
d≤t0<t1<···<tr≤

√
d; r∈N

r∑
i=1

|ϕ′(ti) − ϕ′(ti−1)| ,

where ϕ′ is a right continuous derivative of ϕ.4

4Take ϕ′(u) = limt↓0
ϕ(u+t)−ϕ(u)

t ; the limit exists almost everywhere by Rademacher’s theorem.

184

Remark 4.1. If ϕ is twice differentiable, then ∥g∥R =
∫√

d
−

√
d

|ϕ′′(u)| du = ∥ϕ′′∥1. Intuitively,

this ℓ1-norm penalty induces sparsity in the second derivative, leading to representations that

use few neurons. In contrast, minimizing the ℓ2-norm penalty ∥ϕ′′∥2 on the second derivative

yields a cubic spline (Kimeldorf and Wahba, 1971).

Proof. Without loss of generality, g only depends on the first coordinate x1 due to the

invariance of the R-norm to rotation (cf. Proposition 11 of Ongie et al., 2019). The result

then follows from Remark 4 of Parhi and Nowak (2021b).

This bound on the R-norm for ridge functions (and univariate functions) is critical for

analyses of the solutions to (VP) for d = 1 (Hanin, 2021; Savarese et al., 2019). It suggests

a potential approach for our high-dimensional setting: project the dataset to every one-

dimensional subspace, interpolate the data with a ridge function that points in that direction,

directly compute the R-norm of each using Theorem 4.6, and return the ridge function with

the lowest R-norm. In the sequel, we examine the optimality of this approach, and find that

ridge functions cannot be optimal solutions to (VP), even when the dataset can be perfectly

fit by a ridge function.

4.2.3 Concentration inequalities

Our proofs make extensive use of textbook probability concentration inequalities. We

provide those results below.

A random variable u is c-subgaussian if ∥u∥ψ2
:= inf{t ≥ 0 : E[exp(u2/t2)] ≤ 2} ≤ c, and

a random vector v is σ2-subgaussian if every one-dimensional projection of v is c-subgaussian.

Lemma 4.7 (Hoeffding’s inequality; Theorem 2.8 in Boucheron, Lugosi, and Massart, 2013).

Let u1, . . . ,un be independent, mean-zero random variables such that ui takes value in [ai, bi]

almost surely for all i ∈ [n]. Then, for any t > 0,

Pr
[
n∑
i=1

ui ≥ t

]
≤ exp

(
− 2t2∑n

i=1(bi − ai)2

)
.

185

Lemma 4.8 (Multiplicative Chernoff bound; Theorem 4.4 in Mitzenmacher and Upfal,

2017). Let u1, . . . ,un be independent Bernoulli random variables with Pr [ui = 1] = p ∈ [0, 1]

for all i ∈ [n]. Then, for any η ∈ (0, 1],

Pr
[
n∑
i=1

ui ≥ (1 + η)p
]

≤ exp
(

−pη2

3

)
.

Lemma 4.9 (Bernstein’s inequality; Corollary 2.11 in Boucheron, Lugosi, and Massart,

2013). Let u1, . . . ,un be independent, mean-zero random variables with ui ≤ K almost surely

for all i ∈ [n], and let v := ∑n
i=1 E[u2

i]. Then, for any t > 0,

Pr
[
n∑
i=1

ui ≥ t

]
≤ exp

(
− t2

2(v +Kt/3)

)
.

Lemma 4.10 (McDiarmid’s inequality; Theorem 6.2 in Boucheron, Lugosi, and Massart,

2013). Let u1, . . . ,un be independent random variables, and let f be a measurable function.

Suppose, for each i ∈ [n], the value of f(u1, . . . , un) can change by at most ci ≥ 0 by changing

the value of ui. Then, for any t > 0,

Pr
[
f(u1, . . . ,un) − E [f(u1, . . . ,un)] ≥ t

]
≤ exp

(
− 2t2∑n

i=1 c
2
i

)
.

Lemma 4.11 (Properties of subgaussian random variables). Let u1, . . . ,un be independent

random variables with ∥ui∥ψ2
< ∞ for all i ∈ [n]. There is a universal constant C > 0 such

that the following hold.

(i) (Concentration; Section 2.5.2 in Vershynin, 2018) For any t > 0, Pr [|u1| ≥ t] ≤

2 exp(−t2/(C ∥u1∥ψ2
)).

(ii) (Maximum; Exercise 2.5.10 in Vershynin, 2018)

E
[
max
i∈[n]

|ui|
]

≤ C
√

lnnmax
i∈[n]

∥ui∥ψ2 .

186

(iii) (Averaging: Proposition 2.6.1 in Vershynin, 2018) ∥∑n
i=1 ui∥2

ψ2 ≤ C
∑n
i=1 ∥ui∥2

ψ2.

(iv) (Centering; Lemma 2.6.8 in Vershynin, 2018) ∥u1 − E [u1]∥ψ2
≤ C ∥u1∥ψ2

.

(v) (Lipschitzness) For any 1-Lipschitz function ϕ : R → R with ϕ(0) = 0, ∥ϕ(u1)∥ψ2
≤

∥u1∥ψ2
.

Proof. The only property not already proved in (Vershynin, 2018) is (v). Since ϕ is 1-

Lipschitz and ϕ(0) = 0,

|ϕ(u1)| = |ϕ(u1) − ϕ(0)| ≤ |u1 − 0| = |u1|.

Hence

E
[
exp(ϕ(u1)2/∥u1∥2

ψ2)
]

≤ E
[
exp(u2

1/∥u1∥2
ψ2)
]

≤ 2,

which implies ∥ϕ(u1)∥ψ2 ≤ ∥u1∥ψ2 .

Lemma 4.12 (Singular values of random matrices; Theorem 4.6.1 in Vershynin, 2018).

There is a positive constant C > 0 such that the following holds. Let A be a m× n random

matrix whose rows are independent, mean-zero, v-subgaussian random vectors in Rn. For

any t ≥ 0, with probability at least 1 − 2e−t, the singular values σ1(A), σ2(A), . . . , σn(A) of

A satisfy

√
m− Cv(

√
n+

√
t) ≤ σi(A) ≤

√
m+ Cv(

√
n+

√
t) for all i ∈ [n].

Lemma 4.13 (MGF of Unif({−1, 1}); Lemma 2.2 in Boucheron, Lugosi, and Massart, 2013).

If u ∼ Unif({−1, 1}), then E[exp(tu)] ≤ exp(t2/2) for all t ∈ R.

4.2.4 Covering numbers

Let N (ϵ, A, γ) denote the covering number over a metric space A with metric γ : A×A →

R+. That is, N (ϵ, A, d) = min |Nϵ| for Nϵ ⊂ A such that for all x ∈ A, there exists x′ ∈ Nϵ

187

with γ(x, x′) ≤ ϵ. Note that N (ϵ, [−1, 1], |·|) ≤ 2
ϵ
.

Lemma 4.14 (Covering numbers of Sd−1; Corollary 4.2.13 in Vershynin, 2018). For any

ϵ > 0, N (ϵ,Sd−1, ∥·∥2) ≤ (2
ϵ

+ 1)d. If ϵ ∈ [0, 1], then N (ϵ,Sd−1, ∥·∥2) ≤ (3
ϵ
)d.

4.3 Intrinsic dimensionality of solutions to the variational problem for parity

In this section, we study the R-norm of neural networks that solve VP or ϵ-VP for the

(full) parity dataset {(x,Par(x)) : x ∈ {−1, 1}d}, which has size n = 2d. For simplicity,

the labels are provided by the parity function Par over all d variables, although the same

quantitative results (up to constant factor differences) hold for any ParS with |S| = Θ(d).

The high level message is that, despite the fact that this dataset can be exactly fit using

ridge functions, the solutions to (VP) and (ϵ-VP) are not ridge functions and instead must

be multi-directional.

4.3.1 Every ridge parity interpolant has R-norm Ω(d3/2)

We first show that any ϵ-approximate interpolant of the parity dataset that is also a ridge

function must have R-norm Ω(d3/2). This lower-bound is established even for ϵ = 1/2.

Theorem 4.15. For d ≥ 2, let Ridged be the set of functions g : Bd → R such that g(x) =

ϕ(wTx) for some w ∈ Sd−1 and Lipschitz continuous ϕ : [−
√
d,

√
d] → R. Then

inf{∥g∥R : g ∈ Ridged, ∥g − χ∥L∞(ν) ≤ 1/2} ≥ d3/2/(2
√

2).

This lower bound in is tight up to constant factors, because the sawtooth function s1⃗,d

satisfies the constraints of (VP) and has
∥∥∥s1⃗,d

∥∥∥
R

= O(d3/2).

Its proof constructs a labeled dataset of d+ 1 points, and shows that any ridge function

g(x) = ϕ(wTx) that approximates that dataset must have many high-magnitude oscilla-

tions. These oscillations imply a lower bound on ∥ϕ′∥TV, which proves the claim by way of

Theorem 4.6.

188

Proof. Take any g ∈ Ridged of the form g(x) = ϕ(wTx) for some function ϕ and vector w

satisfying the approximation constraint ∥g − Par∥L∞(ν) ≤ 1/2. Suppose for sake of contra-

diction that wi = 0 for some i ∈ [d]. Then, there exists a pair of points x, x′ ∈ {−1, 1}d

that are identical except in the i-th positions, xi and x′
i. Thus, Par(x) = −Par(x′), but

wTx = wTx′ and hence g(x) = g(x′); this contradicts the approximation constraint. So, we

may henceforth assume that wi ̸= 0 for all i ∈ [d].

For each i ∈ {0, 1, . . . , d}, define

x(i) := (sign(w1), . . . , sign(wi),− sign(wi+1), . . . ,− sign(wd)).

Because the parity of x(i) alternates with i, i.e., Par(x(i)) ̸= Par(x(i+1)), sign(g(x(i))) also

alternates because g satisfies the approximation constraint. Furthermore, again due to the

approximation constraint, we have |g(x(i)) − g(x(i+1))| ≥ 1. We claim that, because ϕ

interpolates d+1 well-separated data points (wTx(i), ϕ(wTx(i))) that satisfy wTx(i) < wTx(i+1)

for all i ∈ {0, 1, . . . , d − 1}, there must be a large cost for representing ϕ using a neural

network. By Theorem 4.6, it suffices to obtain a lower bound on ∥ϕ′∥TV, since this will

imply a lower bound on ∥g∥R.

By Lemma 4.16 (a modification of the mean value theorem, which is presented following

the proof) for every i ∈ {0, 1, . . . , d − 1}, there exists Ai ⊆ [wTx(i), wTx(i+1)] with Lebesgue

measure Leb(Ai) > 0 such that, for every z(i) ∈ Ai, we have

|ϕ′(z(i))| ≥ 1
2 · |ϕ(wTx(i+1)) − ϕ(wTx(i))|

wTx(i+1) − wTx(i) ,

and signϕ′(z(i)) = signϕ(wTx(i+1)) − ϕ(wTx(i)). The fact that the signs of ϕ(wTx(i)) alternate

with i implies that the signs of ϕ′(z(i)) also alternate with i. We now lower-bound the total

variation of ϕ′ using the fact that ∏d
i=1 Leb(Ai) > 0 and taking advantage of the alternating

189

signs:

2 ∥ϕ′∥TV = 2 ess sup
−

√
d≤t0<t1<···<tr≤

√
d; r∈N

r∑
i=1

|ϕ′(ti) − ϕ′(ti−1)|

≥ 2
d−1∑
i=1

|ϕ′(z(i)) − ϕ′(z(i−1))| = 2
d−1∑
i=1

(|ϕ′(z(i))| + |ϕ′(z(i−1))|) ≥ 2
d−1∑
i=0

|ϕ′(z(i))|

≥
d−1∑
i=0

|ϕ(wTx(i+1)) − ϕ(wTx(i))|
wTx(i+1) − wTx(i) ≥

d−1∑
i=0

1
wTx(i+1) − wTx(i)

≥ d2∑d−1
i=0 w

Tx(i+1) − wTx(i) = d2

wTx(d) − wTx(0) ≥ d2

∥w∥2∥x(d) − x(0)∥2
= d3/2

√
2
.

The second-to-last inequality is a consequence of Cauchy-Schwarz: for any a1, . . . , ad > 0,

d2 = (∑i

√
ai/

√
ai)2 ≤ (∑i ai)(

∑
i 1/ai). Therefore, ∥g∥R = ∥ϕ′∥TV ≥ d3/2/(2

√
2).

The proof of Theorem 4.15 employs the following lemma, which is essentially a robust

variant of the mean value theorem.

Lemma 4.16. Suppose ϕ : R → R is Lipschitz continuous on the interval [t1, t2] with

ϕ(t1) ̸= ϕ(t2). Define

A :=
{
t ∈ [t1, t2] : ϕ′(t) exists,

|ϕ′(t)| ≥ 1
2 · |ϕ(t2) − ϕ(t1)|

t2 − t1
, sign(ϕ′(t)) = sign(ϕ(t2) − ϕ(t1))

}
.

(The factor 1/2 in the definition of A can be replaced by any constant in (0, 1).) Then,

Leb(A) > 0, where Leb is the Lebesgue measure.

Proof. Recall that ϕ′ denotes the right continuous derivative of g (or the right-hand Dini

derivative) which is guaranteed to exist except on a null set by Rademacher’s theorem. Let

s := signϕ(t2) − ϕ(t1). By the assumption ϕ(t1) ̸= ϕ(t2) and the Fundamental Theorem of

Calculus, we have

0 < |ϕ(t2) − ϕ(t1)| = s (ϕ(t2) − ϕ(t1)) =
∫ t1

t2
sϕ′(z) dz ≤ (t2 − t1) ess sup

z∈[t1,t2]
sϕ′(z).

190

Recall that, by definition,

ess sup
z∈[t1,t2]

sϕ′(z) = inf {a : Leb({z ∈ [t1, t2] : ϕ′(z) exists, sϕ′(z) > a}) = 0} ,

and thus

B := {z ∈ [t1, t2] : ϕ′(z) exists, s(ϕ(t2) − ϕ(t1)) ≤ 2 · (t2 − t1)sϕ′(z)}

satisfies Leb(B) > 0. Observe that B = A, so Leb(A) > 0, concluding the proof.

4.3.2 Existence of a multi-directional parity interpolant with R-norm O(d)

We now show that the Ω(d3/2) R-norm lower-bound from Theorem 4.15 for ridge functions

can be avoided by neural networks that are not ridge functions. The main idea is to employ

an averaging strategy that combines a collection of distinct ridge functions, each of which

perfectly fits a small fraction of the parity dataset—those on the “equator” relative to the

ridge direction—while ignoring the “outliers” in that direction. Because all points on the cube

are “outliers” for some directions and on the “equator” for others, this strategy ultimately

ensures that every example is perfectly fit.

Theorem 4.17. For any even5 d, there exists a neural network g : Bd → R having g(x) =

Par(x) for all x ∈ {−1, 1}d such that ∥g∥R ≤ O(d).

Proof. Recall that the sawtooth function sw,0 : Bd → R satisfies

sw,0(x) = Par(x)1
{
wTx = 0

}

for all x ∈ {−1, 1}d. By construction, sw,0 is a ridge function that is a single “bump” around

zero in the direction of w, and ∥sw,0∥R ≤ O(
√
d). Consider w ∼ Unif({−1, 1}d). By sym-

5Our results also hold for odd d, but the proofs are more tedious.

191

metry, Pr
[
wTx = 0

]
= Pr

[
wTx′ = 0

]
for all x, x′ ∈ {−1, 1}d, so

E [sw,0(x)] = Par(x) · Pr
[
wTx = 0

]
= Par(x) · 2−d · |{v ∈ {−1, 1}d : vTx = 0}|

= Par(x) · q,

where q :=
(
d
d/2

)
/2d = Θ(1/

√
d). Define g(x) := 1

q2d

∑
w∈{−1,1}d sw,0(x). Then

g(x) = 1
q
E [sw,0(x)] = Par(x)

for each x ∈ {−1, 1}d, i.e., g interpolates the parity dataset. Finally, we bound the R-norm:

∥g∥R ≤ 1
q2d

∑
w∈{−1,1}d

∥sw,0∥R ≤ 1
q

·O(
√
d) ≤ O(d).

While Theorem 4.17 successfully exhibits a neural network g that perfectly fits the parity

dataset with ∥g∥R = O(d), the width of g is Ω(2d). We next show that by allowing non-zero

L∞(ν) error in the approximation, we can achieve a construction with both O(d) R-norm

and poly(d) width.

Theorem 4.18. There is a universal constant c > 0 such that the following holds. For any

even d, any ϵ ∈ (0, 1), and any even t ∈ {0, 2, . . . , d}, there exists a function g : Bd → R that

can be represented by a width-m neural network such that ∥g − Par∥L∞(ν) ≤ ϵ, where

m ≤ O(d3/2
√

log(1/ϵ)/ϵ2) and ∥g∥R ≤ O(d log(1/ϵ)) if t ≤ c
√
d log(1/ϵ);

m ≤ O(d2/(ϵt)) and ∥g∥R ≤ O(t
√
d) otherwise.

Moreover, g can be expressed as a linear combination of width-t sawtooth functions.

Remark 4.2. Suppose ϵ is a constant. Using t = Θ(d), we obtain a neural network of width

m = O(d) and ∥g∥R = O(d3/2), matching the properties of the sawtooth (ridge function)

192

interpolant sw,d. Using t = Θ(1), we obtain a neural network of width m = O(d3/2) and

∥g∥R = O(d), matching the properties of the interpolant from Theorem 4.17 but with almost

exponentially smaller width.

4.3.2.1 Proof of Theorem 4.18

A more detailed version of Theorem 4.18—which also specifies the intrinsic dimension-

ality of g—is stated and proved in below. The proof uses a similar technique as that of

Theorem 4.17, but instead averages randomly sampled sawtooth functions sw(1),t, . . . , sw(k),t

for w(j) ∼ Unif({−1, 1}d) of width t. We show that for sufficiently large k, every x ∈ {−1, 1}d

lies the in the “active” region of about the same number of sawtooth functions; this yields a

good approximation of Par(x) for all x.

Theorem 4.19 (Detailed version of Theorem 4.18). There exists a universal constant C

such that for any even d, even sawtooth width t ∈ {0, 2, . . . d}, and accuracy ϵ ∈ (0, 1
2), there

exists a k-index width-m neural network g with ∥g − Par∥L∞(ν) ≤ ϵ such that:

1. If t ≤ C
√
d ln 1

ϵ
, then k = O(d3/2

t+1 · log1/2 ϵ
ϵ2

), m = O(d3/2 log1/2 ϵ
ϵ2

), and ∥g∥R = O(d log 1
ϵ
).

2. Otherwise, k = O(d2

ϵt2
), m = O(d2

ϵt
), and ∥g∥R = O(t

√
d).

Proof. For w(1), . . . ,w(k) ∼iid Unif({−1, 1}d) and

q := Pr
[∣∣∣w(1)Tx

∣∣∣ ≤ t
]
, for any x ∈ {−1, 1}d,

let

g(x) := 1
kq

k∑
j=1

sw(j),t(x).

Because E [sw,t(x)] = q · Par(x), we have E [g(x)] = Par(x). Following the arguments in the

proof of Theorem 4.17, we have ∥g∥R = O((t+1)
√
d

q
), and g has width O(k(t+ 1)).

It remains to place a lower bound on q and to show that with non-zero probabil-

ity, g uniformly approximates Par. By applying a union bound, it suffices to show that

193

Pr [|g(x) − Par(x)| ≥ ϵ] ≤ 1
2d+1 for any fixed x ∈ {−1, 1}d.

For fixed x, let

r(x) := |{j ∈ [k] : |xTw(j)| > t}|

denote the number of sawtooth functions sw(j),t that are inactive at x. We upper-bound the

accuracy of approximation of Par(x) by g(x) in terms of r(x):

|g(x) − Par(x)| =

∣∣∣∣∣∣ 1
qk

k∑
j=1

1{|xTw(j)| ≤ t} − q

∣∣∣∣∣∣
=
∣∣∣∣∣(k − r(x))(1 − q)

qk
− r(x)q

qk

∣∣∣∣∣
=
∣∣∣∣∣1 − q

q
− r(x)

qk

∣∣∣∣∣ .
Fix threshold

T := 2
⌈√

(d/2) ln(8/ϵ)
⌉
,

and note that Pr
[
|wTx| ≥ T

]
≤ ϵ

4 . The proof naturally divides into two cases, depending

on the value of t.

Case 1: t ≤ T . We first lower-bound q. Because wTx is a shifted symmetric bino-

mial distribution around wTx = 0, if |t′| ≥ |t| and t′ ≡ t (mod 2), then Pr
[
wTx = t′

]
≤

194

Pr
[
wTx = t

]
. Then, for any t ≤ T :

q =
t/2∑

τ=−t/2
Pr
[
wTx = 2τ

]

= (t+ 1) · 1
t+ 1

t/2∑
τ=−t/2

Pr
[
wTx = 2τ

]

≥ (t+ 1) · 1
T + 1

T/2∑
τ=−T/2

Pr
[
wTx = 2τ

]

= t+ 1
T + 1 Pr

[
|wTx| ≤ T

]
≥

(t+ 1)(1 − ϵ
2)

2
√
d ln 4

ϵ

≥ t+ 1
4
√
d ln 4

ϵ

.

Now, we bound r(x) by Bernstein’s inequality (Lemma 4.9) by taking k ≥ Cd3/2
√

ln 1
ϵ

ϵ2(t+1) :

Pr [|g(x) − Par(x)| > ϵ] = Pr
[∣∣∣∣r(x) − E[r(x)]

∣∣∣∣ > ϵqk
]

≤ 2 exp
(

− ϵ2q2k2

2(kq(1 − q) + ϵqk/3)

)

≤ 2 exp
− ϵ2k(t+ 1)

8(1 + ϵ/3)
√
d ln 4

ϵ

 ≤ 1
2d+1 .

Case 2: t ≥ T . By Hoeffding’s inequality (Lemma 4.7) and the assumption on t, we

have

q ≥ 1 − 2 exp(−2t2
d

) ≥ 1 − ϵ

4 ≥ 3
4 .

Observe that E [r(x)] = (1 − q)k ≤ ϵk
4 .

We show that

|g(x) − Par(x)| = |1 − q

q
− r(x)

qk
| ≤ ϵ

by showing that r(x) ≤ (1−q)k+ϵqk and r(x) ≥ (1−q)k−ϵqk. Because 1−q ≤ ϵ
4 and q ≥ 3

4 ,

(1 − q)k− ϵqk ≤ − ϵ
2k, so the second inequality is always satisfied because r(x) ≥ 0. For the

195

former inequality, it suffices to show that r(x) ≤ 3ϵk
4 with probability at least 1 − 2−(d+1).

We take k ≥ Cd2

ϵt2
, which implies that

k ≥ C

(
d

2ϵ + de−2t2/d

2ϵ2

)
≥ C

(
d

2ϵ + d(1 − q)
4ϵ2

)

by the bounds on t and q. Then, by Bernstein’s inequality (Lemma 4.9), we have

Pr [|g(x) − Par(x)| > ϵ] = Pr
[∣∣∣∣r(x) − E[r(x)]

∣∣∣∣ > 3ϵk
4

]

≤ 2 exp
(

− 9ϵ2k2/16
2(kq(1 − q) + ϵk/4)

)

≤ 1
2d+1 ,

so the claim follows.

4.3.3 Every parity interpolant has R-norm Ω(d)

Finally, we show that R-norm upper-bounds from Theorems 4.17 and 4.18 are tight.

That is, we show that every solution to (ϵ-VP) for the parity dataset has R-norm Ω(d), even

for constant ϵ. This is implied by the following stronger result, which requires only L2(ν)

approximation, as opposed to L∞(ν).

Theorem 4.20. For any d ≥ 8 and α ∈ (0, 1), inf{∥g∥R : ∥g − Par∥L2(ν) ≤ 1 − α} ≥ αd/8.

A result analogous to Theorem 4.20 also holds for most sampled parity datasets (defined

in Section 4.4). This result is stated and proved in Section 4.3.3.1.

The core of proof strategy is to bound the correlation of any fixed ReLU neuron with the

parity function Par.

Proof. Consider any measure µ over Sd−1 × [−2
√
d, 2

√
d], v ∈ Rd, and c ∈ R such that

g(x) = gµ(x) + vTx + c =
∫
Sd−1×R ReLU(wTx + b)µ(dw, db) for all ∥x∥2 ≤ d. We prove the

claim by showing that |µ| ≥ αd
8 for any such µ.

196

By Fact 4.21, ∥g − Par∥L2(ν) ≤ 1 − α implies that ⟨g,Par⟩ ≥ α. We show that this inner

product bound is only possible if |µ| is sufficiently large. By Lemma 4.22, any fixed neuron

rw,b(x) := ReLU(wTx + b) has |⟨rw,b,Par⟩| ≤ 8
d
. Because the inner-product over {−1, 1}d is

a discrete sum and Par is orthogonal to any affine function (such as x 7→ vTx + c), we can

upper-bound the ability of g to correlate with Par as follows:

⟨g,Par⟩L2(ν) =
∫
Sd−1×R

⟨rw,b,Par⟩L2(ν) µ(dw, db) + E
[
(vTx + c)Par(x)

]
≤
∫
Sd−1×R

∣∣∣⟨rw,b,Par⟩L2(ν)

∣∣∣ |µ(dw, db)|

≤ 8
d

∫
Sd−1×R

|µ(dw, db)| = 8 |µ|
d
.

Thus, ⟨gµ,Par⟩ ≥ α only if |µ| ≥ αd
8 .

Fact 4.21. For any measure ν0 over {−1, 1}d, g ∈ L2(ν0), h : {−1, 1}d → {−1, 1}, and

α ∈ (0, 1), if ∥g − h∥L2(ν0) ≤ 1 − α, then ⟨g, h⟩L2(ν0) ≥ α.

Proof. The claim is a consequence of the fact ⟨h, h⟩L2(ν0) = 1 and Cauchy-Schwarz:

⟨g, h⟩L2(ν0) = ⟨h, h⟩L2(ν0) + ⟨g − h, h⟩L2(ν0)

= 1 + ⟨g − h, h⟩L2(ν0)

≥ 1 − ∥g − h∥L2(ν0)

≥ 1 − (1 − α) = α.

Lemma 4.22. For d ≥ 8, w ∈ Rd with ∥w∥2 ≤ 1, and b ∈ [−2
√
d, 2

√
d], the neuron

rw,b(x) := ReLU(wTx+ b) satisfies |⟨rw,b,Par⟩| ≤ 8
d
.

Remark 4.3. Lemma 4.22 is asymptotically tight. For even d, consider the “single-blade”

sawtooth function

s1⃗,0(x) =
√
d(r1⃗/

√
d,1/

√
d(x) − 2r1⃗/

√
d,0(x) + r1⃗/

√
d,−1/

√
d(x))

197

that satisfies s1⃗,0(x) = Par(x)1{⃗1Tx = 0}. Then,

⟨s1⃗,0,Par⟩L2(ν) = 1
2d

(
d

d/2

)
≥ 1√

2d
,

and thus there exists b with |⟨r1⃗/
√
d,b,Par⟩L2(ν)| ≥ 1

4
√

2d .

Proof. We directly bound the inner product by showing that we can bound a discrete second

derivative. For any x ∈ {−1, 1}d, let xj ∈ {−1, 1}d denote x with a flipped jth bit. That is,

xji = (−1)1{i=j}xi. Observe that Par(x) = −Par(xj).

|⟨rw,b,Par⟩|

= 1
2d

∣∣∣∣∣∑
x

rw,b(x)Par(x)
∣∣∣∣∣

= 1
4 · 2d

∣∣∣∣∣∑
x

(rw,b(x)Par(x) + rw,b(xj)Par(xj) + rw,b(xj
′)Par(xj′) + rw,b(xj,j

′)Par(xj,j′))
∣∣∣∣∣

= 1
4 · 2d

∣∣∣∣∣∑
x

Par(x)(rw,b(x) − rw,b(xj) − rw,b(xj
′) + rw,b(xj,j

′))
∣∣∣∣∣

≤ 1
4 · 2d

∑
x

|rw,b(x) − rw,b(xj) − rw,b(xj
′) + rw,b(xj,j

′)|.

We say that (x, xj) is cut and denote (x, xj) ∈ Cj if x and xj lie on the opposite side

of the “hinge” of the neuron rw,b, that is sign(wTx − b) ̸= sign(wTxj − b). Let Sx,j,j′ =

{x, xj, xj′
, xj,j

′} represent a “square” in {−1, 1}d, and let Sx,j,j′ ∈ Cj,j′ if any of its edges

(x, xj), (x, xj′), (xj, xj,j′), (xj′
, xj,j

′) are cut. We bound the term inside the sum by considering

two cases.

1. If Sx,j,j′ ̸∈ Cj,j′ , then |rw,b(x) − rw,b(xj) − rw,b(xj
′) + rw,b(xj,j

′)| = 0.

198

2. Otherwise, the quantity is bounded by Lipschitzness:

|rw,b(x) − rw,b(xj) − rw,b(xj
′) + rw,b(xj,j

′)|

≤ |rw,b(x) − rw,b(xj)| + |rw,b(xj
′) − rw,b(xj,j

′)|

≤ |wTx− wTxj| + |wTxj
′ − wTxj,j

′ | = 4|wj|.

Therefore, |⟨rw,b,Par⟩| ≤ minj ̸=j′
1
2d |Cj,j′ | |wj|. It remains to bound |Cj,j′ | and |wj| for

some j and j′. By employing a bound on the total number of cut edges (O’Neil, 1971):

1
d

d∑
j=1

|Cj| ≤ 1
2d ·

⌈
d

2

⌉(
d

⌊d/2⌋

)
≤ 2d

2
√
d
.

As a result, at most d
2 choices of j satisfy |Cj| ≥ 2d/

√
d. Because ∥w∥2 ≤ 1, at most d

4

coordinates j have |wj| ≥ 2/
√
d. Thus, there exist at least d

4 coordinates j satisfying both

|Cj| ≤ 2d/
√
d and |wj| ≤ 2/

√
d. Assuming d ≥ 8, let j, j′ be two of those coordinates. Since

|Cj,j′| ≤ 2|Cj| + 2|Cj′|, we conclude that |Cj,j′| ≤ 4 · 2d/
√
d, which gives the desired bound

on the inner product.

4.3.3.1 R-norm lower bound for sampled parity datasets

Theorem 4.23. Fix any δ ∈ (0, 1) and α = ω(1/d), and assume n ≥ O(d3(log d+log(1/δ))).

With probability at least 1 − δ, inf{∥g∥R : ∥g − Par∥L2(νn) ≤ 1 − α} ≥ Ω(αd).

Proof. Let g be a function with finite R-norm which satisfies the L2(νn) approximability

condition, which admits an integral representation due to Proposition 4.3. That is,

g(x) =
∫
Sd−1×[−

√
d,

√
d]

(ReLU(wTx+ b) − ReLU(b))µ(dw, db) + c+ vTx ∀x ∈ Bd

for some measure µ and v ∈ Rd, c = g(0). Moreover, g can be represented compactly as

g(x) = ḡµ(x) + vTx+ c where ḡµ(x) = gµ(x) − gµ(0).

199

By Fact 4.21, ∥g − Par∥L2(νn) ≤ 1−α only if ⟨g,Par⟩L2(νn) ≥ α. We use this correlation to

prove lower bounds on |µ| (the total variation of measure µ). At a high level, we upper-bound

⟨g,Par⟩L2(νn) = ⟨ḡµ,Par⟩L2(νn) +
〈
vTx+ c,Par(x)

〉
L2(νn)

in terms of |µ| by relating quantities in L2(νn) with their L2(ν) counterparts. We show that

each component of the sum is small for sufficiently large n and d.

We first bound the correlation of the linear combination of neurons with parity, proving

upper bounds on ⟨g,Par⟩L2(νn). We denote r̄w,b(x) = ReLU(wTx + b) − ReLU(b) to be the

adjusted ReLU. By the triangle inequality,

⟨ḡµ,Par⟩L2(νn) ≤
∫
Sd−1×[−

√
d,

√
d]

∣∣∣⟨r̄w,b,Par⟩L2(νn)

∣∣∣ |µ| (dw, db)

≤ |µ| sup
w∈Sd−1,b∈[−

√
d,

√
d]

∣∣∣⟨r̄w,b,Par⟩L2(νn)

∣∣∣.
Lemmas 4.22 and 4.26 together bound the correlation of any neuron r̄w,b with Par. That

is, for any w ∈ Sd−1 and b ∈ [−
√
d,

√
d], with probability at least 1 − δ/3:

∣∣∣⟨r̄w,b,Par⟩L2(νn)

∣∣∣ ≤
∣∣∣⟨r̄w,b,Par⟩L2(ν)

∣∣∣+ C1

√
d(lnn+ ln(3/δ))

n
≤ 8
d

+ 2C1

√
d lnn
n

≤ C2

d
,

where C1 is the constant from Lemma 4.26 and n > C(d3(log d+ log(1/δ))) by assumption.

We now show that the linear components cannot be substantially correlated with the

parity function and bound
〈
vTx+ c,Par

〉
L2(νn)

. Because no linear term correlates with the

full parity dataset, Lemma 4.25 provides an upper bound on the inner product between

the linear perturbation and sampled parity dataset and implies the following bound with

200

probability at least 1 − δ/3:

∣∣∣∣〈vTx+ c,Par
〉
L2(νn)

∣∣∣∣ ≤ 8 max{|µ| , 1} sup
|c|≤1

∥v∥2≤1

∣∣∣∣〈vTx+ c,Par
〉
L2(νn)

∣∣∣∣
= 8 max{|µ| , 1}

(∣∣∣∣∣ 1n
n∑
i=1

yi
∣∣∣∣∣+

∥∥∥∥∥ 1
n

n∑
i=1

yixi
∥∥∥∥∥

2

)
.

By Lemma 4.24 and our assumptions on n, we bound the two data-dependent terms with

probability at least 1 − δ
3 for some absolute constant C2:

∣∣∣∣〈vTx+ c,Par
〉
L2(νn)

∣∣∣∣ ≤ 8 max{|µ| , 1}

√2 ln(12/δ)
n

+ 2
√
d

n

≤ C2

d
max{|µ| , 1}.

Combining both bounds, we have with probability at least 1 − δ,

α ≤
〈
ḡµ(x) + vTx+ c,Par

〉
L2(νn)

≤ C2

d
(|µ| + max{|µ| , 1}) ≤ 2C2

d
max{|µ| , 1}.

Therefore, we conclude

|µ| ≥ αd

2C2
− 1.

Lemma 4.24. Fix any δ ∈ (0, 1). Assume n ≥ O(log(1/δ)) and n = ω(d), let {(xi,yi)}i∈[n]

be the sampled parity dataset (where yi = Par(xi) for all i ∈ [n]), and let X ∈ Rn×d be the

data matrix containing all samples. All of the following hold with probability 1 − δ:

(i)
∣∣∣ 1
n

∑n
i=1 yi

∣∣∣ ≤
√

2 ln(4/δ)
n

;

(ii)
∥∥∥ 1
n

∑n
i=1 xi

∥∥∥
2

≤ 2
√

d
n
;

(iii)
∥∥∥ 1
n

∑n
i=1 yixi

∥∥∥
2

≤ 2
√

d
n
; and

(iv) 3
4
√
n ≤ σd(X) ≤ σ1(X) ≤ 2

√
n.

201

Proof. Claim (i) holds with probability at least 1 − δ
2 as a result of a standard application

of Hoeffding’s inequality (Lemma 4.7) to a sum of Rademacher random variables.

Claim (iv) also holds with probability at least 1 − δ
2 , since Lemma 4.12 and the assump-

tions on n imply that

σ1(X) ≤
√
n+ C

√
d+

√
ln 2
δ

 ≤ 2
√
n

and

σd(X) ≥
√
n− C

√
d−

√
ln 2
δ

 ≥ 3
4

√
n.

Claims (ii) and (iii) follow from the singular value bounds on X.

∥∥∥∥∥ 1
n

n∑
i=1

xi
∥∥∥∥∥

2
≤ 1
n

√
tr(XTX) ≤ 1

n
· 2

√
nd = 2

√
d

n
;

∥∥∥∥∥ 1
n

n∑
i=1

yixi
∥∥∥∥∥

2
≤ 1
n

√
yTXXTy ≤ 1

n
· σ1(X)

√
d ≤ 2

√
d

n
.

Lemma 4.25. Fix any δ ∈ (0, 1). Assume n ≥ O(log(1/δ)) and n = ω(d). With probability

at least 1 − δ over the random measure νn, if µ ∈ M satisfies

∥∥∥gµ(x) + c+ vTx − Par(x)
∥∥∥
L2(νn)

≤ 1,

then max{|c+ gµ(0)| , ∥v∥2} ≤ 8 max{|µ| , 1}.

Proof. We draw inspiration from the fact that the full parity dataset is orthogonal to any

linear term and can never be well-approximated with large linear components. In other

words, the square loss on approximating the full parity dataset with a linear function is

minimized by the constant-zero function and strictly worsens as the linear terms increase.

That is, orthogonality ensures that ∥c+ vTx− Par(x)∥2
L2(ν) = 1 + |c|2 + ∥v∥2

2. Thus, having

an upper bound on the squared error imposes similar upper bounds on the norms of the

linear terms. We make a similar argument for the sampled parity dataset, where we replace

202

ν with νn.

Without loss of generality, we incorporate gµ(0) into c and define ḡµ(x) = gµ(x) − gµ(0)

which can be also represented as ḡµ(x) =
∫
r̄w,b(x)µ(dw, db) where r̄w,b = ReLU(wTx+ b) −

ReLU(b). Let X ∈ Rn×d be the collection of samples xi and let yi = Par(xi). We bound the

squared loss of the linear component vTx+ c, ignoring the neural network ḡµ:

∥∥∥c+ vTx− Par(x)
∥∥∥2

L2(νn)
= 1 + c2 + vT

(
1
n

n∑
i=1

xixT
i

)
v − 2

n
vT
(

n∑
i=1

(yi − c)xi
)

− 2c
n

n∑
i=1

yi

≥ 1 + c2 + 1
n

∥v∥2
2 σd(X)2

− 2 ∥v∥2

(∥∥∥∥∥ 1
n

n∑
i=1

yixi
∥∥∥∥∥

2
+ |c|

∥∥∥∥∥ 1
n

n∑
i=1

xi
∥∥∥∥∥

2

)
− 2 |c|

∣∣∣∣∣ 1n
n∑
i=1

yi
∣∣∣∣∣ .

With probability 1 − δ, all events of Lemma 4.24 hold, and we use them to lower-bound

the squared loss.

∥∥∥c+ vTx− Par(x)
∥∥∥2

L2(νn)
≥ 1 + c2 + 9

16 ∥v∥2
2 − 4

√
d

n
(1 + |c|) ∥v∥2 −

2
√

2 ln(8/δ)
√
n

|c|

≥ 1
4 max{|c| , ∥v∥2}

2.

where we have used the assumptions on n and the AM/GM inequality. We now provide

upper bounds on the square loss based on measure µ using the triangle inequality:

∥∥∥c+ vTx− Par(x)
∥∥∥
L2(νn)

≤ ∥ḡµ∥L2(νn) +
∥∥∥ḡµ(x) + c+ vTx− Par(x)

∥∥∥
L2(νn)

≤ ∥ḡµ∥L2(νn) + 1.

We may now connect L2(νn) norm of ḡµ to its variational norm. We bound the output of ḡµ

on a single input xi by employing Cauchy-Schwarz:

ḡµ(xi)2 ≤
(∫

|r̄w,b(xi)| |µ| (dw, db)
)2

≤ |µ|
∫
r̄w,b(xi)2 |µ| (dw, db).

203

We sum over all i to bound the norm of ḡµ:

∥ḡµ(x)∥2
L2(νn) ≤ |µ|

∫
∥r̄w,b(x)∥2

L2(νn) |µ| (dw, db) ≤ |µ|2 sup
w∈Sd−1,|b|≤

√
d

∥r̄w,b∥2
L2(νn)

≤ |µ|2 sup
w∈Sd−1

1
n

n∑
i=1

|wTxi|2 = |µ|2 σ1(X)2

n
≤ 4 |µ|2 .

The second inequality relies on the Lipschitzness of ReLU. Combining all the above,

1
2 max{|c| , ∥v∥2} ≤

∥∥∥c+ vTx− Par(x)
∥∥∥
L2(νn)

≤ 1 + ∥gµ∥L2(νn) < 2 + 2 |µ| .

Lemma 4.26. For r̄w,b(x) = ReLU(wTx+ b) − ReLU(b) and n ≥ d, there exists an absolute

constant C such that for any δ ∈ (0, 1) with probability at least 1 − δ,

∣∣∣⟨r̄w,b,Par⟩L2(νn)

∣∣∣ ≤
∣∣∣⟨r̄w,b,Par⟩L2(ν)

∣∣∣+ C

√
d(lnn+ ln(1/δ))

n
,

for all w ∈ Sd−1, b ∈ [−
√
d,

√
d].

Proof. Observe that the inner product over the sampled parity dataset is an unbiased esti-

mate of the inner product over the full parity dataset,

E
[
⟨r̄w,b,Par⟩L2(νn)

]
= ⟨r̄w,b,Par⟩L2(ν) .

Let Zw,b denote the deviation from the mean, i.e.

Zw,b = ⟨r̄w,b,Par⟩L2(νn) − ⟨r̄w,b,Par⟩L2(ν) .

We use standard concentration of measure techniques for the following steps:

1. Zw,b is Lipschitz in terms of its parameterization (w, b) in the sense that

|Zw1,b1 − Zw2,b2| ≤ 4
√
dγ((w1, b1), (w2, b2)),

204

where γ is a distance defined later on.

2. Zw,b is O(1√
n
)-subgaussian for fixed w, b.

3. E
[
supw∈Sd−1,b∈[−

√
d,

√
d] |Zw,b|

]
= O(

√
d
n
) using a covering argument.

4. The maximum of |Zw,b| is close to its expectation due to the bounded difference in-

equality.

(Step 1) Using the fact that ReLU is 1-Lipschitz and triangle inequality,

|Zw1,b1 − Zw2,b2|

≤
∣∣∣⟨r̄w1,b1 ,Par⟩L2(νn) − ⟨r̄w2,b2 ,Par⟩L2(νn)

∣∣∣+ ∣∣∣⟨r̄w1,b1 ,Par⟩L2(ν) − ⟨r̄w2,b2 ,Par⟩L2(ν)

∣∣∣
≤ 2 ∥r̄w1,b1 − r̄w2,b2∥L∞(ν)

≤ 2(∥r̄w1,b1 − r̄w2,b1∥L∞(ν) + ∥r̄w2,b1 − r̄w2,b2∥L∞(ν))

≤ 2
(

max
x∈{−1,1}d

(w1 − w2)Tx+ 2 |b1 − b2|
)

≤ 4
√
d

(
∥w1 − w2∥2 + |b1 − b2|√

d

)
=: 4

√
dγ((w1, b1), (w2, b2)).

Thus Zw,b is 4
√
d-Lipschitz with respect to γ.

(Step 2) We bound the subgaussianity of Zw,b.

∥Zw,b∥ψ2
≤ C1

∥∥∥⟨r̄w,b,Par⟩L2(νn)

∥∥∥
ψ2

= C1

∥∥∥∥∥
n∑
i=1

yi(ReLU(wTxi + b) − ReLU(b))
∥∥∥∥∥
ψ2

≤ C2√
n

∥∥∥y1(ReLU(wTx1 + b) − ReLU(b))
∥∥∥
ψ2

≤ C2√
n

∥∥∥ReLU(wTx1 + b) − ReLU(b)
∥∥∥
ψ2

≤ C2√
n

∥∥∥wTx1

∥∥∥
ψ2

≤ 2C2√
n

The first, second, and fourth inequalities rely on the centering, averaging, and Lipschitzness

properties of subgaussian random variables in Lemma 4.11. The third inequality follows

205

from |y1| = 1, and the final is due to the 2-subgaussianity of a vector with i.i.d. Rademacher

components.

(Step 3) Let Nϵ be an ϵ-covering of Sd−1 × [−
√
d,

√
d] with respect to γ. We bound its

size using the standard ϵ-net result in Lemma 4.14 for ϵ ≤ 2.

N
(
ϵ,Sd−1 × [−

√
d,

√
d], γ

)
≤ N

(
ϵ

2 ,S
d−1, ∥ · ∥2

)
× N

(
ϵ

2 , [−1, 1], | · |
)

≤
(6
ϵ

)d
· 4
ϵ

≤
(6
ϵ

)d+1
.

We bound the expected maximum deviation over all w and b by employing a bound

on the expected maximum of subgaussian random variables (Lemma 4.11), applying the

covering numbers argument, letting π(w, b) = arg min(w′,b′)∈Nϵ
γ((w, b), (w′, b′)), and setting

ϵ := 1/
√
n.

E

 sup
w∈Sd−1,b∈[−

√
d,

√
d]

|Zw,b|

 ≤ E
[
sup
w,b

∣∣∣Zw,b − Zπ(w,b)

∣∣∣]+ E
[

sup
(w,b)∈Nϵ

|Zw,b|
]

≤ 4
√
dϵ+ 2C2√

n

√
ln N

(
ϵ,Sd−1 × [−

√
d,

√
d], γ

)

≤ 4
√
dϵ+ 2C2

√
d+ 1
n

ln 6
ϵ

≤ C3

√
d lnn
n

.

(Step 4) We conclude by showing that supw,b |Zw,b| is close to its expectation with high

probability due to the McDiarmid’s inequality (Lemma 4.10). Consider a perturbation where

xi is replaced by some x′
i ∈ {−1, 1}d with y′

i = Par(x′
i), and let Zi

w,b denote the resulting

deviation term.

∣∣∣∣∣sup
w,b

|Zw,b| − sup
w,b

∣∣∣Zi
w,b

∣∣∣∣∣∣∣∣ ≤ sup
w,b

∣∣∣Zw,b − Zi
w,b

∣∣∣ = 1
n

sup
w,b

|yir̄w,b(xi) − y′
ir̄w,b(x′

i)|

≤ 1
n

sup
w,b

[|r̄w,b(xi) − r̄w,b(x′
i)| + |(yi − y′

i)r̄w,b(xi)|]

≤ 1
n

[∥xi − x′
i∥2 + 2 ∥xi∥2] ≤ 4

√
d

n

206

Hence, with probability at least 1 − δ:

sup
w,b

|Zw,b| ≤
√

8d ln 1/δ
n

+ E
[
sup
w,b

|Zw,b|
]

≤ C4

√
d(lnn+ ln 1/δ)

n
.

The bound in the lemma statement immediately follows.

4.4 Generalization properties of solutions to the variational problem

In this section, we consider the generalization properties of a learning algorithm that

returns a solution to (VP) for a sampled parity dataset

{(xi,Par(xi)) : i ∈ [n]}, for x1, . . . ,xn ∼iid ν.

(Again, for simplicity, we label data using Par, but the same results hold for any ParS with

|S| = Θ(d).)

We show that n = o(d2/
√

log d) results in a predictor with nearly trivial accuracy. Note

that information-theoretically, n ≥ O(d) is sufficient for learning any parity function (Helm-

bold, Sloan, and Warmuth, 1992; Fischer and Simon, 1992). This means that the inductive

bias based on R-norm is not sufficient to achieve statistically optimal sample complexity for

learning parity functions.

4.4.1 Poor generalization with n ≪ d2/
√

log d samples

We first give a lower bound on the sample size needed for non-trivial generalization for

learning parity functions by solving (VP) with the sampled parity dataset.

Theorem 4.27. If n = o(d2/
√

log d), then with probability at least 1/2, every solution

g : Bd → R to (VP) for the sampled parity dataset has ∥g − Par∥L2(ν) ≥ 1 − o(1).

Its proof relies on the following approximation lemma, which shows the existence of a

low-R-norm network g that perfectly fits all n samples. The lemma defines g with the same

207

“cap construction” used in Theorem 1 of Bubeck, Li, and Nagaraj (2021).

Lemma 4.28. There is an absolute constant c > 0 such that the following holds. If n ≤ cd2,

and x1, . . .xn ∼iid ν, then with probability at least 1/2, there exists g : Bd → R with g(xi) =

Par(xi) for all i ∈ [n] and ∥g∥R ≤ 4n
√

ln d/d.

We conclude that generalization fails in this low-sample regime because Theorem 4.20

shows that no network with sufficiently small R-norm can correlate with parity.

Proof of Theorem 4.27. Let α := 64n
√

ln d/d2, so α = o(1) by assumption on n. By The-

orem 4.20, every g : Bd → R with ∥g − Par∥L2(ν) ≤ 1 − α has ∥g∥R ≥ αd/8 ≥ 8n
√

ln d/d.

However, by Lemma 4.28, with probability at least 1/2, every solution g to (VP) for the

dataset {(xi,Par(xi))}i∈[n] has ∥g∥R ≤ 4n
√

ln d/d. In this event, the solutions g have

∥g − Par∥L2(ν) ≥ 1 − α = 1 − o(1).

The proof of Lemma 4.28 utilizes a proof that a random sample from the boolean hyper-

cube is subgaussian when conditioned on its parity.

Lemma 4.29. Fix S ⊆ [d] with |S| ≥ 3, and let x ∼ Unif({−1, 1}d). Conditional on the

value of ParS(x), the random vector x is mean-zero, isotropic, and satisfies

E
[
exp(uTx) | ParS(x)

]
≤ exp(∥u∥2

2)

for all u = (u1, . . . , ud) ∈ Rd.

Proof. The assumption |S| ≥ 3 implies that, conditioned on ParS(x), the {xi}i∈[d] are mean-

zero and pairwise uncorrelated. So it remains to show that, for any vector u = (u1, . . . , ud) ∈

Rd,

E
[
exp(uTx) | ParS(x)

]
≤ exp(∥u∥2

2).

So fix u, and fix any i ∈ S. Let u−i (respectively, x−i) be the vector obtained from u

(respectively, x) by removing the i-th entry. Observe that x−i | ParS(x) ∼ Unif({−1, 1}d−1),

208

and also that xi | ParS(x) ∼ Unif({−1, 1}). (But, of course, x−i and xi are not conditionally

independent given ParS(x).) Therefore, using Cauchy-Schwarz,

E
[
exp(uTx) | ParS(x)

]
= E

[
exp(uT

−ix−i) exp(uixi) | ParS(x)
]

≤
√
E
[
exp(2uT

−ix−i) | ParS(x)
]√

E [exp(2uixi) | ParS(x)]

≤
√

exp(∥2u−i∥2
2/2)

√
exp((2ui)2/2)

= exp(∥u∥2
2).

Above, the second inequality uses the moment generating function bound from Lemma 4.13,

as well as the conditional independence of {xj : j ̸= i} given Par(x).

Now, we are ready to prove Lemma 4.28.

Proof of Lemma 4.28. Throughout, we take C > 0 to be a suitably large constant, and we

assume n ≤ d2/C. The construction of g : Bd → R is based on typical statistical behavior

of the random examples (x1,y1), . . . , (xn,yn), where yi := ParS(xi) for each i ∈ [n]. We

may assume that n ≥ d, since otherwise the examples can be perfectly fit with a linear

function g, and this function has ∥g∥R = 0. So, combining the assumption n ≥ d with the

assumption n ≤ d2/C implies that d ≥ C. Observe that y1, . . . ,yn are i.i.d. Unif({−1, 1})

random variables. Since n ≥ d ≥ C, it follows by standard binomial tail bounds that with

probability at least 5/6 over the realizations of y1, . . . ,yn, the number of yi that are equal

to 1 is at least n/3, and also that the number of yi that are equal to −1 is also at least n/3.

We henceforth condition on this “good event” (which depends only on y1, . . . ,yn).

To help define our construction of g : Bd → R and set up the rest of the analysis, we

partition [n] into disjoint groups G1, G2, . . . , Gm so that for each j ∈ [m], (i) the size nj :=

|Gj| of the j-th group is between c1d/ ln d and 2c1d/ ln d, and (ii) all yi for i ∈ Gj are the

same (i.e., all +1 or all −1). Here, with foresight, we set c1 := 1/256; by using d ≥ C, we

ensure that each group is non-empty, and also that nj < d. The feasibility of this partitioning

209

is ensured because, in the “good event” (and using d ≥ C), the number of i ∈ [n] with yi = 1

is at least n/3 ≥ d/3 ≥ c1d/ ln d, and same for the number of i ∈ [n] with yi = −1. Let

z(j) denote the common yi value for all i ∈ Gj. Finally, note that the number of groups m

satisfies m ≤ n ln(d)/(c1d).

We now define our construction of g : Bd → R. Let Aj denote the random nj × d matrix

whose rows are the xT
i for i ∈ Gj, and define the random vector w(j) := A†

j(z(j)1⃗). Observe

that w(j) is a least squares solution to the system of linear equations {xT
i w = yi : i ∈ Gj},

since yi = z(j) for all i ∈ Gj. We define g as follows:

g(x) =
m∑
j=1

z(j)ReLU(2z(j)w(j)Tx− 1).

To analyze our construction, we consider the realizations of x1, . . . ,xn, and establish some

basic properties that hold with sufficiently high probability (conditional on the “good event”).

Note that within a group Gj, the {xi}i∈Gj
are (conditionally) iid, and the realizations across

groups are also (conditionally) independent.

We claim that with probability at least 5/6 (conditional on the “good event”),

• (P1) w(j)Txi = yi for all j ∈ [m] and i ∈ Gj;

• (P2) ∥w(j)∥2 ≤ 2
√
nj/d for all j ∈ [m].

To establish this claim, we lower-bound the nj-th largest singular value σnj
(Aj). Note that

σnj
(Aj) is at least the corresponding singular value of the nj×(d−1) submatrix Bj obtained

from Aj by removing the t-th column of Aj for some t ∈ S. (If S is empty, we may remove

any column.) Since the rows of Aj are independent, and since the entries of xi after removing

the t-th one are iid Unif({−1, 1}) random variables, it follows that the nj × (d− 1) entries of

Bj are iid Unif({−1, 1}) random variables. Hence, the rows of BT
j are independent, mean-

zero, isotropic, and O(1)-subgaussian. By Lemma 4.12 and a union bound, with probability

210

at least 1 − 2m exp(− minj∈[m]{nj}),

σnj
(Aj) ≥ σnj

(BT
j) ≥

√
d− 1 − C2

√
nj ≥

√1 − 1
d

− C2

√
c1

ln d

√
d for all j ∈ [m],

where C2 > 0 is twice the absolute constant from Lemma 4.12, and the final inequality uses

the upper-bound on nj. The fact d ≥ C and the upper-bounds on m and n altogether imply

that the probability of the above event is at least 5/6, and also that
√

1 − 1/d−C2

√
c1/ ln d ≥

1/2. So in this event, for each j ∈ [m], the column space of Aj has rank nj, so the system

of linear equations defining w(j) is feasible, and

∥w(j)∥2 = ∥A†
j(z(j)1⃗)∥2 ≤ σ1(A†

j)∥⃗1∥2 =
√
nj

σnj
(Aj)

≤ 2
√
nj
d
.

This establishes P1 and P2 in the event as claimed.

We further claim that with probability at least 5/6 (conditional on the “good event”),

• (P3) |w(j)Txi| ≤ 4∥w(j)∥2
√

ln d for all j ∈ [m] and i ∈ [n] \Gj.

To establish this claim, first observe that xi and w(j) are independent for i /∈ Gj. Moreover,

by Lemma 4.29, conditional on w(j) (with Gj ̸∋ i), xT
i w(j) is a mean-zero random variable

satisfying

E
[
exp(w(j)Tx) | ParS(x),w(j)

]
≤ exp(∥w(j)∥2

2).

So, by Markov’s inequality and a union bound, we have with probability at least 5/6,

|w(j)Txi| ≤ (
√

2∥w(j)∥2)
√

2 ln(12mn) for all j ∈ [m] and i ∈ [n] \Gj.

Using d ≥ C and the upper-bounds on m and n, we obtain
√

ln(12mn) ≤ 2
√

ln d, and hence

we deduce P3 from the above inequality.

So, by a union bound, with probability at least 2/3 (conditional on the “good event”),

the properties P1, P2, and P3 all hold simultaneously. We can now establish the desired

211

properties of g. Using d ≥ C, P2, and the upper-bounds on m and n, we obtain

∥g∥R ≤ 2
m∑
j=1

∥w(j)∥2 ≤ 4
m∑
j=1

√
nj
d

≤ 4
√√√√m m∑

j=1

nj
d

= 4
√
mn

d
≤ 4n

√
ln d
d

.

Furthermore, by P1, we have for any j ∈ [m] and i ∈ Gj,

2z(j)w(j)Txi − 1 = 2z(j)yi − 1 = 1.

And by P2, P3, and the upper-bound on nj, we have for any j ∈ [m] and i ∈ [n] \Gj,

2z(j)w(j)Txi − 1 ≤ 2|w(j)Txi| − 1 ≤ 16
√
nj ln d
d

− 1 ≤ 16√
c1 − 1 = 0,

and hence ReLU(2z(j)w(j)Txi − 1) = 0. Therefore, for any i ∈ [n], if i ∈ Gj,

g(xi) = z(j)ReLU(2z(j)w(j)Txi − 1) = z(j) = yi.

4.4.2 Good generalization with n ≳ d3 samples

We complement the lower bound in Theorem 4.27 with the following sample complexity

upper bound.

Theorem 4.30. There is an absolute constant C > 0 such that the following holds. For any

ϵ ∈ (0, 1) and δ ∈ (0, 1), if n ≥ C(log(1/δ) + d3/ϵ2), then with probability at least 1−δ, every

solution g : Bd → R to (VP) for the sampled parity dataset satisfies ∥Par − clip ◦ g∥2
L2(ν) ≤ ϵ,

where clip(t) := min{max{t,−1}, 1}.

We note that there is a gap between our lower bound (Theorem 4.27) and upper bound

(Theorem 4.30): roughly a factor of d
√

log d. We believe that this gap could be narrowed if

one resolves the open question raised by Bubeck, Li, and Nagaraj (2021) about the minimum

Lipschitz constant achievable by two-layer ReLU networks of width m networks that interpo-

late a sample of size n; Lemma 4.28 is derived from a theorem that produces networks with

212

smoothness conjectured to be sub-optimal. Nevertheless, our lower bound in Theorem 4.27

is already high enough to establish the statistical suboptimality of solutions to (VP).

For technical reasons, we only bound the L2(ν) error of the natural truncation of a

solution to (VP). The proof is based on standard Rademacher complexity arguments.

Proof. Let G denote all solutions to (VP) on the sampled parity dataset, so ∥g − Par∥L2(νn) =

0 for all g ∈ G. By Proposition 4.3, we can write each g as g(x) = gµ(x) + vTx+ c, where

µ ∈ M, v ∈ Rd, and c ∈ R. Furthermore, we can assume that gµ(0) = 0 by absorb-

ing the value of gµ(0) into c (at the cost of losing the evenness of µ, but evenness is not

needed in the sequel). Lemma 4.5, Theorem 4.4, and Theorem 4.17 together imply that

every g ∈ G satisfies ∥g∥R ≤ Cd for some absolute constant C > 0. Let E be the event that

max{|c|, ∥v∥2} ≤ 8Cd (for all g ∈ G), and let Ec be its complement; event E occurs with

probability at least 1 − δ/2 by Lemma 4.25, for another absolute constant C ′ > 0.

Since, for each g ∈ G, we have g(xi) = Par(xi) for every example (xi,Par(xi)) in the

sampled parity dataset, it follows that ∥clip ◦ g − Par∥L2(νn) = ∥g − Par∥L2(νn) = 0 for all

such g ∈ G. For any t > 0,

Pr
[
sup
g∈G

∥clip ◦ g − Par∥2
L2(ν) ≥ t

]

≤ Pr
[
sup
g∈G

∥clip ◦ g − Par∥2
L2(ν) ≥ t | E

]
+ Pr [Ec]

= Pr
[
sup
g∈G

∥clip ◦ g − Par∥2
L2(ν) − ∥clip ◦ g − Par∥2

L2(νn) ≥ t | E
]

+ Pr [Ec]

≤ Pr
[
sup
g∈G0

∥clip ◦ g − Par∥2
L2(ν) − ∥clip ◦ g − Par∥2

L2(νn) ≥ t

]
+ δ/2,

where

G0 :=
{
x 7→ g(x) + vTx+ c : ∥g∥R ≤ Cd, max{∥v∥2, |c|} ≤ 8Cd

}
.

213

Define

t0 := 4E
[
sup
g∈G0

1
n

n∑
i=1

ϵig(xi)
]

︸ ︷︷ ︸
Radn(G0)

+ 4
√

log(2/δ)
n

.

Above, Radn(G0) denotes the Rademacher complexity of G0, where

ϵ1, . . . , ϵn ∼iid Unif({−1, 1}),

independent of x1, . . . ,xn. Since, for any y ∈ {−1, 1}, the mapping

z 7→ (y − clip(z))2 = (1 − y clip(z))2

is 4-Lipschitz and has range [−4, 4], it follows by standard Rademacher complexity argu-

ments (see, e.g., Meir and Zhang, 2003, Theorem 8) that

Pr
[
sup
g∈G0

∥clip ◦ g − Par∥2
L2(ν) − ∥clip ◦ g − Par∥2

L2(νn) ≥ t0

]
≤ δ/2.

So it remains to show that t0 ≤ ϵ under the assumption n ≥ C0((d3 + log(1/δ))/ϵ2) for

suitably large absolute constant C0 > 0. The second term in the definition of t0 is at most

ϵ/2 provided that C0 is chosen large enough. To bound the first term (Radn(G0)), we use

the fact that

Radn(G0) = Radn(G1) + Radn(G2)

where G1 := {g : ∥g∥R ≤ Cd} and G2 := {x 7→ vTx+c : max{∥v∥2, |c|} ≤ 8Cd}. Theorem 10

of Parhi and Nowak (2021a) implies

Radn(G1) ≤ 2 · (Cd) ·
√
d√

n
= O

√d3

n

 ,

214

while Theorem 3 of Kakade, Sridharan, and Tewari (2008) implies

Radn(G2) ≤
√
d+ 1 ·

√
(8Cd)2 ·

√
2
n

= O

√d3

n

 .
By choosing C0 large enough, it follows that Radn(G0) ≤ ϵ/8. Hence, we have shown that

t0 ≤ ϵ as required.

4.5 Generality of the averaging technique for minimizing R-norm

In this section, we show how the benefit of averaging goes beyond the parity dataset.

We consider an f -dataset {(x, f(x)}x∈{−1,1}d , a generalization of the parity dataset where

f(x) = ϕ(vTx) is a ridge function with L-Lipschitz and ρ-periodic ϕ. For another dataset

generated by oscillatory ridge functions, we prove the same contrast between minimum-R-

norm interpolation with and without ridge constraints, so long as the periodicity ρ is not

too small (specifically, ρ ≥ 1/
√
d). More concretely, suppose the dataset {(xi, f(xi))}i∈[n] ⊂

{−1, 1}d × {−1, 1} used in (VP) and (ϵ-VP) is the f -dataset, where v ∈ {± 1√
d
}d and ϕ is

ρ-periodic and 1
ρ
-Lipschitz. Then we have the following:

• The optimal value of (ϵ-VP) for constant ϵ ∈ (0, 1/2) is Õ(
√
d/ρ). (Theorem 4.31)

• The optimal value of (ϵ-VP) for constant ϵ ∈ (0, 1/2)—with the additional constraint

that g be a ridge function—is Ω(
√
d/ρ2). (Theorem 4.32)

Because the parity dataset is an f -dataset with a 1/
√
d-periodic and

√
d-Lipschitz choice

of ϕ, the above results closely match those of Informal Theorem 4.1. We give both results,

starting with an upper bound on the minimum-R-norm approximate interpolant, which

parallels Theorem 4.18.

Theorem 4.31. Suppose f : Bd → [−1, 1] is given by f(x) = ϕ(vTx) for some unit vector v ∈

Sd−1 and some ϕ : [−
√
d,

√
d] → [−1, 1] that is L-Lipschitz and ρ-periodic for ρ ∈ [∥v∥∞ , 1].

Fix any ϵ ∈ (0, 1). There exists a function g : Bd → R represented by a width-m neural

215

network such that:

∥f − g∥L∞(ν) ≤ ϵ; m ≤ dL polylog(1/ϵ)
√
ρ∥v∥1/ϵ

2; ∥g∥R ≤ L2 polylog(d/ϵ)ρ∥v∥1/ϵ.

Remark 4.4. Suppose f(x) = cos(2π
ρ
vTx) for v ∈ {± 1√

d
}d and ρ ∈ [1√

d
, 1]. Theorem 4.31

implies that there exists an ϵ-approximate interpolating neural network g of width Õ(d5/4
√
ρϵ2

)

and ∥g∥R = Õ(
√
d
ρϵ

). If d is even and ρ = 4/
√
d, then f(x) = Par(x) for x ∈ {−1, 1}d, and

the width and R-norm bounds of Theorem 4.18 for small t are approximately recovered.

A detailed version of Theorem 4.31 appears in Section 4.5.1. The construction is more

delicate than that in Theorem 4.18 due to the potential lack of symmetries that had existed

in the parity dataset.

We give the lower bound on the R-norm of all approximately interpolanting ridge func-

tions, whose proof in Section 4.5.2 relies a reduction to the argument of Theorem 4.15.

Theorem 4.32. Assume d is even. Let Ridged be the set of functions g : Bd → R such

that g(x) = ϕ(wTx) for some w ∈ Sd−1 and Lipschitz continuous ϕ : [−
√
d,

√
d] → R. Let

ρ := 4q/
√
d for q ∈ {1, 2, . . . , ⌊

√
d/4⌋} and f(x) := cos((2π/(ρ

√
d))⃗1Tx). Then

inf{∥g∥R : g ∈ Ridged, ∥g − f∥L∞(ν) ≤ 1/2} = Ω(
√
d/ρ2).

Remark 4.5. By contrasting the above result to the Õ(
√
d
ρϵ

) R-norm of the averaging-based

construction from Remark 4.4, ridge functions are suboptimal solutions to ϵ-VP for constant

ϵ.

Remark 4.6. Lemma 4.34 (in Section 4.5.1) implies the existence of a neural network

gRidge ∈ Ridged that point-wise approximates f (i.e., ∥gRidge − f∥L∞(ν) ≤ ϵ) and has

∥gRidge∥R = O(
√
d

ρ2ϵ
).

Hence, the lower bound in Theorem 4.32 is tight when ϵ is constant.

216

4.5.1 Proof of Theorem 4.31

Theorem 4.33 (Detailed version of Theorem 4.31). Suppose f : Bd → [−1, 1] is given by

f(x) = ϕ(vTx) for some unit vector v ∈ Sd−1 and some ϕ : [−
√
d,

√
d] → [−1, 1] that is L-

Lipschitz and ρ-periodic for ρ ∈ [∥v∥∞ , 1]. Let σρ,v :=
√

2ρ∥v∥1 − 1, and fix any ϵ ∈ (0, 1).

There exists a function g : Bd → R such that the following properties hold:

1. |f(x) − g(x)| ≤ ϵ for all x ∈ {−1, 1}d;

2. g is represented by a neural network of width at most

O

dL(σρ,v
√

log(1/ϵ) + ρ log(1/ϵ))
ϵ2

 ;

3. g satisfies

∥g∥R = O

L2(σρ,v
√

log(1/ϵ) + ρ log(1/ϵ))(σρ,v +
√

log(d/ϵ))
ϵ

 .

Proof. We first describe the (randomized) construction of our approximating neural network

g : Rd → R. For w ∈ Zd, define hw : Rd → R by hw(x) := ϕ(vTx + ρwTx). Let w ∈

Zd \ {−(1/ρ)v} be a random vector with distribution to be specified later in the proof.

Let w(1), . . . ,w(k) be i.i.d. copies of w for a positive integer k > (9(d + 1) ln(2))/ϵ, and let

h(j) := hw(j) for each j. Observe that each h(j) can be written as h(j)(x) = ϕ(j)(xTu(j)) for

u(j) := 1
∥v + ρw(j)∥2

(v + ρw(j)) ∈ Sd−1 and ϕ(j)(z) := ϕ(∥v + ρw(j)∥2z),

where ϕ(j) : R → [−1, 1] is Lj-Lipschitz for Lj := L∥v+ρw(j)∥2 (using the L-Lipschitzness of

ϕ). Let τ > 0 be a value (depending on ρ, v, and ϵ) also to be specified later. By Lemma 4.34

(with t := τ/∥v + ρw(j)∥2 and δ := ϵ/3), there exist h̃(1), . . . , h̃(k) such that:

• (H1) h̃(j) : Rd → R is represented by a neural network of width at most O(τL/ϵ);

217

• (H2) ∥h̃(j)∥R = O(τL2∥v + ρw(j)∥2/ϵ);

• (H3) |h̃(j)(x) − h(j)(x)| ≤ ϵ/3 for all x ∈ {−1, 1}d such that |xTu(j)| ≤ τ/∥v + ρw(j)∥2;

• (H4) |h̃(j)(x) − h(j)(x)| ≤ 1 for all x ∈ Rd.

Our approximating neural network g : Rd → R is defined by

g(x) := 1
k

k∑
j=1

h̃(j)(x).

By construction and using properties H1 and H2 (above), the following properties of g are

immediate:

• (G1) g is represented by a neural network of width at most O(kτL/ϵ);

• (G2) max{∥g∥R, ∥g∥V2} = O(τL2 maxj∈[k] ∥v + ρw(j)∥2/ϵ).

Note that these properties are given in terms of τ , which has yet to be specified, as well

as maxj∈[k] ∥v + ρw(j)∥2, which is a random variable. So, in the remainder of the proof, we

choose a particular distribution for w (and hence also for w(1), . . . ,w(k)) and a value of τ

that, together, will ultimately allow us to establish the existence of an approximating neural

network with the desired properties via the probabilistic method.

We first specify the probability distribution of w and establish some of its properties.

We let w = (w1, . . . ,wd) be a vector of independent random variables w1, . . . ,wd with

pi := Pr[wi = −2signvi] = |vi| /(2ρ)

and Pr[wi = 0] = 1−pi. Note that pi ∈ [0, 1/2] for all i since we have assumed ρ ≥ ∥v∥∞, so

the distribution of w is well-defined. Furthermore, observe that w ̸= −(1/ρ)v almost surely

(since v ̸= 0 and ρ ≥ ∥v∥∞ by assumption), E[v + ρw] = 0, and

E
[
∥v + ρw∥2

2

]
=

d∑
i=1

Var(ρwi) =
d∑
i=1

4ρ2 · |vi|
2ρ ·

(
1 − |vi|

2ρ

)
= 2ρ ∥v∥1 − ∥v∥2

2 = σ2
ρ,v.

218

Moreover, ∥v+ ρw∥2 is a function of independent random variables w1, . . . ,wd that satisfies

the (2|v1|, . . . , 2|vd|)-bounded differences property. By McDiarmid’s inequality (Lemma 4.10)

and Jensen’s inequality,

Pr
[
∥v + ρw∥2 ≥ σρ,v +

√
2 ln(1/δ)

]
≤ δ for all δ ∈ (0, 1). (4.2)

Finally, for any fixed x ∈ {−1, 1}d, xT(v+ρw) = ∑d
i=1 xi(vi+ρwi) is a sum of d independent,

mean-zero random variables, with variance Var
(
xT(v + ρw)

)
= σ2

ρ,v and |xi(vi + ρwi)| ≤ 2ρ

almost surely for each i. By Bernstein’s inequality (Lemma 4.9),

Pr
[∣∣∣xT(v + ρw)

∣∣∣ ≥ σρ,v
√

2 ln(2/δ) + 2ρ ln(2/δ)/3
]

≤ δ for all x ∈ {−1, 1}d, δ ∈ (0, 1).

(4.3)

We now show that g has the desired properties with positive probability. Since wTx is

an integer for any w ∈ Zd and x ∈ {−1, 1}d, and since v + ρw(j) ̸= 0 almost surely, the

ρ-periodicity of ϕ implies that gw(j)(x) = f(x) for all x ∈ {−1, 1}d and all j ∈ [k]. Therefore,

the intermediate (random) function g1 : Rd → [−1, 1] defined by g1(x) := 1
k

∑k
j=1 h(j)(x)

satisfies g1(x) = f(x) for all x ∈ {−1, 1}d. For each x ∈ {−1, 1}d, let

r(x) := |{j ∈ [k] : |xT(v + ρw(j))| ≥ τ}| = |{j ∈ [k] : |xTu(j)| ≥ τ/∥v + ρw(j)∥2}|.

Using the approximation properties of h̃(j) (i.e., H3 and H4 from above), we have for each

x ∈ {−1, 1}d,

|g(x) − g1(x)| = 1
k

∣∣∣∣∣∣
k∑
j=1

(h̃(j)(x) − h(j)(x))

∣∣∣∣∣∣ ≤
(

1 − r(x)
k

)
· ϵ3 + r(x)

k
· 1.

This final expression is at most ϵ if r(x) ≤ 2kϵ/3. We choose τ such that for any x ∈ {−1, 1}d,

219

we have Pr[|xT(v + ρw)| > τ] ≤ ϵ/3. By (4.3), it suffices to choose

τ := σρ,v
√

2 ln(6/ϵ) + 2ρ ln(6/ϵ)/3.

By a multiplicative Chernoff bound (Lemma 4.8) and a union bound over all x ∈ {−1, 1}d,

Pr
[
∃x ∈ {−1, 1}d s.t. r(x) > 2kϵ/3

]
≤ 2d · e−kϵ/9 <

1
2 ,

where the final inequality uses the choice of k > (9(d+1) ln 2)/ϵ. Therefore, with probability

more than 1/2, we have r(x) ≤ 2kϵ/3 for all x ∈ {−1, 1}d, and hence

|g(x) − f(x)| = |g(x) − g1(x)| ≤ ϵ for all x ∈ {−1, 1}d. (4.4)

Finally, by (4.2) an a union bound over all j ∈ [k], we have that with probability more than

1/2,

max
j∈[k]

∥v + ρw(j)∥2 ≤ σρ,v +
√

2 ln(2k). (4.5)

So, there is a positive probability that both (4.4) and (4.5) hold simultaneously, and in this

event, it can be checked (via G1 and G2 above) that the function g satisfies the desired

properties in the theorem.

Lemma 4.34. Suppose f(x) = ϕ(vTx) is an L-Lipschitz function for v ∈ Sd−1, ϕ : R →

[−1, 1], and L ≥ 1. For any t ∈ [1,
√
d− 1] and δ ∈ (0, 1), there exists a neural network g of

width O(tL
δ

) such that:

1. ∥g∥R = O(tL2

δ
);

2. |f(x) − g(x)| ≤ δ for all x with
∣∣∣vTx

∣∣∣ ≤ t;

3. |f(x) − g(x)| ≤ 1 for all x ∈ Rd;

4. g(x) = 0 for all x with
∣∣∣vTx

∣∣∣ ≥ t+ 1
L

; and

220

Figure 4.1: A visualization of how the truncated ϕt (gray) is generated from ϕ (blue), t, and
L.

5. g is a ridge function that in direction v.

Proof. We first introduce an L-Lipschitz function ϕt (visualized in Figure 4.1) that perfectly

fits ϕ on the interval [−t, t] and is zero in (∞,−t− 1
L

] ∪ [t+ 1
L
,∞]:

ϕt(z) :=

ϕ(z) if z ∈ [−t, t];

signϕ(t) max {|ϕ(t)| − L(z − t)), 0} if z ≥ t;

signϕ(−t) max {|ϕ(−t)| − L(−z + t)), 0} if z ≤ −t.

Then, there exists a piecewise-linear function ψt that

• point-wise approximates ϕt to accuracy δ;

• has ψt(z) = ϕt(z) for all z ̸∈ [−t, t];

• has 2tL
δ

evenly-spaced knots on the interval [−t, t] where ψt exactly fits ϕt; and

• is L-Lipschitz.

As a result ψt can be written as a neural network with ψt(z) = ∑m
j=1 a

(j)ReLUz − b(j)

where m = 2Lt
δ

, b(j) ∈ [−t− 1
L
, t+ 1

L
], and

∣∣∣a(j)
∣∣∣ ≤ 2L.

221

By taking g(x) := ψt(vTx), we have a neural network that satisfies conditions 2, 3, 4,

and 5. The bound on ∥g∥R is immediate from the fact that g can be expressed as a neural

network with O(tL
δ

) neurons with unit weights, biases in [−
√
d,

√
d], and bounded coefficients

a(j).

4.5.2 Proof of Theorem 4.32

Theorem 4.32. Assume d is even. Let Ridged be the set of functions g : Bd → R such

that g(x) = ϕ(wTx) for some w ∈ Sd−1 and Lipschitz continuous ϕ : [−
√
d,

√
d] → R. Let

ρ := 4q/
√
d for q ∈ {1, 2, . . . , ⌊

√
d/4⌋} and f(x) := cos((2π/(ρ

√
d))⃗1Tx). Then

inf{∥g∥R : g ∈ Ridged, ∥g − f∥L∞(ν) ≤ 1/2} = Ω(
√
d/ρ2).

Proof. We prove the claim by a reduction to Theorem 4.15. That is, we show that an

interpolant with better R-norm than the bound stipulates can be used to construct a neural

network that contradicts Theorem 4.15.

To do so, we consider a lower dimension d′ = 4⌊d/4q⌋ − 4 and create a mapping from

points z ∈ {−1, 1}d′ to xz ∈ {−1, 1}d. We define a ∈ [0, 4q − 1] such that 2a ≡ d (mod 4q).

For any z, we define xz as follows:

xz = (z1, . . . , z1︸ ︷︷ ︸
q

, . . . , zd′ , . . . , zd′︸ ︷︷ ︸
q

, 1, . . . , 1︸ ︷︷ ︸
a

,−1, . . . ,−1︸ ︷︷ ︸
d−d′q−a

).

Observe that

1⃗Txz = q1⃗Tz + 2a− d+ d′q ≡ q1⃗Tz (mod 4q).

Due to the periodicity of cosine and the fact that d′ is a multiple of 4,

cos(2π
ρ
vTxz) = cos(π2 1⃗Tz) = Par(z).

Consider some g(x) = ϕ(wTx) with ∥g − cos(2π
ρ
vT·)∥∞ ≤ 1

2 . Define w′ ∈ Rd′ such that

222

w′
i := ∑q

j=1 w(i−1)q+j. Observe that ∥w′∥2 ≤ √
q and that wTxz = w′Tz + cw, where cw

depends only on the remaining elements of w. Define g̃(z) = ϕ(w′Tz + cw). Then,

|g̃(z) − χ(z)| = |ϕ(wTxz) − cos(2π
ρ
vTxz)| ≤ 1

2

for all z ∈ {−1, 1}d′ . Since translation can only decrease the R-norm (by exhausting

some neurons to effectively behave linearly in the domain) namely, ∥g̃∥R ≤ ∥w′∥2 ∥ϕ′∥TV =

∥w′∥2 ∥g∥R, Theorem 4.15 implies that ∥g∥R = Ω(d′3/2/
√
q). The theorem statement follows

by plugging in q and d′.

4.6 An alternative variational norm

This chapter considers the approximation and generalization implications of bounding

the complexity of shallow neural networks with the R-norm. However, R-norm is not the

only weight-based complexity measurement, and other works employ slightly different norms

for similar purposes. This section demonstrates that our results are not peculiarities of our

formulation of R-norm and extend to other variational norms. One alternative—which we

refer to as the V2-norm—omits the linear component of the neural network whose measure

determines the R-norm and instead permits ReLU neurons whose thresholds lie outside the

domain Bd.

We first introduce notation for an infinite-width neural network that permits such thresh-

olds. Let M′ denote the space of probability measures over Sd−1 × [−2
√
d, 2

√
d]. For some

measure µ̃ ∈ M′, let g̃µ : Bd → R be an infinite-width neural network with

g̃µ̃(x) =
∫
Sd−1×[−2

√
d,2

√
d]

ReLU(wTx+ b) µ̃(dw, db),

which has total variation norm |µ̃| =
∫
Sd−1×[−2

√
d,2

√
d] |µ̃| (dw, db). Now, we introduce the

223

V2-norm for some g : Bd → R:

∥g∥V2
= inf

µ̃∈M′
|µ̃| s.t. g(x) = g̃µ̃(x), ∀x ∈ Bd. (V2-norm)

In the same spirit as Lemma 4.5, for a discrete network g(x) = gθ(x) with

θ = (a(j), w(j), b(j))j∈[m] ∈ (R × Sd−1 × [−2
√
d, 2

√
d])m,

we have ∥g∥V2
≤ ∥a∥1.

Our definition of the V2-norm was introduced by Siegel and Xu (2021) as the norm

corresponding to their variation space P1 with constants c1 = −2
√
d and c2 = 2

√
d. They

relate the V2-norm to the Barron norm of E, Ma, and Wu (2019) and the Radon norm of

Ongie et al. (2019). We show that the V2-norm and the R-norm are closely related and that

all of our bounds apply equivalently to the V2-norm. We first place upper and lower bounds

on the ∥g∥V2
in terms of ∥g∥R and then explain why each of our results transfers to this new

variational norm.

Theorem 4.35. Suppose g : Bd → R has ∥g∥R < ∞. Then, ∥g∥R ≤ ∥g∥V2
. If g is bounded

near the origin (i.e., |g(x)| ≤ K for all x with ∥x∥2 ≤ 1), then ∥g∥V2
≤ 12 ∥g∥R + 18K.

As a result, all of our results that apply to the R-norm translate modulo constants to

the V2-norm. Because ∥g∥V2
≥ ∥g∥R always holds, every theorem that places lower bounds

on an R-norm exactly translates to ∥g∥V2
, including Theorems 4.15, 4.20, 4.23, and 4.30.

The upper-bounds hold up to constants by observing that every target function we consider

is bounded by some K on Bd.

• Because every sawtooth sw,t is bounded by 1, the averages of sawtooths g in Theo-

rems 4.17 and 4.18 are bounded by K = 1
q

= O(
√
d). Hence, ∥g∥V2

= O(d), just like

∥g∥R.

224

• For the “cap” construction g of Theorem 4.27, there are k = O(n log(d)/d) neurons,

none of which are active at the origin. Their biases are negative and—under the

“good event”—their weight norms are O(1/ log d). Thus, no neuron can output a value

greater than O(1/ log d), so even if all k neurons activate, every x with ∥x∥2 ≤ 1 has

|g(x)| = O(n/d), which is dominated by the R-norm of O(n
√

log d/d).

• The construction g of Theorem 4.31 computes an average of functions bounded on

[−1, 1]. Therefore, g is bounded by 1, and its V2-norm is no more than its R-norm.

Proof of Theorem 4.35. We show separately that ∥g∥V2
≥ ∥g∥R, and then that ∥g∥V2

≤

12 ∥g∥R + 18K under the additional hypothesis that |g(x)| ≤ K for all x ∈ Bd such that

∥x∥2 ≤ 1.

Lower bound on V2-norm: Fix any ξ > 0. By the definition of V2-norm, there exists

µ̃ ∈ M′ such that g(x) = g̃µ̃(x) for all x ∈ Bd and |µ̃| ≤ ∥g∥V2
+ ξ.6 We show that there

exists gµ (where µ is µ̃ with the support of b restricted to [−
√
d,

√
d]), v, and c such that

g̃µ̃(x) = gµ(x) + vTx+ c for all x ∈ Bd. Observe that for any x ∈ Bd, wTx+ b > 0 if b >
√
d

and wTx+ b < 0 if b < −
√
d.

g̃µ̃(x) =
∫
Sd−1×[−2

√
d,−

√
d]

ReLU(wTx+ b)µ̃(dw, db) +
∫
Sd−1×[−

√
d,

√
d]

ReLU(wTx+ b)µ̃(dw, db)

+
∫
Sd−1×[

√
d,2

√
d]

ReLU(wTx+ b)µ̃(dw, db)

= 0 +
∫
Sd−1×[−

√
d,

√
d]

ReLU(wTx+ b)µ(dw, db) +
∫
Sd−1×[

√
d,2

√
d]

(wTx+ b)µ̃(dw, db)

= gµ(x) +
d∑
i=1

xi

∫
Sd−1×[

√
d,2

√
d]
wiµ̃(dw, db)︸ ︷︷ ︸

:=vi

+
∫
Sd−1×[

√
d,2

√
d]
bµ̃(dw, db)︸ ︷︷ ︸

:=c

= gµ(x) + vTx+ c.

As a result, ∥g∥R ≤ |µ| ≤ |µ̃| ≤ ∥g∥V2
+ ξ. Because the argument holds simultaneously

for all ξ > 0, we conclude that ∥g∥R ≤ ∥g∥V2
.

6This relies on the assumption that ∥g∥V2
< ∞, but if it is not, then the claim trivially follows because

∥g∥R < ∞.

225

Upper bound on V2-norm: By Proposition 4.3, there exist µ ∈ M′, v ∈ Rd, and c ∈ R

such that g(x) = gµ(x) + vTx+ c for all x ∈ Bd and |µ| = ∥g∥R. We construct µ̃ ∈ M′ such

that gµ(x) + vTx+ c = g̃µ̃(x) for all x ∈ Bd:7

µ̃(w, b) =

µ(w, b) if b ∈ [−
√
d,

√
d];(

−3 ∥v∥2 + 2c√
d

)
δ
(
(w, b) −

(
v, 2

√
d
))

+
(
4 ∥v∥2 − 2c√

d

)
δ
(
(w, b) −

(
v, 3

2

√
d
))

otherwise.

Fix any x ∈ Bd. Then:

g̃µ̃(x) − gµ(x) =
(

−3 ∥v∥2 + 2c√
d

)
ReLU

(
vT

∥v∥2
x+ 2

√
d

)

+
(

4 ∥v∥2 − 2c√
d

)
ReLU

(
vT

∥v∥2
x+ 3

2
√
d

)

=
(

−3 ∥v∥2 + 2c√
d

)(
vT

∥v∥2
x+ 2

√
d

)
+
(

4 ∥v∥2 − 2c√
d

)(
vT

∥v∥2
x+ 3

2
√
d

)

= vTx+ c.

Therefore, |µ̃| ≤ |µ| + |− 3 ∥v∥2 + 2c√
d
| + |4 ∥v∥2 − 2c√

d
| ≤ |µ| +7∥v∥2 + 4|c|√

d
. It suffices to bound

∥v∥2 and |c|.

• Let x0 := v
∥v∥2

. By boundedness, the triangle inequality, and several applications of

Holder’s inequality:

|g(x0) − g(0)| ≥
∣∣∣vTx0

∣∣∣− |gµ(x0) − gµ(0)|

= ∥v∥2 −
∣∣∣∣∣
∫
Sd−1×[−

√
d,

√
d]

(ReLU(wTx0 + b) − ReLU(b))µ(dw, db)
∣∣∣∣∣

≥ ∥v∥2 −
∫
Sd−1×[−

√
d,

√
d]

∣∣∣ReLU(wTx0 + b) − ReLU(b)
∣∣∣ |µ| (dw, db)

≥ ∥v∥2 − ∥x0∥2 |µ| = ∥v∥2 − |µ| .

7In the event that v = 0⃗, we use v
∥v∥2

:= 1√
d
1⃗ ∈ Sd−1.

226

Hence, ∥v∥2 ≤ |g(x0) − g(0)| + |µ| ≤ 2K + |µ|.

• We similarly employ our bound on g(0):

K ≥ |g(0)| ≥ |c| −
∣∣∣∣∣
∫
Sd−1×[−

√
d,

√
d]

ReLU(b)µ(dw, db)
∣∣∣∣∣ ≥ |c| − |µ|

√
d.

As a result, |c| ≤ K + |µ|
√
d.

Therefore, ∥g∥V2
≤ |µ̃| ≤ 12 |µ| + 18K ≤ 12 ∥g∥R + 18K.

4.7 Conclusion

In this work, we shed light on the R-norm inductive bias for learning neural networks, but

numerous questions remain. We are particularly interested in understanding the solutions

to (VP) for other datasets, as well as the generality of the averaging techniques used in our

constructions. Extensions of the R-norm to deeper networks and the analysis of solutions to

(VP) for other high dimensional datasets could also be useful for proving depth-separation

results that focus on the variational norm. Progress in this direction would complement

existing research on bounded-width approximation (Telgarsky, 2016; Eldan and Shamir,

2016; Martens et al., 2013; Daniely, 2017b; Safran and Shamir, 2017; Safran, Eldan, and

Shamir, 2019). Finally, our work suggests that minimizing R-norm yields neural networks

that are intrinsically high-dimensional, and we are interested in whether this phenomenon

is borne out in architectures beyond two-layer fully-connected networks.

This chapter concludes the first part of this thesis, which studies the representational

properties of various feed-forward neural network topologies and training regimes. Moreso

than their predecessors, the contributions of this chapter establish a link between representa-

tional trade-offs of neural architectures and their generalization properties. While Chapters 2

and 3 characterize the hardness of efficiently representing certain single-index functions with

a variety of neural networks, this chapter provides an example of a surprising representa-

tional effect that occurs among training datasets with low intrinsic dimensionality. This

227

work leaves a blueprint for research on the representational implications of other inductive

biases and their interplay with generalization.

The remaining chapters of the dissertation focus primarily on the representational prop-

erties of transformers, with less emphasis on generalization and inductive bias. However, the

flavor of this chapter’s results suggests a future direction for a wave of theoretical work on

transformers, which could identify architecture-specific inductive biases and their implica-

tions for generalization.

228

Chapter 5: Associative capabilities of multi-headed attention

layers

Attention layers, as commonly used in transformers, form the backbone of modern deep

learning, yet there is no mathematical description of their benefits and deficiencies over other

architectures. This chapter establishes both positive and negative results on the representa-

tion power of attention layers, with a focus on intrinsic complexity parameters such as width,

depth, and embedding dimension. On the positive side, we present a sparse averaging task,

where recurrent networks and feedforward networks all have complexity scaling polynomially

in the input size, whereas transformers scale merely logarithmically in the input size; fur-

thermore, we use the same construction to show the necessity and role of a large embedding

dimension in a transformer. On the negative side, we present a triple detection task, where

attention layers in turn have complexity scaling linearly in the input size; as this scenario

seems rare in practice, we also present natural variants that can be efficiently solved by

attention layers. The proof techniques introduce communication complexity to the analysis

of transformers and related models. They further establish the role of sparse averaging as a

prototypical attention task, which even finds use in the analysis of triple detection.

The research presented in this chapter reflects the work of Sanford, Hsu, and Telgarsky

(2023).

5.1 Introduction

In recent years, transformer networks (Vaswani et al., 2017) have been established as

a fundamental neural architecture powering state-of-the-art results in many applications,

including language modeling (OpenAI, 2023), computer vision (Dosovitskiy et al., 2021),

229

and protein folding (Jumper et al., 2021). The key building block of transformer models

is the self-attention unit, a primitive that represents interactions among input elements as

inner products between low-dimensional embeddings of these elements.

The success of transformer models is linked to their ability to scale their training and

generalization performance to larger datasets and sequence lengths. Their representational

capacity, however, underlies this scaling power, and is tied to the inductive biases of their

learning algorithms. Empirically, transformer models trained with gradient-based learning

algorithms exhibit biases towards certain algorithmic primitives (Edelman et al., 2022; Liu

et al., 2022) and learn representations that may encode domain-specific information in the

self-attention units (Clark et al., 2019; Hewitt and Manning, 2019; Rogers, Kovaleva, and

Rumshisky, 2020; Chen et al., 2022). These examples indicate that transformer architectures

not only provide computational benefits but also have representational capabilities that are

particularly well-matched to practical tasks.

In this paper, we investigate these inductive biases by identifying “natural” computational

tasks for which transformers are well-suited, especially compared to other neural network

architectures, as well as tasks that highlight the limitations of transformers. The tasks—

sparse averaging, pair-matching, and triples-matching—represent primitive operations that

aggregate structural information encoded in embeddings. We use these tasks to elucidate the

relationship between the embedding dimension m of a self-attention unit and its expressivity,

and showcase the fundamental representational limitations of self-attention layers.

In our model, the primary computational bottleneck faced by a transformer in computing

a “sequence-to-sequence”1 function f : XN → YN is the constrained processing of pairs of

input elements {xi, xj} ∈
(

X
2

)
; we allow transformers unbounded computational power when

processing the individual elements xi ∈ X . This is motivated by modern scaling regimes

where the context length N has rapidly increased, the self-attention embedding dimension m
1Note, however, that attention units are permutation equivariant, so the order of elements in the input

“sequence” X ∈ X N is irrelevant. In practice, positional encodings are used when the sequence order is
relevant.

230

remains much smaller than N , and the parameterization of multi-layer perceptrons (MLPs)

that operate on individual elements is much larger than m. Indeed, the largest GPT-3 model

(Brown et al., 2020) features a context length N = 2048, an embedding dimension m = 128,

and MLPs with a 12288-dimensional parameterization; the context length of GPT-4 is as

large as N = 32000. As such, we are interested in the capabilities of transformers with N o(1)

total “size”, as opposed to NΩ(1). The nature of the bottleneck in our model makes the tools

of communication complexity indispensable for formalizing computational limits.

5.1.1 Our contributions

Sparse averaging separations among atomic self-attention units. The q-sparse av-

eraging task qSA aims to capture the essential approximation-theoretic properties of self-

attention units. In qSA, the ith input xi is a pair (yi, zi), where zi ∈ Rd′ is the data part of

xi, simply a vector in Rd′ , and yi ∈
(

[N]
q

)
is the indexing part, which specifies q locations in

the input sequence; the ith output element in qSA is obtained by averaging the q data parts

zj given by j ∈ yi, meaning

qSA ((y1, z1), . . . , (yN , zN)) =
1
q

∑
j∈y1

zj, . . . ,
1
q

∑
j∈yN

zj

 .
(See also Definition 5.4.) As summarized in the following informal theorem, our analysis

of qSA in Sections 5.3 and 5.4 illustrates the ability of the self-attention primitive to asso-

ciate arbitrary subsets of input elements (as opposed to just “local” subsets, as specified by

some sequential/topological structure), measures the expressive power accrued by increas-

ing the embedding dimension m of a self-attention unit, and indicates the representational

limitations of “traditional” neural architectures on basic computational tasks.

Informal Theorem 5.1. The task qSA for q ∈ Z+ satisfies the following properties (see

Definition 5.4 for a formal definition and approximation metric).

1. There exists a unit of self-attention f with an m-dimensional embedding that approxi-

231

mates qSA if and only if m ≳ q (Theorems 5.4 and 5.6).

2. Any fully-connected neural network whose output approximates qSA requires its first

hidden layer to have width at least Ω(Nd) (Theorem 5.14).

3. Any recurrent neural network whose iterates approximate qSA requires a hidden state

of at least Ω(N) bits (Theorem 5.15).

We consider the qSA implementation in Item 1 efficient since the dimension of the model

parameters grows with poly(q, d, logN), whereas the latter two are inefficient since their

parameter (or state) dimension grows as poly(N). The proofs of the positive results employ

embeddings for each index j and each subset yi that have large inner products if and only

if j ∈ yi. The negative results involve communication complexity reductions and geometric

arguments. These arguments naturally introduce a dependence on bits of precision, which

we suppress above within the notation “≳”; we note that these bounded-precision results

are arguably more relevant to modern networks, which use as few as 4 or even 2 bits of

numerical precision.

Contrast between pairwise and triple-wise matching with self-attention layers.

We frame standard transformer architectures as being able to efficiently represent functions

that are decomposable into sparse pairwise interactions between inputs. To do so, we intro-

duce two sequential tasks and prove a collection of constructions and hardness results that

characterize the abilities of transformers to solve these tasks.

Given an input sequenceX = (x1, . . . , xN) ∈ [M]N (for someM = poly(N)), we formalize

the problems of similar pair detection (Match2) and similar triple detection (Match3) as

Match2(X)i∈[N] = 1 {∃j s.t. xi + xj = 0 (mod M)} , (5.1)

Match3(X)i∈[N] = 1 {∃j1, j2 s.t. xi + xj1 + xj2 = 0 (mod M)} . (5.2)

For both tasks, note that the output is an N -dimensional vector whose ith element is 1 if

232

and only if the sequence X includes a pair or triple containing xi. In this sense, the problems

differ from 2SUM and 3SUM, which are not sequence-to-sequence tasks.

We believe these two tasks are intrinsically “pairwise” and “triple-wise”, respectively;

moreover, since we also believe self-attention performs a fundamentally “pairwise” operation,

we will use Match2 and Match3 to show a sharp gap in the representation power of self-

attention.

Informal Theorem 5.2.

1. A single unit of standard self-attention with input and output MLPs and an O(d)-

dimensional embedding can compute Match2 (Theorem 5.16).

2. A single layer of standard multi-headed self-attention cannot compute Match3 unless

its number of heads H or embedding dimension m grows polynomially in N (Theo-

rem 5.17).

3. A standard transformer model can efficiently compute a modified version of Match3

that makes assumptions about embedding structure or locality (Theorems 5.18 and

5.19).

4. Under a generalized notion of “third-order tensor self-attention” introduced in Sec-

tion 5.5.4, Match3 is efficiently computable with a single unit of third-order attention

(Theorem 5.20).

While the above result demonstrates the limitations of multi-headed self-attention and

illustrates the importance of learning embeddings with contextual clues, we believe a stronger

result exists. Specifically, we conjecture that even multi-layer transformers cannot efficiently

compute Match3 without hints or augmentation.

Informal Conjecture 5.3. Every multi-layer transformer that computes Match3 must have

width, depth, embedding dimension, or bit complexity at least NΩ(1).

233

In Appendices 5.5.6 and 5.5.7, we give a heuristic information-theoretic argument to

support this conjecture, prove a matching upper-bound, and finally, prove analogous results

for graph-augmented transformers applied to the undirected and directed cycle detection

problems.

5.1.2 Related work

Several computational and learning-theoretic aspects of transformers, distinct from but

related to the specific aims of the present paper, have been mathematically studied in pre-

vious works.

Universality and Turing-completeness. To demonstrate the power of transformers,

universal approximation results for transformers (Yun et al., 2020; Wei, Chen, and Ma,

2022)—analogous to results for feedforward networks (Hornik, Stinchcombe, and White,

1989)—establish the capability for sufficiently large networks to accurately approximate

general classes of functions. Note, however, that the precise minimal dependence of the

required size (e.g., number of attention units, depth of the network) as a function of the input

size N does not directly follow from such results, and it is complicated by the interleaving of

other neural network elements between attention layers. (Approximate) Turing-completeness

of transformers demonstrates their power differently, and such results have been established,

first assuming infinite precision weights (Pérez, Marinković, and Barceló, 2019) and later

with finite-precision (Wei, Chen, and Ma, 2022). Such results are more closely aligned with

our aims because Turing machines represent a uniform model of computation on inputs of

arbitrary size. Wei, Chen, and Ma (2022) showed that Turing machines that run for T steps

can be approximated by “encoder-decoder” transformers of depth log(T) and size polynomial

in log(T) and the number of states of the Turing machine (but the decoder runs for T steps).

Formal language recognition. The ubiquity of transformers in natural language under-

standing has motivated the theoretical study of their ability to recognize formal languages.

234

On the positive side, Bhattamishra, Ahuja, and Goyal (2020) constructed transformers that

recognize counter languages, and Yao et al. (2021) showed that transformers of bounded size

and depth can recognize Dyck languages of bounded stack depth. Liu et al. (2022) showed

that the computations of finite-state automata on sequences of length N can be performed

by transformers of depth log(N) and size polynomial in the number of states. On the neg-

ative side, Hahn (2020) showed limitations of modeling distributions over formal languages

(including Dyck) with fixed-size transformers (though this result does not imply quantita-

tive lower bounds on the size of the transformer). Hahn (2020), as well as Hao, Angluin,

and Frank (2022), also establish the inability of “hard attention” Transformers to recognize

various formal languages and circuit classes by leveraging depth reduction techniques from

circuit complexity (Furst, Saxe, and Sipser, 1984).

Learnability. The sample complexity of learning with low-weight transformers can be

obtained using techniques from statistical learning theory and, in turn, establish learnability

of certain boolean concept classes (e.g., sparse parity) (Edelman et al., 2022; Bhattamishra

et al., 2022) using transformer-based hypothesis classes. Our qSA function is inspired by

these classes, and we establish concrete size lower bounds for approximation (and hence also

learnability) by transformers. We note that our constructions use bounded-size weights, so

in principle, the aforementioned sample complexity bounds combined with our expressivity

results provide an upper bound on the sample complexity of empirical risk minimization

for transformers. Prior work of Likhosherstov, Choromanski, and Weller (2021) also shows

how sparse attention patterns can be achieved by self-attention units (via random projection

arguments); however, when specialized to qSA, their construction is suboptimal in terms of

the sparsity level q.

Related models. Graph neural networks (GNNs), like transformers, process very large

inputs (graphs) using neural networks that act only on small collections of the input parts

(vertex neighborhoods). Many classes of GNNs are universal approximators for classes of

235

invariant and equivariant functions (Maron et al., 2019; Keriven and Peyré, 2019). At the

same time, they are restricted by the distinguishing power of certain graph isomorphism

tests (Xu et al., 2018; Morris et al., 2019; Chen et al., 2019), and lower bounds have been

established on the network size to approximate such tests (Aamand et al., 2022). Loukas

(2019) established a connection between GNNs and the Local (Angluin, 1980) and Con-

gest (Peleg, 2000) models for distributed computation, and hence directly translates lower

bounds for Congest—notably cycle detection problems—into size lower bounds for GNNs.

Our lower bounds for cycle detection using transformers also leverage a connection to the

Congest model. However, transformers do not have the same limitations as GNNs, since

the computational substrate of a transformer does not depend on the input graph in the way

it does with GNNs. Thus, we cannot directly import lower bounds for Congest to obtain

lower bounds for transformers.

Transformers are also related to other families of invariant and equivariant networks. Our

focus on Match2 and Match3 (and related problems) was inspired by the separation results

of Zweig and Bruna (2022) between models for processing sets: Deep Sets (Qi et al., 2017;

Zaheer et al., 2017), which are “singleton symmetric”, and the more expressive Relational

Pooling networks (Santoro et al., 2017), which are only “pairwise symmetric”.

5.1.3 Conclusion and future work

Our primary contributions are to present a multi-faceted story about transformer approx-

imation: First, qSA separates transformer models approximation-theoretically from RNNs

and MLPs. Because the minimum embedding dimension of an attention unit that computes

qSA scales linearly with q, qSA furthermore witnesses a fine-grained characterization of

transformer representation power as a function of the embedding dimension. Second, while

single units of self-attention can solve the Match2 task, even wide layers of self-attention

with high-dimensional embeddings cannot solve Match3, and we believe that deeper models

cannot as well. This question of deeper models is stated as a formal conjecture and ad-

236

dressed heuristically in Section 5.5.7, using both information- and communication-theoretic

proof techniques, both of which we feel are significant steps towards a complete proof.

While our investigation is purely approximation-theoretic, we also include in Section 5.3.4

a preliminary empirical study, showing that attention can learn qSA with vastly fewer samples

than recurrent networks and MLPs; we feel this further emphasizes the fundamental value

of qSA, and constitutes an exciting direction for future work.

Beyond the explicit open question in Informal Conjecture 5.3, we anticipate that future

research could connect the separation results proved in this work to formal linguistic theory

and empirical work on attention matrix interpretation. This work examines Match2 and

Match3 because we believe that the former could represent a key primitive for language

processing tasks such as co-referencing, while the latter represents a natural extension of the

former that likely is not necessary for language modeling. Rather, it may be possible that

language modeling performs triple-wise modeling for tasks such as the identification of sub-

ject, verb, and object components by relying on pairwise matching constructions and “clues”

learned within an embedding, such as those encoded in the toy problems Match3Bigram

and Match3Local. That is, transformers serve as a useful foundational model for language

modeling because of their abilities to integrate contextual clues and pairwise communication,

and while they are not extensible to “purely triple-wise problems,” most practical sequen-

tial problems have some efficient decomposition to pairwise structures that can be easily

exploited by these architectures. Future work by linguists, theoretical computer scientists,

and empirical NLP practitioners could assess how foundational our primitives are and study

whether there are any practical triple-wise problems that transformer models fail to solve.

5.2 Preliminaries

Let Bd = {x ∈ Rd : ∥x∥2 ≤ 1} denote the unit ball in Rd, and let [n] = {1, 2, . . . , n}

denote the first n positive integers. The expression 1 {P} equals 1 if predicate P is true and

237

0 otherwise. The row-wise softmax operator applied to matrix A ∈ RN×M returns

softmax(A)i,j = exp(Ai,j)∑M
j′=1 exp(Ai,j′)

.

5.2.1 Attention units and transformer architectures

We first introduce the concept of self-attention, which is used as the building block of all

transformer architectures included in this paper.

Definition 5.1. For input dimension d, output dimension d′, embedding dimension m, preci-

sion p, and matrices Q,K ∈ Rd×m and V ∈ Rd×d′ (encoded using p-bit fixed-point numbers),

a self-attention unit is a function fQ,K,V : RN×d → RN×d′ with

fQ,K,V (X) = softmax(XQKTXT)XV.

Let Attnd,m,d′,p = {fQ,K,V : Q,K, V } denote all such self-attention units.

Self-attention units can be computed in parallel to create multi-headed attention.

Definition 5.2. For head-count H and self-attention units f1, . . . , fH ∈ Attnd,m,d′,p, a multi-

headed attention layer is a function Lf1,...,fH
: RN×d → RN×m with

Lf1,...,fH
(X) =

H∑
h=1

fh(X).

Let AttnHd,m,d′,p contain all such Lf1,...,fH
.

Transformer models are composed of two components: multi-headed attention layers (as

above) and element-wise multi-layer perceptrons. Due to universal approximation results,

we model multi-layer perceptrons as arbitrary functions mapping fixed-precision vectors to

themselves.

238

Definition 5.3. A multi-layer perceptron (MLP) layer is represented by some ϕ : Rd → Rd′ ,

whose real-valued inputs and outputs can be represented using p-bit fixed-precision numbers.

We apply ϕ to each element (i.e., row) of an input X ∈ RN×d, abusing notation to let

ϕ(X) = (ϕ(x1), . . . , ϕ(xN)) ∈ RN×d′ . Let Φd,d′,p denote all such MLPs.

We concatenate the notation of each class of functions to denote function composi-

tion. For example, for output dimension d′, we use Attn′
d,m,d′,p := Attnm,m,d′,pΦd,m,p and

AttnH′
d,m,d′,p := AttnHm,m,d′,pΦd,m,p to represent single-headed and multi-headed attention units

with an input MLP respectively. (The capabilities and limitations of these models are studied

in Section 5.3.) For depth D, we let

TransformerD,Hd,m,d′,p = Φm,d′,p(AttnH′
m,m,m,p)D−1AttnH′

d,m,m,p

represent a full transformer model comprising D layers of H-headed self-attention with in-

terspersed MLPs.

While two key features of transformer architectures—the residual connection and the

positional embedding—are conspicuously missing from this formalism, the two can be im-

plemented easily under the framework. We can include a positional embedding by encoding

the index as a coordinate of the input, i.e. xi,1 = i. Then, the subsequent MLP transfor-

mation ϕ(X) can incorporate i suitably into the embedding. A residual connection can be

included additively as input to a multi-layer perceptron layer (as is standard) by implement-

ing an “approximate identity” attention head f with Q,K and V = Im set to ensure that

f(X) ≈ X.2

We periodically consider transformers implemented with real-valued arithmetic with in-

finite bit complexity; in those cases, we omit the bit complexity p from the notation.

Finally, we assume for the proof of Theorem 5.5 that the model is permitted to append a

single <END> token at the end of a sequence. That is, we say that a model f ∈ TransformerD,Hd,m,d′,p

2A simple construction involves letting XQ = XK with iid Gaussian columns fixed for every index i.
Then, the diagonals of XQKTXT are far larger than all other entries and its softmax is approximately IN .

239

represents a target h : RN×d → RN×d′ if f(X ′)1:N = g(X) when X ′ = (x1, . . . , xN , x
′) for

constant-valued x′ ∈ Rd.

5.3 Sparse averaging and self-attention embedding dimension

We present the sparse averaging task to highlight the ability of transformer architec-

tures to simulate a wide range of meaningful interactions between input elements. This task

demonstrates how the embedding dimension of a self-attention unit modulates the expres-

sive capabilities of the architecture, while showcasing the inabilities of fully-connected and

recurrent neural networks to capture similar interactions (see Section 5.4).

Definition 5.4. For sparsity q, problem dimension d′, and input dimension d = d′ + q + 1,

consider an input X = (x1, . . . , xN) ∈ RN×d with xi = (zi; yi; i) for zi ∈ Bd′ and yi ∈
(

[N]
q

)
.3

Let the q-sparse average be

qSA(X) =
1
q

q∑
j=1

zyi,j

i∈[N]

.

For accuracy ϵ > 0, a function f : RN×d → RN×d′
ϵ-approximates qSA if for all X,

max
i∈[N]

∥f(X)i − qSA(X)i∥2 ≤ ϵ.

Figure 5.1a visualizes the sparse averaging task as a bipartite graph between subsets

yi and elements zi with corresponding averages. Theorems 5.4 and 5.6 jointly show that

the minimum embedding dimension m of single self-attention units Attn′
d,m,d′,p that O(1

q
)-

approximate qSA scales linearly with q. We believe that the sparse averaging problem is

thus a canonical problem establishing the representational capabilities and inductive biases

of self-attention units.

Section 5.3.1 presents positive results that show that the sparse averaging task can be
3We may encode a q element subset of [N] as a vector in [N]q constrained to have distinct components.

240

solved using self-attention units with embedding dimension m growing linearly with q. Sec-

tion 5.3.2 states and proves nearly matching lower bounds on the embedding dimension m

necessary to solve the sparse averaging task in the finite-precision setting. Section 5.3.3

shares a negative result pertaining to the restricted attention units in the infinite-precision

setting. Section 5.3.4 presents empirical results that support the theoretical findings of this

section by demonstrating that trained transformer models can indeed solve the sparse averag-

ing task in an interpretable manner. Finally, Section 5.3.5 contains the technically involved

proofs of the theorems in Section 5.3.1.

5.3.1 Self-attention can approximate qSA when m ≳ q

Our principle positive result shows that the sparse averaging task qSA can be approxi-

mately solved using fixed-precision arithmetic self-attention units with embedding dimension

m growing with q logN .

Theorem 5.4 (Fixed-precision). For any N , any m ≥ Ω(d′ + q logN), any ϵ ∈ (0, 1), and

p = Ω(log(q
ϵ

logN)), there exists some f ∈ Attn′
d,m,d′,p that ϵ-approximates qSA.

While the full proof appears in Section 5.3.5.1, we briefly sketch the argument here.

Because the output of a self-attention unit is a convex combination of rows of the value

matrix ϕ(X)V ∈ RN×d′ , a natural way to approximate qSA with a unit of self-attention is

to let each value be the corresponding vector in the average (i.e. V Tϕ(xi) = zi) and choose

the key and query functions in order to ensure that the attention matrix satisfies

softmax(ϕ(X)QKTϕ(X)T)i,j ≈

1
q

if j ∈ yi,

0 otherwise.

To do so, let each key KTϕ(xi) represent a fixed vertex on a convex polytope, which depends

only on index i and is constructed from random binary vectors. We select each query QTϕ(xi)

to ensure that ϕ(xi)TQKTϕ(xj) is a fixed large value if j ∈ yi and a slightly smaller value

241

(a) Bipartite graph
relating yi and zi in
qSA(X).

(b) Attention and value matrices used for
the self-attention construction of qSA(X) in
Theorem 5.4.

(c) Key and query embed-
dings that produce the self-
attention matrix in (b).

Figure 5.1: A visualization of the qSA function outputs given a sequence of inputs
(zi; yi; i)i∈[N] as a bipartite graph between subsets yi and vectors zi (a), and of the attention
matrix (b) and underlying embeddings (c) that produce the self-attention construction in
Theorem 5.4.

(a) T = 0. (b) T = 1000.

0.0

0.2

0.4

0.6

0.8

1.0

(c) T = 40000.

Figure 5.2: Attention matrix softmax(ϕ(X)QKTϕ(X)T) ∈ R20×20 for a fixed example after
T epochs of training a self-attention unit to solve qSA for q = 3. Each row i corresponds to
subset yi, and each cell j ∈ yi is outlined in red. See Section 5.3.4 for experimental details.

otherwise. We obtain the precise query, key, and value embeddings by employing tools from

dual certificate analysis from the theory of compressed sensing.

We visualize this construction in Figure 5.1b and 5.1c for q = 3 and d′ = 4, which

presents the associated attention and value matrices necessary for the construction, and

plots a polytope of keys (red dots) with each face corresponding to each subset yi (green

dots). The construction is empirically relevant; Figure 5.2 shows that a unit of self-attention

trained on data generated by the qSA task recovers a similar attention matrix to the one

242

stipulated in our construction and visualized in Figure 5.1b.

The logarithmic dependence of the embedding dimension m on the sequence length N

can be eliminated by considering self-attention units with real-valued arithmetic with infinite

bit complexity.

Theorem 5.5 (Infinite-precision). For fixed N , m ≥ Ω(d′ + q) and ϵ > 0, there exists some

f ∈ Attn′
d,m,d′ that ϵ-approximates qSA.

The proof of Theorem 5.5 employs a similar polytope-based construction in Section 5.3.5.2,

relying on a cyclic polytope rather than one drawn from discrete boolean vectors. Theo-

rem 5.8 proves the near-optimality of that bound by employing a geometric argument to

show that a variant of qSA can only be approximated by a restricted family of self-attention

units with a sufficiently high-dimensional embedding.

5.3.2 Self-attention cannot approximate qSA when m ≲ q

We show that the construction used to prove Theorem 5.4 is nearly optimal.

Theorem 5.6. For any sufficiently large q, any N ≥ 2q + 1, and any d′ ≥ 1, there exists

a universal constant c such that if mp ≤ cq, then no f ∈ Transformer1,1
d,m,d′,p exists that

1
2q -approximates qSA.

(By choosing p = O(log(q logN)), Theorem 5.4 is shown to be optimal up to logarithmic

factors of q and doubly-logarithmic factors of N .)

The proof of Theorem 5.6 employs a standard communication complexity argument based

on a reduction from the following set disjointness problem in the two-party communication

model, in which each party possesses a subset of an n element domain (encoded as n-bit

strings), and they wish to jointly determine whether their subsets are disjoint. We note

that communication complexity is commonly-used technique for proving lower bounds on

the representational power of circuits and feedforward neural networks (see, e.g., Karchmer

243

Alice:

Bob:

bits

Figure 5.3: The mp-bit communication protocol used to reduce the hardness of computing
qSA with a single unit of self-attention to the hardness of solving the DISJ communication
problem for the proof of Theorem 5.6 for q = 4.

and Wigderson, 1988; Ben-David, Eiron, and Simon, 2002; Martens et al., 2013; Vardi et al.,

2021).

Fact 5.7 (Set disjointness communication lower bound (Yao, 1979)). Suppose Alice and Bob

are given inputs a, b ∈ {0, 1}n, respectively, with the goal of jointly computing DISJ(a, b) =

maxi aibi by alternately sending a single bit message to the other party over a sequence of

communication rounds. Any deterministic protocol for computing DISJ(a, b) requires at least

n rounds of communication.

Our proof designs a communication protocol that Alice and Bob use to jointly compute

DISJ(a, b) when n = q in O(mp) rounds of communication, under the assumption that such

an f exists that closely approximates qSA.

• Alice encodes her input a in a single subset by letting y2q+1 = {2i+ ai − 1 : i ∈ [q]}.

• Bob uses his input b to assign z2i−1 to 2bi − 1 and z2i = −1 for all i ∈ [q].

• All other input components are set to constant values known by both parties.

Alice sends her mp-bit query embedding QTϕ(x2q+1) bit-by-bit to Bob, who approximately

computes qSA by determining the outcome of f . The crux of the reduction shows that

244

qSA(X)2q+1 = −1 if and only if aibi = 0 for all i ∈ [q], which allows Bob to determine

DISJ(a, b).

We visualize the protocol in Figure 5.3. The proofs of Theorems 5.17, 5.15, 5.23, and

5.25 employ similar communication complexity reductions to DISJ.

Proof of Theorem 5.6. We first embed every instance of DISJ with n = q into an instance

of qSA and prove that they correspond. We assume the existence of the a transformer

f ∈ Transformer1,1
d,m,d′,p that 1

2q -approximates qSA and implies the existence of an O(mp)-

bit communication protocol that computes DISJ. An application of Fact 5.7 concludes the

proof.

Consider an instance of DISJ with a ∈ {0, 1}q and b ∈ {0, 1}q known by Alice and

Bob respectively. We design an instance X = (zi; yi; i)i∈[N] of qSA. For each j ∈ [2q], let

y2q+1 = {2i+ ai − 1 : i ∈ [q]}. Additionally, let

zj =

e1 if j is odd and b(j−1)/2 = 1,

−e1 otherwise.

All other inputs are set arbitrarily. Then,

qSA(X)2q+1 = 1
q

∣∣∣{j ∈ [2q] : j ∈ y2q+1, j is odd, and a(j−1)/2 = 1
}∣∣∣ e1

− 1
q

∣∣∣{j ∈ [2q] : j ∈ y2q+1 and (j is even or a(j−1)/2 = 0)
}∣∣∣ e1

= |{i ∈ [q] : aibi = 1}| − |{i ∈ [q] : aibi = 0}|
q

e1.

Hence, qSA(X)2q+1 = −e1 if and only if DISJ(a, b) = 0.

It remains to show that this implies the existence of an efficient communication protocol

that computes DISJ(a, b). By the existence of f , there exist Q,K, V : Rd → Rm and

245

ψ : Rm → Rd′ such that

f(X)2q+1 = ψ

∑N
i=1 exp

(
Q(x2q+1)TK(xi)

)
V (xi)∑N

i=1 exp (Q(x2q+1)TK(xi))

 .
The protocol is as follows:

1. From a, Alice determines y2q+1 and then computes Q(x2q+1) ∈ Rm, which she sends to

Bob. This transmission uses O(mp) bits.

2. Bob determines z1, . . . , z2q from b. Using those and the information from Alice, he

computes f(X)2q+1. He returns 1 if and only if f(X)T
2q+1e1 ≥ −1 + 1

q
.

The protocol computes DISJ(a, b) because f is a 1
2q -approximation of qSA. Because any such

protocol requires sharing Ω(q) bits of information, we conclude that mp ≤ cq for some c.

5.3.3 Optimality of Theorem 5.5 under restricted architectures

While the near-optimality of the bounded-precision self-attention construction in The-

orem 5.4 is assured by the communication complexity argument of Theorem 5.6, it is not

immediately apparent whether Theorem 5.5 is similarly optimal among infinite-precision

self-attention models. Theorem 5.8 proves that this is indeed the case for a restricted family

of architectures that resembles cross-attention rather than self-attention.

Theorem 5.8. For input x1, . . . , xN satisfying xi = (zi; yi; i), suppose ϕ(xi)TQ = w(yi, i),

ϕ(xi)TK = u(i), and ϕ(xi)TV = zi. Then, for any q < N and m ≤ q(1 −C logN q) for some

universal C, there do not exist w : Rd × [N] → Rm and u : [N] → Rm such that the resulting

self-attention unit 1
2q -approximates qSA.

The architectural assumptions of this statement are strong. For each element xi =

(zi; yi; i), its value embedding must reproduce its target zi; its key embedding depends ex-

clusively on the index i; and its query embedding only on the indices yi and i. Indeed this

attention unit more closely resembles cross-attention rather than self-attention, in which the

246

problem is formulated as two sequences ((z1, 1), . . . , (zN , N)) and (y1; 1), . . . , (yN ;N) that

are passed to the key and value inputs and the query inputs respectively. We leave open

the problem of generalizing this result to include all infinite-precision cross-attention or self-

attention architectures, but we note that the constructions in Theorems 5.4 and 5.5 can be

implemented under such architectural assumptions.

The proof relies on a geometric argument about how the convex hull of fixed key em-

beddings U = (u(1), . . . , u(N)) lacks neighborliness and hence cannot separate every size-q

subsets of values embeddings z1, . . . , zN from the other values.

Proof. It suffices to show that for any fixed key embedding U , there exists some yi and

setting of z1, . . . , zN such that

∥∥∥∥∥∥(softmax(w(X)UT)Z)i − 1
q

∑
i′∈yi

zi′

∥∥∥∥∥∥
2

≥ 1
2q ,

where w(X) = (w(y1, 1), . . . , w(yN , N)) ∈ RN×m and U = (u(1), . . . , u(N)) ∈ RN×m.

By Fact 5.9, for some y1 ∈
(

[N]
q

)
, there are no w and τ ∈ R satisfying w(y1, 1)Tui′ ≥ τ if

and only if i′ ∈ y1. Hence, for any fixed w, there exists i1 ∈ y1 and i2 ∈ [N] \ y1 such that

w(y1, 1)Tui2 > w(y1, 1)Tui1 . Given the value embeddings zi1 = e1, zi2 = e2 and zi = e3 for all

i ̸∈ {i1, i2}, we have

∥∥∥∥∥∥(softmax(w(X)UT)Z)1 − 1
q

∑
i′∈y1

zi′

∥∥∥∥∥∥
2

2

≥
(

softmax(w(X)UT)Z)1,i1 − 1
q

)2

+
(
softmax(w(X)UT)Z)1,i2

)2

≥ max
(softmax(w(X)UT)Z)1,i1 − 1

q

)2

, softmax(w(X)UT)Z)2
1,i1

≥ 1

4q2 .

Fact 5.9. If m′ < q(1 − logN Cq), then the columns of any U = (u1, . . . , uN) ∈ RN×m′

can be partitioned into sets U1 and U2 with |U1| = q that are not linearly separable. Hence,

247

Conv(u1, . . . , uN) is not q-neighborly.

Proof. By the Sauer-Shelah Lemma (Sauer, 1972; Shelah, 1972; Vapnik and Chervonenkis,

1968) and the fact that the VC dimension of m′-dimensional linear thresholds is m′ + 1, the

maximum number of partitions of the columns of U that can be linearly separated is at most

m′+1∑
k=0

(
N

i

)
≤ C ′Nm′+1 < C ′ · N q

(Cq)q ≤
(
N

q

)
,

for a sufficiently large choice of C given universal constant C ′. If the fact were to be false,

then at least
(
N
q

)
≥ (N

q
)q such partitions must exist, which contradicts the above bound.

5.3.4 Experimental details

This section describes the experimental setup behind Figure 5.2, and provides further

experiments suggesting an implicit bias of transformers for qSA, in particular when compared

with MLPs and RNNs.

Experimental setup. Experiments used synthetic data, generated for qSA with n = 1000

training and testing examples, a sequence length N = 20, q = 3, with the individual inputs

described in more detail as follows.

• The positional encoding of element i is a random vector sampled uniformly from the

sphere in Rd0 with d0 := ⌈1 + 2 ln(N)⌉, a quantity which agrees with the theory but

was not tuned.

• A sequence element then consists of the data portion z ∈ Rd1 where d1 = 4, also

sampled from the unit sphere, then the positional encoding of this sequence element,

and then q further positional encodings identifying elements to average to produce the

output; this differs from (and is more tractable than) the presentation in Section 5.3,

where the positional encoding is provided as an integer and the MLP layer input to

our attention layers is expected to choose a sufficient positional encoding.

248

As such, the total dimension of a sequence element is d1 + (q+ 1)d0 = 32. The architectures

are detailed as follows.

• The attention is identical to the description in the paper body, with the additional

detail of the width and embedding dimension m being fixed to 100.

• Figure 5.4 also contains an MLP, which first flattens the input, then has a single hidden

ReLU layer of width 256, before a final linear layer and an output reshaping to match

the desired output sequence shapes.

• Figure 5.4 also contains an LSTM, which is a standard pytorch LSTM with 2 layers

and a hidden state size 800, which is 200 times larger than the target output dimension

4.

Experiments fit the regression loss using Adam and a minibatch size of 32, with default

precision, and take a few minutes to run on an NVIDIA TITAN XP, and would be much

faster on standard modern hardware.

Further discussion of Figure 5.2 and Figure 5.5. In Figure 5.2 and Figure 5.5, we

plot (post-softmax) alignment matrices after T ∈ {0, 1000, 40000} iterations of Adam. The

alignment matrices in Figure 5.2 are taken from the training example whose loss is the

median loss across all examples. Figure 5.5 is similar, but additionally shows the examples

of minimal and maximal loss.

Further discussion of Figure 5.4. Figure 5.4 plots training and testing error curves

for the same attention architecture as in Figure 5.2, but with further MLP and LSTM

architectures as described above. but also an MLP trained on flattened (vectorized) error

bars reflect 5 separate training runs from random initialization. A few variations of these

architectures were attempted, however curves did not qualitatively change, and in particular,

only the attention layer achieves good generalization across all attempts.

249

0 5 10 15 20 25 30 35 40

0

1

2

3

4

5

6

Attention (training)
Attention (testing)
LSTM (training)
LSTM (testing)
MLP (training)
MLP (testing)

Figure 5.4: Test and train error curves of fitting various architectures to qSA, where the
horizontal axis denotes thousands of training iterations, and the vertical axis denotes the
regression objective; see Section 5.3.4 for further details.

5.3.5 Proofs for Section 5.3

5.3.5.1 Proof of Theorem 5.4

Theorem 5.4 (Fixed-precision). For any N , any m ≥ Ω(d′ + q logN), any ϵ ∈ (0, 1), and

p = Ω(log(q
ϵ

logN)), there exists some f ∈ Attn′
d,m,d′,p that ϵ-approximates qSA.

Proof. Before explaining how they are produced by the input MLP, we introduce the cor-

responding key, value, and query inputs. The values will simply be ϕ(X)V = (z1, . . . , zN).

For some m′ = m−d
2 , let ϕ(X)K = (u1, . . . , uN) ∈ RN×m′ be embedded key vectors, where

u1, . . . , uN ∈ {±1/
√
m′}m′ are the columns of a m′ × N matrix satisfying the (q, 1/4)-

restricted isometry and orthogonality property (Definition 5.5), as guaranteed to exist by

Lemma 5.10 and the assumption on m′. Let α := ⌈2 log(4N/ϵ)⌉. By Lemma 5.11, for each

y ∈
(

[N]
q

)
, there exists wy ∈ Rm′ with ∥wy∥2 ≤ 2√

q satisfying

⟨ui′ , wy⟩ = 1 for all i′ ∈ y,

|⟨ui′ , wy⟩| ≤ 1
2 for all i′ /∈ y.

Given the bounded precision of the model, we are not free to represent the vectors wy

250

(a) Min loss, T = 0. (b) Min loss, T = 1000.

0.0

0.2

0.4

0.6

0.8

1.0

(c) Min loss, T = 40000.

(d) Median loss, T = 0. (e) Median loss, T = 1000.

0.0

0.2

0.4

0.6

0.8

1.0

(f) Median loss, T = 40000.

(g) Max loss, T = 0. (h) Max loss, T = 1000.

0.0

0.2

0.4

0.6

0.8

1.0

(i) Max loss, T = 40000.

Figure 5.5: Alignment plots as in Figure 5.2, but using examples with minimum, median,
and maximum loss, whereas Figure 5.2 only uses the example with median loss.

exactly. Under p-bit precision for p sufficiently large, we there exists a vector of p-bit floating

point numbers w̃y ∈ Rm′ for every wy with ∥wy∥2 ≤ 2√
q satisfying ∥w̃y − wy∥2 ≤ ϵ

4α . As

an immediate consequence, |⟨ui′ , w̃y⟩ − ⟨ui′ , wy⟩| ≤ ϵ
4α for all i′ and y (by Cauchy-Schwarz).

The remainder of the proof demonstrates that the necessary properties of the argument hold

even with this approximation.

We now describe how to structure the neural network. We define an MLP ϕ : Rd → Rm

as ϕ(xi) = ϕ(zi; yi; i) = (zi;αw̃yi
;ui), which works simply by using a look-up table on the

values of ui and w̃yi
from keys i and yi respectively. Then, we define Q,K, V as sparse

251

boolean-valued matrices that simply copy their respective elements from ϕ(X).

We analyze the output of the softmax. If i′ ∈ yi, then

softmax(ϕ(X)QKTϕ(X)T)i,i′ = exp(α ⟨ui, w̃i′⟩)∑
i′′∈yi

exp(α ⟨ui, w̃i′′⟩) +∑
i′′ ̸∈yi

exp(α ⟨ui, w̃i′′⟩)

≥
exp(α− ϵ

4)
q exp(α + ϵ

4) +N exp(α2 + ϵ
4) = eα

qeα +Neα/2 · exp
(

− ϵ

2

)

≥
(

1
q

− Neα/2

qeα

)(
1 − ϵ

2

)
≥

(
1 − ϵ

4

) (
1 − ϵ

4

)
q

≥ 1
q

(
1 − ϵ

2

)
.

An analogous argument shows that

softmax(ϕ(X)QKTϕ(X)T)i,i′ ≤ 1
q

(
1 + ϵ

2

)
.

Likewise, if i′ ̸∈ yi, then

softmax(ϕ(X)QKTϕ(X)T)i,i′ ≤
exp(α2 + ϵ

4)
q exp(α− ϵ

4) ≤ exp
(

−α

2 + ϵ

2

)
≤ ϵ

2N .

We thus conclude that that we meet the desired degree of approximation for such m:

∥f(X)i − qSA(X)i∥2 =

∥∥∥∥∥∥
∑
i′∈yi

(
1
q

− softmax(ϕ(X)QKTϕ(X)T)i,i′
)
zi′

∥∥∥∥∥∥
2

+

∥∥∥∥∥∥
∑
i′ ̸∈yi

(
softmax(ϕ(X)QKTϕ(X)T)i,i′

)
zi′

∥∥∥∥∥∥
2

≤ q · ϵ

2q + (N − q) · ϵ

2N ≤ ϵ.

Restricted isometry and orthogonality property The proof relies on the restricted

isometry and orthogonality property from the compressed sensing literature. For v ∈ RN ,

let supp(v) = {i ∈ [N] : vi ̸= 0}.

Definition 5.5. We say a matrix U ∈ Rm×N satisfies the (q, δ)-restricted isometry and

252

orthogonality property if

∥Uv∥2
2 ∈ [(1 − δ)∥v∥2

2, (1 + δ)∥v∥2
2] and |⟨Uv, Uv′⟩| ≤ δ∥v∥2∥v′∥2

for all vectors v, v′ ∈ RN with | supp(v)| ≤ q, | supp(v′)| ≤ 2q, and supp(v) ∩ supp(v′) = ∅.

The first result shows the existence of a sign-valued matrix U that satisfies the desired

distance-preserving property.

Lemma 5.10 (Consequence of Theorem 2.3 of Mendelson, Pajor, and Tomczak-Jaegermann,

2007 and Lemma 1.2 of Candes and Tao, 2005). There is an absolute constant C > 0 such

that the following holds. Fix δ ∈ (0, 1/2) and q ∈ N. Let U denote a random m×N matrix

of independent Rademacher random variables scaled by 1/
√
m. If m ≥ C(q logN)/δ2, then

with positive probability, U satisfies the (q, δ)-restricted isometry and orthogonality property.

Sparse subsets of the columns of such a U can then be linearly separated from all other

columns.

Lemma 5.11 (Consequence of Lemma 2.2 in Candes and Tao, 2005). Fix δ ∈ (0, 1/2)

and q ∈ N. Let matrix U = [u1, . . . , uN] ∈ Rm×N satisfy the (q, δ)-restricted isometry and

orthogonality property. For every vector v ∈ {0, 1}N with supp(v) ≤ q, there exists w ∈ Rm

satisfying

∥w∥2 ≤ √
q/(1 − 2δ),

⟨ui, w⟩ = 1 if vi = 1,

|⟨ui, w⟩| ≤ δ/(1 − 2δ) if vi = 0.

5.3.5.2 Proof of Theorem 5.5

Theorem 5.5 (Infinite-precision). For fixed N , m ≥ Ω(d′ + q) and ϵ > 0, there exists some

f ∈ Attn′
d,m,d′ that ϵ-approximates qSA.

253

The proof relies on the properties of neighborly polytopes, which we define.

Definition 5.6 (Ziegler (2006)). A polytope P is q-neighborly if every subset of q′ ≤ q

vertices forms a (q′ − 1)-face.

We give a q-neighborly polytope below that we use for the construction. For vectors

v1, . . . , vN ∈ Rm′ , let Conv(v1, . . . , vN) = {∑N
i=1 αivi : α ∈ [0, 1]N ,∑i αi = 1} denote their

convex hull.

Fact 5.12 (Theorem 1 of Gale (1963)). For t ∈ R, let θ(t) = (t, . . . , tm′) ∈ Rm′. Then, for

all distinct t1, . . . , tN ∈ R, the cyclic polytope Conv(θ(t1), . . . , θ(tN)) is m′

2 -neighborly.

The proof of Theorem 5.5 is immediate from the aforementioned fact and the following

lemma.

Lemma 5.13. Suppose there exists u1, . . . , uN ∈ Rm′ such that Conv(u1, . . . , uN) is q-

neighborly. Then, for any ϵ > 0, there exists some f ∈ Attn′
d,m,d′ with fixed key vectors

ϕ(X)K = (u1, . . . , uN) that ϵ-approximates qSA.

Proof. The construction employs a similar look-up table MLP ϕ to the one used in the proof

of Theorem 5.4. We let the key and value embeddings be

ϕ(X)K = ((u1, 1), . . . , (uN , 1)) ∈ RN×(m′+1), and ϕ(X)V = (z1, . . . , zN) ∈ RN×d.

To set the query vectors, observe that for any face F of a polytope P , there exists a

hyperplane HF such that F ⊂ HF and P \F lies entirely on one side of HF . Thus, for every

y ∈
(

[N]
q

)
, there exists w′

y ∈ Rm′ and by ∈ R such that

w′T
y ui + by

= 1 if i ∈ y,

< 1 otherwise.

For α > 0, let ϕ(xi)TQ = αwy = α(w′
y, by).

254

We construct the MLP to satisfy ϕ(xi) = (zk;wyi
;ui; 1) ∈ Rm for m = 2m′ + 2 and set

parameter weights accordingly. Following the softmax analysis of Theorem 5.5, a sufficiently

large choice of α ensures that maxi∈[N] ∥f(X)i − qSA(X)i∥2 ≤ ϵ.

5.4 Sparse averaging and limitations of alternative architectures

In this section, we show that fully-connected neural networks (Section 5.4.1) and recurrent

neural networks (Section 5.4.2) cannot efficiently approximate qSA. These results employ

similar communication complexity reductions to those used elsewhere in the paper. While the

results are perhaps unsurprising given the nature of the task, they provide a clean distillation

of the kinds of tasks for which attention layers are particularly well-suited.

5.4.1 Only wide fully-connected neural networks can approximate qSA

In this section, we show that any fully-connected neural network that approximates

qSA : RNd → RNd′ must have width m = Ω(N).4 We consider networks of the form f(x) =

g(Wx) for some weight matrix W ∈ Rm×Nd (the first layer weights) and arbitrary function

g : Rm → RNd′ (computed by subsequent layers of a neural network).

Theorem 5.14. Suppose q ≤ N
2 . Any fully-connected neural network f defined as above that

1
2q -approximates qSA satisfies m ≥ Rank(W) ≥ Nd′

2 .

Proof. For simplicity, we arrange the input as

x = (1; . . . ;N ; y1; . . . ; yN ; z1; . . . ; zN)

and W = [W̃ ;V1; . . . ;VN] with z1, . . . , zN ∈ Bd′ , W̃ ∈ Rm×N(d−d′), and V1, . . . , VN ∈ Rm×d′ .

If Rank(W) ≤ Nd′

2 − 1, then so too is Rank([Vq; . . . ;VN]) ≤ Nd′

2 − 1, and [Vq; . . . ;VN] has a
4We regard inputs as Nd-dimensional vectors rather than N × d matrices.

255

nontrivial null space containing a nonzero vector u = (uq; . . . ;uN) ∈ R(N−q)d′ . Let

ξ = 1
maxj∈{q,...,N} ∥uj∥2

(uq; . . . ;uN),

z = (⃗0; . . . ; 0⃗; ξq; . . . ; ξN), and z′ = (⃗0; . . . ; 0⃗; −ξq; . . . ; −ξN). Then,

1. zj, z′
j ∈ Bd′ for all j ∈ [N];

2. Vjzj = Vjz
′
j = 0 for all j ∈ [N]; and

3. ∥zj∗ − z′
j∗∥2 = 2 for some j∗ ∈ {q, . . . , N}.

Therefore, for any y1, . . . , yN ∈
(

[N]
q

)
, respective x = (1; . . . ;N ; y1; . . . ; yN ; z1; . . . ; zN) and

x′ = (1; . . . ;N ; y1; . . . ; yN ; z′
1; . . . ; z′

N) satisfy f(x) = f(x′). Consider y with yj = (1, . . . , q −

1, j) for each j ∈ {q, . . . , N}. Then,

qSA(x)j = 1
q
ξj and qSA(x′)j = −1

q
ξj.

Hence, ∥qSA(x)j∗ − qSA(x′)j∗∥2 ≥ 2
q
. Because f(x) = f(x′),

max
(
∥f(x) − qSA(x)j∗∥2 , ∥f(x′) − qSA(x′)j∗∥2

)
≥ 1
q
,

so f can approximate qSA to accuracy no better than 1
q
.

5.4.2 Only high-memory recurrent neural networks can approximate qSA

In this section, we show that any memory-bounded algorithm that approximates qSA :

RN×d → RN×d′ must use a large “hidden state” (memory) as it processes the input elements.

This lower bound applies to various recurrent neural network (RNN) architectures.

A memory-bounded algorithm with an m-bit memory processes input X ∈ RN×d sequen-

tially as follows. There is an initial memory state h0 ∈ {0, 1}m. For i = 1, 2, . . . , N , the

256

algorithm computes the i-th output f(X)i ∈ Rd′ and the updated memory state hi as a

function of the input xi ∈ Rd and previous memory state hi−1:

(f(X)i, hi) = gi(xi, hi−1),

where gi : Rd × {0, 1}m → Rd′ × {0, 1}m is permitted to be an arbitrary function, and

f : RN×d → RN×d′ is the function computed by the algorithm.

Our lower bound applies to algorithms that only need to solve the subclass of “causal”

instances of qSA in which the input X = ((zi, yi, i))i∈[N] ∈ RN×d is promised to satisfy yi = ∅

for all i ≤ N/2 + 1, and yi ⊆ {1, . . . , N/2 + 1} for all i > N/2 + 1.

Theorem 5.15. For any ε ∈ (0, 1), any memory-bounded algorithm that ε-approximates

qSA (for q = 1 and d′ = 1) on the subclass of “causal” instances must have memory m ≥

(N − 1)/2.

Proof. Consider an m-bit memory-bounded algorithm computing a function f : RN×d → RN

that ε-approximates qSA (for q = 1 and d′ = 1). We construct, from this algorithm, a

communication protocol for DISJ (with N = 2n+ 1) that uses m bits of communication.

Let a, b ∈ {0, 1}n be the input for DISJ provided to Alice and Bob, respectively. The

protocol is as follows.

1. Alice constructs inputs xi = (zi, ∅, i) for i = 1, . . . , n+ 1, where for each i = 1, . . . , n,

zi =

+1 if ai = 0,

−1 if ai = 1,

and

zn+1 = +1.

257

Bob constructs inputs xn+1+i = (0, yn+1+i, n+ 1 + i) for i = 1, . . . , n, where

yn+1+i =

{n+ 1} if bi = 0,

{i} if bi = 1.

Observe that, for this input X = (x1, . . . , x2n+1), we have

qSA(X)n+1+i =

+1 if aibi = 0,

−1 if aibi = 1.

2. Alice simulates the memory-bounded algorithm on the first n+ 1 inputs x1, . . . , xn+1,

and sends Bob the m-bit memory state hn+1. This requires m bits of communication.

3. Starting with hn+1, Bob continues the simulation of the memory-bounded algorithm

on these n additional inputs xn+2, . . . , x2n+1.

4. If any output f(X)n+1+i for i = 1, . . . , n satisfies

f(X)n+1+i < 0,

then Bob outputs 1 (not disjoint); otherwise Bob outputs 0 (disjoint).

The approximation guarantee of f implies that sign(f(X)n+1+i) = qSA(X)n+1+i for all

i = 1, . . . , n, so Bob outputs 1 if and only if a and b are not disjoint. Because this protocol

for DISJ uses m bits of communication, by Fact 5.7, it must be that m ≥ n = (N−1)/2.

We note that the proof of Theorem 5.15 can be simplified by reducing from the INDEX

problem, which has a 1-way communication lower bound of n bits. This suffices for “single

pass” algorothms, such as standard RNNs. However, the advantage of the above argument

(and reducing from DISJ) is that it easily extends to algorithms that make multiple passes

over the input. Such algorithms are able to capture bidirectional recurrent neural net and

258

related models. A straightforward modification of the protocol in the proof of Theorem 5.15

shows that Ω(N) memory is required for any algorithm that makes O(1) passes over the

input (and computes the outputs in a final pass).

5.5 Pairwise and triple-wise tasks

In this section, we argue that the standard transformer architecture is unable to effi-

ciently represent functions that do not decompose into a small number of pairwise-symmetric

functions. We do this by contrasting the (in)approximability of intrinsically pairwise and

triple-wise functions, respectively Match2 and Match3 (defined in Equations (5.1) and (5.2)),

and their variants.

Section 5.5.1 shows that Match2 can be efficiently represented using a single self-attention

unit with constant embedding dimension. In contrast, Section 5.5.2 demonstrates the limited

triple-wise capabilities of self-attention layers by proving that Match3 cannot be efficiently

represented using a single-layer transformer. Section 5.5.3 shows that this limitation is due

to the adversarial nature of the task and that simpler variants of Match3 can be efficiently

represented by shallow transformers. Motivated by overcoming these triple-wise limitations,

Section 5.5.4 introduces a new type of self-attention, third-order tensor self-attention, and

Section 5.5.5 shows that Match3 can be efficiently computed using this architecture. Sec-

tions 5.5.6 and 5.5.7 discuss the broader conjectured hardness result—that even multi-layer

standard transformers cannot efficiently represent Match3—and argues for its veracity using

heuristic arguments and results about a further modified transformer architecture.

5.5.1 Efficient computation of Match2 with standard self-attention

We first show that Match2 can be efficiently approximated by a single standard (pairwise)

self-attention unit.

Theorem 5.16. For any input size N , input range M = NO(1), and fixed-precision bit

complexity p = O(logM), there exists a transformer architecture f ∈ tr1,1
1,m,1,p with a sin-

259

gle self-attention unit with embedding dimension m = 3 such that for all X ∈ [M]N , f(X) =

Match2(X).

The proofuses both a “blank token” and a trigonometric positional embedding, which

ensures that

ϕ(xi)TQKTϕ(xj) = c
d∑

k=1
cos

(
2π(xi,k + xj,k)

M

)

for some sufficiently large constant c. This embedding ensures that a cell of the attention

matrix softmax(ϕ(X)QKTϕ(X)T)i,j is extremely close to zero, unless xi = −xj (mod M).

Proof. As discussed in Section 5.2.1, we allow a single blank token to be appended to the end

of the sequence X and assume the existence of a positional encoding. That is, we consider

input X ′ = (x1, . . . , xN , x
′) with xi,0 = i and x′ = 0⃗ to be the input to the target attention

model. We define input MLP ϕ : R → R3 and parameterizations Q,K, V ∈ R3×3 such that

QTϕ(xi) = c
(

cos
(2πxi
M

)
, sin

(2πxi
M

)
, 1
)
,

KTϕ(xi) =
(

cos
(2πxi
M

)
,− sin

(2πxi
M

)
, 0
)
,

V Tϕ(xi) = 1⃗, QTϕ(x′) = 0⃗, KTϕ(x′) = e3, and V Tϕ(x′) = 0⃗. By elementary trigonometric

identities, the following is true about the corresponding inner products:

(QTϕ(xi))TKTϕ(xj) = c cos
(

2π(xi + xj)
M

)

(QTϕ(xi))TKTϕ(x′) = cd.

As a result, (QTϕ(xi))TKTϕ(xj) = cd if and only if xi + xj = 0(mod M). Otherwise,

(QTϕ(xi))TKTϕ(xj) ≤ c(1 − 1
M2). (Here, the O(logM)-bit fixed-precision arithmetic is

sufficient to numerically distinguish the two cases.) For each i ∈ [N] let

βi = |{j ∈ [N] : xi + xj = 0 (mod M)}|

260

represent the total number of matches the input belongs to. If we take c = M2 log(6N), then

(softmax(ϕ(X)QKTϕ(X)T))i,j ∈

[0, 1
6N] if xi + xj ̸= 0 (mod M) and i, j ∈ [N];

[1
βi+1 ± 1

6N] if xi + xj = 0 (mod M) and i, j ∈ [N];

[1
βi+1 ± 1

6N] if i ∈ [N], j = N + 1.

We conclude that for any i ∈ [N],

(softmax(ϕ(X)QKTϕ(X)T)V ϕ(X))i

≤ 1

6 · 1⃗ if ̸ ∃j s.t. xi + xj = 0 (mod M)

≥
(

βi

βi+1 − 1
6

)
· 1⃗ if ∃j s.t. xi + xj = 0 (mod M),

where ≤ is a partial ordering with v ≤ v′ if vi ≤ v′
i for all i. Since the latter case holds only

when βi ≥ 1, the final step of the proof is design an output MLP ψ such that ψ(z) = 1 if

z ≥ 1
3 and ψ(z) = 0 if z ≤ 1

6 , which can be crafted using two ReLU gates.

5.5.2 Hardness of computing Match3 with a multi-headed self-attention layer

Although Match2 can be efficiently represented using a single unit of standard self-

attention, representing Match3 using an entire layer of multi-headed attention units is im-

possible unless either the number of heads H, the embedding dimension m, or the precision

p grows as NΩ(1).

Theorem 5.17. There is universal constant c > 0 such that for sufficiently large N , and

any M ≥ N + 1, if mpH ≤ cN/ log logN , then there is no f ∈ tr1,H
1,m,1,p satisfying f(X) =

Match3(X) for all X ∈ [M]N .

Like that of Theorem 5.6, the proof relies on a reduction from set disjointness in two-

party communication. The proof of the lower bound applies a domain-restricted variant of

Match3, which actually makes the problem substantially simpler to solve. In Remark 5.1, we

show how this variant of Match3 introduces a depth separation between the representational

261

powers of single-layer and two-layer transformer models.

As mentioned in the introduction, we also conjecture that multiple layers of multi-headed

attention are subject to the same impossibility (Conjecture 5.21). The impossibility is specific

to standard (pairwise) attention; in Section 5.5.5, we show that Match3 can be efficiently

computed with a single unit of third-order self-attention.

Proof. The proof employs a reduction to Fact 5.7 that embeds inputs to the set-disjointness

problem of cardinality n = N−1
2 into a subset of instances passed to Match3. For the sake

of simplicity, we assume in the construction that N is odd; if it were not, we could replace

it with N − 1 and set the final element such that it never belongs to a triple.

We consider the following family of inputs to Match3:

xi ∈

{0} if i = 1,

{1, i} if i ∈ {2, . . . , N+1
2 },

{1, (M − i+ N−1
2)} if i ∈ {N+3

2 , . . . , N}.

(5.3)

Note that Match3(X)1 = 1 if and only if there exists i ∈ {2, . . . , N+1
2 } such that xi = i and

xi+ N−1
2

= (M − i). Given input (a, b) ∈ {0, 1}n × {0, 1}n to DISJ, let xi+1 = 1 if and only if

ai = 0, and let xi+ N+1
2

= 1 if and only if bi = 0. Then, Match3(X)1 = 1 iff DISJ(a, b) = 1.

Suppose f(X) = Match3(X) for all X ∈ [M]N for some f ∈ tr1,H
1,m,1,p. We show that f

simulates anO(mpH)-bit communication protocol for testing DISJ. By definition of the stan-

dard self-attention unit with multi-layer perceptrons, note that f(X)1 = ψ(∑H
h=1 fh(ϕ(X)))

for ϕ : R → Rm, ψ : Rm → {0, 1}, and

fh(X) =
∑N
i=1 exp(Qh(x1)TKh(xi))Vh(xi)∑N

i=1 exp(Qh(x1)TKh(xi))
,

for Qh, Kh, Vh : Rm×m.

If we assume that this construction exists and is known explicitly by both Alice and Bob,

262

we design a communication protocol for Alice and Bob to solve DISJ by sharing O(mpH)

bits with one another. Let Alice possess a ∈ {0, 1}n and Bob b ∈ {0, 1}n, with n = N−1
2 .

1. Alice and Bob compute (x2, . . . , xN+1
2

) and (xN+3
2
, . . . , xN) from a and b respectively.

2. Alice computes an O(p log logN)-bit approximation of the logarithm of the first half of

the softmax normalization term for each attention head and sends the result to Bob.

That is, she sends Bob

Lh,a = log

N+1

2∑
i=1

exp(Qh(ϕ(x1))TKh(ϕ(xi)))

for each h ∈ [H]. This requires transmitting O(pH log logN) bits.

3. Bob finishes the computation of normalization terms

Lh = log

exp(Lh,a) +
N∑

i= N+3
2

exp(Qh(ϕ(x1))TKh(ϕ(xi)))

for each h and sends the result back to Alice (up to O(p log logN)-bits of precision).

This again requires transmitting O(pH log logN) bits.

4. Alice computes the partial convex combination of the first N+1
2 value vectors stipulated

by the attention matrix

Sh,a =
∑N+1

2
i=1 exp(Qh(ϕ(x1))⊤Kh(ϕ(xi)))Vh(ϕ(xi))

exp(Lh)
∈ Rm

for each h and sends the partial combinations to Bob. This requires transmitting

O(mpH log logN) bits (using the same precision as above).

5. Bob finishes the computation of the convex combinations

fh(X) = Sh,a +
∑N
i= N+3

2
exp(Qh(ϕ(x1))⊤Kh(ϕ(xi)))Vh(ϕ(xi))

exp(Lh)
∈ Rm.

263

Bob concludes the protocol by computing and outputting f(X)1, using his knowledge

of each fh(X) and of ψ.

By the equivalences previously established, Bob returns 1 if and only if DISJ(a, b) = 1.

Because the protocol requires O(mpH log logN) bits of communication, we can only avoid

contradicting Fact 5.7 if mpH ≥ Ω(n/ log logN) = Ω(N/ log logN).

Remark 5.1. The domain restrictions to Match3 stipulated in Equation (5.3) make the

Match3 problem substantially easier to solve than the full-domain case. Indeed, under the

domain restrictions,

Match3(X)1 = max
i∈{2,...,N+1

2 }
Match2(X)i,

which is computable by a two-layer single-headed transformer network with constant embed-

ding dimension. The first layer computes each Match2(X)i with the construction in the proof

of Theorem 5.16, and the second computes the maximum of the previous outputs by using

those outputs as key vectors.

While Informal Conjecture 5.3 suggests that two layers are insufficient to compute the

full-domain version of Match3, this restricted variant introduces a concise depth separation

(see Eldan and Shamir, 2016; Telgarsky, 2016; Daniely, 2017a) between one- and two-layer

transformer models.

5.5.3 More efficient constructions for simplified Match3 computations

While the previous sections suggests that no efficient construction exists to compute

Match3 with standard transformer models, practical examples of triple detection abound.

For example, a transformer-based language model will likely succeed in linking a sub-

ject/verb/object triple because all three tokens likely inhabit the same local region and

because the model could agglomerate the triple by first identifying a pair and then adding

the third. Here, we introduce two variants on the Match3 problem that have additional struc-

ture to serve as hints. The first variant specifies triple sums comprising the input element

264

and a neighboring pair elsewhere in the sequence: for each i ∈ [N],

Match3Bigram(X)i = 1 {∃j s.t. xi + xj + xj+1 = 0 (mod M)} .

The second focuses on localized sums, where are all components of a triple must be within

a fixed range of constant width K ≪ N : for each i ∈ [N],

Match3Local(X)i = 1 {∃j1, j2 s.t. xi + xj1 + xj2 = 0 (mod M), |i− j1| , |i− j2| ≤ K} .

We show that the two can be efficiently represented using compact standard transformer

models.

Theorem 5.18. For any N , M = NO(1), and p = O(logM), there exists a transformer

architecture f ∈ trD,11,m,1,p with embedding dimension m = 3 and depth D = 2 such that for all

X ∈ [M]N×d, f(X) = Match3Bigram(X).

Informally, the first layer of the construction uses a sinusoidal positional encoding to

compute each bigram sum xj + xj+1 in the jth element of the sequence. The second layer

applies the Match2 construction provided by Theorem 5.16 to determine whether there exists

a j for each i such that xi + xj + xj+1 = 0 (mod M).

Theorem 5.19. For any d, N , M = NO(1), p = O(logM), and K ≤ N , there exists a

transformer architecture f ∈ tr1,1
1,m,1,p with embedding dimension m = O(K logN) and bit-

complexity p = O(log(K logN)) such that for all X ∈ [M]N×d, f(X) = Match3Local(X).

Proof. We implement the localized construction by using Theorem 5.4 to construct a specific

sparse simultaneous average of the inputs with q := 2K + 1 and d′ := 2K + 1. To do so, we

use the input MLP to convert xi to the embedding (zi; yi; i), for zero-padded input

zi = xieī ∈ R2K+1

265

for ī = i (mod 2K + 1) and subset

yi = {i−K, i−K + 1, . . . , i+K} ∈
(

[N]
2K + 1

)
.

This construction ensures that the ith element of self-attention output computes (a rotation

of) (xi−K , xi−K+1, . . . , xi+K). An output MLP can then verify whether any matching triples

involving xi exist among those vectors.

5.5.4 Higher-order tensor attention

We introduce a novel category of higher-order tensor-based transformer models in order

to show that problems like Match3 that are hard to compute with standard transformer

models can be made solvable. An s-order transformer is designed to efficiently compute

dense s-wise interactions among input elements in an analogous manner to how standard

transformers compute pairwise interactions. (We think of a standard transformer as second-

order.) Before defining the new type of attention, we introduce notation to express the

needed tensor products.

For vectors v1 ∈ RN1 and v2 ∈ RN2 , let v1 ⊗ v2 ∈ RN1N2 denote their Kronecker product

by (v1 ⊗ v2)(i1−1)N2+i2 = v1
i1v

2
i2 . The column-wise Kronecker product of matrices A1 ∈ RN1×m

and A2 ∈ RN2×m is

A1 ⋆ A2 = [A1
1 | · · · | A1

m] ⋆ [A2
1 | · · · | A2

m] = [A1
1 ⊗ A2

1 | · · · | A1
m ⊗ A2

m] ∈ RN1N2×m.

The following generalizes the definition of self-attention.

Definition 5.7. For order s ≥ 2, input dimension d, output dimension d′, embedding

dimension m, bit complexity p, and matrices Q,K1, . . . , Ks−1 ∈ Rd×m and V 1, . . . , V s−1 ∈

Rd×d′ (encoded with p-bit fixed-point numbers), an s-order self-attention unit is a function

266

fQ,K,V : RN×d → RN×d′ with

fQ,K,V (X) = softmax(XQ︸︷︷︸
∈RN×m

((XK1) ⋆ · · · ⋆ (XKs−1))T︸ ︷︷ ︸
∈Rm×Ns−1

) ((XV 1) ⋆ · · · ⋆ (XV s−1))︸ ︷︷ ︸
∈RNs−1×d′

.

The input to the row-wise softmax is an N × N s−1 matrix. Let Attn⊗s
d,m,d′,p denote the set

containing all such attention units.

Note that Attn⊗2
d,m,d′,p = Attnd,m,d′,p. Because s-order self-attention units have the same

domain and codomain as standard self-attention, multiple units can be analogous combined

to construct multi-headed attention units and full transformer models. We define AttnM,⊗s
d,m,d′,p

and TransformerD,H,⊗sd,m,d′,p accordingly.

The purpose of the s-order transformer model as a theoretical construct is to posit how

strictly generalizing the architecture in order to permit higher order outer products transfers

the expressive powers of standard transformer architectures to more sophisticated interac-

tions among elements of the input sequence X. The model is not defined to be immediately

practical, due to its steep computational cost of evaluation.

However, the trade-offs involved in using such architectures resemble those already made

by using transformer models instead of fully-connected networks. Transformers are already

computationally wasteful relative to the number of the parameters, and these models likely

succeed only because extremely efficient factorized parameterization exist. Likewise, third-

order transformers could indeed be practical if even more factorization proves useful, since

the computational costs may prove mild if the embedding dimension m, number of heads

H, and depth D necessary to succeed on a task exceed the sequence length N for standard

second-order transformers.

5.5.5 Efficient representation of Match3 with third-order self-attention

Theorem 5.20 (Match3 construction with third-order self-attention). For any sequence

length N , input range M = NO(1), and fixed-precision bit complexity p = O(logM), there

267

exists a third-order transformer architecture f ∈ Transformer1,1,⊗3
1,m,1,p with a single self-attention

unit with embedding dimension m = 5 such that for all X ∈ [M]N , f(X) = Match3(X).

Proof of Theorem 5.20. The proof is almost identical to that of Theorem 5.16, except that

we instead use a different key and query transforms to express a different trigonometric

function:

Qϕ(xi) = c
(

cos
(2πxi
M

)
,− cos

(2πxi
M

)
, sin

(2πxi
M

)
, sin

(2πxi
M

)
, 1
)
,

K1ϕ(xi) =
(

cos
(2πxi
M

)
, sin

(2πxi
M

)
,− cos

(2πxi
M

)
, sin

(2πxi
M

)
, 0
)
,

K2ϕ(xi) =
(

cos
(2πxi
M

)
, sin

(2πxi
M

)
, sin

(2πxi
M

)
,− cos

(2πxi
M

)
, 0
)
.

Together, these ensure that the resulting tensor products reduce to a trigonometric expression

that is maximized when xi + xj1 + xj2 = 0 (mod M). That is,

(ϕ(X)Q((ϕ(X)K1) ⋆ (ϕ(X)K2))T)i,(j1−1)+j2 = c cos
(

2π(xi + xj1 + xj2)
M

)
.

We similarly let V 1ϕ(xi) = V 2ϕ(xi) = 1⃗ and V 1ϕ(x′) = V 2ϕ(x′) = 0⃗. The remaining choice

of c and the output MLP, and the analysis of the softmax proceeds identically to the previous

proof.

5.5.6 Heuristic argument for Informal Conjecture 5.3

Conjecture 5.21 (Formal version of Informal Conjecture 5.3). For sufficiently large N and

any d ≥ 1, for all M ≥ N + 1 and mpHD ≤ NΩ(1), there is no f ∈ TransformerD,H1,m,1,p

satisfying f(X) = Match3(X) for all X ∈ [M]N .

We believe that the conjecture holds due to a heuristic information-theoretic argument.

Define the distribution D over inputs X ∈ RN that will be used to show that the model

cannot compute Match3 for M = N4 with high probability. We draw X from D as follows:

(E1) With probability 1
2 , draw each xi iid from Unif([M]).

268

(E2) With probability 1
2 , draw j1, j2, j3 iid from Unif(

(
[N]
3

)
). For all i ̸= j3, draw each xi iid

from Unif([M]). Let xj3 = −xj1 − xj2 (mod M).

Note that under event E1, a three matching elements exist with probability at most 1
N

, and

Pr
[
Match3(X) = 0⃗ | E1

]
≥ 1 − 1

N
.

Under event E2, a triple of matching elements is always planted, so Match3(X) ̸= 0⃗. It would

suffice to prove that—unless a transformer is sufficiently large—it is impossible to determine

whether Match3(X) = 0⃗ with probability at least 0.9.

Under D, any subset of {x1, . . . ,xN} consists of iid integers drawn uniformly from [M],

unless all of xj1 ,xj2 ,xj3 appear in the subset. Consider a transformer architecture with p-bit

precision, m-dimensional embeddings, H heads per layer, and D layers. We argue informally

that a single-element output of a self-attention unit can take into account information about

mp more inputs x1, . . . ,xN than that it had in the previous layer. By induction, after D

layers of H-headed self-attention with interleaved MLPs, each element is a function of at

most mpHD inputs. Until an element exists that is a function of at least two of the three of

xj1 ,xj2 ,xj3 , we assume that the elements “known” by each output are chosen independently

of the indices j1, j2, j3. (Given two elements of the triple, the third element can be identified

with a single self-attention unit.) Hence, we argue that it suffices to show that the probability

any two elements of the triple j1, j2, j3 occurring within any of the N sets of mpHD inputs

is vanishingly small for sufficiently large transformer parameters. The probability of single

collection having any of two of the three inputs is at most

3
(
mpHD

2

)
(
N
2

) ≤ 3
(
empHD

N

)2
.

Thus, the probability that any collection has all three inputs is no more than 3(empHD)2/N .

If mpHD = O(
√
N), then the randomly chosen triple will not jointly appear as the outcome

269

of a single element of a self-attention unit with probability at least 0.9, and the transformer

will be unexpected to successfully distinguish between the two cases.

Should the conjecture hold, it would represented a tight lower bound on the size of the

smallest standard transformer architecture necessary to compute Match3.

Theorem 5.22 (Tightness of Conjecture 5.21). For any sequence length N , if the input

range satisfies M = NO(1) and the transformer size parameters satisfy p ≥ log(M), H = 1,

m ≥ 4, and mD ≥ CN2 for some universal constant C, then there exists a transformer

architecture f ∈ TransformerD,H1,m,1,p such that f(X) = Match3(X).

Proof. We construct an architecture that collects a group of candidate pairs in each layer of

single-headed self-attention and verifies whether there exists a triple incorporating each pair

that satisfies the summation property. Then, all candidate triples are disposed of, and the

subsequent layer collects a new family of candidates.

To do so, we first let ℓ :=
⌊
m
2

⌋
− 1 ≥ 1 represent the total number of pairs shared in each

layer of attention. We let P =
(

[N]
2

)
represent a collection of all pairs of indices and partition

it into D subsets P1, . . . , PD, each containing ℓ distinct pairs. (Since |P | = N(N+1)
2 , any D

satisfying the theorem’s preconditions is sufficiently large for this to be a proper partition.)

Our construction ensures that there exist xi + xj1 + xj2 = 0 (mod M) for (j1, j2) ∈ Pk, then

the kth layer of self attention will verify its existence and mark xi as belonging to the match.

Throughout the network, we maintain that the first two dimensions of any embedding of the

ith element correspond to xi ∈ [M] and a bit indicating whether a match has been found

yet containing xi.

Consider the first layer of self-attention, and let P1 = {(i1, j1), . . . , (iℓ, jℓ)}. We set the

input MLP ϕ1 : Rd → Rm and respective matrices Q1, K1 ∈ Rm×m such that

Q1ϕ1(xi) = ce1 and K1ϕ1(xi) =

e1 if i ∈ P1

0⃗ otherwise,

270

for sufficiently large c. We additionally let

V 1ϕ1(xi) =

(2ℓ+ 1) · (xi; 0; 0⃗) i ̸∈ P1,

(2ℓ+ 1) · (xi; 0;xie2ι−1) i = iι,

(2ℓ+ 1) · (xi; 0;xie2ι) i = jι.

By making use of a residual connection, we ensure that the ith outcome of the self-attention

is (xi, 0, xi1 , xj1 , . . . , xiℓ , xjℓ). We encode an MLP to compute

(xi, 0, xi1 , xj1 , . . . , xiℓ , xjℓ) 7→
(
xi,1

{
∃ι ∈ [ℓ] s.t. xi + xiι + xjι = 0⃗ (mod M)

}
; 0⃗
)
.

We repeat this construction D times, with the only modifications being the replacement

of P1 and the fact that the second dimension of the embedding remains 1 after being set to

that value. After D layers, the final MLP outputs the value of the second dimension, which

will be 1 if and only if the respective xi belongs to a three-way match.

5.5.7 Sharper separations for embedded subgraph detection problems

In pursuit of proving separations analogous to the one between Theorem 5.20 and Conjec-

ture 5.21, we draw techniques for proving lower bounds for graph problems in the Congest

model of distributed computation with restricted bandwidth (Peleg, 2000).5

The problems we consider take, as input, the adjacency matrix X ∈ {0, 1}N×N of an

N -vertex graph G = (V , E) with V = [N], so xi,j = 1 {(i, j) ∈ E}. We may regard each row

of X as a high-dimensional (d = N) embedding of the i-th vertex containing information

about which (outgoing) edges are incident to the i-th vertex. We consider the following
5At a high level, the Congest model features N players that communicate in synchronous rounds over

a network (an undirected graph with [N] as its vertices) to solve a computational problem Peleg, 2000. In
each round, each player can send a message to each of its neighbors. The computation that each player does
with the messages received from its neighbors is unrestricted; the primary resources considered in Congest
is the number of rounds of communication and the message sizes. Although Congest is often studied for
solving computational problems on input graphs with vertices [N], the input graph need not be the same as
the communication network.

271

problems:

DirectedCycle3(X) = (1 {∃j1, j2 ∈ [N] s.t. xi,j1xj1,j2xj2,i = 1})i∈[N] ;

Cycle5(X) = (1 {∃j1, j2, j3, j4 ∈ [N] s.t. xi,j1xj1,j2xj2,j3xj3,j4xj4,i = 1})i∈[N] ,

with dom(Cycle5) = {X : X = XT}.

The former treats X as a directed graph (where X need not be symmetric) and asks whether

each input belongs to a directed 3-cycle. The latter insists that X be an undirected graph

by enforcing symmetry and determines membership in (undirected) 5-cycles.

However, solving these problems with any transformer model of constant order trivially

requires having the product of the precision p, embedding dimension m, heads per layer H,

and depth D grow polynomially with N , since each attention unit is limited to considering

at most pm bits of information from each input. Such a lower bound is not interesting for

dense graphs, where every vertex may have Ω(N) incident edges; the bottleneck is not due

to any feature of standard attention units (and would persist with higher-order attention).

To circumvent this issue, we consider an augmented self-attention unit, which permits

each element of the self-attention tensor to depend on both its respective inner product and

on the presence of edges among corresponding inputs.

Definition 5.8. For order s ≥ 2, input dimension d, output dimension d′, embedding

dimension m, bit complexity p, matrices Q,K1, . . . , Ks−1 ∈ Rd×m and V 1, . . . , V s−1 ∈

Rd×d′ (encoded with p-bit fixed-point numbers), and cell-wise attention tensor function κ :

{0, 1}s(s−1)×R → R, an s-order graph self-attention unit is a function fQ,K,V : RN×d → RN×d′

with

fQ,K,V (X) = softmax(κ(X,XQ((XK1) ⋆ · · · ⋆ (XKs−1))T))((XV 1) ⋆ · · · ⋆ (XV s−1)).

For attention tensor A ∈ RN⊗s , we abuse notation by writing κ(X,A) as short-hand for

272

the particular cell-wise application of a fixed function, incorporating information about all

relevant edges:

κ(X,A)i1,...,is = κ(xi1,i2 , xi1,i3 , . . . , xis,is−1 , xis,is−2 , Ai1,...,is).

Let GraphAttn⊗s
d,m,d′,p and GraphTransformerD,H,⊗sd,m,d′,p denote all such attention units and all such

transformers respectively.

Now, we provide four results that exhibit separations between orders of graph self-

attention.

Theorem 5.23 (Hardness of representing Cycle5 with standard graph transformer). For

sufficiently large N , any f ∈ GraphTransformerD,HN,m,1,p satisfying f(X) = Cycle5(X) for all

X ∈ {0, 1}N×N with X = XT requires mpHD = Ω(N/ log2 N).

Theorem 5.24 (Efficient construction of Cycle5 with fifth-order graph transformer). For

sequence length N and bit-complexity p = O(logN), there exists a fourth-order graph trans-

former architecture f ∈ GraphTransformer1,1,⊗5
N,1,1,p with a single graph self-attention unit such

that for all X ∈ {0, 1}N×N with X = XT, f(X) = Cycle5(X).

Theorem 5.25 (Hardness of representing DirectedCycle3 with standard graph trans-

former). For sufficiently large N , any f ∈ GraphTransformerD,HN,m,1,p satisfying f(X) =

DirectedCycle3(X) for all X ∈ {0, 1}N×N requires mpHD = Ω(N/ log2 N).

Theorem 5.26 (Efficient construction of DirectedCycle3 with fourth-order graph trans-

former). For sequence length N and bit-complexity p = O(logN), there exists a third-order

graph transformer architecture f ∈ GraphTransformer1,1,⊗3
N,1,1,p with a single graph self-attention

unit such that for all X ∈ {0, 1}N×N , f(X) = DirectedCycle3(X).

The proofs of Theorems 5.24 and 5.26 are immediate from the construction. Because each

cell of the self-attention tensor has explicit access the the existence of all relevant edges, κ

can be configured to ensure that cell’s value is large if and only if the requisite edges for the

273

desired structure all exist. Taking a softmax with a blank element (like in Theorem 5.16)

ensures that the outcome of the self-attention unit for a given element distinguishes between

whether or not it belongs to a 5-cycle or a directed 3-cycle. The output MLP ensure that

the proper output is returned.

We prove Theorems 5.23 and 5.25 by introducing a particular Congest communication

graph that can be used to simulate any model in GraphTransformerD,Hd,m,d′,p (and hence, also

any model in tr d,m, d′, pD,H) in O(mHD logN) rounds of communication. Then, we show

for each problem that we can encode each instance of the set disjointness communication

problem as an instance of Cycle5 (or DirectedCycle3) and derive a contradiction from the

communication graph.

5.5.7.1 A Congest communication graph that generalizes standard graph transformer

computation

The key principle of our analysis is that the predominant limitation of a transformer

model is in its communication bandwidth and not its computational abilities. We model

transformers as having element-wise multi-layer perceptron units with unbounded compu-

tational ability (but bounded precision inputs and outputs) and self-attention units, which

compute linear combinations of inputs in a carefully regimented way that limits the ability

of individual elements to share information with one another. Here, we introduce a spe-

cific Congest graph for each sequence length N and show that every transformer has a

communication protocol that simulates its computation in this graph.

For fixed N , we design an undirected Congest graph GN = (V N , EN) with O(N2)

nodes, each having degree at most 3. (Note that this graph is not the same as the graph

provided as input X to a transformer; this graph is consistent across all transformers taking

input of sequence size N .) Let u1, . . . , uN be nodes in V N corresponding to each input.

For every pair i, j ∈ [N], let vi,j be a node as well. For each i ∈ [N], let Bi = (Vi, Ei)

be a balanced binary trees having root ui and leaves vi,1, . . . , vi,N , v1,i, . . . , vN,i. Hence, each

274

Figure 5.6: The Congest graph GN visualized for N = 6 with root nodes {ui}i∈[N] in blue,
leaf nodes {vi,j}i,j∈[N] in green, and the nodes V1 of the binary tree B1 shaded red and edges
E1 colored red.

Bi has O(N) vertices of degree 3 and is of depth O(logN). Let V N = V1 ∪ · · · ∪ VN and

EN = E1 ∪ · · · ∪ EN . Noting that E1, . . . , EN are disjoint and that V1, . . . , VN are disjoint,

except for leaves vi,j, we ascertain that GN contains O(N2) vertices of degree at most 3 and

has diameter O(logN). We visualize the graph GN with a highlighted tree B1 in Figure 5.6.

Lemma 5.27. For any transformer f ∈ GraphTransformerD,Hd,m,d′,p and any X ∈ RN×d with

p-bit fixed-precision numbers, there exists a Congest communication protocol on the graph

GN that shares p bits of information between adjacent vertices per round satisfying the

following characteristics:

• Before any communication begins, each node ui is provided with xi and each node vi,j

is provided with xi,j and xj,i.

• After T = O(HD(m+ logN)) rounds of communication, each node ui outputs f(X)i.

Proof. It suffices to give a protocol that computes the outcome of a single-headed unit of

275

graph self-attention with parameters Q,K, V ∈ Rm×m and κ : {−1, 1}2 × R → R and

transmits its ith output back to ui in O(m logN) rounds of p-bit communication. The

remainder of the argument involves computing the outcomes of all element-wise MLPs within

respective vertices u1, . . . , uN (since we assume each node to have unbounded computational

power in the Congest model) and to repeat variants of the protocol HD times for every

individual self-attention unit. Because the protocol is designed for a particular transformer

architecture f , we can assume that every node in the Congest graph has knows every

parameter of f .

We give the protocol in stages. We assume inductively that every input to f , y1, . . . , yN ∈

Rm, is known by its respective vertex u1, . . . , uN .

1. Every vertex ui computes QTyi ∈ Rm and propagates it to every vertex vi,1, . . . , vi,N .

This can be done in O(m + logN) rounds by transferring one p-bit fixed-precision

number per round from an element of the binary tree Bi to each of its children per

round. Because the respective edges E1, . . . , EN are disjoint, this operation can be

carried out in parallel.

2. Each ui computes KTyi, V
Tyi ∈ Rm and propagates them to v1,i, . . . , vN,i in O(m +

logN) rounds.

3. Each vi,j, using their knowledge of xi,j and xj,i, computes

αi,j := exp(κ(xi,j, xj,i, yT
i QK

Tyj)).

This takes zero rounds.

4. Each ui computes ∑N
j=1 αi,j by propagating each αi,j in vi,j up Bi to ui, iteratively

summing terms passed up. This takes O(logN) rounds.

276

Figure 5.7: The Congest graph GN with vertices partitioned into sets V N
a (violet) and V N

b

(orange) for N = 6. The six edges cut by the partition are colored red.

5. Similarly, ui computes ∑N
j=1 αi,jV

Tyj in O(m logN) rounds. Then, it computes

∑N
j=1 αi,jV

Tyj∑N
j=1 αi,j

,

which is the target output of the self-attention unit.

Because all steps are achievable in parallel with O(m+ logN) rounds, the claim follows.

5.5.7.2 Reduction from set disjointness

Before proving Theorems 5.23 and 5.25 by embedding an instance of a transformer model

into an instance of each subgraph identification problem, we first introduce a partition of

the vertices V N of the Congest graph into those possessed by Alice and Bob for use in a

two-party communication protocol. We call those two sets V N
a and V N

b .

Note that the previous section made no assumptions about the organization of edges

in the binary tree. We thus add an additional condition: that each binary tree Bi can be

277

oriented to respect the left-to-right ordering vi,1, v1,i, . . . , vi,N , vN,i. Let ui ∈ V N
a if and only

if i ≤ N
2 , and vi,j ∈ V N

a if and only if min(i, j) ≤ N
2 . We label are remaining nodes in Bi

by labeling a parent node wp as a function of its child nodes wℓ and wr using the following

rules:

(a) If wℓ, wr ∈ V N
a , then let wp ∈ V N

a .

(b) If wℓ, wr ∈ V N
b , then let wp ∈ V N

b .

(c) Otherwise, let wp ∈ V N
a if and only if root ui ∈ V N

a .

This partition, which we visualize in Figure 5.7, bounds the number of bits Alice and Bob

can exchange by simulating a protocol on Congest graph GN .

Lemma 5.28. Suppose Alice and Bob simulate an R-round p-bit protocol on Congest

communication graph GN where Alice has access to all vertices V N
a and Bob V N

b . No other

communication is permitted besides sharing bits as permitted by the Congest protocol

between neighboring vertices. Then, Alice and Bob exchange at most O(pRN logN) bits.

Proof. It suffices to show that the partition V N
a , V

N
b induces a cut of size at most O(N logN);

this ensures that each can send no more than O(pN logN) bits per round.

Per the rules defined above, an edge in (wp, wℓ) and (wp, wr) is cut if and only if they

are described by case (c). Within each tree Bi under the orientation described above, an

inductive argument shows that in every layer, all elements in V N
a are to the left of all elements

in V N
b . Thus, there exists at most one parent of that layer that belongs to case (c), and thus,

no more than one cut edge per layer. Because each tree has O(logN) layers and because

there are N trees, the partition cuts at most O(N logN) edges.

It remains to embed an instance of DISJ in V N
a , V

N
b for each problem such that its output

corresponds identically with that of DISJ.

Proof of Theorem 5.23. Assume for the sake of simplicity that N is divisible by 5. Let a, b ∈

{0, 1}n for n = N2

25 be an input to DISJ, and let Alice and Bob possess a and b respectively.

278

We index those vectors as a = (a1,1, a1,2, . . . , aN/5,N/5−1, aN/5,N/5) and b = (b1,1, . . . , bN/5,N/5)

for ease of analysis. We design input matrix X ∈ {0, 1}N×N as follows:

• If i ∈ (0, N5] and j ∈ (N5 ,
2N
5], then xi,j = xj,i = ai,j−N/5.

• If i ∈ (N5 ,
3N
5] and j ∈ (2N

5 ,
4N
5], then xi,j = xj,i = δi,j−N/5.

• If i ∈ (3N
5 ,

4N
5] and j ∈ (4N

5 , N], then xi,j = xj,i = bj−4N/5,i−3N/5.

• If i ∈ (4N
5 , N] and j ∈ (0, N5], then xi,j = xj,i = δi,j+4N/5.

• Otherwise, xi,j = 0.

This ensures that X has a 5-cycle if and only there exist i, j ∈ (0, N5] such that ai,jbi,j = 16.

In addition, note that under the protocol in Lemma 5.27, Alice’s and Bob’s inputs a and b

are known exclusively by nodes belonging to V N
a and V N

b respectively.

Consider any transformer architecture f ∈ GraphTransformerD,HN,m,1,p that computes Cycle5.

By Lemma 5.27, there exists a protocol on the Congest graph GN that computes Cycle5

after O(HD(m+ logN)) rounds of communication of p-bits each. If Alice and Bob simulate

this protocol, and output 1 if and only if at least one of their outputs indicates the existence of

a Cycle5, then they successfully decide DISJ. By Lemma 5.28, this communication algorithm

solves DISJ after exchanging O(mpHDN log2 N) bits of communication. However, Fact 5.7

implies that no communication algorithm can do so without exchanging Ω(n) = Ω(N2) bits,

which concludes the proof.

Proof of Theorem 5.25. The proof is identical to its predecessor, but uses a different embed-

ding of an instance a, b ∈ {0, 1}n to DISJ. Let n = N2

16 . Then:

• If i ∈ (0, N4] and j ∈ (N2 ,
3N
4], then xi,j = ai,j−N/2.

• If i ∈ (N2 ,
3N
4] and j ∈ (3N

4 , N], then xi,j = bj−3N/4,i−N/2.
6We consider 5-cycles rather than 4-cycles because a spurious 4-cycle could exist among edges {xi,j : i ∈

(0, N
5], j ∈ (N

5 , 2N
5]}.

279

• If i ∈ (3N
4 , N] and j ∈ (0, N4], then xi,j = δi,j+3N/4.

• Otherwise, xi,j = 0.

This construction ensures that a directed 3-cycle exists if and only if a corresponding pair

of elements in a and b are both 1.

5.6 Conclusion

This chapter introduces a novel communication complexity lens on the representational

powers of attention units. Using this lens, we design a collection of tasks that crystallize the

strengths and limitations of transformer models and sharply characterize the representational

powers afforded by changing the embedding dimension. In identifying the intrinsic pairwise

aspect of transformers, this work introduced the concept of higher-order tensor attention,

which would be further studied by Alman and Song (2023).

While at first glance, the results of this chapter fail to provide the exponential width

separations of Chapters 2 and 3, the results here convey a similarly sharp separation in the

regime where the context length N is exponentially large and the embedding dimension is

thought of as the width. These results differ more broadly from the previous chapters in

their modeling assumptions—in particular, the attention to bit-precision, the scaling of N ,

and the arbitrarily expressive MLP units. However, by making these assumptions, these

results are more directly applicable to the study of transformers in practice and provide a

more fine-grained understanding of the representational power of attention layers.

This chapter directly leads into the next, where we consider the role of depth in the repre-

sentational power of transformers. While the research project culminating in the subsequent

work originally aspired to resolve Conjecture 5.21, it would ultimately consider a broader

computational model of deep transformers that would characterize the powers of depth in

terms of compositional algorithms. This subsequent work subsumes the communication

complexity lens into a novel distributed computing lens into the limitations of transformers.

280

Taken together, these two works pose the following question:

Is the communication lens on transformers merely a proof technique for negative

results, or does it provide a fundamental understanding of the representational

power of transformers?

The next chapter indicates that the answer to this question may be the latter, due to the

ability of self-attention units to simulate complex communication protocols between model

inputs.

281

Chapter 6: Parallelizability of deep transformer networks

We show that a self-attention layer can efficiently simulate—and be simulated by—a

fixed number of communication rounds of Massively Parallel Computation. Consequently,

we show that logarithmic depth is sufficient for transformers to solve basic computational

tasks that cannot be efficiently solved by several other neural sequence models and sub-

quadratic transformer approximations. We thus establish parallelism as a key distinguishing

property of transformers.

The research presented in this chapter reflects the work of Sanford, Hsu, and Telgarsky

(2024).

6.1 Introduction

The transformer (Vaswani et al., 2017) has emerged as the dominant neural architecture

for many sequential modeling tasks such as machine translation (Radford et al., 2019) and

protein folding (Jumper et al., 2021). Reasons for the success of transformers include suit-

ability to modern hardware and training stability: unlike in recurrent models, inference and

training can be efficiently parallelized, and training is less vulnerable to vanishing and ex-

ploding gradients. However, the advantages of transformers over other neural architectures

can be understood more fundamentally via the lens of representation, which regards neural

nets as parameterized functions and asks what they can efficiently compute.

Many previous theoretical studies of transformers establish (approximation-theoretic and

computational) universality properties, but only at large model sizes (Yun et al., 2020; Pérez,

Barceló, and Marinkovic, 2021). These results are not unique to transformers and reveal little

about which tasks can be solved in a size-efficient manner. Several other works (e.g., Hahn,

282

2020; Merrill and Sabharwal, 2022; Sanford, Hsu, and Telgarsky, 2023) give fine-grained

representational results in the scaling regime where context length grows but model depth

is constant. In this regime, basic algorithmic tasks like matching parentheses and evaluating

Boolean formulas are impossible.

In this work, we identify parallelism as a key to distinguishing transformers from other

architectures. While recurrent architectures process their inputs serially, transformers allow

independent interactions between the input tokens, mediated by the inner products between

query and key embeddings in self-attention units. We leverage this property of self-attention

to establish a formal connection between transformers and Massively Parallel Computation

(MPC) (Karloff, Suri, and Vassilvitskii, 2010). Concretely, we design transformers that

simulate MPC protocols (and vice versa), and in doing so, we exhibit a wide range of

computational tasks solved by logarithmic-depth transformers, including those that cannot

be efficiently solved with other architectures such as graph neural nets (GNNs) and recurrent

models.

6.1.1 Our results

We advance the understanding of transformers’ representational capabilities with the

following results.

1. The algorithmic capabilities and limitations of logarithmic-depth transformers are cap-

tured by the MPC model (Section 6.3).

2. There is a simple sequential task that (i) is solved by (and, empirically, learned from data

using) logarithmic-depth transformers, but (ii) cannot be efficiently solved by several

alternative architectures (Sections 6.4 and 6.6).

In more detail, our first collection of results, Theorems 6.3 and 6.8, show that any R-round

MPC protocol can be implemented by a transformer of depth O(R), and that any depth-L

transformer can be simulated by an O(L)-round MPC protocol. The former implies that

several graph problems are solved by logarithmic-depth transformers (Corollary 6.5); the

283

latter suggests the near-optimality of these transformers (Corollary 6.9), under the assump-

tion of a well-known conjecture about the limitations of MPC algorithms (Conjecture 6.1).

A key technical step (Lemma 6.4) shows how transformers can implement the simultaneous

message-passing used in MPC protocols to communicate between machines. While Chap-

ter 5 uses communication complexity to understand the representational limitations of self-

attention layers, our results show the benefits of the communication lens for understanding

the strengths of transformers.

Our second set of results concerns the k-hop induction heads task, a synthetic sequential

task that draws inspiration from the induction heads primitive of Elhage et al. (2021). The

theoretical results of Section 6.4 prove that depth L = Θ(log k) is necessary and sufficient

for efficient transformer representation. An accompanying empirical investigation reveals

that transformers trained on the task obey the same threshold and recover a similar model

to the theoretical construction. In contrast, Section 6.6 illustrates that bounded-size non-

parallelizable recurrent architectures—including state-space models like Mamba (Gu and

Dao, 2023)—cannot solve the task. Moreover, well-known transformer models with compu-

tationally efficient alternatives to self-attention, like Performer (Choromanski et al., 2022)

and Longformer (Beltagy, Peters, and Cohan, 2020), and shallow transformers with chain-

of-thought prompting sacrifice their abilities to implement parallel algorithms, as evidenced

by their proven inability to solve this task.

6.1.2 Related work

Some of the types of lower bounds we sought in this work were inspired by the literature

on depth-separation for feed-forward neural networks (e.g., Eldan and Shamir, 2016; Daniely,

2017a; Telgarsky, 2016), which exhibit functions that are efficiently approximated by deep

networks, but not by shallower networks.

Many theoretical approaches have been used to understand the representational capabil-

ities of transformers and self-attention units in various scaling regimes. Some works model

284

(variants of) transformers as machines for recognizing formal languages, such as the Dyck lan-

guages (Hahn, 2020; Bhattamishra, Ahuja, and Goyal, 2020; Yao et al., 2021; Hao, Angluin,

and Frank, 2022) and star-free regular languages (Angluin, Chiang, and Yang, 2023). These

approaches reveal the inability of fixed-size transformers to handle arbitrarily long inputs.

Other works show how transformers can simulate finite-state automata (Liu et al., 2022)

with logarithmic depth, and Turing machines with (unrolled) depth (or chain-of-thought

length) scaling polynomially with total runtime (Wei, Chen, and Ma, 2022; Malach, 2023;

Merrill and Sabharwal, 2023a). However, it is unclear if these results are near-optimal or

even transformer-specific.

Theoretical results about the limitations of constant-depth transformers have been ar-

ticulated by way of analogy to circuit complexity (Merrill and Sabharwal, 2023b; Merrill,

Sabharwal, and Smith, 2022; Merrill and Sabharwal, 2022; Strobl, 2023; Strobl et al., 2023),

implying the inability of constant-depth transformers to solve tasks like graph connectivity

and Boolean formula evaluation. Other works characterize the representational capabilities

of one-layer transformers (Likhosherstov, Choromanski, and Weller, 2021; Sanford, Hsu, and

Telgarsky, 2023), but these approaches do not apply to deeper models. Sanford, Hsu, and

Telgarsky study multi-headed attention using communication complexity, a framing that

informs this work’s connection to distributed computing.

The MPC model (Karloff, Suri, and Vassilvitskii, 2010; Beame, Koutris, and Suciu,

2017; Goodrich, Sitchinava, and Zhang, 2011; Andoni et al., 2014b; Im et al., 2023) was

introduced to study distributed computing frameworks such as MapReduce (Dean and Ghe-

mawat, 2004). A major goal is to design protocols that require few rounds of communication

for setups in which each machine’s local memory is sublinear in the input size. Many ad-

vances have been made in MPC algorithms for important problems (see, e.g., Im et al., 2023,

for a recent survey). However, a basic problem that has resisted progress is connectivity in

sparse graphs, where all MPC protocols in this memory regime appear to require Ω(log n)

rounds for input graphs on n vertices. Lower bounds in MPC and related models were stud-

285

ied by Beame, Koutris, and Suciu (2017), Roughgarden, Vassilvitskii, and Wang (2018), and

Charikar, Ma, and Tan (2020). The conjectured impossibility of o(log n)-round protocols

for connectivity is now used as the basis for conditional lower bounds (Ghaffari, Kuhn, and

Uitto, 2019).

Simulation of transformers by recurrent models (Oren et al., 2024) and simulation of

graph neural nets (GNNs) by transformers (Kim et al., 2022) offer some coarse-grain insight

into the relationship between these architectures, but separations are not implied by these

previous works. Our connection between transformers and MPC most closely resembles

the association established by Loukas (2019) between GNNs and the Congest model of

distributed computation. Both works establish positive and negative results by identifying

neural architectures with communication protocols. In Section 6.6.1, we show that the MPC

connection allows transformers to solve graph connectivity more efficiently than GNNs.

Our k-hop induction heads task is designed as a k-fold composition of its standard ana-

log (Elhage et al., 2021). It is similar to a special case of the LEGO reasoning task (Zhang

et al., 2023), which reveals the super-linear benefit of depth relative to k; in our case, we

theoretically and empirically exhibit an exponential benefit. We also draw a connection to

the well-studied problem of pointer-chasing (Papadimitriou and Sipser, 1982; Duris, Galil,

and Schnitger, 1984; Nisan and Wigderson, 1993), which enables the proof of our separation

between parallel and serial architectures. Our fine-grained empirical interpretability analy-

sis for synthetic tasks draws inspiration from similar analyses of sequential algorithms like

sorting and reversal (Li and McClelland, 2022).

6.2 Preliminaries

6.2.1 Massively Parallel Computation model

We use the definition of MPC from Andoni et al. (2018).

Definition 6.1 (MPC protocol). For any global and local memory constants γ, δ > 0,

286

• Input = (Input1, . . . , Inputnin) ∈ Znin
2p is distributed across local memories of machines 1 ≤ i ≤

⌈nin
s ⌉:

MachineIn(1)
i = {(Inputι, ι) : ι ∈ {(s−1)i+1, . . . , min {nin, si}}}.

• For round r = 1, . . . , R:

– Each machine i computes messages (MsgOut(r)
i,j)j=1,2,... to send to machines (Dest(r)

i,j)j=1,2,... as
function of MachineIn(r)

i :

MachineOut(r)
i = Localr,i(MachineIn(r)

i) = {(MsgOut(r)
i,j , Dest(r)

i,j) ∈ Zdj

2p × [q] : j = 1, 2, . . . };∑
j
dj ≤ s is ensured.

– All messages are simultaneously transmitted; the messages in local memory of machine i for
round r + 1 are:

MachineIn(r+1)
i = {(Msg, Src) : (Msg, i) ∈ MachineOut(r)

Src};∑
(Msg,Src)∈MachineIn(r+1)

i

|Msg| ≤ s is ensured.

• Output = f(Input) comes from

MachineIn(R+1)
i = {(Outputι, Src) : ι ∈ {(s − 1)i+1, . . . , min {nout, si}}}

for 1 ≤ i ≤ ⌈nout
s ⌉.

Figure 6.1: Formal execution of an MPC protocol for computing f : Znin
2p → Znout

2p . (|Msg| is
the number of words in Msg.)

a (γ, δ)-MPC protocol for a function f : Znin
2p → Znout

2p specifies a distributed computing

protocol for q = Θ(n1+γ−δ
in) machines, each with s = O(nδin) words1 of local memory to jointly

compute f(Input) for any given Input ∈ Znin
2p as follows. The Input ∈ Znin

2p is distributed

across the local memories of the first ⌈nin/s⌉ machines. Computation proceeds in rounds. In

each round, each machine computes an arbitrary function of its local memory to prepare at

most s words to send to other machines; messages are simultaneously transmitted, and the

protocol ensures that each machine receives at most s words at the end of the round. After

the final round, the Output = f(Input) ∈ Znout
2p is in the local memories of the first ⌈nout/s⌉

machines. See Figure 6.1 for details.

1We assume the word size is p = Θ(log nin) bits. For convenience, we regard words as elements of Z2p

(integers mod 2p).

287

Our negative results in Section 6.3.2 are conditional on the well-known “one-versus-two

cycle” conjecture (Beame, Koutris, and Suciu, 2017; Roughgarden, Vassilvitskii, and Wang,

2018; Ghaffari, Kuhn, and Uitto, 2019).

Conjecture 6.1 (see, e.g., Ghaffari, Kuhn, and Uitto, 2019). For any γ > 0, δ < 1, and N ,

if π is an (γ, δ)-MPC protocol that distinguishes a single cycle on N nodes and a union of

two cycles each on N/2 nodes, then π uses Ω(logN) rounds.

6.2.2 Transformers

6.2.2.1 Transformer definition

We first define a self-attention head, the core primitive of a transformer. The softmax op-

erator is softmax(v) = (exp(v1), . . . , exp(vN))/∑N
j=1 exp(vj) for v ∈ RN . We apply softmax

to matrices A ∈ RN×N row-wise, i.e. softmax(A)i = softmax((Ai,1, . . . , Ai,N)).

Definition 6.2 (Self-attention head). A self-attention head is a mapping fQ,K,V : RN×m →

RN×m defined by

fQ,K,V (X) = softmax(Q(X)K(X)T)V (X)

and parameterized by row-wise query, key, and value embeddings Q,K, V : RN×m → RN×m

(e.g., Q(X) = (Q1(X1), . . . , QN(XN)). Let AttnNm denote the set of all self-attention heads

with embedding dimension m and context length N .

A transformer composes L layers of H self-attention heads per layer, plus an output

multi-layer perceptron (MLP).

Definition 6.3 (Transformer). A transformer is a mapping T : RN×din → RN×dout speci-

fied by self-attention heads (fℓ,h ∈ AttnLm)ℓ∈[L],h∈[H] and an element-wise output MLP ψ =

(ψ1, . . . , ψN) : RN×m → RN×dout . Upon input X ∈ RN×din , the transformer computes inter-

mediate embeddings X0, . . . , XL ∈ RN×m with X0 = X and

Xℓ = Xℓ−1 +
∑H

h=1fℓ,h(X
ℓ−1),

288

and returns T (X) = ψ(XL) as output. Let TransformerNm,L,H,din,dout denote the set of all such

transformers, and TransformerNm,L,H := TransformerNm,L,H,1,1.

Modeling assumptions. We treat the transformer as a computational model that permits

arbitrary element-wise computation, but restricts the manner in which multiple elements are

processed together. This manifests in our decisions to model query/key/value embeddings

and MLPs as arbitrary functions on the embedding space; Loukas (2019) employs a similar

modeling assumption for GNNs. Note that the element-wise embeddings and MLPs may be

index-specific, obviating the need for positional embeddings.

Our theoretical results cover the scaling regime where the context length N is the main

asymptotic parameter; while the embedding dimension m, the number of heads H, and the

depth L grow sub-linearly in N . This reflects real-world trends in large-language models,

where context length has sharply increased in recent years.

Throughout, we assume all intermediate computations in transformers are represented

by p-bit precision numbers for p = Θ(logN). Limiting the precision is consistent with re-

cent practice of using low-precision arithmetic with transformers (e.g., Wang et al., 2022;

Dettmers et al., 2022). We discuss this precision assumption in greater detail in Sec-

tion 6.2.2.2, along with other minor technical assumptions (such as the inclusion of a “start

token” for mathematical convenience).

Masked transformers. We also consider masked self-attention, where only certain inner

products influence the softmax output. Let Λ ∈ {−∞, 0}N×N be a masking matrix with at

least one zero entry in every row. Then, a Λ-masked self-attention unit is defined by

fΛ
Q,K,V (X) = softmax(Q(X)K(X)T + Λ)V (X).

Let Λ-AttnNm and Λ-TransformerNm,L,H , respectively, denote the sets of all Λ-masked self-

attention heads and all transformers comprised of those heads. We define causally-masked

289

transformers by MaskAttnNm := Γ-AttnNm and MaskTransformerNm,L,H := Γ-TransformerNm,L,H ,

where Γ is the lower-triangular mask with Γi,j = 0 iff i ≥ j.

6.2.2.2 Techical details

We discuss a few minor technicalities and modifications of the self-attention unit (Defini-

tion 6.2) and transformer model (Definition 6.3) defined in Section 6.2.2 that are necessary

for readers looking for a comprehensive understanding of the proofs of our theoretical results.

Fixed-bit precision arithmetic. As discussed in Section 6.2.2, we assume that all num-

bers that appear in the intermediate products and outputs of self-attentions are representable

with p-bit precision arithmetic, where p = Θ(logN). While the details of fixed-precision

arithmetic will be uninteresting to most readers, it is necessary to explain precisely what we

mean in order to ensure that proofs of results like Theorem 6.8 are sound. Throughout the

paper, we allow p to depend on of constants, such as γ, δ, and ϵ.

Concretely, we assume that all query, key, and value embeddings Q(X), K(X), V (X)

evaluated on all inputs contain scalar values z ∈ R that are polynomially bounded (i.e.

|z| ≤ exp(O(p)) = N ζ for sufficiently large constant exponent ζ > 0) and are inverse-

polynomially discretized (i.e. z · N ζ ∈ Z). Depending on the desired exponent ζ, some

p = Θ(logN) can be chosen to guarantee this property. While we do not formally analyze

the precision needed to approximate the particular embeddings employed by our proofs, we

note that our recurring sinusoidal embeddings (e.g. Lemma 6.20) can be discretized without

losing their central properties and that discretizations of the restricted isometry embeddings

of Proposition 6.10 are analyzed by Chapter 5.

Rather than stipulating a particular bounded-precision implementation that computes

the output of a self-attention unit must be implemented, we specify a rounding constraint

that any computational implementation of a self-attention unit must satisfy. Precisely, we

require that any output round to the same inverse-polynomial discretization as the true

290

mathematical attention.

Definition 6.4. For a self-attention unit f ∈ AttnNm, let f̂ be an finite-precision implemen-

tation of that unit. We say that f̂ is a valid implementation if

sup
X∈RN×m

∥∥∥f(X) − f̂(X)
∥∥∥

∞
= O

(1
2p
)
.

This definition is only to establishing the fact that self-attention units with sufficient

margins can precisely compute hardmax outputs in Lemma 6.2 and to showing that MPC

models can indeed compute the outputs precisely in Theorem 6.8.

Hardmax attention. While we exclusively consider attention units with the softmax,

our constructions periodically rely on the exact computation of averages of embeddings. We

define the hardmax operator to allow the consideration of discrete averaging operations. For

some v ∈ RN , let

hardmax(X)i =

1

|Imax(v)| , if i ∈ Imax(v)

0 otherwise,

where Imax(v) = {i ∈ [N] : vi = maxi′ vi′}.

We show that bounded-precision softmax self-attention units that satisfy a margin prop-

erty can be modified slightly to have identical outputs to an analogous hardmax unit.

Lemma 6.2. Let f ∈ AttnNm be a self-attention unit with precision p = Θ(logN) and embed-

ding functions Q,K, V such that for some fixed 1 ≥ ξ = N−O(1) and every X ∈ RN×m and

i ∈ [N]:

A(X)i,i′ ≤ max
i′′

A(X)i,i′′ − ξ, ∀i′ ̸∈ Imax(A(X)i),

where A(X) = Q(X)K(X)T. Then there exists a self-attention unit f ′ ∈ AttnNm with a valid

p′-bit implementation with p′ = O(p) satisfying

f ′(X) = hardmax(A(X))V (X).

291

The proof of Lemma 6.2 is provided in Section 6.7.

Start tokens. Our technical proofs are occasionally simplified by including a “dummy

token” whose value is passed in self-attention layers as a default or null value. For example,

in the proof of Lemma 6.21, the dummy token handles the case where the reference token

does not appear previously in the sequence. While we believe that this extra token is not

necessary for our technical arguments, we include it for the sake of simplicity.

We model this dummy token as a start-of-sequence token X0. Concretely, if we employ

X0 in a self-attention f ∈ AttnNm which takes as input X, we instead treat f as an attention

unit in AttnN+1
m that operates on (X0, X1, . . . , XN). We assume that X0 is constant-valued,

and therefore never both to pay attention to its outputs; it’s only relevance is via its key

and value embeddings K0(X0), V0(X0) ∈ Rm. If X0 is unmentioned, we assume that it does

not exist, or is set such that its key embedding inner products are all zero.

Supplemental chain-of-thought tokens. We periodically (see Theorem 6.12 and the

proofs of Corollaries 6.9 and 6.19) consider transformers with supplemental blank “chain-

of-thought” tokens appended to the end of the sequence. Unlike the start token, these are

only constant at initialization and may be used deeper in the model to perform meaningful

computations.

Let TransformerN,Mm,L,H,din,dout denote transformers with M − N extra blank elements ap-

pended to the input sequence. Concretely, we represent T ∈ TransformerN,Mm,L,H,din,dout as

some T ′ ∈ TransformerMm,L,H,din,dout and define the output T (X) for X ∈ RN×din by letting

Y ∈ RM×din for Y1:N = X and YN+1:M = 0⃗, and letting T (X) = T ′(Y).

6.2.3 Graphs as sequential inputs

When providing a graph G = (V,E) as input to transformers or MPC protocols, we

serialize G as a sequence in [|V |]2|E| that encodes each edge as a pair of vertex tokens.

The resulting transformer has N = 2|E| and din = 1, and the resulting MPC protocol has

292

nin = 2|E|.

6.3 Relating transformers and MPC

We coarsely characterize the computational power of transformers in a certain size regime

by establishing a bidirectional relationship between transformers and MPC. Theorems 6.3

and 6.8 show that any MPC protocol can be simulated by a transformer, and vice versa. As

corollaries (Corollaries 6.5 and 6.9), we obtain tight upper and lower bounds on the depth

of bounded-size transformers for computing connected components in graphs.

6.3.1 Simulation of MPC protocols by transformers

The following theorem shows that any MPC protocol π with sublinear local memory can

be simulated by a transformer whose depth L is linear in the number of rounds R of π, and

embedding dimension m is polynomial in the local memory size s = O(N δ) of machines used

by π.

Theorem 6.3. For constants 0 < γ < δ < 1 and any deterministic R-round (γ, δ)-MPC

protocol π on nin input words and nout ≤ nin output words, there exists a transformer T ∈

TransformerNm,L,H with N = nin,m = O(n4δ
in log nin), L = R + 1, H = O(log log nin) such that

T (Input):nout = π(Input) for all Input ∈ ZN2p.

The theorem provides a non-trivial construction in the strongly sub-linear local memory

regime when s = O(N1/4−ϵ) for any ϵ > 0.2 Whether the simulation can be improved to

m = O(N1−ϵ′) for some ϵ′ > 0 whenever s = O(N1−ϵ) is an interesting question for future

work.
2Applying Theorem 6.3 when δ ≥ 1

4 yields transformers with embedding dimension m ≥ N , which
trivializes the transformer architecture and negates any advantages of depth under our MLP universality
assumption. This is due to the fact a transformer with N -dimensional embeddings could aggregate the entire
input sequence X ∈ RN in a single embedding and use its output MLP to compute any arbitrary function
on that input.

293

Theorem 6.3 proof overview. At a high level, the proof in Section 6.3.3.2 entails sim-

ulating each round of parallel computation with a single-layer transformer and applying

those constructions serially to Input. The local computation on each machine (repre-

sented by MachineOut(r)
i = Localr,i(MachineIn(r)

i)) is directly encoded using element-wise

query/key/value embeddings.

The crux of the proof simulates a routing protocol to determine MachineIn(r+1) from

MachineOut(r). We construct a self-attention unit that ensures that an encoding of a sequence

of addressed messages from each machine are properly routed to their destinations.3

For any message size β, message count bound s, and number of tokens N , we say that

(Sent, Rcvd) ∈ RN×m × RN×m is a valid (β, s)-routing if, for each i ∈ [N], the i-th row of

Sent (resp. Rcvd) is the vector encoding of some Senti ⊂ Zβ2p × [N] (resp. Rcvdi ⊂ Zβ2p × [N])

such that

Rcvdi = {(Msg, Src) : (Msg, i) ∈ SentSrc} ,

and each of Rcvdi and Senti has cardinality at most s.4

Lemma 6.4. For any β, s,N ∈ N, there exists a transformer routeβ,s ∈ TransformerNm,1,1 with

m = O(s4β logN) satisfying routeβ,s(Sent) = Rcvd for any valid (β, s)-routing (Sent, Rcvd).

The proof of Lemma 6.4 appears in Section 6.3.3.1 and combines two key techniques:

sparse propagation and multiple hashing. The former is a simple variant of the “sparse aver-

aging” task of Chapter 5, which simultaneously computes N averages over subsets of inputs;

this task is solved a single self-attention head with small embedding dimension (Proposi-

tion 6.10). Using sparse propagation, we construct a self-attention head that averages the

≤ s encodings of each RcvdSrc for every Src ∈ Rcvdi. In order to ensure that we can decode

that average of encodings, we apply error-correction by encoding each Outputi in a sparse

and redundant manner, where each outgoing messages appears as multiple copies of the same
3This routing between machines uses the all-pairs structure of self-attention and may not admit a sub-

quadratic approximation.
4We abuse notation by writing Dest ∈ Senti to mean there exists some Msg such that (Msg, Dest) ∈ Senti.

294

addressed “packet.”

Application: connectivity with log-depth transformers. As an immediate conse-

quence of Theorem 6.3, any graph problem solvable with a logarithmic number of rounds of

MPC computation (and local memory s) is also computable by a logarithmic depth trans-

former (and embedding dimension Õ(s4)). The following result—which bounds transformer

depth needed to compute connected components of a graph G—follows from Theorem 6.2 of

Coy and Czumaj (2022), which derandomizes an MPC algorithm of Behnezhad et al. (2019),

and Theorem 6.3.

Corollary 6.5. For any constant ϵ ∈ (0, 1) and any D ≤ N , there exists a transformer

in TransformerNm,L,H with m = O(N ϵ), H = O(log logN), and L = O(logD) that identifies

the connected components of any input graph G = (V,E) with |V |, |E| = O(N) where each

connected component has diameter at most D.

Theorem 8.1 and Corollary 8.2 of Coy and Czumaj (2022) give efficient MPC protocols

for other graph problems besides connectivity, and therefore, as corollaries of Theorem 6.3,

we also obtain log-depth transformers for these problems.

Corollary 6.6 (Spanning forest construction). For any constant ϵ ∈ (0, 1) and any D ≤ N ,

there exists a transformer in TransformerNm,L,H with m = O(N ϵ), H = O(log logN), and

L = O(logD) that computes a rooted spanning forest of any input graph G = (V,E) with

|V |, |E| = O(N) where each connected component has diameter at most D.

Corollary 6.7 (Minimum spanning forest construction). For any constant ϵ ∈ (0, 1) and

any DMSF ≤ N , there exists a transformer in TransformerNm,L,H with m = O(N ϵ), H =

O(log logN), and L = O(logDMSF) that identifies the connected components of any input

graph G = (V,E) with |V |, |E| = O(N) and poly(N)-bounded integer weights whose mini-

mum spanning forest has diameter at most DMSF .

295

6.3.2 Simulation of transformers by MPC protocols

The following theorem shows that MPC protocols can simulate transformers and prove

depth lower bounds on transformers, conditioned on Conjecture 6.1. We get, as a corollary,

the conditional optimality of the transformer depth bound in Corollary 6.5.

Theorem 6.8. For any transformer T ∈ TransformerNm,L,H (or Λ-TransformerNm,L,H) with

mH = O(N δ) for δ ∈ (0, 1) and any δ′ ∈ (δ, 1), there exists a O(L
δ′−δ)-round (1 + δ′, δ′)-MPC

protocol with q = O(N2) machines with s = O(N δ′) local memory for computing T .

Theorem 6.8 demonstrates that the algorithmic capabilities of transformers are no stronger

than those of MPC protocols with a quadratic scaling in the number of machines. While

Theorems 6.3 and 6.8 do not jointly provide a sharp characterization of the two computa-

tional models, the reductions are tight enough to provide strong evidence for the optimality

of the connected components construction of Corollary 6.5.

Theorem 6.8 proof overview. At a high-level, the proof constructs an MPC protocol

that simulates a self-attention layer by separating the computation of MLPs and attention

matrices into three separate categories of machines.

• Each input token is provided to its own token machine, responsible for preparing the

query/key/value embeddings.

• Each pair of tokens is associated with an inner product machine that will compute the

inner product between their respective query and key embeddings.

• Propagation machines ensure that embeddings are routed to the proper inner product

machine and compute outputs of each softmax unit.

The proof gives the communication protocol for these machines, shows how they simulate

a layer of self-attention in O(1/(δ′ − δ)) rounds, and establishes the sufficiency of O(N2)

machines with O(N δ′) local memory.

296

Application: conditional optimality of Corollary 6.5. Assuming the well-established

Conjecture 6.1, we prove an Ω(logD) lower bound on the depth of parameter-efficient trans-

formers for determining connectivity of graphs where connected components may have di-

ameter up to D.

Corollary 6.9. Let ϵ ∈ (0, 1) be any constant, and let D ≥ N ϵ. Assume Conjecture 6.1, and

suppose there exists T ∈ TransformerNm,L,H with mH = O(D1−ϵ) that decides connectivity of

any input graph with connected components having diameter ≤ D. Then L = Ω(logD).

6.3.3 Proofs for Section 6.3.1

6.3.3.1 Proof of Lemma 6.4

Lemma 6.4. For any β, s,N ∈ N, there exists a transformer routeβ,s ∈ TransformerNm,1,1 with

m = O(s4β logN) satisfying routeβ,s(Sent) = Rcvd for any valid (β, s)-routing (Sent, Rcvd).

The proof relies on a sparse propagation sequential primitive, which complements the

sparse averaging primitive of Chapter 5. For any Q ≤ d,N , on input X = (X1, . . . , XN) ∈

RN×d with Xi = (zi, Si) ∈ Rd−Q × [N]Q and bi = |{Sj ∋ i : j ∈ [N]}| ≤ Q, we define

sparsePropagateQ,d(X)i =

1
bi

∑
Sj∋i zj if bi > 0,

0 otherwise.

Closely following the argument of Chapter 5, we show in Proposition 6.10 that there is

a self-attention unit with embedding dimension m = max(d,O(q logN)) that computes

sparsePropagateQ,d. This construction is a key component of the single-layer transformer

used in the proof of Lemma 6.4.

Proposition 6.10. For any b ≤ N and d, there exists a self-attention unit

sparsePropagateQ,d ∈ AttnNm,p

297

for m = d+O(Q logN) and p = O(logN), which, given any input X with

Xi = (zi, Si, 0⃗) ∈ Rd ×
(

[N]
≤ Q

)
× {0}m−Q−d

such that bi = |{Sj ∋ i : j ∈ [N]}| ≤ Q for all i, has output sparsePropagateQ,d(X) satisfying

sparsePropagateQ,d(X)i = 1
bi

∑
Sj∋i

zj.

The proof of Proposition 6.10 appears in Section 6.7.

Proof of Lemma 6.4. We construct a single-layer single-headed transformer with query, key,

and value embeddings Q,K, V and output MLP ψ. Q,K, V can be decomposed as Q = Q′ ◦

ϕ, K = K ′◦ϕ, V = V ′◦ϕ, for some input MLP ϕ and embeddingsQ′, K ′, V ′. We fixQ′, K ′, V ′

to be the respective embeddings of the self-attention unit with embedding dimension m from

Proposition 6.10 that computes Y = sparsePropagates,m(X) for XSrc = (zSrc, SSrc) for every

Src ∈ [N] to be determined. Hence, the proof entails designing element-wise encoders

ϕ = (ϕ1, . . . , ϕN) and decoders ψ = (ψ1, . . . , ψN) that compute Rcvd from Sent, using

sparsePropagates,m as an intermediate step. A high-level overview of the proof construction

is visualized in Figure 6.2.

298

sparsePropagate

2Y2 = 2 · sparsePropagate((z, S))2

2ᾱ 2Src 2Dest

Y1 = (0, 2)

ϕ

D̃est M̃sgS̃rcα̃

z1

1

0

1

0

1

0

1

0

0

2

2

1

1

1

1

hey

yo

hey

yo

S1 = (0, 2)

S3 = (2, 4)

ϕDest Msg

yes

no

2

4

Sent3

D̃est M̃sgS̃rcα̃

z3

0

1

0

1

1

0

3

3

3

3

2

2

4

4

yes

yes

no

no

Dest Msg

hey

yo

0

2

Sent1

2Msg

= z1 + z3

1

1

2

1

2

0

1

hey

yes

asd

no

wyz

yo

1

3

3

1

0

2

2

4

Src Msg

yo

yes

0

2

Rcvd2

ψ

1

Sent
ϕ

(z, S) Y Rcvd
ψ

Machine 0

Machine 4

Machine 1

Machine 3

Machine 2

Figure 6.2: A visualization of the construction used to prove Lemma 6.4 in three phases—the
encoding of each input SentSrc as embedding zSrc and subset SSrc with ϕ; the combination
of those embeddings into YDest via the simulation of sparsePropagates,m((z, S)); and the
decoding of each YDest into output RcvdDest with ψ. The figure provides an example of the
encoding and decoding where machines 1 and 3 transmit messages to machine 2. “Multiple
hashing” is used to compute z1 and z3 by encoding each message in multiple fixed-location
“packets” in embedding space space. This redundancy ensures the possibility of machine 2
decoding Rcvd2 from Y2, due to each message occurring alone at least once in the encoding.

On input SentSrc, we use the encodings QSrc, KSrc, VSrc to specify that all tokens Dest

with Dest ∈ SentSrc (or equivalently, all Dest with Src ∈ RcvdDest) should receive a copy of

the encoding of SentSrc. That is, we set SSrc := {Dest ∈ SentSrc} for each Src ∈ [N]. This

ensures that Y satisfies

YDest = 1
|RcvdDest|

∑
Src∈RcvdDest

zSrc.

While it’s tempting to simply set each zSrc ∈ Rm equal to a (βs)-dimensional vectorization

of SentSrc, it is unclear how to extract RcvdDest from each YDest, since each average performed

299

by sparsePropagates,m will combine multiple vector embeddings in a shared space. In order

to avoid these troubles, we employ a multiple hasing-based encoding that treats messages as

“packets” identified by a message, a source, a destination, and a “validity token” that can

be used to determine whether a message is uncorrupted. We include multiple copies of each

packet in the encoding zSrc. For notational ease, we represent each zSrc ∈ Rm as a collection

of packets

zSrc = (M̃sgSrc,j, S̃rcSrc,j, D̃estSrc,j, αSrc,j)j∈[m′] ∈ (Zβ2p × [N] × [N] × {0, 1})m′
,

where m = m′(3 + β).

To sparsely and redundantly encode each SentSrc as zSrc, we encode outgoing messages

as packets by utilizing the matrix A guaranteed by the following fact (which we use with

n := N2, b := s2, and m′ := d = O(s4 logN)).

Fact 6.11. For any n, b ≤ n, and d ≥ ⌈12b2 lnn⌉, there exists a binary matrix A ∈

{0, 1}n×d such that, for every subset S ⊆ [n] with |S| ≤ b, the columns of the sub-matrix

AS ∈ {0, 1}|S|×d contains all S-dimensional elementary vectors, i.e.,
{
e1, . . . , e|S|

}
is a subset

of the columns of AS.

The proof of Fact 6.11 is at the end of the section. We use the following rule to determine

which (if any) message to encode as a packet at each Src ∈ [N] and j ∈ [m′]. We let

A(Src,Dest),j = AN(Src−1)+Dest,j for notational convenience.

zSrc,j =

(Msg, Src, Dest, 1) if (Msg, Dest) ∈ SentSrc and A(Src,Dest),j = 1

and A(Src,Dest′),j = 0, ∀ Dest′ ∈ SentSrc \ {Dest} ,

(⃗0, 0, 0, 0) otherwise.

In Figure 6.2, this encoding is visualized in the tables of “Machine 1” and “Machine 3,”

where the entirety of each message is encoded in two fixed and distinct locations in the

300

embeddings z1 and z3, alongside metadata about the source of message and the validity α̃.

Each message is encoded as multiple identical packets in different embedding dimensions

and a large fraction of embedding locations are left blank. These features are critical for the

proper evaluation of the decoding step ψ.

We analyze the Y = sparsePropagateβ,m(X) outputs, letting

YDest = (YDest,1, . . . , YDest,m′), YDest,j ∈ (Rβ × R × R × R)m′
,

with all numbers represented with p-bit fixed precision. This analysis shows that there exists

an element-wise decoder MLP ψ satisfying ψDest(YDest) = RcvdDest for all Dest ∈ [N]. For

any j ∈ [m′], observe from the definition of zSrc and sparsePropagates,m that

YDest,j =:
(
MsgDest,j, SrcDest,j, DestDest,j, ᾱDest,j

)
= 1

|RcvdDest|
∑

Src∈RcvdDest

(
M̃sgSrc,j, S̃rcSrc,j, D̃estSrc,j, αSrc,j

)
.

Before formally analyzing this construction, we motivate its utility with Figure 6.2. The

encoding 2Y2 of Machine 2 contains four “clean” rows j with 2ᾱ2,j = 1, two “corrupted”

rows with 2ᾱ2,j = 2, and one “blank” row with 2ᾱ2,j = 0.

• The blank row contains no information about any incoming messages, since neither

Machine 1 nor Machine 3 encoded messages as packets in these locations. The fact

that 2ᾱ2,j = 0 certifies the blankness of this row, and hence, the decoder ψ can ignore

it.

• The corrupted rows correspond to locations where both Machine 1 and Machine 3

saved messages as packets. As a result, the corresponding embedding Y2,j = 1
2(z1,j+z3,j)

is an average of two non-zero embeddings and is hence “corrupted.” Because 2ᾱ2,j = 2,

the decoder ψ detects the corruption and ignores it when computing Rcvd2.

• The clean rows are locations where exactly one of Machine 1 and Machine 3 encoded

301

a message. Hence, these messages can be cleanly understood by the decoder ψ, which

simply validates the “cleanliness” of the row with 2ᾱ2,j = 1, determines whether Ma-

chine 2 is indeed the target recipient of the respective message, and saves all such

messages in the decoding Rcvd2.

We prove the validity of this intuition by ensuring that the encoding scheme successfully

encodes each incoming message in a clean row and that the category of each row (blank,

corrupted, or clean) can be detected by the decoder ψ. We observe the following sequence

of facts about every YDest. Let

RelevantDest := {(Msg, Src′, Dest′) : Src′ ∈ RcvdDest, (Msg, Dest′) ∈ SentSrc′}

denote the set of all messages sent by sources of messages sent to Dest.

1. Consider any outgoing message (Msg, Src′, Dest′) ∈ RelevantDest. By the property

of A guaranteed by Fact 6.11, there exists some j such that A(Src′,Dest′),j = 1 and

A(Src′′,Dest′′),j = 0 for every (Src′′, Dest′′) ∈ RelevantDest \ {(Src′, Dest′)} . As a result

of the definition of the encoding z and the averaged representation of YDest:

YDest,j = 1
|RcvdDest|

(Msg, Src′, Dest′, 1) . (6.1)

2. Conversely, if ᾱDest,j = 1/|RcvdDest|, then there exists a unique (Msg, Src′, Dest′) ∈

RelevantDest such that (6.1) is satisfied.

3. If at least one message is received, then the minimal nonzero value of ᾱDest is 1/|RcvdDest|.

We design ψDest to uniquely identify RcvdDest from YDest as follows. If at least one message

is received, then 1/|RcvdDest| can be identified by finding the smallest nonzero value of ᾱDest.

The decoder ψ inspects every YDest,j satisfying ᾱDest,j = 1/|RcvdDest|, which therefore satisfies

|RcvdDest| · (MsgDest,j, SrcDest,j, DestDest,j) ∈ RelevantDest.

302

Thus, if |RcvdDest| · DestDest,j = Dest, then |RcvdDest| · (MsgDest,j, SrcDest,j) ∈ RcvdDest, and

ψ encodes it as such.

Fact 6.11. For any n, b ≤ n, and d ≥ ⌈12b2 lnn⌉, there exists a binary matrix A ∈

{0, 1}n×d such that, for every subset S ⊆ [n] with |S| ≤ b, the columns of the sub-matrix

AS ∈ {0, 1}|S|×d contains all S-dimensional elementary vectors, i.e.,
{
e1, . . . , e|S|

}
is a subset

of the columns of AS.

Proof. Let col(A) denote the set of columns of A. We use the probabilistic method and

consider A with iid entries Ai,j ∼ Bernoulli(1
b+1). We bound the probability of failure:

Pr
[
∃S ∈

(
[n]
≤ b

)
s.t.

{
e1, . . . , e|S|

}
̸⊂ col(AS)

]
≤ b · nb Pr [ei ̸∈ col(AS)]

≤ nb+1
(

1 − 1
b+ 1 ·

(
1 − 1

b+ 1

)b)d

≤ nb+1
(

1 − 1
e(b+ 1)

)d

≤ nb+1 · exp
(

− d

e(b+ 1)

)

< exp
(

(b+ 1) lnn− d

3(b+ 1)

)
≤ 1.

Therefore, there exists a matrix A with the claimed property.

6.3.3.2 Proof of Theorem 6.3

We give a generalization of Theorem 6.3 that simulates a broader family of MPC protocol,

including those with more than n machines (i.e. γ ≥ δ). We accommodate this generaliza-

tion by simulating MPC protocols with the generalized transformer family TransformerN,Mm,L,H

detailed in Section 6.2.2.2 with supplemental blank “chain-of-thought” tokens.

Theorem 6.12 (Generalization of Theorem 6.3). For constant γ, δ > 0 and any potentially

randomized R-round (γ, δ)-MPC protocol π on nin input words and nout ≤ nin output words,

303

there exists a transformer T ∈ TransformerN,Mm,L,H with

N = nin,M = max(nin, O(n1+γ−δ
in)),m = O(n4δ

in log nin), L = R + 1, H = O(log log nin)

such that

T (Input):nout = π(Input).

Theorem 6.3 is an immediate consequence of Theorem 6.12 by noting that M = N for

sufficiently large nin when γ < δ. Its central construction is summarized in Figure 6.3.

Attention head
Attention head

Sparse propagation

Local

Softmax attention

Attention head

Local

Q(·)

K(·)⊤

V (·)

Multiple
hashing

Figure 6.3: To simulate MPC, the local computation within each machine is pushed inside
Q(·), K(·), V (·), and then the pairwise attention matrix performs message routing. To ensure
proper routing and also that the outputs of Q(·), K(·), V (·) are all tall-and-skinny matrices,
the construction carefully utilizes both multiple hashing and sparse propagation.

Proof. Consider any MPC protocol π with q = O(n1+γ−δ
in) machines and s = O(nδin) local

memory that, following the notation of Definition 6.1, maps Input ∈ Znin
2p to Output ∈ Znout

2p

with intermediates

MachineIn(1), . . . MachineIn(R) and MachineOut(1), . . . , MachineOut(R)

304

and deterministic functions (Localr,i)r∈[R],i∈[q] with

MachineOut(r)
i = Localr,i(MachineIn(r)

i).

To simulate the protocol, we let every machine i ∈ [q] correspond to a particular position

in the transformer’s context. A transformer that simulates π can then be constructed that

consolidates Input onto ⌈nin/s⌉ machines to match MachineIn(1); computes MachineIn(r+1)

from MachineIn(r) for each r = 1, . . . , R− 1; and computes and properly distributes Output

from MachineIn(r). These three elements of the construction exist due to the following

lemmas, which are proved later.

Lemma 6.13. For any MPC protocol π with local memory s and q machines with nin-word

inputs, there exists a transformer init ∈ Transformernin,max(nin,q)
s,1,1,din,dout with din = 1 and dout = s,

which, given Input ∈ Zn2p, has output satisfying init(Input) = MachineIn(1).

Lemma 6.14. For any R-round MPC protocol π with local memory s and q machines

and any r ∈ [R − 1], there exists a transformer round(r) ∈ Transformerqm,1,H,din,dout with

H = O(log log q), m = O(s4 log q), and din = dout = s which, given any valid input X =

MachineIn(r) ∈ Zq×m2p under the MPC protocol in vectorized form, has output satisfying

round(r)(X) = MachineIn(r+1).

Lemma 6.15. For any R-round MPC protocol π with local memory s and q machines with

nout-word output, there exists a transformer final ∈ Transformerq,max(nout,q)
s,1,1,din,dout for din = s and

dout = 1, which, given input X = MachineIn(R), has output final(X) with final(X)i,1 =

Outputi ∈ Z2p.

The proof immediate from the three lemmas. We construct the final transformer T by

stacking the single-layer constructions as a single transformer with embedding dimension m:

T = final ◦ round(R−1) ◦ · · · ◦ round(1) ◦ init.

305

The proofs of Lemmas 6.13 and 6.15 rely on simple constructions with fixed attention

matrices and appear in Section 6.7. The proof of Lemma 6.14 relies on Lemma 6.4 and is

proved in the following section.

Proof of round(r) construction. To prove the existence single-layer transformer that sim-

ulates round(r), we separate the computational task into two steps: (i) obtaining MachineOut(r)

from MachineIn(r) and (ii) obtaining MachineIn(r+1) from MachineOut(r). Because the for-

mer requires no communication between machines, we can encode that conversion in the

input MLP to the transformer.

The nontrivial part of the reduction is thus the latter step, which we obtain by utilizing

multiple single-headed attention units routeβ,s of Lemma 6.4 to route messages of differ-

ent sizes to their recipients. The difficulty in this task is the mismatch in functionality

between the two computational models: while the MPC model ensures that each recipient

automatically receives its intended messages, transformers must implement this functionality

manually, while ensuring that multiple messages do not overwrite one another.

The following lemma implements that routing functionality for all messages, using dif-

ferent attention heads depending on the size of the message. We prove Lemma 6.14 at the

end of the section as a simple modification of Lemma 6.16.

Lemma 6.16. For any R-round MPC protocol π with local memory s and q machines and

any r ∈ [R− 1], there exists a transformer route(r) ∈ Transformerqm,1,H with H = O(log log q)

and m = O(s4 log q), which, given any valid input X = MachineOut(r) ∈ Zq×m2p under the

MPC protocol in vectorized form, has output satisfying route(r)(X) = MachineIn(r+1).

Because at most s messages can be shared and received by each machine, and each

message is of size at most s, we can prove an single-headed alternative to Lemma 6.16 with

a somewhat suboptimal dependence on embedding dimension. By applying by Lemma 6.4

with message size β = s, bounded number of messages s, and context length N = q, there

exists a transformer routes,s with H = 1 and m = O(s5 log q) that computes MachineIn(r+1)

306

from MachineOut(r+1) by regarding each outgoing message as belonging to Zs2p by adding

padding dimensions as needed.

We improve the embedding dimension tom = O(s4 log q) by running in parallelO(log logN)

transformers guaranteed by Lemma 6.4 that encode differently sized messages. The number

of heads H increases at a doubly-logarithmic rate because of a doubling trick employed on

the size of message encodings used by constituent part.

Proof. We describe an implementation of route(r) by considering any fixed input

MachineOut(r) ∈ Zq×m2p .

For each i ∈ [q] and some integer sequence 1 = β0 < β1 < · · · < βH = s + 1, we partition

MachineOut(r)
i into H disjoint subsets as follows. For any h ∈ [H], let

Senthi :=
{
(Msg, Dest) ∈ MachineOut(r)

i : dim(Msg) ∈ [βh−1, βh]
}
,

Rcvdhi :=
{
(Msg, Src) ∈ MachineIn(r+1)

i : dim(Msg) ∈ [βh−1, βh]
}
,

and note that MachineOut(r)
i = ⋃̇H

h=1Senthi and MachineIn(r+1)
i = ⋃̇H

h=1Rcvdhi .

For each h ∈ [H], note that dim(Msg) ≤ βh, and
∣∣∣Senthi

∣∣∣ =
∣∣∣Rcvdhi

∣∣∣ ≤ s/βh−1. As

a result, Lemma 6.4 guarantees the existence of a single-headed transformer route(r)
h such

that route(r)
h (Senth) = Rcvdh) with embedding dimension mh ≤ Cs4βh log(q)/β4

h−1 for some

sufficiently large universal constant C.

We defined route(r) as the computation of route(r)
1 , . . . , route(r)

H as H parallel heads of

self-attention with disjoint embeddings concatenated into in m-dimensional embedding space

with m = ∑H
h=1 mh. We conclude by letting

βh =

1 if h = 0,

min(2β3
h−1, q + 1) if h ∈ [H],

307

noting that βH = q + 1 for H = O(log log q), and bounding m:

m ≤
H∑
h=1

Cs4 log(q)βh
β4
h−1

≤ 2Cs4 log(q) ·
H∑
h=1

1
βh−1

≤ 2Cs4 log(q) ·
H∑
h=1

1
2h−1 = O(s4 log q).

Proof of Lemma 6.14. To simulate a round of MPC protocol π by mapping MachineIn(r)

and ρr to MachineIn(r+1), the single-layer transformer round(r) first computes MachineOut(r)

element-wise and then properly routes messages in MachineOut(r) to their proper destination.

We define round(r) = route(r) ◦ Localr for route(r) in Lemma 6.16 and

Localr,i(MachineIn(r)
i , ρr,i) = MachineOut(r)

i .

This can be immediately constructed as a single-layer transformer by prepending the embed-

dings Q,K, V of the construction of route(r) with Localr, using Q ◦ Localr, K ◦ Localr,

V ◦ Localr as the embeddings of round(r).

6.3.4 Proofs for Section 6.3.2

6.3.4.1 Proof of Theorem 6.8

As in Section 6.3.3.2, we give and prove a generalized version of Theorem 6.8 that broad-

ens the family of considered transformers to include masked models and those that contain

extra blank chain-of-thought tokens, using notation from Section 6.2.2.2.

Theorem 6.17 (Generalization of Theorem 6.8). For any transformer T ∈ TransformerN,Mm,L,H

(or MaskTransformerN,Mm,L,H) with mH = O(N δ) for δ ∈ (0, 1) and M = Θ(N1+α) for α ≥ 0

and for any δ′ ∈ (δ, 1), there exists an O(L(1+α)
δ′−δ)-round (1 + 2α + δ′, δ′)-MPC protocol with

q = O(M2) machines with s = O(N δ′) local memory that outputs the same sequence as T (X)

for all X ∈ RN .

Theorem 6.8 is an immediate consequence by setting M := N and α := 0.

308

(Qh,i,Kh,i, Vh,i)

Token machines

Key/value
propagation
machines

Query
propagation
machines

Q⊤
h,iKh,i′

Inner product machines

Figure 6.4: This construction employs M2 inner product machines to compute the entries
of the softmax matrix, and M token machines to compute all values of Q(·), K(·), V (·).
What is most complex about the construction are the additional machines and message
routing needed to propagate these values efficiently between the inner product machines
and the token machines, in particular carefully aggregating the output of the attention
mechanism and computing its normalization. To this end, the protocol uses additional
machines, organized into a tree with branching factor b = O(N δ′−δ) and depth D = O(1+α

δ′−δ).

Proof. It suffices to show that an O(1+α
δ′−δ)-round MPC protocol π that simulates a single-layer

transformer T ∈ TransformerMm,m,m,1,H with m-dimensional input and output embeddings

since a depth-L transformer can be constructed by applying L such protocols sequentially.

Moreover, we can ignore the difference between the input context length N and the context

length with padding M by assuming that the input contains M tokens.

Concretely, we consider H heads with embeddings (Qh, Kh, Vh)h∈[H], element-wise output

MLP ψ = (ψ1, . . . , ψM), and any fixed masks Λ1, . . . ,ΛH ∈ {−∞, 0}M×M . We show that

there exists some π such that for any Input = X ∈ RM×m,

π(X) = ψ

(
X +

H∑
h=1

softmax(Qh(X)Kh(X)T + Λh)Vh(X)
)
,

where numbers in X and all intermediate products of the transformer computation can be

309

represented with p = O(logM) bit precision.

Our MPC protocol π, which will use q = O(M2) machines and s = Θ(N δ′) words of local

memory per machine, assigns each of the q machines to one of four possible roles: token

machine, inner product machine, query propagation machine, and key/value propagation

machine. We describe these machines below. For the sake of readability, we identify machines

with easily interpretable descriptions and use the bijection ID to map each of those to a

token in [q] that is used for routing messages. Our protocol has two important parameters:

b = ⌊s/(4mH)⌋ = O(N δ′−δ) is the branching factor of the protocol, and D = ⌈logb(M)⌉ =

O(1+α
δ′−δ) is the depth of the protocol.

At a high level (see Figure 6.4 for a corresponding diagram), the protocol involves comput-

ing all intermediate products of the of a transformer unit by performing MLP computations

in N token machines, computing inner products in N2 inner product machines, and using

O(N2) other propagation machines arranged in trees to share information between the two

in O(D) rounds. The protocol draws inspiration from Section 5.5.7.1, which uses a similar

construction to simulate transformers with Congest protocols on fixed graphs. It is also

similar to the MPC implementation of the MPI AllReduce functionality (MPICH, 2023)

described by Agarwal et al. (2014).

• Machine i ∈ [M] is a token machine that performs all element-wise computation on the

ith token embedding, including the computation of (Qh,i(Xi), Kh,i(Xi), Vh,i(Xi))h∈[H]

and the final MLP output ψi. Let ID(i) = i.

• Machine (i, i′) ∈ [M]2 is an inner product machine designed to compute the inner

products (Qh,i(Xi)TKh,i′(Xi′))h∈[H].

• Machine (Q, i, d, k) for token i ∈ [M], depth d ∈ [D − 1] and position k ∈ [bd] is a

query propagation machine. This machine is responsible for handling communication

of query tokens (Qh,i(Xi))h∈[H] and of all partially-computed attention outputs for the

310

ith token between token machine i and inner product machines (i, i′) for

i′ ∈ Descendantsd,k :=
{
bD−d(k − 1), . . . , bD−dk

}
∩ [M].

Concretely, if ℓ = 1, then the machine communicates with token machine i and query

propagation machines (Q, i, d+ 1, k′) for

k′ ∈ Childrenk := {b(k − 1) + 1, . . . , bk} .

If ℓ = D − 1, then it communicates with inner product machines (i, i′) for i′ ∈

Childrenk∩ [M] and query propagation machine (Q, i, d−1, ⌊k/b⌋). Otherwise, it com-

municates with query propagation machines (Q, i, d−1, Parentk), for Parentk := ⌊k/b⌋,

and (Q, i, d+ 1, k′) for k′ ∈ Childrenk.

• Machine (KV, i, d, k) is a key/value propagation machine. This machine is analogous

to a query propagation machine, except that it is responsible for the communication

of key and value tokens (Qh,i(Xi), Vh,i(Xi))h∈[H] between token machine i and inner

product machines (i, i′) for i′ ∈ Descendantsd,k.

Since the total number of machines is q = M +M2 +M
∑D−1
d=1 b

d = O(M2), we conclude

that the global memory of the protocol is qs = O(N2+2α+δ′), which means the protocol

is (1 + 2α + δ′, δ′)-MPC. We simulate the transformer using a four stage protocol using

2D + 3 = O(1+α
δ′−δ) rounds of MPC computation.

Stage 1: Token dispersion. Because the input to an MPC protocol Input = X is

divided equally among machines 1, . . . , ⌈MmH/s⌉, the first round of MPC computation

routes each input token Xi to its respective token machine. This is completed by setting

(i,Xi) ∈ MachineOut(1)
i′ if (i,Xi) ∈ MachineIn(1)

i′ . Thus, MachineIn(2)
i = {(Src, Xi)} for all

token machines i ∈ [M].

311

Stage 2: Embedding propagation. In rounds 2, . . . , D + 1, π computes the respective

key, query, and value embeddings in each token machine and propagate them to respective

inner product machines using the query and key/value propagation machines. Concretely:

• In round 2, each token machine i (whose memory contains Xi) computes m-dimensional

embeddings embeddings

Qi := (Qh,i(Xi))h∈[H], Ki := (Kh,i(Xi))h∈[H], Vi := (Vh,i(Xi))h∈[H].

It transmits each embedding to the respective depth-1 query and key/value propagation

machine nodes, while also preserving knowledge of its own Xi. (In all further rounds,

we assume that ((i,Xi)) ∈ MachineOut(r)
i to ensure that token machine i can compute

the skip-level connection at the end.) That is,

MachineOut(2)
i = {(i,Xi)}

∪ {(ID(Q, i, 1, k′), Qi) : k′ ∈ Children1}

∪ {(ID(KV, i, 1, k′), (Ki, Vi)) : k′ ∈ Children1} .

Note that the total amount of messages sent is b · mH + 2b · mH + m ≤ s and that

the only machines receiving messages are size m-messages by token machines and size

≤ 4mH messages by query and key/value propagation machines.

• In rounds r ∈ {3, . . . , D}, each query and key/value propagation machine of depth

d = r − 2 passes embeddings onto their successors. That is,

MachineOut(r)
ID(Q,i,d,k) = {(ID(Q, i, d+ 1, k′), Qi) : k′ ∈ Childrenk} ,

MachineOut(r)
ID(KV,i,d,k) = {(ID(KV, i, d+ 1, k′), (Ki, Vi)) : k′ ∈ Childrenk} .

• In round D + 1, the depth-(D − 1) query and key/value propagation machines pass

312

their embeddings onto their respective inner product machines. That is,

MachineOut(D+1)
ID(Q,i,D−1,k) = {(ID(i, k′), Qi) : k′ ∈ Childrenk ∩ [M]} ,

MachineOut(D+1)
ID(KV,i,D−1,k) = {(ID(k′, i), (Ki, Vi)) : k′ ∈ k′ ∈ Childrenk ∩ [M]} .

Stage 3: Softmax computation. In rounds D + 2, . . . , 2D + 2, computes each inner

product and iteratively builds up each attention output by accumulating partial softmax

computations. For each query propagation machine (Q, i, d, k) and h ∈ [H], we let Si,d,k,h

and Zi,d,k,h denote its partial normalization and softmax computations respectively. That is,

Zi,d,k,h =
∑

i′∈Descendantsd,k

exp(Qh,i(Xi)TKh,i′(Xi′))1 {Λi,i′ = 0}

=

∑
k′∈Childrenk

Zi,d+1,k′,h if d ≤ D − 1,

exp(Qh,i(Xi)TKh,k(Xk))1 {Λi,k = 0} if d = D.

Si,d,k,h = 1
Zi,d,k,h

∑
i′∈Descendantsd,k

exp(Qh,i(Xi)TKh,i′(Xi′))Vh,i′(Xi′)1 {Λi,i′ = 0}

=

∑
k′∈Childrenk

Zi,d+1,k′,h

Zi,d,k,h
· Si,d+1,k′,h if d ≤ D − 1,

Vh,k(Xk)1 {Λi,k = 0} if d = D;

Note that Si,0,1,h = (softmax(Qh(X)Kh(X)T + Λh)Vh(X))i and let Si,d,k = (Si,d,k,h)h∈[H] ∈

RH×m and Zi,d,k = (Zi,d,k,h)h∈[H] ∈ RH

• In round D + 2, each inner product machine computes its respective inner products

and passes its partial softmax computations to its parent query propagation machine.

As a result of round D + 1, each inner product machine (i, i′) recently received the

313

embeddings necessary to compute the relevant inner product:

MachineIn(d+2)
ID(i,i′)

= {(ID(Q, i, D − 1, Parenti), Qi), (ID(KV, i′, D − 1, Parenti′), (Ki′ , Vi′))} .

It propagates the respective partial computations Si,D,i′ and Zi,D,i′ as follows:

MachineOut(D+2)
ID(i,i′) = {(ID(Q, i, D − 1, Parenti), (Si,D,i′ , Zi,D,i′))} .

Note that each depth-(D − 1) query propagation machine receives messages of size at

most b · (m+ 1)H ≤ s.

• In rounds r ∈ {D + 3, . . . , 2D}, partial softmax computations are received by query

propagation machines of depth d = 2D + 1 − r, added together, and passed along to

their parent machines. That is, given

MachineIn(r)
ID(Q,i,d,k) = {(ID(Q, i, d+ 1, k′), (Si,d+1,k′ , Zi,d+1,k′)) : k′ ∈ Childrenk} ,

each respective machine computes Si,d,k and Zi,d,k recursively and propagates

MachineOut(r)
ID(Q,i,d,k) = {(ID(Q, i, d− 1, Parentk), (Si,d,k, Zi,d,k)} .

• In round 2D+ 1, the top-most query propagation tokens pass their partial sums to the

token machines:

MachineOut(2D+1)
ID(Q,i,1,k) = {(i, (Si,1,k, Zi,1,k))} .

• In round 2D+2, the token machines compute their respective output of the transformer,

314

T (X)i. Given input

MachineIn(2D+2)
i = {(k′, (Si,1,k′ , Zi,1,k′)) : k′ ∈ Children1} ∪ {(i,Xi)} ,

the token machine i computes Si,0,1 and Hi,0,1 and then

T (X)i = ψi

(
Xi +

H∑
h=1

softmax(Qh(X)Kh(X)T + Λh)T
i Vh(X)

)
= ψi

(
Xi +

H∑
h=1

Si,0,1,h

)
.

This quantity is used as an intermediate product for the final phase of computation.

Stage 4: Token compression. We invert Stage 1 by properly compressing the MPC out-

put in the final round 2D + 3. That is, we let MachineOut(2D+2)
i = {(⌊imH/s⌋ + 1, T (X)i)}

for each token machine i ∈ [M], which ensures that the outputs are condensed in the proper

order in machines 1, . . . , ⌈MmH/s⌉.

Precision analysis. In order for the proof to be fully sound, care must be taken to ensure

that the computation of each self-attention output Si,0,1,h is handled with proper numeric

precision, as discussed in Section 6.2.2.2. We show that each Si,0,1,h is a valid implementation

of its corresponding self-attention unit, per Definition 6.4.

To do so, we let Ŝi,d,k,h and Ẑi,d,k,h denote the p-bit representations of Si,d,k,h and Zi,d,k,h,

where scalars of Ŝi,d,k,h and log(Ẑi,d,k,h) are represented as discretized rational numbers z

satisfying |z| ≤ 1
22p/2 and z · 2p/2 ∈ Z. For some sufficiently small p′ = Θ(p), we assume that

all embeddings Qh(X), Kh(X), Vh(X) have scalars z satisfying |z| ≤ 1
22p′/2 and z · 2p′/2 ∈ Z.

We prove that for each h ∈ [H],

∥∥∥Si,0,1,h − Ŝi,d,k,h
∥∥∥

∞
= O

(1
2p′

)
.

315

Boundedness of intermediate representations is not an issue because

log(Zi,d,k,h) ≤ O(log(N) + max
i,i′

|Q(X)T
i K(X)i′ |) = exp(O(p′)),

and

∥Si,d,k,h∥∞ ≤ ∥V (X)∥∞ ≤ 2p′/2.

It remains to show that that all intermediate representations are sufficiently close to their

exact counterparts. We prove the following via an inductive argument for d = D,D−1, . . . , 0:

∣∣∣log(Zi,d,k,h) − log(Ẑi,d,k,h)
∣∣∣ ≤ (2b)D−d

2p/2 , (6.2)
∥∥∥Si,d,k,h − Ŝi,d,k,h

∥∥∥
∞

≤ 2p′/2(8b)D−d

2p/2 . (6.3)

If (6.3) holds for d = 0, then the claim holds for sufficiently large p = Θ(p′).

For the base case D, we verify (6.3) by

∥∥∥Si,D,k,h − Ŝi,D,k,h
∥∥∥

∞
=
∥∥∥Vh,k(Xk)1 {Λi,k = 0} − Ŝi,D,k,h

∥∥∥
∞

≤ 1
2p/2 ,

due to the ability to access Vh,k(Xk) and round it directly. We verify (6.2) due to the

immediate access to and boundedness of Qh,i(Xi)TKh,k(Xk):

|log(Zi,d,k,h)| ≤
∣∣∣Qh,i(Xi)TKh,k(Xk)

∣∣∣ ≤ ∥Qh,i(Xi)∥2 ∥Kh,k(Xk)∥2 ≤ N · 2p′/2.

We prove the inductive step for d − 1, assuming that the inductive hypothesis holds for

316

d. We first address Ẑi,d−1,k,h by employing the Lipschitzness of the log-sum-exp function.

∣∣∣log(Zi,d−1,k,h) − log(Ẑi,d−1,k,h)
∣∣∣

≤ 1
2p/2 +

∣∣∣∣∣log
(∑

k′
exp(log(Zi,d,k′,h))

)
− log

(∑
k′

exp(log(Ẑi,d,k′,h))
)∣∣∣∣∣

≤ 1
2p/2 +

∑
k′

∣∣∣log(Zi,d,k′,h) − log(Ẑi,d,k′,h)
∣∣∣

≤ 1
2p/2 + b · (2b)D−d

2p/2 ≤ (2b)D−d+1

2p/2 .

To obtain (6.3) for d− 1, we first note that for sufficiently large p:

∣∣∣∣∣1 − Ẑi,d,k′,hZi,d−1,k′,h

Zi,d,k,hẐi,d−1,k′,h

∣∣∣∣∣ =
∣∣∣∣∣1 − exp

(
log

(
Ẑi,d,k′,h

Zi,d,k′,h

)
+ log

(
Zi,d−1,k,h

Ẑi,d−1,k,h

))∣∣∣∣∣
≤ 1 + 2

(∣∣∣∣∣log Ẑi,d,k
′,h

Zi,d,k′,h

∣∣∣∣∣+
∣∣∣∣∣log Zi,d−1,k,h

Ẑi,d−1,k,h

∣∣∣∣∣
)

≤ 4 · (2b)D−d+1

2p/2 .

We conclude by using the fact that each Si,d−1,k,h is a convex combination of other Si,d,k,h.

∥∥∥Si,d−1,k,h − Ŝi,d−1,k,h

∥∥∥
∞

≤ 1
2p/2 +

∑
k′

∥∥∥∥∥ Zi,d,k′,h

Zi,d−1,k′,h
Si,d,k′,h − Ẑi,d,k′,h

Ẑi,d−1,k′,h

Ŝi,d,k′,h

∥∥∥∥∥
∞

≤ 1
2p/2 +

∑
k′

Zi,d,k′,h

Zi,d−1,k′,h

∥∥∥∥∥Si,d,k′,h − Ẑi,d,k′,hZi,d−1,k′,h

Zi,d,k,hẐi,d−1,k′,h

Ŝi,d,k′,h

∥∥∥∥∥
∞

≤ 1
2p/2 +

∑
k′

Zi,d,k′,h

Zi,d−1,k′,h

∥∥∥Si,d,k′,h − Ŝi,d,k′,h

∥∥∥
∞

+
∑
k′

Zi,d,k′,h

Zi,d−1,k′,h

∥∥∥Ŝi,d,k′,h

∥∥∥
∞

∣∣∣∣∣1 − Ẑi,d,k′,hZi,d−1,k′,h

Zi,d,k,hẐi,d−1,k′,h

∣∣∣∣∣
≤ 1

2p/2 + 2p′/2(8b)D−d

2p/2 + 2p′/2∑
k′

Zi,d,k′,h

Zi,d−1,k′,h

∣∣∣∣∣1 − Ẑi,d,k′,hZi,d−1,k′,h

Zi,d,k,hẐi,d−1,k′,h

∣∣∣∣∣
≤ 2 · 2p′/2(8b)D−d

2p/2 + 2p′/2 · 4 · (2b)D−d+1

2p/2 ≤ 2p′/2(8b)D−d+1

2p/2 .

Owing to the fact that D and p′ are constants and b = NO(1), a sufficiently large choice

317

of p guarantees that the implementation is valid.

6.3.4.2 Proof of Corollary 6.9

Corollary 6.9. Let ϵ ∈ (0, 1) be any constant, and let D ≥ N ϵ. Assume Conjecture 6.1, and

suppose there exists T ∈ TransformerNm,L,H with mH = O(D1−ϵ) that decides connectivity of

any input graph with connected components having diameter ≤ D. Then L = Ω(logD).

We prove Corollary 6.9 by combining Theorem 6.17 and Conjecture 6.1.

Proof. Fix any D ≤ N with D ≥ N ξ for some ξ ∈ (0, 1]. Let C1 denote a cycle graph on D

vertices, and let C2 denote the union of two cycle graphs each with D/2 vertices.

Suppose there is a transformer T ∈ TransformerNm,L,H with mH = O(D1−ϵ) that deter-

mines the connectivity of graphs with at most N edges and connected components with

diameter at most D. We will show that it can be used to design an Θ(L)-round MPC

protocol π that distinguishes graphs C1 and C2 with n = D edges.

Let π′ be an MPC protocol that exactly computes the output of T using taking R = O(L)

rounds with local memory s = O(D1−ϵ/2) and q = O(N2) machines, which is guaranteed to

exist by Theorem 6.17.

Let n := 2
⌊
D
4

⌋
and k :=

⌊
N
n

⌋
. We design π with the same local memory and machine

count to determine the identity of input graph G = (V,E) ∈ {C1, C2} provided as an

arbitrary sequence of n edges. Let u ∈ V be an arbitrary vertex in G.

Using a constant number of MPC rounds, π converts G into a graph G′ = (V ′, E ′) with

|E ′| = kn+ k ≤ N and diameter n+ 2 ≤ D such that G′ is connected if and only if G = C1.

We do so by letting G′ be composed of k copies G1, . . . , Gk of G on separate vertices, along

with k extra edges connecting the vertex corresponding to u in each Gj (say uj ∈ Gj) to

u1 ∈ G1. This ensures that the connectivity correspondence and edge count diameter bounds

are met. Since G′ can be produced by simply copying edges from G and adding an additional

edge each time an edge containing u is copied, π can produce G′ in O(1) rounds.

318

Then, π simulates π′ on G′ and returns its output. Since G′ is connected if and only

if G = C1, this protocol suffices to distinguish C1 and C2. Because the protocol uses s =

O(n1−ϵ/2) local memory and q = O(n2/ξ) machines, Conjecture 6.1 implies that π (and hence

T) only exists if L = Ω(log n) = Ω(logN).

6.4 Transformers for k-hop induction heads

We complement the generality of Section 6.3 by studying, both empirically and theo-

retically, a specific toy sequential modeling task which will also serve (in Section 6.6) as

a problem to separate the representational capabilities of transformers from that of other

neural architectures.

This task, called the k-hop induction heads task, draws inspiration from the original

induction heads task defined and analyzed on trained language models and in synthetic

environments by Elhage et al. (2021) (see also Bietti et al., 2023). The standard induction

heads task completes bigrams auto-regressively by predicting the token that follows the

last previous occurrence of the final token in the sequence. For example, given the input

X = baebcabebdea, the standard induction heads task is to complete the final bigram by

predicting b for the final token.

The k-hop induction heads tasks generalizes this mechanism by repeatedly using the

completion of a bigram to determine the next bigram to complete. In the previous example,

the 2-hop induction heads task is to predict c for the final token:

baebcabebdea.

Definition 6.5. For any finite alphabet Σ, define the map hopk : ΣN → (Σ ∪ {⊥})N by

319

hopk(X)i = Xfindk
X(i) if findkX(i) ̸= 0 and ⊥ otherwise, where

find1
X(i) = max({0} ∪ {j ∈ N : j ≤ i, Xj−1 = Xi});

findkX(i) = find1
X(findk−1

X (i)) for k ≥ 2.

The k-hop induction heads task is to compute, for each i = 1, . . . , N , the value of hopk(X)i

from (X1, . . . , Xi).

We note a similarity to the LEGO tasks of Zhang et al., 2023, who empirically study

the ability of transformers to learn sequential operations on Abelian groups and observe the

ability to perform more operations than the depth of the network.

6.4.1 Log-depth transformer for k-hop induction heads

Although hopk appears to requires k steps to solve, we show that it is solved by a

transformer of depth O(log k).

Theorem 6.18. For any k ∈ N and alphabet Σ with |Σ| ≤ N , there exists

T ∈ MaskTransformerNm,L,H

that computes hopk : ΣN → (Σ ∪ {⊥})N with m = O(1), L = ⌊log2 k⌋ + 2, and H = 1.

In contrast to Corollary 6.5, this construction has constant embedding dimension and is

achieved by a causally-masked transformer. As such, its proof in Section 6.4.3.1 depends on

other techniques that exploit the simplicity of the problem and build on the induction heads

construction of Bietti et al. (2023), rather than simply applying Theorem 6.3.

We give evidence for the optimality of this construction by proving a conditional lower

bound using Theorem 6.8, as was done in Corollary 6.9.

Corollary 6.19. Assuming Conjecture 6.1, for any constants ξ ∈ (0, 1/2] and ϵ ∈ (0, 1),

320

and any even k = Θ(N ξ), every transformer T ∈ MaskTransformerNm,L,H with mH = O(k1−ϵ)

that computes hopk has depth L = Ω(log k).

6.4.2 Log-depth transformer learned from data

We empirically assess whether the representational trade-offs elucidated by tasks effi-

ciently solved by parallelizable algorithms have implications for optimization and gener-

alization properties of transformers. To that end, we trained auto-regressive transformer

architectures of varying sizes to solve hopk(X) for a variety of values of k in order to under-

stand how changing depth impacted the performance of the learned models, the goal being

to verify the sufficiency of logarithmic depth, just as in our theory.

In brief, we trained transformers with 500K to 5M parameters and depths {2, 3, 4, 5, 6}

with Adam to solve hopk(X) for k ∈ {0, . . . , 16} with context length |N | = 100 and alphabet

size |Σ| = 4. We trained the transformers in a multi-task setting, where a single model was

trained to predict the sequence hopk(X) auto-regressively when provided withX and k drawn

at random. Further experimental details can be found in Section 6.5.1, and the experimental

code is available at https://github.com/chsanford/hop-induction-heads.

We found that transformers are indeed capable of learning hopk given sufficient training

time, and that the largest learnable k grows exponentially with the depth. As can be seen in

Figure 6.5, a six-layer neural network performs well on all k ≤ 16, a five-layer on k ≤ 8, a four-

layer on k ≤ 4, and so forth. We further explore these experimental results in Section 6.5.2

and observe a performance threshold appears to specifically lie at ⌊log2 k⌋ + 2 that coincides

with Theorem 6.18. This logarithmic dependence of the depth on k persists in a larger-width

regime, which is explored in Section 6.5.3. In the finite sample regime where neural networks

are prone to overfit, our investigations in Section 6.5.5 note improved generalization in deeper

models, which suggests that deeper models have a favorable inductive bias for tasks like hopk.

Moreover, the learned models are surprisingly interpretable. We examined the activation

patterns of attention matrices, and found close correspondences to useful intermediate prod-

321

https://github.com/chsanford/hop-induction-heads

1 2 4 8 16
k

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Er
ro

r

L-layer transformer token-wise classification error on hopk

L = 2
L = 3
L = 4
L = 5
L = 6

Figure 6.5: Evaluation of transformers of depths L ∈ {2, 3, 4, 5, 6} trained on a mixture of
hopk for k ∈ {0, . . . , 16} evaluated on n = 100 samples of size N = 100 from each hopk.
Incrementing depth approximately doubles the largest k such that hopk is learnable with
small error.

ucts such as findjX . Taken together, these indicate that the learned models mechanistically

resemble the construction employed in the proof of Theorem 6.18. See Section 6.5.4 for our

investigation of model interpretability.

6.4.3 Proofs for Section 6.4.1

6.4.3.1 Proof of Theorem 6.18

Theorem 6.18. For any k ∈ N and alphabet Σ with |Σ| ≤ N , there exists

T ∈ MaskTransformerNm,L,H

that computes hopk : ΣN → (Σ ∪ {⊥})N with m = O(1), L = ⌊log2 k⌋ + 2, and H = 1.

Proof. We design a masked transformer that implements hopk in two phases. The first two

layers compute find1
X(i) for each i ∈ [N] using a similar approach to the induction heads

construction of Bietti et al., 2023. The subsequent layers employ a doubling trick to compute

each find2ℓ−2

X (i) after ℓ layers.

322

To do so we employ two technical lemmas (which are proved in Section 6.7.4) that describe

the implementation of masked self-attention units that copy .

Lemma 6.20. For some m ≥ d+ 2, τ : [N] × Rm → [N], and ρ : Rm → Rd, there exists an

attention head lookUpτ,ρ ∈ MaskAttnNm with precision p = O(logN) and m ≥ d+ 2 satisfying

lookUpτ,ρ(X)i,:d = ρ(Xτ(i,Xi)).

Lemma 6.21. For finite alphabet Σ, m ≥ d + 2, µ1, µ2 : Rm → Σ, and ρ : Rm → Rd, there

exists an attention head lastOccurrenceµ,ρ ∈ MaskAttnNm with precision p = O(log(N |Σ|))

such that,

lastOccurrence(X)i,:d =

ρ(⃗0) if ∀ i′ < i : µ1(Xi′) ̸= µ2(Xi),

ρ(Xi′) if i′ = max {i′ < i : µ1(Xi′) = µ2(Xi)} .

The first layer obtains the previous token Xi−1 from each Xi. This is accomplished via

the self-attention head lookUpτ,ρ with τ(i,Xi) = i− 1 and ρ(Xi) = Xi.

The second layer retrieves (find1
X(i), Xfind1

X(i)) for each i ∈ [N] by finding the most recent

token whose preceding token is Xi. It does so by employing the lastOccurrenceµ1,µ2,ρ primitive

on the intermediate state X1
i = (Xi, Xi−1) with µ1(X1

i) = Xi−1, µ2(X1
i) = Xi, and ρ(X1

i) =

(i,Xi).

• If find1
X(i) > 0, then lastOccurrenceµ1,µ2,ρ(X1

i) = (find1
X(i), Xfind1

X(i)).

• Otherwise, it obtains 0⃗ and performs no further passing, returning ⊥ after all L layers.

If k = 1, the transformer returns T (X)i = Xfind1
X(i) = hopk(X)i.

Otherwise, let k := ∑⌊log2 k⌋
j=0 kj2j for some kj ∈ {0, 1}, and let k:ℓ = ∑ℓ

j=0 kj2j. Construct

a transformer inductively to ensure that the ith output of the ℓth layer Xℓ
i ∈ Rm for ℓ ≥ 2

contains an encoding of

(
Xi, find2ℓ−2

X (i), Xfind2ℓ−2
X (i), findk:ℓ−2

X (i), X
find

k:ℓ−2
X (i)

)
.

323

Note that the base case holds for ℓ = 2, since findk:0
X (0) = find1

X(0) if k0 = 0 and is i

otherwise.

For each ℓ = 1, . . . , ⌊log2 k⌋ + 1, we assume that the inductive hypothesis holds up to

layer ℓ and prove that it also holds for layer ℓ+1. To do so, we use a lookUpτ,ρ self-attention

head with τ(i,Xℓ
i) = find2ℓ−2

X (i) and

ρ(Xℓ
i) = (find2ℓ−2

X (i), Xfind2ℓ−2
X (i), findk:ℓ−2

X (i), X
find

k:ℓ−2
X (i)

),

which ensures that Xℓ+1
i can encode

find2ℓ−1

X (i) = find2ℓ−2

X (find2ℓ−2

X (i))

Xfind2ℓ−1
X (i) = Xfind2ℓ−2

X (find2ℓ−2
X (i))

findk:ℓ−1
X (i) =

findk:ℓ−2

X (find2ℓ−2

X (i)) if kℓ−1 = 1

findk:ℓ−2
X (i) if kℓ−1 = 0

X
find

k:ℓ−1
X (i)

=

X

find
k:ℓ−2
X (find2ℓ−2

X (i))
if kℓ−1 = 1

X
find

k:ℓ−2
X (i)

if kℓ−1 = 0.

As a result, the output of layer L = ⌊log2 k⌋ + 2 contains an encoding of

X
find

k:L−2
X (i)

= Xfindk
X(i) = hopk(X)i

for each i ∈ [N]. This is returned as the output of T (X).

6.4.3.2 Proof of Corollary 6.19

Corollary 6.19. Assuming Conjecture 6.1, for any constants ξ ∈ (0, 1/2] and ϵ ∈ (0, 1),

and any even k = Θ(N ξ), every transformer T ∈ MaskTransformerNm,L,H with mH = O(k1−ϵ)

324

that computes hopk has depth L = Ω(log k).

Proof. The proof is analogous to that of Corollary 6.9. Let C1 be a cycle on k vertices, and

C2 be the union of two cycles each on k/2 vertices. So both C1 and C2 have k edges. We show

that the existence of T ∈ TransformerNm,L,H with mH = O(k1−ϵ) such that T (X) = hopk(X)

can be used to design an Θ(L)-round MPC protocol π to solve the task.

As a result of Theorem 6.17, there exists an MPC protocol π′ that exactly computes

T with R = Θ(L) rounds with local memory s = O(D1−ϵ/2) and q = O(N2) machines.

On input G = (V,E) ∈ {C1, C2}, we design a constant-round protocol that computes an

sequence X ∈ ΣN such that hopk(X)N exactly determines the identity of G.

Since the k edges are passed to π in an unknown ordering with unknown labelings, we let

V = [k] and denote the edges as e1 = {u1, v1} , . . . , ek = {uk, vk}. We define an operator next

over the domain {(u, v), (v, u) : {u, v} ∈ E} as follows: for {u, v} ∈ E, let next(u, v) := (v′, u)

where v′ ∈ V is the unique vertex v′ ̸= v such that {u, v′} ∈ E. Notice that next is well-

defined because all vertices in a cycle have degree 2. If G = C2, then nextk/2(ui, vi) = (ui, vi)

for any i ∈ [k].

To set up our encoding of G as a sequence X, we first construct a gadget for each edge

ei that will be used to compute a single next(ui, vi). Under the alphabet Σ = [k] ∪ {†, ⋆,_},

we define the nine-token sequence

ei = ⋆ ui † vi ui † vi ⋆ _.

This gadget ensures that two hops will swap the values of ui and vi. That is

find2
ei◦ui

(10) = find1
ei◦ui

(6) = 4, Xfind2
ei◦ui

(10) = vi,

find2
ei◦vi

(10) = find1
ei◦vi

(8) = 2, Xfind2
ei◦vi

(10) = ui.

Likewise, concatenating sequences corresponding to overlapping edges facilitates multiple

325

hops. For example, if e1 = (1, 2), e2 = (3, 4), e3 = (2, 3), then

find2
e1◦e2◦e3◦2(28) = 22, Xfind2

e1◦e2◦e3◦2(28) = 3,

find4
e1◦e2◦e3◦2(28) = 13, Xfind4

e1◦e2◦e3◦2(28) = 4,

find4
e1◦e2◦e3◦3(28) = 2, Xfind4

e1◦e2◦e3◦3(28) = 1.

Let

E := (e1 ◦ e2 ◦ · · · ◦ ek)k/2 ◦ 1

be a length Nk := 9k · k2 + 1 sequence and let X = (_)N−Nk ◦ E. We show that hopk(X)N =

hopk(E)Nk
= 1 if and only if G = C2.

Without loss of generality, let {j, j + 1} = eij ∈ E for all j ∈ [k2 − 1]. Let ei0 = {1, v∗},

where v∗ = k
2 if G = C2 and v∗ = k if G = C1. Assume without loss of generality that

i1 > i0. We argue inductively that for any j ∈ [k2]:

1. Every two hops simulates a single step of next:

hop2j(E)Nk
= nextj(1, v∗)1 =

j if j + 1 < k

2 or G = C1,

1 if j = k
2 , G = C2;

2. Every two hops never “jumps” by more than one repetition of all edges gadgets:

find2j
E (Nk) ≥ find2j−2

E (Nk) − 9(k − 1);

3. The executed gadget corresponds to the correct edge and the gadget is executed cor-

rectly:

find2j
E (Nk) ∈ {9kj′ + 9ij + ι : j′ ∈ N, ι ∈ {2, 4}} .

If all three conditions are met, then hopk(X)N = 1 if and only if G = C1 from condition

326

1.

We first show that the base case holds for j = 1. Since i1 > i0, the second-last time 1

appears in the E is in the final encoding ei1 . By the two-case analysis of the ei1 gadget,

we validate that hop2(E)Nk
= 2 and conditions (1) and (3) hold. Since ei1 cannot be the

first edge encoding appearing in e1 ◦ e2 ◦ · · · ◦ ek, owing to it following ei0), condition (2) is

satisfied.

Suppose that the inductive hypotheses holds up to j < k
2 . Then, we argue that it

holds for j + 1. Since hop2j(E)Nk
= j + 1 (from condition (1)) and find2j

E (Nk) resides

at the left-most side of the gadget for eij (from condition (3)), the two subsequent findE

iterations must occur in the gadget eij+1 . Because find2j
E (Nk) ≥ 9k(k − j) (from condition

(2)), all edges appear in the k gadgets to the left of find2j
E (Nk), and all other edges (including

eij+1) must occur before the next occurrence of eij . Thus, the two hops occur in the eij+1

gadget (within distance 9(k − 1)) and results in a properly positioned find2j+2
E (Nk) with

hop2j+2(E)Nk
= nextj+1(1, v∗)1.

Since an MPC protocol can convert G to X using a constant number of layers, and

because π′ outputs T (X)N = 1 if and only if G = C1, we can construct a protocol of π by

simulating π′. Because the protocol π uses s = O(k1−ϵ/2) local memory and q = O(k2/ξ)

machines, Conjecture 6.1 implies that the existence of T requires L = Ω(log k).

6.5 Detailed empirical analysis of k-hop induction heads

This section presents in-depth explanations of the empirical results of Section 6.4.2,

along with further experiments. Taken together, these results suggest that the relationship

between the number of hops k and the depth L of transformers trained on the task is well-

characterized by the representational thresholds of Theorem 6.18 and Corollary 6.19; that

the construction described in the proof of Theorem 6.18 is attainable by trained models; and

deep models likely exhibit an inductive bias that favors compositional learning rules in the

finite sample regime.

327

We define our experimental methodology precisely in Section 6.5.1 and provide supporting

evidence for our claims in the subsequent sections.

Exponential powers of depth. Our principal empirical claim is that incrementing the

depth L of a transformer exponentially increases the model’s capabilities to learn k-hop in-

duction heads tasks. We explore this claim primarily in Section 6.5.2, where we compare

this empirical claim with the relevant theoretical results (Theorem 6.18 and Corollary 6.19),

which suggest a similar dependence. We further study the impacts of increasing the embed-

ding dimension m of the transformer in Section 6.5.3 and find that doubling the width is

roughly equivalent in performance to incrementing the depth by one.

Empirical Claim 6.22. A transformer T ∈ MaskTransformerNm,L,H trained with Adam to

solve hopk has small token-wise classification error if L log(m) = Ω(log k) and large error if

L logm = O(log k).

Mechanistic alignment with theoretical construction. We further demonstrate the

empirical salience of our theoretical construction by conducting a study of the interpretability

of learned transformers in Section 6.5.4. This investigation reveals that the attention matrices

of sufficiently deep transformers exhibit an implementation of a circuit that relies on the same

“doubling” principle of the construction in the proof of Theorem 6.18. The resulting circuit

is comprised of the same intermediate products that are used in that hopk construction.

Empirical Claim 6.23. The outputs of individual attention matrices of a transformer T ∈

MaskTransformerNm,L,H trained with Adam to solve hopk with L = Ω(log k) and evaluated

on input X ∈ ΣN (i) correspond to the findjX intermediate products of the Theorem 6.18

construction and (ii) demonstrate a “doubling” phenomenon where the each head layer ℓ

corresponds to findjX for some j = O(2ℓ).

Beneficial inductive biases of depth. While most of our experiments belong to the

“infinite-sample” regime where new samples are randomly generated on each training step,

328

we also evaluate our models in two finite-sample regimes in Section 6.5.5. We find that

a small number of samples is sufficient to approach the performance of the infinite-sample

regime. When the amount of training data is small, we find that deeper models perform

better than shallower models, possibly due to an inductive bias that favors compositional

hypotheses.

Empirical Claim 6.24. hopk can be learned in a sample-efficient manner by transformers

T ∈ MaskTransformerNm,L,H trained with Adam with L = Ω(log k). If T overfits to hopk tasks

for some k, then increasing the depth L while holding k fixed leads superior performance.

The experiments detailed here were conducted under limited computational resources.

The authors are interested in future work that would evaluate whether these scaling rules

persist on larger architectures and more complex tasks.

6.5.1 Experimental details

Task details. We study a multi-task variant of k-hop induction heads that predicts

hopk(X) = (0, hopk(X ′))

from input X = (k,X ′) for k ∈ {0, 1, . . . , kmax}5 and X ′ ∈ ΣN−1. We refer to this task as

multi-hop and provide the task hyperparameters in Table 6.1.

Hyperparameter Value
Context length N 100
Alphabet size |Σ| 4
Max hops kmax 16

Table 6.1: Multi-hop task hyperparameters

We define the distribution Dmulti−hop over labeled samples for the multi-hop task and DX

over input sequences X ∈ ΣN−1. We draw a labeled sample (X, hopk(X)) ∼ Dmulti−hop

5The task hop0 is simply the identity mapping: hop0(X ′) = X ′.

329

by independently sampling k ∼ Unif({0, 1, . . . , kmax}) and X ′ ∼ DX . Input sequences

X ′ ∼ DX are drawn uniformly from inputs with no repeating elements. That is, we sam-

ple X ′
1 ∼ Unif(Σ) and each X ′

j+1 ∼ Unif(Σ \
{
X ′
j

}
). For each k ∈ [kmax], let Dhopk

de-

note the conditional distribution ((k′, X ′), (0, hopk′(X ′))) ∼ Dmulti−hop | (k = k′). Also, let

dom(hopk) = {(k,X ′) : Pr [X ′ ∼ DX] > 0}.

For Σ := Σ ∪ [kmax], we define the n-sample empirical token-wise classification error of a

transformer T : ΣN → ΣN on a task hopk as

errnk(T) = 1
n

n∑
ι=1

1
| {i : hopk(X ι)i ̸=⊥} |

N∑
i=1

1 {T (X ι)i ̸= hopk(X ι)i ̸=⊥} ,

for iid samples (X1, hopk(X1)), . . . , (Xn, hopk(Xn)) ∼ Dhopk
. We ignore null ⊥ outputs of

hopk when no k-hop induction head exists in order to avoid inadvertently over-estimating

the performance of transformers on large k tasks, which have a large fraction of null outputs.

Training details. We trained a variety of causally-masked GPT-2 transformers (Radford

et al., 2019) from HuggingFace to solve the multi-hop task. The model has an absolute

positional encoding.

The transformers are trained with Adam (Kingma and Ba, 2014) on the cross-entropy

loss. In the infinite-sample regime, we draw 32 new iid samples from Dmulti−hop on each

training step. Otherwise, ntrain samples are drawn before training commences and all samples

are rotated through batches, before repeating. We use the hyperparameters in Table 6.2 to

train all of the models identified in Table 6.3.

Computational resources. All experiments were run on a 2021 Macbook Pro with an

M1 chip.

330

Hyperparameter Value
Embedding dimension m {128, 256}
Depth L {2, 3, 4, 5, 6}
Number of heads H {4, 8}
Vocabulary size 30
Activation function GeLU
Layer norm ϵ 10−5

Training samples ntrain {103, 3 · 103,∞}
Learning rate 10−4

Training steps 105

Batch size 32

Table 6.2: Model and training hyperparameters

Identifier Heads H Embed. dim. m Depth L Train samples ntrain # parameters
T∞

4,2 4 128 2 ∞ 413,440
T∞

4,3 4 128 3 ∞ 611,712
T∞

4,4 4 128 4 ∞ 809,984
T∞

4,5 4 128 5 ∞ 1,008,256
T∞

4,6 4 128 6 ∞ 1,206,528
T∞

8,2 8 256 2 ∞ 1,613,312
T∞

8,3 8 256 3 ∞ 2,403,072
T∞

8,4 8 256 4 ∞ 3,192,832
T∞

8,5 8 256 5 ∞ 3,982,592
T∞

8,6 8 256 6 ∞ 4,772,352
T 3000

4,2 4 128 2 3000 413,440
T 3000

4,3 4 128 3 3000 611,712
T 3000

4,4 4 128 4 3000 809,984
T 3000

4,5 4 128 5 3000 1,008,256
T 3000

4,6 4 128 6 3000 1,206,528
T 1000

4,2 4 128 2 1000 413,440
T 1000

4,3 4 128 3 1000 611,712
T 1000

4,4 4 128 4 1000 809,984
T 1000

4,5 4 128 5 1000 1,008,256
T 1000

4,6 4 128 6 1000 1,206,528

Table 6.3: Hyperparameters of all MaskTransformerNm,L,H trained for the empirical analysis.

331

1 2 4 8 16
k

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Er

ro
r:
er

rk n(
T)

Evaluation of L-depth, 4-headed, infinite-sample intransformers on hopk

L = 2
L = 3
L = 4
L = 5
L = 6

Figure 6.6: Zoomed in version of Figure 6.5. Evaluation of transformers errnk(T∞
4,L) with

depths L ∈ {2, 3, 4, 5, 6}, heads H = 4, and embedding dimension m = 128 trained on the
multi-hop task. This figure plots errnk(T∞

4,L) on n = 100 samples as a function of k for each
choice of L.

6.5.2 Exponential increases in k-hop capacity with depth (Empirical Claim 6.22; Figures 6.6

to 6.8)

We visualize the relationship between the depth L of a transformer and the largest k such

that errnk(T) is small in Figure 6.6, Figure 6.7, and Figure 6.8. We exhibit the relationship

in its simplest form by considering transformers with heads H = 4, embedding dimension

m = 128, and new training samples on every epoch. The figures provide alternate views of

errnk(T∞
4,L) for each L ∈ {2, 3, 4, 5, 6} with n = 100 samples for each k ∈ [kmax].

Together, these plots illustrate a sharp phase transition when D = ⌊log2 k⌋ + 2, which

identically matches the depth scaling in Theorem 6.18. Increasing the depth of a transformer

by one approximately doubles the number of values k ∈ [kmax] with bounded error. For

instance, following the theoretical and empirical intuition of Bietti et al., 2023, the depth

L = 2 transformer T∞
4,2 succeeds in solving the standard induction heads task, but attains at

least 10% error on all other tasks. Likewise, a depth L = 3 model has error bounded by 1%

332

for k ∈ {1, 2}, which increases rapidly for larger values of k.

This doubling phenomenon suggests that simple compositional tasks with a larger number

of compositions than the depth of the model are easily learnable if the model can employ

a doubling trick, similar to the one used in the proof of Theorem 6.18. This relationship

between compositionality and depth reflects the results of Zhang et al. (2023), where the

learnable task complexity also scales super-linearly in depth.

Given the lower bounds of Corollary 6.19, one may ask why models with depth L <

⌊log2 k⌋ achieve non-trivial success on hopk tasks that cannot be represented in a composi-

tional manner. There are several relevant explanations:

1. In these experiments, the embedding dimension m = 128 is actually larger than the

context N = 100, which may enable the model to memorize more of its preceding

samples and offload logical work to the MLP, rather than executing a pointer-doubling

strategy. While practical models regularly have the opposite (and our theoretical re-

sults are oriented around that parametric scaling), we used a larger m than is necessary

for representational purpose to improve the optimization landscape and speed conver-

gence.

2. This is made further plausible by the small alphabet size |Σ| and randomly drawn

sequences X ′, which place effective bounds on how much look-back from each token i

is necessary to compute hopk(X)i.

Nonetheless, these results provide strong support that models are substantially easier

to train to low classification error in the regime where the depth is sufficient to implement

a pointer-doubling construction. In the following subsection, we further investigate this

phenomenon by examining the intermediate attention matrices produced by trained models.

333

2 3 4 5 6
Depth L

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Er

ro
r:
er

rk n(
T)

Evaluation of L-Depth, 4-headed, infinite-sample transformers on hopk

k = 1
k = 2
k = 3
k = 4
k = 5
k = 6
k = 7
k = 8
k = 9
k = 10
k = 11
k = 12
k = 13
k = 14
k = 15
k = 16

Figure 6.7: Alternate view of Figure 6.6 including errnk(T∞
4,L) plotted as a function of L for

each k.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
k

2
3

4
5

6
De

pt
h

L

0.01 0.14 0.35 0.42 0.54 0.59 0.62 0.66 0.69 0.69 0.71 0.72 0.73 0.73 0.74 0.74

0.003 0.008 0.048 0.15 0.28 0.36 0.42 0.46 0.52 0.57 0.6 0.64 0.67 0.67 0.69 0.71

0.001 0.003 0.005 0.015 0.034 0.062 0.11 0.22 0.28 0.36 0.4 0.47 0.53 0.53 0.58 0.61

0.001 0.001 0.001 0.003 0.012 0.015 0.017 0.037 0.058 0.1 0.15 0.22 0.28 0.34 0.38 0.41

0 0 0.001 0.002 0.003 0.003 0.007 0.006 0.007 0.01 0.011 0.012 0.021 0.027 0.035 0.062

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Figure 6.8: Alternate views of Figure 6.6 including errnk(T∞
4,L) as a table with one cell for

each (L, k) pair.

334

6.5.3 Width variation (Empirical Claim 6.22; Figure 6.9)

While the primary focus of these empirical results and the paper as a whole is on the

role of depth in the ability of transformer to learn parallelizable and compositional tasks,

we also aim to understand the interplay of depth and width in learning the multi-hop task.

Here, we contrast the previous transformers T∞
4,L with models T∞

8,L that have more heads

(H = 8) and larger embedding dimensions (m = 256). We plot the classification errors of

all 10 architectures over 16 hopk sub-tasks in Figure 6.9.

Here, we observe a rough correspondence in performance between the transformers T∞
H,L

and T2H,L−1 and the same doubling phenomenon as is evident models withH = 4 heads. That

is, while increasing the width improves the classification error of learned models, it does so in

a far less parameter-efficient manner than incrementing the depth. As mentioned before, the

relative success of wide and shallow transformers is likely contingent on the relatively short

context length N and alphabet size |Σ|. However, these results still suggest an important

role for wider models to play beyond representational capabilities of transformers.

335

1 2 4 8 16
k

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Er

ro
r:
er

rk n(
T)

Evaluation of L-depth, H-headed, infinite-sample intransformers on hopk

L = 2, H = 4
L = 2, H = 8
L = 3, H = 4
L = 3, H = 8
L = 4, H = 4
L = 4, H = 8
L = 5, H = 4
L = 5, H = 8
L = 6, H = 4
L = 6, H = 8

Figure 6.9: Comparison between the errors errnk(T∞
H,L) of transformers with embedding

dimension and heads (m,H) = (4, 128) (dashed line, same plots as Figure 6.6) and (m,H) =
(8, 256) (solid line) trained on the multi-hop task, evaluated on n = 100 samples per hopk
task.

336

6.5.4 Mechanistic alignment with construction (Empirical Claim 6.23, Figures 6.10 to 6.15)

We use standard attention-based interpretability techniques to better understand what

particular logical circuits are implemented by transformers trained to solve the multi-hop

task. By qualitatively inspecting the attention matrices produced by trained models and by

measuring the alignment between those inner products and partial solutions findj of hopk,

we uncover a striking correspondence between the behaviors of the trained models and the

transformer construction designed in the proof of Theorem 6.18. We further observe that

trained transformers with high accuracy have “decisive” self-attention units with particularly

strong correlations to some findj intermediate, while poorly performing models have less

predictable attention activations.

For a fixed trained model T ∈ TransformerNm,L,H , we let Aℓ,h[T](X) represent the output

of the hth self-self attention matrix in the ℓth layer for h ∈ [H] and ℓ ∈ [L], evaluated at

some input X ∈ dom(hopk). That is, we let

Aℓ,h[T](X) = softmax
(
Qℓ,h(Xℓ−1)Kℓ,h(Xℓ−1)T + Γ

)
∈ RN×N ,

where Xℓ−1 is the intermediate state representing the output of layer ℓ− 1 of T on input X

and Γ is the causal masking matrix. Each row i in the matrix represents the coefficients of

the convex combination of value vectors affiliated with each query, which can be used as a

signifier of which embeddings i receives information from.

Visualization of findj alignment for hop16 and depth L = 6 (Figure 6.10). The

outputs of self-attention matrices are often highly structured matrices that reveal which

relationships between tokens are encoded and how information is shared within the model

(Li and McClelland, 2022; Clark et al., 2019; Rogers, Kovaleva, and Rumshisky, 2020). We

plot several self-attention matrices associated with a depth L = 6, heads H = 4 transformer

trained in the infinite-sample regime and evaluated on a single sample X ∈ dom(hop16) in

337

Figure 6.10.

By looking at the six self-attention matrices, one can infer that all heads are “decisive”

and obtain nearly all of their relevant information from a single value embedding, rather

than averages of a large number of embeddings. The top-left self-attention matrix, which

belongs to the first self-attention head, clearly associates elements with their predecessors,

which is identical the to the function of our lookUp attention head in the first layer of the

hopk construction of Theorem 6.18.

While the roles of the other heads are not immediately obvious, they can be understood

by overlaying colored matrices with non-zero cells at (i, findjX(i)) for some j ≤ k. For

instance, the top-right attention matrix in layer ℓ = 2 corresponds almost exactly with find1
X

(as suggested by the second-layer of our construction), and the others are closely associated

with find1
X , find2

X , find3
X , and find8

X for layers ℓ = 3, 4, 5, 6 respectively. This is a remarkably

close correspondence to our construction, which includes a self-attention matrix in the ℓth

layer whose activations correspond to find2ℓ−2

X .

While not conclusive, this experiment suggests a strong alignment between the behaviors

of this particular transformer and our theoretical construction. This suggests a high likeli-

hood that the transformer successfully learns to solve hop16 by employing a pointer-doubling

primitive. However, these results apply to only a single model, a single task, and a single

input; in the subsequent section, we generalize this interpretability analysis.

338

= 1, h = 1, find0
X highlighted = 2, h = 4, find1

X highlighted

= 3, h = 2, find1
X highlighted = 4, h = 2, find2

X highlighted

= 5, h = 3, find3
X highlighted = 6, h = 1, find8

X highlighted

Self-attention matrix A , h[T4, 6](X), X dom(hop16)

Figure 6.10: The outputs of several internal self-attention matrices Aℓ,h[T∞
4,6](X) ∈ R100×100

of a trained multi-task transformer of depth D = 6 evaluated on a single sample X ∼ Dhop16

are plotted in grayscale. In each cell, the matrix with non-zero entries (findjX(i), i)i∈[N] for
some j is included in transparent color to visualize the function of each self-attention unit.

339

Alignment between attention heads and findj for a single hopk sub-task (Fig-

ures 6.11 to 6.13). To broaden and quantify the analysis of the previous section, we

measure the extent to which each self-attention head mimics the functionality of findj,

which are partial computations of hopk that are employed in the proof of Theorem 6.18.

We use cell-wise matrix inner products to quantify the strength of correlation between a

self-attention matrix and a fixed function potentially relevant to interpretability.

For two matrices A,B ∈ RN×N , let

⟨A,B⟩ = ∥A⊙B∥2
F

∥A∥F ∥B∥F

be their normalized element-wise inner-product, where ∥·∥F is the Frobenius norm and ⊙

denotes element-wise multiplication. For some function g : [N] → {0}∪ [N], we let ⟨g,B⟩ :=

⟨Ag, B⟩, where

Agi,j =

1 if g(j) = i,

0 otherwise.

We use this notation to analyze experimentally how closely the self-attention matrices

Aℓ,h encode the intermediate products of the proof of Theorem 6.18, findjX . For n iid samples

X1, . . . , Xn ∈∼ Dhopk
, let

〈
Aℓ,h, findj

〉
n,k

:= 1
n

n∑
ι=1

〈
findjXι , Aℓ,h(X ι)

〉
.

Due to the non-negativity of Aℓ,h and findj,
〈
Aℓ,h, findj

〉
n,k

∈ [0, 1], and
〈
Aℓ,h, findj

〉
n,k

= 1

only if ∀ι ∈ [n]:

Aℓ,h(X ι)i,i′ = 1 ⇐⇒ findjXι(i) = i′.

These inner products make it possible to visualize the strength of correlations of all heads

in a particular model T ∈ MaskTransformerNm,L,H with all target functions findj on a collection

of random samples drawn from some Dhopk
. Figure 6.11 visualizes the functionality of all

340

attention units in the 4-layer, 4-head transformer T∞
4,4 when evaluated on the sub-task hop4.

The figure gives several clues about how hop4 is successfully computed by the trained model:

the second layer and third layer both utilize find1 to determined find2 jointly by the end

of the third layer. The fourth layer uses the ability to create a stable find2 construction to

obtain find4 and hence hop4.

This plot also indicates the relative stability of this circuit interpretation of the procedure:

a large number of heads are very strongly correlated with find1 or find2 across the 10 samples,

which indicates they are likely utilized consistently to compute those intermediates regardless

of input.

Figure 6.12 is a similar plot for the transformer T∞
4,6 with depth L = 6, evaluated on the

task hop16. The functionalities of the heads visualized in Figure 6.10 can be observed in the

corresponding inner products. The collection of all inner products presents further evidence

that the pointer-doubling phenomenon occurs in the trained models, due to the increase in

compositions present in the largest inner products of deeper attention units.

While Figures 6.11 and 6.12 showcase the decisive alignment between self-attention heads

and particular partial computations findj in successfully trained models, Figure 6.13 demon-

strates the loss of that decisiveness in poorly performing transformers. There, we visualize

the alignments of the trained depth-4 transformer T∞
4,4 evaluated on hop16, in which it attains

a 61% token error. While a self-attention units in the second layer coincides with find1, no

strong correlations emerge deeper in the model. Unlike the other figures, the deeper self-

attention units are “indecisive,” lacking any large inner products and failing in particular to

correlate with any highly compositional targets. This provides a visual explanation of the

transformer’s failure, since it lacked the effective representational capacity needed to learn a

circuit with consistent and highly-compositional outputs.6

6Since these experiments are in the small alphabet size |Σ| = 4 regime, this task performs better than
random guessing due to inferential capabilities that are are powered by the high embedding dimension and
do not require implementing a pointer-chasing algorithm. We suspect that the “checkerboard” patterns are
powered by this inference.

341

Alignment between attention heads and findj for all hopk sub-tasks (Figures 6.14

and 6.15). For an even more global lens on the mechanistic interpretability of these trained

models, we visualize how the maximum inner products of each self-attention unit change for a

fixed transformer for different sub-tasks hopk. Figures 6.14 and 6.15 do so for the depth-4 and

depth-6 networks respectively. The hue of each cell (and its numerical label) corresponds

to the j∗ with the most correlated inner product with corresponding attention unit Aℓ,h

in samples from dom(hopk), and the opacity corresponds to the magnitude of that inner

product.

The takeaways of the previous inner product figures are apparent in these: the approxi-

mate doubling for the depth L = 6 transformer can be visualized by the vertically changing

opaque colors. Conversely, a separation can be observed between the tasks where the depth

L = 4 transformer performs well and has “decisive” self-attention units deeper in the network

and those where it does not.

Moreover, the figures (especially Figure 6.15) demonstrate that several self-attention units

have a consistent function among samples from the same task, while adapting in function

to different hopk tasks. This is most apparent in head h = 4 of layer ℓ = 6, where the

self-attention head functions as find1, find3, find5 or find7 depending on the complexity of the

task.

342

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
j

= 1, h = 1

= 1, h = 2

= 1, h = 3

= 1, h = 4

= 2, h = 1

= 2, h = 2

= 2, h = 3

= 2, h = 4

= 3, h = 1

= 3, h = 2

= 3, h = 3

= 3, h = 4

= 4, h = 1

= 4, h = 2

= 4, h = 3

= 4, h = 4

La
ye

r
, h

ea
d

h

0.32

0.17 0.1 0.01 0.01

0.32

0.32 0.15 0.08 0.05 0.03 0.02 0.01 0.01

0.04 0.19 0.08 0.08 0.04 0.03 0.01 0.01

0.93

0.77 0.05 0.11 0.02 0.02

0.52 0.04 0.14 0.04 0.04 0.02 0.02 0.01 0.01 0.01

0.8 0.07

0.94 0.01

0.19 0.18 0.15 0.08 0.05 0.02 0.01

0.23 0.09 0.15 0.05 0.04 0.02 0.01

0.18 0.77 0.03

0.8 0.17 0.01

0.93 0.01

0.87 0.04

A , h, findj
n, 4 for depth-4 transformer and X dom(hop4)

0.0

0.2

0.4

0.6

0.8

1.0

Figure 6.11: Plots of all inner products
〈
Aℓ,h[T∞

4,4], findj
〉

10,4
for n = 10 samples

X1, . . . , X10 ∈ dom(hop4) for the 4-layer transformer T∞
4,4.

343

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
j

= 1, h = 1
= 1, h = 2
= 1, h = 3
= 1, h = 4
= 2, h = 1
= 2, h = 2
= 2, h = 3
= 2, h = 4
= 3, h = 1
= 3, h = 2
= 3, h = 3
= 3, h = 4
= 4, h = 1
= 4, h = 2
= 4, h = 3
= 4, h = 4
= 5, h = 1
= 5, h = 2
= 5, h = 3
= 5, h = 4
= 6, h = 1
= 6, h = 2
= 6, h = 3
= 6, h = 4

La
ye

r
, h

ea
d

h

0.33

0.33 0.16 0.09 0.05 0.03 0.02 0.01 0.01

0.34 0.01

0.32

0.24 0.08 0.05 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

0.88 0.06 0.01

0.08 0.22 0.06 0.06 0.02 0.01 0.01

0.92 0.01

0.93

0.93

0.26 0.06 0.07 0.03 0.03 0.03 0.02 0.02 0.02 0.03 0.03 0.03 0.03 0.03 0.03 0.02

0.21 0.14 0.13 0.06 0.04 0.02 0.01 0.01 0.01 0.01

0.93

0.9

0.14 0.11 0.08 0.05 0.03 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

0.07 0.79 0.06

0.93

0.04 0.81 0.04

0.03 0.89 0.01

0.02 0.9 0.01

0.02 0.07 0.77 0.03

0.02 0.01 0.12 0.01 0.65 0.04

0.03 0.01 0.14 0.74 0.13

0.01 0.01 0.01 0.01 0.04 0.82 0.02

A , h, findj
n, 16 for depth-6 transformer and X dom(hop16)

0.0

0.2

0.4

0.6

0.8

1.0

Figure 6.12: Plots of all inner products
〈
Aℓ,h[T∞

4,6], findj
〉

10,16
for n = 10 samples

X1, . . . , X10 ∈ dom(hop16) for the 6-layer transformer T∞
4,6.

344

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
j

= 1, h = 1

= 1, h = 2

= 1, h = 3

= 1, h = 4

= 2, h = 1

= 2, h = 2

= 2, h = 3

= 2, h = 4

= 3, h = 1

= 3, h = 2

= 3, h = 3

= 3, h = 4

= 4, h = 1

= 4, h = 2

= 4, h = 3

= 4, h = 4

La
ye

r
, h

ea
d

h

0.32

0.23 0.13 0.01 0.01

0.33

0.21 0.09 0.05 0.03 0.02 0.01 0.01 0.01

0.04 0.22 0.1 0.11 0.06 0.05 0.03 0.02 0.01 0.01

0.92 0.02

0.64 0.05 0.19 0.03 0.05 0.01 0.01 0.01

0.51 0.05 0.17 0.05 0.07 0.03 0.03 0.02 0.02 0.01 0.01 0.01 0.01

0.46 0.29 0.08 0.01

0.68 0.21 0.06 0.01

0.05 0.06 0.15 0.08 0.15 0.07 0.09 0.04 0.03 0.02 0.01 0.01

0.11 0.12 0.1 0.11 0.08 0.06 0.04 0.03 0.02 0.01 0.01

0.02 0.14 0.25 0.21 0.1 0.03 0.01

0.01 0.01 0.01 0.07 0.01 0.16 0.02 0.17 0.03 0.11 0.02 0.05 0.01 0.02

0.61 0.32 0.11 0.03 0.01

0.01 0.03 0.21 0.31 0.01 0.17 0.01 0.06 0.01

A , h, findj
n, 16 for depth-4 transformer and X dom(hop16)

0.0

0.2

0.4

0.6

0.8

1.0

Figure 6.13: Plots of all inner products
〈
Aℓ,h[T∞

4,4], findj
〉

10,16
for n = 10 samples

X1, . . . , X10 ∈ dom(hop16) for the 4-layer transformer T∞
4,4.

345

1 (
0.0

0)

2 (
0.0

0)

3 (
0.0

1)

4 (
0.0

1)

5 (
0.0

3)

6 (
0.0

5)

7 (
0.0

9)

8 (
0.1

7)

9 (
0.2

1)

10
 (0

.26
)

11
 (0

.27
)

12
 (0

.30
)

13
 (0

.33
)

14
 (0

.32
)

15
 (0

.32
)

16
 (0

.32
)

k (Error errk
n(Tn

5, 5))

= 1, h = 1

= 1, h = 2

= 1, h = 3

= 1, h = 4

= 2, h = 1

= 2, h = 2

= 2, h = 3

= 2, h = 4

= 3, h = 1

= 3, h = 2

= 3, h = 3

= 3, h = 4

= 4, h = 1

= 4, h = 2

= 4, h = 3

= 4, h = 4

La
ye

r
, h

ea
d

h
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 3 3 3 3 3 3 3 3 3 3 5

1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2

1 1 1 3 3 3 3 3 3 5 5 5 5 5 5 5

1 2 3 2 3 4 5 4 5 6 7 6 7 6 7 8

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 2 2 2 2 2 4 4 4 4 6 4 6 6 6 6

argmaxj A , h, findj
n, k for depth-4 transformer and X dom(hopk)

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

j

Figure 6.14: Plots of all the maximum inner products
〈
Aℓ,h[T∞

4,4], findj
〉
n,k

for n = 10 fixed
samples X1, . . . , X10 ∈ dom(hopk) for each k ∈ [16] for the 4-layer transformer T∞

4,4. The
hue corresponds to the index of the largest inner product j∗ = arg maxj

〈
Aℓ,h[T∞

4,4], findj
〉
n,k

,
while the opacity is determined by the magnitude of the correlation.

346

1 (
0.0

0)

2 (
0.0

0)

3 (
0.0

0)

4 (
0.0

0)

5 (
0.0

0)

6 (
0.0

0)

7 (
0.0

1)

8 (
0.0

0)

9 (
0.0

1)

10
 (0

.01
)

11
 (0

.01
)

12
 (0

.01
)

13
 (0

.01
)

14
 (0

.02
)

15
 (0

.02
)

16
 (0

.03
)

k (Error errk
n(Tn

5, 7))

= 1, h = 1
= 1, h = 2
= 1, h = 3
= 1, h = 4
= 2, h = 1
= 2, h = 2
= 2, h = 3
= 2, h = 4
= 3, h = 1
= 3, h = 2
= 3, h = 3
= 3, h = 4
= 4, h = 1
= 4, h = 2
= 4, h = 3
= 4, h = 4
= 5, h = 1
= 5, h = 2
= 5, h = 3
= 5, h = 4
= 6, h = 1
= 6, h = 2
= 6, h = 3
= 6, h = 4

La
ye

r
, h

ea
d

h

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

3 2 1 3 3 3 3 3 3 3 3 3 3 3 3 3

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 3 3 3 3 3 3 5 5 5 5 5

1 1 1 1 1 1 1 1 1 3 3 3 3 3 3 3

1 1 1 1 1 1 1 3 3 3 3 3 3 3 3 3

1 2 1 2 3 2 3 4 5 4 5 6 7 6 7 8

2 1 2 3 2 3 4 5 4 5 6 7 6 7 8 9

2 1 1 1 1 1 1 1 1 3 3 3 3 5 5 5

2 1 1 1 1 3 3 3 3 5 5 5 5 7 7 7

argmaxj A , h, findj
n, k for depth-6 transformer and X dom(hopk)

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

j

Figure 6.15: Plots of all the maximum inner products
〈
Aℓ,h[T∞

4,6], findj
〉
n,k

for n = 10 fixed
samples X1, . . . , X10 ∈ dom(hopk) for each k ∈ [16] for the 6-layer transformer T∞

4,6.

347

6.5.5 Finite-sample experiments (Empirical Claim 6.24; Figures 6.16 to 6.19)

While most of our multi-hop experiments reside in the infinite-sample regime (where

new samples are generated for every batch), we also trained several transformers on ntrain ∈

{1000, 3000} samples to evaluate whether generalization is possible in this domain, especially

when the number of model parameters far exceeds the number of training samples. The two

training set sizes expose a sharp threshold between two different generalization modes: low

accuracy due to overfitting for most models on most tasks when ntrain = 1000 and high

accuracy approaching the infinite-sample regime when ntrain = 3000.

Figure 6.16 compares the infinite-sample transformers T∞
4,L with the 3000-sample models

T 3000
4,L . 3000 training samples are sufficient to obtain comparable (if slightly worse) generaliza-

tion error rates across model depths L and task complexities k. This supports a hypothesis

that the existence of a small transformer that perfectly fits the data enables larger trans-

formers to actually realize such architectures in the over-parameterized regime.

On the other hand, Figure 6.17 demonstrates that transformers trained on ntrain = 1000

samples suffer poor performance on most tasks due to overfitting. While all models perform

poorly on hopk sub-tasks for large k, a depth-separation exists for simpler sub-tasks like

hop3. This suggests a positive inductive bias of deep transformers for simple compositional

decision rules, which enables far better performance than other models in the overfitting

regime.

To investigate this gap in performance, we contrast the self-attention inner products of

depth-4 T 1000
4,4 and depth-6 T 1000

4,6 on the task hop3 in Figures 6.18 and 6.19. The 6-layer

model obtains a far superior classification error on the sub-task, and the interpretability

plot establishes a plausible circuit it implements: It uses self-attention heads with find1

functionality consecutively in layers 4, 5, and 6, which enables the robust retrieval of find3

and hop3. On the other hand, the 4-layer plot exhibits poor performance and only has two

layers with find1 functionality; this justifies the relatively strong performance of T 1000
4,4 on

hop2 and its poor performance on hop3.

348

While neither model learns any kind of pointer-doubling construction, the 6-layer model

is still able to learn a simple construction of hop3 that the 4-layer model misses. The

representational suitability of deeper models to compositional reasoning may thus provide a

favorable inductive bias for learning the task in a setting with little data.

1 2 4 8 16
k

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Er
ro

r:
er

rk n(
T)

Evaluation of L-depth, 4-headed, 3000-sample intransformers on hopk

L = 2, n = 3000
L = 2, n =
L = 3, n = 3000
L = 3, n =
L = 4, n = 3000
L = 4, n =
L = 5, n = 3000
L = 5, n =
L = 6, n = 3000
L = 6, n =

Figure 6.16: Comparison between the errors errnk(T n4,L) of transformers trained in the infinite
sample regime (dashed line) and on ntrain = 3000 samples (solid line) on the multi-hop task,
evaluated on n = 100 samples per hopk task.

349

1 2 4 8 16
k

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Er

ro
r:
er

rk n(
T)

Evaluation of L-depth, 4-headed, 1000-sample intransformers on hopk

L = 2, n = 1000
L = 2, n =
L = 3, n = 1000
L = 3, n =
L = 4, n = 1000
L = 4, n =
L = 5, n = 1000
L = 5, n =
L = 6, n = 1000
L = 6, n =

Figure 6.17: Comparison between the errors errnk(T n4,L) of transformers trained in the infinite
sample regime (dashed line) and on ntrain = 1000 samples (solid line) on the multi-hop task,
evaluated on n = 100 samples per hopk task.

350

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
j

= 1, h = 1

= 1, h = 2

= 1, h = 3

= 1, h = 4

= 2, h = 1

= 2, h = 2

= 2, h = 3

= 2, h = 4

= 3, h = 1

= 3, h = 2

= 3, h = 3

= 3, h = 4

= 4, h = 1

= 4, h = 2

= 4, h = 3

= 4, h = 4

La
ye

r
, h

ea
d

h

0.15 0.09 0.1 0.08 0.07 0.06 0.05 0.05 0.04 0.04 0.03 0.03 0.03 0.02 0.02 0.02

0.31 0.06 0.04 0.03 0.02 0.02 0.02 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

0.04 0.04 0.03 0.03 0.03 0.02 0.02 0.02 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01

0.32 0.07 0.05 0.04 0.03 0.03 0.02 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

0.22 0.1 0.05 0.04 0.03 0.02 0.01 0.01 0.01

0.09 0.12 0.07 0.09 0.06 0.06 0.05 0.05 0.05 0.04 0.04 0.04 0.03 0.03 0.03 0.03

0.28 0.11 0.12 0.08 0.07 0.05 0.05 0.04 0.03 0.03 0.02 0.02 0.02 0.02 0.02 0.02

0.31 0.13 0.11 0.06 0.05 0.03 0.02 0.02 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01

0.19 0.13 0.12 0.09 0.07 0.05 0.04 0.03 0.02 0.02 0.01 0.01 0.01 0.01

0.05 0.2 0.06 0.07 0.03 0.02 0.01 0.01 0.01 0.01

0.88 0.06 0.01

0.86 0.07 0.01

0.85 0.09 0.01

0.61 0.04 0.12 0.02 0.03 0.01 0.01

0.33 0.06 0.17 0.06 0.08 0.04 0.04 0.03 0.02 0.01 0.01 0.01

0.03 0.4 0.02 0.09 0.02 0.03 0.01 0.01

A , h, findj
n, 3 for depth-4 transformer and X dom(hop3), trained on ntr = 1000 samples

0.0

0.2

0.4

0.6

0.8

1.0

Figure 6.18: Plots of all inner products
〈
Aℓ,h[T 1000

4,4], findj
〉

10,3
for n = 10 samples

X1, . . . , X10 ∈ dom(hop3) for the 4-layer transformer T 1000
4,4 .

351

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
j

= 1, h = 1
= 1, h = 2
= 1, h = 3
= 1, h = 4
= 2, h = 1
= 2, h = 2
= 2, h = 3
= 2, h = 4
= 3, h = 1
= 3, h = 2
= 3, h = 3
= 3, h = 4
= 4, h = 1
= 4, h = 2
= 4, h = 3
= 4, h = 4
= 5, h = 1
= 5, h = 2
= 5, h = 3
= 5, h = 4
= 6, h = 1
= 6, h = 2
= 6, h = 3
= 6, h = 4

La
ye

r
, h

ea
d

h

0.33 0.04 0.03 0.02 0.02 0.01 0.01 0.01 0.01 0.01 0.01

0.24 0.14 0.11 0.09 0.07 0.06 0.05 0.04 0.04 0.03 0.03 0.02 0.02 0.02 0.02 0.02

0.26 0.09 0.07 0.06 0.05 0.05 0.04 0.03 0.02 0.02 0.02 0.02 0.01 0.01 0.01 0.01

0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

0.18 0.12 0.09 0.06 0.05 0.04 0.03 0.03 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02

0.32 0.13 0.12 0.06 0.05 0.04 0.03 0.02 0.02 0.02 0.01 0.01 0.01 0.01 0.01 0.01

0.26 0.15 0.09 0.06 0.04 0.02 0.02 0.01 0.01 0.01

0.16 0.1 0.11 0.08 0.07 0.06 0.05 0.05 0.04 0.04 0.03 0.03 0.03 0.03 0.02 0.02

0.15 0.14 0.04 0.03 0.01 0.01

0.25 0.09 0.06 0.02 0.01 0.01 0.01 0.01 0.01 0.01

0.32 0.13 0.11 0.06 0.05 0.03 0.02 0.02 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01

0.34

0.13 0.11 0.08 0.06 0.05 0.04 0.03 0.02 0.02 0.02 0.02 0.01 0.01 0.01 0.01 0.01

0.93 0.01

0.92 0.02

0.13 0.19 0.09 0.08 0.04 0.03 0.02 0.01 0.01 0.01

0.42 0.08 0.1 0.03 0.03 0.02 0.01 0.01 0.01

0.93 0.02

0.91 0.04

0.9 0.04

0.92 0.03

0.11 0.07 0.16 0.07 0.09 0.05 0.04 0.03 0.02 0.02 0.01 0.01 0.01 0.01

0.91 0.03

0.12 0.55 0.04 0.1 0.02 0.02 0.01 0.01 0.01

A , h, findj
n, 3 for depth-6 transformer and X dom(hop3), trained on ntr = 1000 samples

0.0

0.2

0.4

0.6

0.8

1.0

Figure 6.19: Plots of all inner products
〈
Aℓ,h[T 1000

4,6], findj
〉

10,3
for n = 10 samples

X1, . . . , X10 ∈ dom(hop3) for the 6-layer transformer T 1000
4,6 .

6.6 Separations between transformers and alternative architectures

Sections 6.3 and 6.4 characterize the representational capability of transformers by pro-

viding algorithmic problems they can solve with logarithmic depth and small polynomial or

constant width. In contrast, other well-known architectures are unable to solve those same

problems in a parameter-efficient manner. This section provides lower bounds on the pa-

rameter complexity of graph neural networks (GNNs), recurrent neural architectures, trans-

formers with computationally efficient alternatives to softmax self-attention, and single-layer

transformers with autoregressive chain-of-thought tokens needed to solve graph connectivity

and the k-hop task.

352

6.6.1 GNNs need polynomial depth for graph connectivity

The bidirectional relationship between transformers and MPC draws inspiration from

past work drawing a similar connection between message passing graph neural networks

(GNNmp) and the Congest distributed computing model Loukas, 2019. Their computation

model of GNNmp for width m and depth L closely resembles our TransformerNm,L,H in provid-

ing a general framework for the analysis of graph neural networks by allowing unbounded

computation in each vertex with bounded communication on edges. On some input graph

G, vertices send neighbors messages of size at most m—which are aggregated and crafted

into new messages with MLPs—over L rounds of communication.

By restating Corollary 4.2 of Loukas, 2019, we demonstrate a sharp contrast in the

abilities of GNNs and transformers to solve graph algorithmic tasks.

Theorem 6.25 (Corollary 4.2 of Loukas, 2019). There exists a graph G with N edges such

that any GNNmp with width m and depth L that determines whether an input subgraph H

either (1) is connected or (2) forms a spanning tree of G requires L
√
m = Ω̃(N1/4).

While Corollaries 6.5 and 6.6 demonstrate the ability of transformers to determine whether

any input graph is connected7 or to identify a spanning tree with logarithmic depth and

small polynomial width (i.e. m = O(N ϵ)), GNNs require depth L = Ω̃(N1/4−ϵ/2) in the

same regime. This gap is explainable by the fact that transformers on graph inputs G are

not bound to pass messages exclusively along the edges of G. By “rewiring” the graphical

structure in each layer, transformers can perform aggregation and “pointer passing” tasks

with greater parametric ease than GNNs.
7While the problem of subgraph connectivity for GNNs may at first glance appear more difficult than

general graph connectivity for transformers, an implementation of this exact task can be implemented by
modifying the protocol Corollary 6.5 to remove all edges from the graph that do not belong to H.

353

6.6.2 Suboptimality of recurrent architectures for hopk

The logarithmic-depth and constant-width transformer implementation of hopk in Theo-

rem 6.18 cannot be replicated by recurrent neural architectures (Chung et al., 2014; Bengio,

Simard, and Frasconi, 1994; Turkoglu et al., 2021), including not just multi-layer recur-

rent neural networks (RNNs) but any sequential prediction procedure equivalent to them at

inference time, which includes state space models such as Mamba (Gu and Dao, 2023).

We first consider a family of multi-layer RNNs of depth L and width m, consisting of

arbitrary MLP units gℓ : Rm×m → Rm×m, which on input X ∈ RN×din produce output

Y ∈ RN×dout as follows using intermediates X = Z0, Z1, . . . , ZL−1, ZL = Y ∈ RN×m8and

hidden states H1, . . . , HL ∈ {0, 1}N×m with Hℓ
0 = 0⃗:

(Zℓ
i , H

ℓ
i) = gℓ(Zℓ−1

i , Hℓ
i−1), ∀i ∈ [N], ℓ ∈ [L].

We provide a polynomial bound on the width and depth of a multi-layer RNN solving hopk.

Corollary 6.26. A multi-layer RNN of depth L and width m as above with YN = hopk(X)N

satisfies either L ≥ k or m = Ω(N
k6).

In contrast to Theorem 6.18, which demonstrates that depth O(log k) transformers with

constant width suffice to solve hopk for any k, Corollary 6.26 demonstrates that all multi-

layer RNNs with width O(N1/7) require depth k when k = O(N1/7).

Mamba (Gu and Dao, 2023) can be seen as the combination of three ideas: (1) a

continuous-time dynamics model of sequential prediction, powerful enough to model Kalman

filters, hidden markov models, and many others; (2) a family of time-discretization schemes;

(3) an unrolling technique to enable efficient linear-time training, using ideas similar to

FlashAttention (Dao et al., 2022). Ultimately, at inference time, the time-discretization step

results in an RNN (see Gu and Dao, 2023, Algorithm 2 and Theorem 1), and is therefore

directly handled by Corollary 6.26.
8We assume that din, dout ≤ m and treat X and Y as if they are padded with zeros.

354

This corollary is a near immediate application of a communication complexity fact about

the hardness of solving multi-player pointer-chasing problems with limited communication

among players (Guha and McGregor, 2009; Assadi and N, 2021). We provide the commu-

nication model and this result in Section 6.6.5.1, and the reductions necessary to prove the

above hardness results in Section 6.6.5.2.

6.6.3 Suboptimality of sub-quadratic attention transformers for hopk

Due to the quadratic computational cost of computing the attention matrix

softmax(Q(X)K(X)T) ∈ RN×N

and the continued desire for ever-larger context lengths, there is substantial interest in im-

proving the computational complexity of the transformer architecture while preserving its

expressive capabilities and inductive biases. As a result, a rich literature has emerged that

proposes computationally-efficient alternatives to standard softmax attention. In this sec-

tion, we demonstrate how several representative examples of sub-quadratic attention mech-

anisms lose the ability to perform efficient parallel computation under a logarithmic-depth

scaling.

Kernel-based sub-quadratic attention. One approach to computationally-efficient ap-

proximation of transformers are kernel-based sub-quadratic attention mechanisms such as

Performer (Choromanski et al., 2022), and Poly-Sketchformer (Kacham, Mirrokni, and

Zhong, 2023). Both approximate the attention matrix softmax(Q(X)K(X)T) with a low-

rank matrix Q′(X)K ′(X)T where Q′, K ′ : Rm → Rm′ are applied element-wise. For suffi-

ciently small m′ ≪ N , Q′(X)K ′(X)TV (X) can be computed efficiently by first computing

K ′(X)TV (X) ∈ Rm′×m, bounding the total runtime as O(Nmm′), rather than O(N2m).

Let KernelFormerNm,m′,L,H denote all H-headed L-layer transformer whose softmax atten-

tion modules are replaced by kernel-based sub-quadratic attention. We demonstrate the

355

limitations of KernelFormerNm,m′,L,H by showing that, unlike TransformerNm,L,H , they have no

depth-efficient implementation of hopk.

Corollary 6.27. Any T ∈ KernelFormerNm,m′,L,H with T (X)N = hopk(X)N satisfies either

L ≥ k or mm′Hp = Ω(N
k6).

Under a parameter-efficient regime where mpHL = O(N ϵ), solving hopk for k = Θ(N ϵ)

necessitates kernel feature dimension m′ = Ω(N1−9ϵ), which forces each attention unit to

compute an N×N1−9ϵ matrix, yielding a nearly quadratic runtime. We prove Corollary 6.27

in Section 6.6.5.3 using a similar pointer chasing reduction.

Masking-based sub-quadratic attention. Another method that reduces the computa-

tional cost of transformers is to used masked models of Λ-TransformerNm,L,H for a sparse mask

Λ. The Longformer architecture (Beltagy, Peters, and Cohan, 2020) introduces a particular

masked architecture that combines sliding windows with sparse unmasked global tokens. Put

concretely, for window radius w and global frequency g, let Λw,g ∈ {−∞, 0}N×N be masking

matrix with

Λw,g
i,j =

0 if |i− j| ≤ w or j ≡ 0 (mod g),

−∞ otherwise.

Then, the output of a single unit of Λw,g-masked attention is computable in time O((w +
N
g

)Nm).

Corollary 6.28. Any T ∈ Λw,g-AttnNm,L,H with T (X)N = hopk(X)N satisfies either L ≥ k

or (w + N
gk

)mHp = Ω(N
k6).

Like kernel-based attention, sparsely-masked attention models fail to efficiently compute

hopk. Similarly, in the same parameter-efficient regime, a Longformer must have either

w = Ω(N1−9ϵ) or g = O(N9ϵ), which jointly ensures that the masked matrix has at least

Ω(N2−9ϵ) entries and diminishes any computational advantages. This proof also appears in

Section 6.6.5.3.

356

6.6.4 Limitations of 1-layer transformers with chain-of-thought

While most of the paper considers transformers as sequence-to-sequence models, we can

also frame them as auto-regressive models performing next-token-prediction with chain-of-

thought prompting. In this regime, a single causally-masked transformer aims to compute a

function of its input by repeatedly predicting the next token, appending previously predicted

tokens to the end of the input. In doing so, a function is computable if there exists an

intermediate chain-of-thought produced by the model that eventually reaches the answer.

Definition 6.6. We say that T ∈ MaskTransformerN+NCoT
m,L,H computes f : ΣN+NCoT → ΣN ,

where the additional N tokens denote chain-of-thought, if for every X ∈ dom(f), there exists

XCoT ∈ ΣNCoT such that T (X ◦XCoT)N :N+NCoT = (XCoT ◦ f(X)).

The theoretical capabilities of chain-of-thought augmented transformers to simulate finite-

state automata and Turing machines have been studied (Malach, 2023; Merrill and Sab-

harwal, 2023a), but the comparative capabilities of shallow models with chain-of-thought

prompting and deep sequential models are unknown. In contrast to the fact that any trans-

former with NCoT tokens can be simulated by a sequential model with depth scaled by NCoT,

we show that deep transformers cannot necessarily be efficiently simulated by shallow chain-

of-thought models. We do so by demonstrating that a linear amount of chain-of-thought

prompting in k is necessary to solve hopk(X)N , and also sufficient.

Corollary 6.29. Any T ∈ MaskTransformerN+NCoT
m,1,H that computes hopk(X)N with NCoT

tokens of chain-of-thought requires either NCoT ≥ k or mHp = Ω(N
k6).

The proof appears in Section 6.6.5.4. For future work, it remains to consider the com-

parative powers of chain-of-thought models of depths greater than one.

357

6.6.5 Proofs for Section 6.6

6.6.5.1 Multi-player pointer chasing communication complexity

We introduce the multi-pass multi-player blackboard communication model studied by

Guha and McGregor (2009) and Assadi and N (2021) to prove lower bounds for multi-pass

streaming algorithms. A protocol in this model specifies how k players, each possessing a

portion of a shared input, can jointly compute a function on the input over the course of

R rounds of communication. In each round, all players take turns to broadcast an s-bit

message to all other players. We provide a formal definition of the model as described in

Section 6 of Assadi and N (2021).

Definition 6.7. A k-player R-round s-space sequential blackboard communication protocol

includes k players P1, . . . , Pk. On input Z that can be partitioned into (Z1, . . . , Zk), each

player Pj is provided with its respective Zj. In each round, players communicate via a

shared blackboard. That is, in round r and in order Pk, . . . , P1, each player Pj writes a

message Πr
j ∈ {0, 1}s on the blackboard (which can be viewed by all players) as a potentially

randomized function of input Zj and all information on the blackboard. After the conclusion

of R rounds, the final message ΠR
1 is the output of the protocol.

Assadi and N (2021) proves a lower bound on the round complexity necessary to solve

the well-studied multi-party pointer chasing problem of Nisan and Wigderson (1993). We

present the problem as defined by Assadi and N (2021).

Definition 6.8. For q, k ∈ Z+, let an (q, k)-layered graph G = (V,E) have disjoint vertex

layers V1, . . . , Vk+1 with V = V1 ∪· · ·∪Vk+1 and each |Vj| = q and edge layers E1, . . . , Ek with

E = E1 ∪ · · · ∪ Ek and each Ej being a perfect matching between Vj and Vj+1. The pointer

chasing task is provides a (q, k)-layered graph G, an arbitrary v ∈ V1, and an arbitrary

equipartition V 1
k+1 and V 2

k+1 of Vk+1 as input and asks whether v is connected to a vertex in

V 1
k+1 or V 2

k+1.

358

Assadi and N (2021) give the following lower bound.

Proposition 6.30 (Proposition 4.12 of Assadi and N, 2021). Consider a k-player R-round

s-space sequential blackboard protocol that solves the (q, k)-pointer chasing task where each

player Pj is provided with the matching Ej and v and V 1
k+1, V

2
k+1 are globally known. Then,

the protocol succeeds with probability at least 2
3 only if R ≥ k or s = Ω(q

k5).

All of the lower bounds in Section 6.6 are most naturally proved by reducing from hopk,

rather than pointer chasing. So we first prove a lower bound for hopk using the lower bound

for pointer chasing from Proposition 6.30.

Proposition 6.31. Consider a k-player R-round s-space sequential blackboard protocol that

computes hopk(X)N on any X ∈ ΣN for Σ = [2q + 2] with q =
⌊
N
2k

⌋
where each player

Pj is provided with Xj := (X2(k−j)q+1, . . . , X2(k−j+1)q), except for P1, who is given X1 :=

(X2(k−1)q+1, . . . , XN). Then, the protocol succeeds with probability at least 2
3 only if R ≥ k or

s = Ω(N
k6).

Proof. Assuming the existence of a k-player R-round s-space sequential blackboard protocol

for hopk(X)N as described above, we design a protocol for solving (q, k)-pointer chasing with

R rounds and s-size messages. The claimed lower bound will then follow by Proposition 6.30.

Consider any pointer chasing input with universally known V1, . . . , Vk+1, v ∈ V1, and V 1
k+1

and V 2
k+1, and each player Pj knowing matching Ej. We recursively define v1, . . . , vk+1 such

that v1 = v and (vj, vj+1) ∈ Ej, noting that the output hinges on whether vk+1 ∈ V 1
k+1.

Without loss of generality, let v = 1 and

Vj =

{1, . . . , q} if j is odd,

{q + 1, . . . , 2q} if j is even.

Each player independently determines their substring Xj of a input X to hopk before running

the aforementioned protocol:

359

• Player P1 encodes X1 by letting XN = s = 1 and for any i ∈ 1, . . . , 2q, letting

X1
i =

i+1

2 ∈ V1 if i is odd,

i′ ∈ V2 if i is even, (i2 , i
′) ∈ E1.

This ensures that that every integer in {1, . . . , 2q} appears exactly once in X1
1 , . . . , X

1
2q,

which in turn guarantees that find1
X(N) = (k − 1 + 1)q + 2 and that Xfind1

X(N) = v2

where (1, i′) ∈ E1.

• For any j ∈ {2, . . . , k − 1}, player Pj encodes Ej as Xj as follows. If j is odd, then for

every i ∈ {1, . . . , 2q},

Xj
i =

i+1

2 ∈ Vj if i is odd,

i′ ∈ Vj+1 if i is even, (i2 , i
′) ∈ Ej.

Alternatively, if j is even,

Xj
i =

q + i+1

2 ∈ Vj if i is odd,

i′ ∈ Vj+1 if i is even, (i2 , i
′) ∈ Ej.

Since every odd token corresponds to a vertex in Vj and each subsequent token corre-

sponds to the vertex it’s connected to by Ej, we can ensure that for every i ∈ [2q]:

(X2(k−j+1)+i, Xfind1
X(2(k−j+1)+i)) ∈ Ej.

Hence, it follows inductively that Xfindj
X(N) = vj+1.

360

• Player Pk encodes Xk if k is odd by letting

Xk
i = Xi =

i+1
2 ∈ Vk if i is odd,

2q + 1 if i is even, (i2 , v) ∈ Ek, and v ∈ V 1
k+1,

2q + 2 if i is even, (i2 , v) ∈ Ek, and v ∈ V 2
k+1.

Likewise, if k is even,

Xk
i = Xi =

q + i+1
2 ∈ Vk if i is odd,

2q + 1 if i is even, (i2 , v) ∈ Ek, and v ∈ V 1
k+1,

2q + 2 if i is even, (i2 , v) ∈ Ek, and v ∈ V 2
k+1.

These jointly ensure that

hopk(X)N = Xfindk
X(N) =

2q + 1 if vk+1 ∈ V 1

k+1,

2q + 2 if vk+1 ∈ V 2
k+1.

Therefore, by formatting E1, . . . , Ek appropriately asX, running the protocol for hopk(X)N ,

and observing that the final output of player P 1 is 2q + 1 if and only if vk+1 ∈ V 1
k+1, there

exists a k-player R-round s-space protocol for pointer chasing. Hence, by Proposition 6.30,

the protocol for hopk(X)N must use R ≥ k rounds or s = Ω(N
k6) space.

6.6.5.2 Proofs for Section 6.6.2

Corollary 6.26. A multi-layer RNN of depth L and width m as above with YN = hopk(X)N

satisfies either L ≥ k or m = Ω(N
k6).

Proof. Suppose there exists a multi-layer RNN computing output Y with YN,1 = hopk(X)N

from input X with intermediate states Z1, . . . , ZL−1 and hidden states H1, . . . , HL. For

any ℓ ∈ [L] and i ≤ i′, note that Zℓ
i , . . . , Z

ℓ
i′ can be determined exactly from Hℓ

i−1 and

361

Zℓ−1
i , . . . , Zℓ−1

i′ . Given this RNN, we provide a multi-player blackboard communication pro-

tocol for solving hopk(X)N under the input model of Proposition 6.31.

In round r, we assume inductively that each player Pj knows

Zℓ−1,j = (Zℓ−1
2(k−j)q+1, . . . , Z

ℓ−1
2(k−j+1)q),

except for P1, who knows

Zℓ−1,1 = (Zℓ−1
2(k−1)q+1, . . . , Z

ℓ−1
N).

In descending order, each player Pj computes Zℓ,j and Hℓ
2(k−j+1)q—writing the latter on the

blackboard—from Zℓ−1,j and Hℓ
2(k−j)q,which was written on the blackboard by the previous

player. Thus, player P 1 after round L knows and outputs ZL
N,1 = YN,1 = hopk(X)N , which

provides an L-round protocol m-space protocol.

So the claimed lower bounds on width and depth follow from Proposition 6.31.

6.6.5.3 Proofs for Section 6.6.3

Corollary 6.27. Any T ∈ KernelFormerNm,m′,L,H with T (X)N = hopk(X)N satisfies either

L ≥ k or mm′Hp = Ω(N
k6).

Proof. Under the distribution of input X = (X1, . . . , Xk) to players P1, . . . , Pk stipulated in

the statement of Proposition 6.31, we explain how the players can all compute the outcome

of a single layer of H-headed kernelized attention in a single round of a blackboard protocol.

It is immediate that a depth L network can be simulated in L rounds.

On input X, consider H kernelized self-attention units with embeddings

(Q′
1, K

′
1, V1), . . . , (Q′

H , K
′
H , VH)

362

and output MLP ψ. Each player Pj immediately computes its embeddings

(Q′
h(Xj), K ′

h(Xj), Vh(Xj))h∈[H],

followed by

(K ′
h(Xj)TVh(Xj)) ∈ Rm′×m

for each h ∈ [H]. Because the object is to compute for each h

ψ(Q′
h(X)K ′

h(X)TVh(X)) = ψ(Q′
h(X)

k∑
j=1

K ′
h(Xj)TVh(Xj)),

each player writes their (K ′
h(Xj)TVh(Xj))h∈[H] using message size s = Θ(mm′Hp). Each can

then construct K ′
h(X)TVh(X)) by reading the board, and use it to compute its respective

outputs without requiring supplemental communication.

Hence, T (and thus hopk(X)N) can be simulated using an L-round blackboard protocol

with message size s = Θ(mm′Hp), and the corollary follows from Proposition 6.31.

Corollary 6.28. Any T ∈ Λw,g-AttnNm,L,H with T (X)N = hopk(X)N satisfies either L ≥ k

or (w + N
gk

)mHp = Ω(N
k6).

Proof. As in the proof of Corollary 6.27, we explain how each player can compute their

respective outputs of a single unit of self-attention masked by Λw,g.

To compute the output corresponding to Xi, note that it is necessary to only know the

embeddings corresponding to Xi−w, Xi−w+1, . . . , Xi+w and Xg, X2g, . . . , X⌊N/g⌋g. Thus, player

Xj can compute the outputs of all of their inputs Xj = (X2(k−j)q+1, . . . , X2(k−j+1)q) given

access to

X2(k−j)q+1−w, . . . , X2(k−j)q, X2(k−j+1)q+1, . . . , X2(k−j+1)q+w,

as well as Xg, X2g, . . . , X⌊N/g⌋g.

363

Therefore, the protocol can be simulated if each player Xj writes inputs

X2(k−j)q+1, . . . , X2(k−j)q+w, X2(k−j+1)q−w+1, . . . , X2(k−j+1)q ∈ Rm,

in addition to all Xi ∈ Xj such that i ≡ 0 (mod g). This can be accomplished by a protocol

where each player writes s = O((w + N
gk

)mp) bits of information on the blackboard.

By repeating this protocol in parallel for every head and sequentially for every layer, T

and hopk(X)N can be simulated, and hence the claim follows from Proposition 6.31.

6.6.5.4 Proofs for Section 6.6.4

Corollary 6.29. Any T ∈ MaskTransformerN+NCoT
m,1,H that computes hopk(X)N with NCoT

tokens of chain-of-thought requires either NCoT ≥ k or mHp = Ω(N
k6).

Proof. We reduce to Proposition 6.31. Consider some input X ∈ RN partitioned into

X1, . . . , Xj as specified by the proof of Proposition 6.31 with chain-of-thought XCoT and

hopk(X)N determined by some masked transformer T .9 Suppose T has embeddings

Qh, Kh, Vh)h∈[H]

and output MLP ψ. We provide an (NCoT + 1)-round blackboard protocol to compute

hopk(X)N from X.

Suppose in the rth round of the protocol, all players know XCoT,1, . . . , XCoT,r−1 and aim
9We abuse notation to index XN+i = XCoT,i and let Xi ∈ Xj be true if i ∈

{2(k − j)q + 1, . . . , w(k − j + 1)q}.

364

to compute

T (X ◦XCoT)N+r−1

=

XCoT,r if r ≤ NCoT

hopk(X)N if r = NCoT + 1

= ψN+r−1

(
XN+r−1 +

H∑
h=1

∑N+r−1
i=1 exp(Qh

N+r−1(XN+r−1)TKh
i (Xi)T)V h

i (Xi)∑N+r−1
i=1 exp(Qh

N+r−1(XN+r−1)TKh
i (Xi))

)
.

If we let

Sr,h,j =
∑

Xi∈Xj

exp(Qh
N+r−1(XN+r−1)TKh

i (Xi)T)V h
i (Xi) ∈ Rm,

Sr,h,CoT =
N+r−1∑
i=N+1

exp(Qh
N+r−1(XN+r−1)TKh

i (Xi)T)V h
i (Xi) ∈ Rm,

Zr,h,j =
∑

Xi∈Xj

exp(Qh
N+r−1(XN+r−1)TKh

i (Xi)T) ∈ R,

Zr,h,CoT =
N+r−1∑
i=N+1

exp(Qh
N+r−1(XN+r−1)TKh

i (Xi)T) ∈ R,

then we observe that

T (X ◦XCoT)N+r−1 = ψN+r−1

(
XN+r−1 +

H∑
h=1

∑k
j=1 Sr,h,j + Sr,h,CoT∑k
j=1 Zr,h,j + Zr,h,CoT

)
.

Each player Pk computes (Sr,h,j, Zr,h,j)h∈[H] and writes them on the blackboard withO(mHp)-

bit messages. Since Sr,h,CoT and Zr,h,CoT are known by all players, every player can individ-

ually T (X ◦XCoT)N+r−1.

By induction, all players know hopk(X)N after NCoT + 1 rounds. The claim now follows

from Proposition 6.31.

365

6.7 Proofs of low-level attention constructions

This section provides the proofs of “low-level” transformer constructions, which are used

to prove the main results throughout the chapter. These results talk directly about the

embeddings utilized in various self-attention units. The separation of these proofs from the

main text is intended to make the main text more readable and to allow the reader to focus

on the high-level ideas of the main results.

6.7.1 Hardmax simulation proof of Section 6.2.2.2

Lemma 6.2. Let f ∈ AttnNm be a self-attention unit with precision p = Θ(logN) and embed-

ding functions Q,K, V such that for some fixed 1 ≥ ξ = N−O(1) and every X ∈ RN×m and

i ∈ [N]:

A(X)i,i′ ≤ max
i′′

A(X)i,i′′ − ξ, ∀i′ ̸∈ Imax(A(X)i),

where A(X) = Q(X)K(X)T. Then there exists a self-attention unit f ′ ∈ AttnNm with a valid

p′-bit implementation with p′ = O(p) satisfying

f ′(X) = hardmax(A(X))V (X).

Proof. For some p′ = Θ(p + log 1
ξ
) and c = Θ(p′+ζ

ξ
· logN) where ζ is as in Section 6.2.2.2),

let f ′ have query embedding Q′(X) = cQ(X) and identical key K and value V embeddings

as f . Therefore, by construction, these embeddings can be written with precision p′ =

O(ln(c) + p) = O(log 1
ξ

+ log logN + p) = O(p).

Let f̂ ′ be a valid p′-bit implementation of f ′, meaning that the two ∥f̂ ′−f ′∥∞ = O(1/2p+1)

(thus f̂ ′ rounds f ′ to p′ bits of precision), and fix some X. We first show that the softmax

matrix is sufficiently close to that of the hardmax and is also a valid p′-bit implementation

366

of the hardmax. Without loss of generality, let 1 ∈ Imax(A(X)i). First, note that

∑
i′ ̸∈Imax(A(X)i)

exp(cA(X)i,i′) ≤ N

exp(cξ) exp(cA(X)i,1) = 1
NO(p′+ζ) exp(cA(X)i,1).

Then,

|softmax(cA(X))i,1 − hardmax(A(X))i,1| = 1
|Imax(A(X)i)|

− exp(cA(X)i,1)∑N
i′=1 exp(cA(X)i,i′)

≤
∑
i′ ̸∈Imax(A(X)i) exp(cA(X)i,i′)

|Imax(A(X)i)| exp(cA(X)i,1)
= 1
NΩ(p′+ζ) .

Likewise, for any i′′ ̸∈ Imax(A(X)i):

|softmax(cA(X))i,i′′ − hardmax(A(X))i,i′′ | ≤ exp(cA(X)i,i′′)∑N
i′=1 exp(cA(X)i,i′)

= 1
NΩ(p′+ζ) .

Therefore,

∥softmax(cA(X))i − hardmax(cA(X))i∥2

≤
√
N · max

i′′
|softmax(cA(X))i,i′′ − hardmax(cA(X))i,i′′ |

= 1
NΩ(p′+ζ) .

We conclude that the approximation is sufficiently close, meaning it is O(1/2p′), whereby

367

it is exact after rounding:

∥∥∥f̂ ′(X) − hardmax(Q(X)K(X)T)V (X)
∥∥∥

∞

≤
∥∥∥f ′(X) − hardmax(Q(X)K(X)T)V (X)

∥∥∥
∞

+
∥∥∥f̂ ′(X) − f ′(X)

∥∥∥
∞

≤ max
i,j

∣∣∣softmax(cA(X))T
i V (X)·,j − hardmax(A(X))T

i V (X)·,j

∣∣∣+O
(1

2p′

)
≤ max

i,j

∥∥∥softmax(cA(X))T
i − hardmax(A(X))T

i

∥∥∥
2

∥V (X)·,j∥2 +O
(1

2p′

)
≤ 1
NΩ(p′+ζ) ·

√
N ·N ζ +O

(1
2p′

)
= O

(1
2p′

)
.

Therefore, f̂ ′ is a valid p′-bit implementation of hardmax(Q(X)K(X)T)V (X).

6.7.2 Constructions for Section 6.3.3.1

Proposition 6.10. For any b ≤ N and d, there exists a self-attention unit

sparsePropagateQ,d ∈ AttnNm,p

for m = d+O(Q logN) and p = O(logN), which, given any input X with

Xi = (zi, Si, 0⃗) ∈ Rd ×
(

[N]
≤ Q

)
× {0}m−Q−d

such that bi = |{Sj ∋ i : j ∈ [N]}| ≤ Q for all i, has output sparsePropagateQ,d(X) satisfying

sparsePropagateQ,d(X)i = 1
bi

∑
Sj∋i

zj.

Proof. Following the proof of Theorem 5.4, there exist p-bit precision vectors u1, . . . , uN ∈

368

{±1/
√
m}m and wS with wS ≤ 2

√
Q for all S ∈

(
N

≤Q

)
such that

uT
i wS = 1, for all i ∈ S

uT
i wS ≤ 1

2 , for all i ̸∈ S.

We then design the embeddings of sparsePropagateQ,d with

Q(X)i = (ui, 1),

K(X)i =

(wSi

, 0) if i > 0,

(⃗0, 3
4) if i = 0,

V (X)i =

zi if i > 0,

0⃗ if i = 0.

As a result,

Q(X)T
i K(X)i′ = 1 if i ∈ Si′ , i

′ > 0,

Q(X)T
i K(X)i′ ≤ 1

2 if i ̸∈ Si′ , i
′ > 0,

Q(X)T
i K(X)0 = 3

4 .

Hence, the largest inner products for query i correspond to i′ for all Si′ ∋ i if any exist, and

0 otherwise. There exists a margin of at least 1
4 between the largest inner product in each

row and all others. By applying Lemma 6.2, we conclude that there exists a self attention

unit f ′ with embedding dimension p = Θ(logN) that computes

f ′(X) = hardmax(Q(X)K(X)T)V (X) = sparsePropagate(X).

369

6.7.3 Constructions for Section 6.3.3.2

Lemma 6.13. For any MPC protocol π with local memory s and q machines with nin-word

inputs, there exists a transformer init ∈ Transformernin,max(nin,q)
s,1,1,din,dout with din = 1 and dout = s,

which, given Input ∈ Zn2p, has output satisfying init(Input) = MachineIn(1).

Proof. Let M = max(nin, q) and Q,K, V : ZM2p → RM×s be the query, key, and value

embeddings of the attention unit f in init, and let ψ : RM×s → Zs2p × [N] be its output MLP.

Let qin =
⌈
nin
s

⌉
denote the number of machines used to store the inputs.

Let Desti′ =
⌈
i′

s

⌉
∈ [qin] denote the machine that stores the input token index i′ ∈ [nin]

in the MPC protocol, and let

Rcvdi = {(s− 1)i+ 1, . . . ,min(si, nin)}

denote the set of all input tokens indices belonging to MachineIn(1)
i for machine i ∈ [qin].

For each machine i ∈ [qin], we define the query embedding as

Q(Input)i =
(

cos
(2πi
M

)
, sin

(2πi
M

)
, . . . , cos

(2πi
M

)
, sin

(2πi
M

))
.

Likewise, for each token index i′ ∈ [nin], the key and value vectors are

K(Input)i′,(2ι−1,2ι) =

(
cos

(
2π·Desti′

M

)
, sin

(
2π·Desti′

M

))
if i′ ≤ nin, i

′ ≡ ι (mod s),

(0, 0) otherwise,

V (Input)i′,(2ι−1,2ι) =

(Inputi′ , i

′) if i′ ≤ nin, i
′ ≡ ι (mod s),

(0, i′) otherwise.

These definitions guarantee that large inner products only occur between machine queries

370

Q(Input)i and tokens keys K(Input)i′ when Inputi′ is allocated to MachineIn(1)
i . That is,

Q(Input)T
i K(Input)i′ = 1, if i′ ∈ Rcvdi

Q(Input)T
i K(Input)i′ ≤ 1 − Ω

(1
M2

)
, otherwise.

By applying Lemma 6.2 with ξ = Ω(1
N2), there exists some self-attention unit f ′ such that

f ′(Input)i = hardmax(Q(Input)K(Input)T) = (Inputi′ , i
′)i′∈Rcvdi

|Rcvdi|
.

A proper choice of ψ and an invocation of the definition of MachineIn(1) ensures that

init(Input)i = ψ(f(Input))i = MachineIn(1)
i .

Lemma 6.15. For any R-round MPC protocol π with local memory s and q machines with

nout-word output, there exists a transformer final ∈ Transformerq,max(nout,q)
s,1,1,din,dout for din = s and

dout = 1, which, given input X = MachineIn(R), has output final(X) with final(X)i,1 =

Outputi ∈ Z2p.

Proof. This argument inverts that of Lemma 6.13, after applying the LocalR to transform

MachineIn(R) to MachineOut(R). Let Q,K, V : ZM2p → RM×s be the query, key, and value

embeddings of the only attention unit f in final, and let ψ : RM×s → Zs2p × [N] be its output

MLP. Let qout =
⌈
nout
s

⌉
denote the number of machines storing relevant information for the

output of the MPC protocol.

For each machine i′ ∈ [qout], let

Senti′ = {(s− 1)i′ + 1, . . . ,min(si′, nout)}

denote the set of all token indices receiving its output. Likewise, for each token index

i ∈ [nout], let Srci = ⌈i/s⌉ be the machine containing its relevant token. We define Q =

371

Q′ ◦ LocalR, K = K ′ ◦ LocalR, V = V ′ ◦ LocalR as follows.

Q′(MachineOut(R))i,(2ι−1,2ι) =

(
cos

(
2π⌊Srci⌋

M

)
, sin

(
2π⌊Srci⌋

M

))
if i ≤ nout, i ≡ ι (mod s)

(0, 0) otherwise.

K ′(MachineOut(R))i′ =
(

cos
(

2πi′
M

)
, sin

(
2πi′
M

)
, . . . , cos

(
2πi′
M

)
, sin

(
2πi′
M

))
.

V ′(MachineOut(R))i′ = MsgOut(R)
i′ .

Applying Lemma 6.2 as before yields

f(MachineIn(R))i =

MachineOut(R)

i′ if i ∈ Senti′ ,

0 otherwise.

A properly chosen ψ ensures that final(MachineIn(R))i = ψ(f(MachineIn(R)))i = Outputi.

6.7.4 Constructions for Section 6.4.3.1

Lemma 6.20. For some m ≥ d+ 2, τ : [N] × Rm → [N], and ρ : Rm → Rd, there exists an

attention head lookUpτ,ρ ∈ MaskAttnNm with precision p = O(logN) and m ≥ d+ 2 satisfying

lookUpτ,ρ(X)i,:d = ρ(Xτ(i,Xi)).

Proof. We let V (Xi) = (ρ(Xi), 0⃗) and define sinusoidal embeddings Q and K with

Q(X)i =
(

cos
(

2πτ(i,Xi)
N

)
, sin

(
2πτ(i,Xi)

N

)
, 0⃗
)
,

K(X)i =
(

cos
(2πi
N

)
, sin

(
2πi)
N

)
, 0⃗
)
.

372

Note that

Q(X)T
i K(X)i′ = 1, if τ(i,Xi) = i′,

Q(X)T
i K(X)i′ ≤ cos

(2π
N

)
= 1 − Ω

(1
N2

)
, otherwise.

By applying Lemma 6.2 with ξ = Ω(1
N2), we conclude that a satisfactory self-attention

unit exists.

Lemma 6.21. For finite alphabet Σ, m ≥ d + 2, µ1, µ2 : Rm → Σ, and ρ : Rm → Rd, there

exists an attention head lastOccurrenceµ,ρ ∈ MaskAttnNm with precision p = O(log(N |Σ|))

such that,

lastOccurrence(X)i,:d =

ρ(⃗0) if ∀ i′ < i : µ1(Xi′) ̸= µ2(Xi),

ρ(Xi′) if i′ = max {i′ < i : µ1(Xi′) = µ2(Xi)} .

Proof. LetN ′ = N |Σ|. We define token embeddings as follows, including start token “dummy

embeddings” as discussed in Section 6.2.2.2.

Q(X)i =
(

cos
(

2π(Nµ2(Xi) + i)
N |Σ|

)
, sin

(
2π(Nµ2(Xi) + i)

N |Σ|

)
, 1, 0⃗

)
,

K(X)i =
(

cos
(

2π(Nµ1(Xi) + i)
N |Σ|

)
, sin

(
2π(Nµ1(Xi) + i)

N |Σ|

)
, 0, 0⃗

)
,

K(X)0 =
(

0, 0, cos
(

2π(N − 1
2)

N |Σ|

)
, 0⃗
)
,

V (X)i = (ρ(Xi), 0⃗),

V (X)0 = 0⃗.

Taken together, these embeddings provide the following characterization of the inner prod-

373

ucts (with causal masking matrix Γ):

Q(X)T
0K(X)i′ + Γi,i′ = cos

(
2π(i− i′)
N |Σ|

)
if i ≥ i′ > 0, µ1(Xi′) = µ2(Xi),

Q(X)T
i K(X)i′ + Γi,i′ ≤ cos

(2π
N

)
if i ≥ i′ > 0, µ1(Xi′) ̸= µ2(Xi),

Q(X)T
i K(X)i′ + Γi,i′ = −∞ if i < i′,

Q(X)T
i K(X)i + Γi,0 = cos

(
2π(N − 1

2)
N |Σ|

)
.

As a result, the largest inner product Q(X)T
i K(X)i′ for some i is the largest i′ with µ1(Xi′) =

µ2(Xi) if one exists and i′ = 0 otherwise. Furthermore, there exists a margin of Ω(1
N2|Σ|2)

between this inner product and all others. We conclude by applying Lemma 6.2.

6.8 Conclusion and future work

This work highlights parallelism as a central feature of transformers that sets them apart

from other neural architectures. The focus on log-depth and sublinear-width transformers

applied to specific computational tasks accentuates the benefits of parallelism, even for tasks

like k-hop that appear inherently serial at first glance. There is some efficiency loss in

the “compilation” of MPC protocols to transformers that we hope to understand better in

future work. Furthermore, although we have empirically demonstrated the learnability of

transformers that exploit parallelism in crucial ways, a theoretical understanding of learning

such solutions remains an open question.

As discussed previously, this work is a direct follow-up to the previous chapter, which

extends the communication complexity lens on transformers to a variable-depth regime. In

doing so, these results suggest that modeling a transformer as a restricted multi-round com-

munication protocol between tokens provides insight into the strengths and limitations of

the architecture. By establishing that transformers can simulate parallelizable algorithms,

while alternative architectures are akin to a bounded-size blackboard model, we apply this

374

communication lens to quantify the advantages of the transformer over state-space models

and sub-quadratic-attention models. The tasks under consideration are compositional in na-

ture, and the results suggest that the transformer’s ability to exploit parallelism is crucial for

efficiently learning such tasks. The empirical results provide evidence that these representa-

tional benefits are realizable by practical learning algorithms and that this “pointer-passing”

primitive may be a key subroutine of trained transformers.

375

Epilogue

Throughout this dissertation, we have explored the representational capabilities of neural

networks and used a wide range of theoretical tools to derive sharp separations between

design choices. Beyond the worst-case framing of the universal approximation theorem, we

have developed a more precise and prescriptive understanding of the fundamental limitations

of neural architectures.

Underlying this dissertation—and the field of neural network theory writ large—is a

fundamental tension between the principled rigor of theoretical computer science and the

shifting landscape of empirical machine learning. The former demands abstractions and

generalizations that are often too coarse to capture the complexities of modern deep learning,

which leaves the study of state-of-the-art neural networks to practitioners and empirical

researchers. The author’s Ph.D. research has aimed to bridge that gap, and the body of

work herein is a testament to the author’s struggle to find a middle ground between these

two fields.

The works in this dissertation attempt to provide a beyond-worst-case formulation of

neural networks that incorporates architectural complexities and scaling regimes of practical

interest; however, the focus on approximation and expressivity leaves numerous research

questions unanswered. While negative representational results provide a hard limitation

on the capabilities of neural architectures, positive representational results leave open the

question of whether the target function can be learned by a practical algorithm with a feasible

number of samples. Indeed, the author’s “mid-Ph.D.” body of work includes several papers

376

(Ardeshir, Sanford, and Hsu, 2021; Bietti, Bruna, Sanford, and Song, 2022; Chatziafratis,

Panageas, Sanford, and Stavroulakis, 2022) excluded from the thesis that focuses more on

optimization and generalization, as an attempt to move beyond the representational focus of

the works herein. However, a rigorous analysis of gradient descent and generalization have

proven elusive for all but the simplest of settings, which prompted the author to return to

the representational focus for the final years of his Ph.D.

Unlike the earlier chapters of the dissertation, the final two chapters are inspired by the

rapid innovation in the transformer architecture. Numerous variants of and alternatives to

the transformer have been proposed in recent years, and the motivation of the author’s work

on transformers is to answer concrete questions about how to decide between these architec-

tures, which benchmark tasks can measure their success, and how to adapt these architec-

tures to new tasks. In the context of transformer architecture research in early 2024, these

questions pertain to the effectiveness of various sub-quadratic attention mechanisms, the

learnability of compositional tasks, and whether state-space models are a viable alternative

to transformers. In particular, the final chapter was inspired by extensive experimentation

on toy tasks, which clarified that the studied targets may be not only representable but also

learnable by transformers.

As the theory of transformers matures, their primary theoretical research focus may

shift from representation to optimization and generalization, just as was the case for feed-

forward neural networks. The author hopes that the mathematical connections drawn in

this dissertation will provide a foundation for future research. However, as long as the space

of neural architectures is being explored, novel representational results will remain relevant

and informative to theoreticians and practitioners alike. Indeed, the core contribution of

representational results since the XOR construction of Minsky and Papert (1969) has been

to distill in as simple a form as possible the differences in capacities of different architectures

and to use these differences to guide the design of new architectures. The targets developed

in this work—the sinusoidal single-index model, the iterated logistic mapping, the parity

377

dataset, three-wise matching, and the k-hop compositionality problem—are all inspired by

this tradition, and the author hopes that they will inspire future work in the same vein.

378

References

Aamand, Anders et al. (2022). “Exponentially Improving the Complexity of Simulating the
Weisfeiler-Lehman Test with Graph Neural Networks”. In: Advances in Neural Informa-
tion Processing Systems 35.

Abbe, Emmanuel and Colin Sandon (2020). “Poly-time universality and limitations of deep
learning”. In: arXiv preprint arXiv:2001.02992. arXiv: 2001.02992 [cs.LG].

Agarwal, Alekh et al. (2014). “A reliable effective terascale linear learning system”. In: Jour-
nal of Machine Learning Research 15.1, pp. 1111–1133.

Alman, Josh and Zhao Song (2023). “How to Capture Higher-order Correlations? General-
izing Matrix Softmax Attention to Kronecker Computation”. In: CoRR abs/2310.04064.
arXiv: 2310.04064.

Alsedà, Lluís, Jaume Llibre, and Michal Misiurewicz (2000). Combinatorial Dynamics and
Entropy in Dimension One. 2nd. WORLD SCIENTIFIC. eprint: https://www.worldscientific.
com/doi/pdf/10.1142/4205.

Andoni, Alexandr et al. (2014a). “Learning Polynomials with Neural Networks”. In: Pro-
ceedings of the 31st International Conference on International Conference on Machine
Learning - Volume 32. ICML’14. Beijing, China: JMLR.org, pp. II–1908–II–1916.

Andoni, Alexandr et al. (2014b). “Parallel algorithms for geometric graph problems”. In:
Proceedings of the forty-sixth annual ACM symposium on Theory of computing, pp. 574–
583.

Andoni, Alexandr et al. (Oct. 2018). “Parallel Graph Connectivity in Log Diameter Rounds”.
In: 2018 IEEE 59th Annual Symposium on Foundations of Computer Science (FOCS).
IEEE.

Angluin, Dana (1980). “Local and global properties in networks of processors”. In: Proceed-
ings of the Twelfth Annual ACM Symposium on Theory of Computing.

Angluin, Dana, David Chiang, and Andy Yang (2023). Masked Hard-Attention Transform-
ers and Boolean RASP Recognize Exactly the Star-Free Languages. arXiv: 2310.13897
[cs.FL].

Anthony, Martin and Peter L Bartlett (1999). Neural network learning: Theoretical founda-
tions. Vol. 9. cambridge university press Cambridge.

379

https://arxiv.org/abs/2001.02992
https://arxiv.org/abs/2310.04064
https://www.worldscientific.com/doi/pdf/10.1142/4205
https://www.worldscientific.com/doi/pdf/10.1142/4205
https://arxiv.org/abs/2310.13897
https://arxiv.org/abs/2310.13897

Ardeshir, Navid, Daniel J. Hsu, and Clayton Hendrick Sanford (2023). “Intrinsic dimension-
ality and generalization properties of the R-norm inductive bias”. In: The Thirty Sixth
Annual Conference on Learning Theory, COLT 2023, 12-15 July 2023, Bangalore, India.
Ed. by Gergely Neu and Lorenzo Rosasco. Vol. 195. Proceedings of Machine Learning
Research. PMLR, pp. 3264–3303.

Ardeshir, Navid, Clayton Sanford, and Daniel J. Hsu (2021). “Support vector machines and
linear regression coincide with very high-dimensional features”. In: Advances in Neural
Information Processing Systems 34: Annual Conference on Neural Information Processing
Systems 2021, NeurIPS 2021, December 6-14, 2021, virtual. Ed. by Marc’Aurelio Ranzato
et al., pp. 4907–4918.

Arora, Raman et al. (2016). “Understanding deep neural networks with rectified linear units”.
In: arXiv preprint arXiv:1611.01491.

Assadi, Sepehr and Vishvajeet N (June 2021). “Graph streaming lower bounds for parameter
estimation and property testing via a streaming XOR lemma”. In: Proceedings of the 53rd
Annual ACM SIGACT Symposium on Theory of Computing. STOC ’21. ACM.

Bach, Francis (2017). “Breaking the curse of dimensionality with convex neural networks”.
In: Journal of Machine Learning Research 18.1, pp. 629–681. arXiv: 1412.8690 [cs.LG].

Bach, Francis and Lenaïc Chizat (2021). “Gradient Descent on Infinitely Wide Neural Net-
works: Global Convergence and Generalization”. In: arXiv preprint arXiv:2110.08084.

Baldi, Pierre and Peter J Sadowski (2013). “Understanding dropout”. In: Advances in Neural
Information Processing Systems 26.

Barak, Boaz et al. (2022). Hidden Progress in Deep Learning: SGD Learns Parities Near the
Computational Limit.

Barron, Andrew R (1993). “Universal approximation bounds for superpositions of a sigmoidal
function”. In: IEEE Transactions on Information theory 39.3, pp. 930–945.

Bartlett, Peter L (1996). “For valid generalization the size of the weights is more important
than the size of the network”. In: Advances in Neural Information Processing Systems 9.

Bartlett, Peter L. et al. (2019). “Benign Overfitting in Linear Regression”. In: CoRR abs/1906.11300.
arXiv: 1906.11300.

Bauer, Benedikt and Michael Kohler (2019). “On deep learning as a remedy for the curse of
dimensionality in nonparametric regression”. In: The Annals of Statistics 47.4, pp. 2261–
2285.

380

https://arxiv.org/abs/1412.8690
https://arxiv.org/abs/1906.11300

Beame, Paul, Paraschos Koutris, and Dan Suciu (2017). “Communication steps for parallel
query processing”. In: Journal of the ACM (JACM) 64.6, pp. 1–58.

Behnezhad, Soheil et al. (2019). “Massively parallel computation of matching and MIS in
sparse graphs”. In: Proceedings of the 2019 ACM Symposium on Principles of Distributed
Computing, pp. 481–490.

Belkin, Mikhail et al. (2018). “Reconciling modern machine learning and the bias-variance
trade-off”. In: CoRR abs/1812.11118. arXiv: 1812.11118.

Bellman, Richard (1944). “Almost orthogonal series”. In: Bulletin of the American Mathe-
matical Society 50, pp. 517–519.

Beltagy, Iz, Matthew E. Peters, and Arman Cohan (2020). Longformer: The Long-Document
Transformer. arXiv: 2004.05150 [cs.CL].

Ben-David, Shai, Nadav Eiron, and Hans Ulrich Simon (2002). “Limitations of learning via
embeddings in Euclidean half spaces”. In: Journal of Machine Learning Research 3.Nov,
pp. 441–461.

Bengio, Y., P. Simard, and P. Frasconi (1994). “Learning long-term dependencies with gra-
dient descent is difficult”. In: IEEE Transactions on Neural Networks 5.2, pp. 157–166.

Bhattamishra, Satwik, Kabir Ahuja, and Navin Goyal (2020). “On the Ability and Lim-
itations of Transformers to Recognize Formal Languages”. In: Proceedings of the 2020
Conference on Empirical Methods in Natural Language Processing.

Bhattamishra, Satwik et al. (2022). “Simplicity Bias in Transformers and their Ability to
Learn Sparse Boolean Functions”. In: arXiv preprint arXiv:2211.12316.

Bhojanapalli, Srinadh, Behnam Neyshabur, and Nati Srebro (2016). “Global optimality of
local search for low rank matrix recovery”. In: Advances in Neural Information Processing
Systems 29.

Bietti, Alberto et al. (2022). “Learning Single-Index Models with Shallow Neural Networks”.
In: arXiv preprint arXiv:2210.15651.

Bietti, Alberto et al. (2023). Birth of a Transformer: A Memory Viewpoint. arXiv: 2306.
00802 [stat.ML].

Boas, R. P. jun. (1941). “A general moment problem.” In: American Journal of Mathematics
63, pp. 361–370.

Boucheron, Stéphane, Gábor Lugosi, and Pascal Massart (2013). Concentration Inequalities
- A Nonasymptotic Theory of Independence. Oxford University Press.

381

https://arxiv.org/abs/1812.11118
https://arxiv.org/abs/2004.05150
https://arxiv.org/abs/2306.00802
https://arxiv.org/abs/2306.00802

Bresler, Guy and Dheeraj Nagaraj (2020). Sharp Representation Theorems for ReLU Net-
works with Precise Dependence on Depth. arXiv: 2006.04048 [stat.ML].

Brown, Tom B. et al. (2020). “Language Models are Few-Shot Learners”. In: arXiv preprint
arXiv:2005.14165.

Bu, Kaifeng, Yaobo Zhang, and Qingxian Luo (2020). Depth-Width Trade-offs for Neural
Networks via Topological Entropy. arXiv: 2010.07587 [cs.LG].

Bubeck, Sébastien, Yuanzhi Li, and Dheeraj M Nagaraj (2021). “A law of robustness for
two-layers neural networks”. In: Conference on Learning Theory.

Candès, Emmanuel J. (1999). “Harmonic analysis of neural networks”. In: Applied and Com-
putational Harmonic Analysis 6.2, pp. 197–218.

Candès, Emmanuel J and Benjamin Recht (2009). “Exact Matrix Completion via Convex
Optimization”. In: Foundations of Computational Mathematics 9.6, pp. 717–772.

Candès, Emmanuel J, Justin Romberg, and Terence Tao (2006). “Robust uncertainty prin-
ciples: Exact signal reconstruction from highly incomplete frequency information”. In:
IEEE Transactions on information theory 52.2, pp. 489–509.

Candes, Emmanuel J and Terence Tao (2005). “Decoding by linear programming”. In: IEEE
transactions on information theory 51.12, pp. 4203–4215.

Charikar, Moses, Weiyun Ma, and Li-Yang Tan (2020). New lower bounds for Massively
Parallel Computation from query complexity. arXiv: 2001.01146 [cs.DS].

Chatziafratis, Vaggos, Sai Ganesh Nagarajan, and Ioannis Panageas (2020). “Better depth-
width trade-offs for neural networks through the lens of dynamical systems”. In: Inter-
national Conference on Machine Learning. PMLR, pp. 1469–1478.

Chatziafratis, Vaggos et al. (2019). “Depth-width trade-offs for relu networks via sharkovsky’s
theorem”. In: arXiv preprint arXiv:1912.04378. arXiv: 1912.04378 [cs.LG].

Chatziafratis, Vaggos et al. (2022). “On Scrambling Phenomena for Randomly Initialized
Recurrent Networks”. In: Advances in Neural Information Processing Systems 35: An-
nual Conference on Neural Information Processing Systems 2022, NeurIPS 2022, New
Orleans, LA, USA, November 28 - December 9, 2022. Ed. by Sanmi Koyejo et al.

Chen, Nuo et al. (2022). “CAT-probing: A Metric-based Approach to Interpret How Pre-
trained Models for Programming Language Attend Code Structure”. In: arXiv preprint
arXiv:2210.04633.

382

https://arxiv.org/abs/2006.04048
https://arxiv.org/abs/2010.07587
https://arxiv.org/abs/2001.01146
https://arxiv.org/abs/1912.04378

Chen, Zhengdao et al. (2019). “On the equivalence between graph isomorphism testing and
function approximation with GNNs”. In: Advances in Neural Information Processing
Systems 32.

Cho, Youngmin and Lawrence K. Saul (2009). “Kernel Methods for Deep Learning”. In: Ad-
vances in Neural Information Processing Systems 22: 23rd Annual Conference on Neural
Information Processing Systems 2009. Proceedings of a meeting held 7-10 December 2009,
Vancouver, British Columbia, Canada. Ed. by Yoshua Bengio et al. Curran Associates,
Inc., pp. 342–350.

Choromanski, Krzysztof et al. (2022). Rethinking Attention with Performers. arXiv: 2009.
14794 [cs.LG].

Chung, Junyoung et al. (2014). “Empirical evaluation of gated recurrent neural networks on
sequence modeling”. In: arXiv preprint arXiv:1412.3555.

Clark, Kevin et al. (2019). “What does bert look at? an analysis of bert’s attention”. In:
arXiv preprint arXiv:1906.04341.

Cortes, Corinna and Vladimir Vapnik (1995). “Support-vector networks”. In: Machine Learn-
ing 20.3, pp. 273–297.

Coy, Sam and Artur Czumaj (2022). “Deterministic Massively Parallel Connectivity”. In:
Proceedings of the 54th Annual ACM SIGACT Symposium on Theory of Computing.
STOC 2022. Rome, Italy: Association for Computing Machinery, 162–175. isbn: 9781450392648.

Cybenko, G. (Dec. 1989). “Approximation by superpositions of a sigmoidal function”. In:
Mathematics of Control, Signals and Systems 2.4, pp. 303–314.

Damian, Alexandru, Jason Lee, and Mahdi Soltanolkotabi (2022). “Neural networks can
learn representations with gradient descent”. In: Conference on Learning Theory.

Daniely, Amit (July 2017a). “Depth Separation for Neural Networks”. In: Proceedings of the
2017 Conference on Learning Theory. Ed. by Satyen Kale and Ohad Shamir. Vol. 65.
Proceedings of Machine Learning Research. PMLR, pp. 690–696.

— (2017b). “SGD Learns the Conjugate Kernel Class of the Network”. In.

Daniely, Amit and Eran Malach (2020). “Learning Parities with Neural Networks”. In: Ad-
vances in Neural Information Processing Systems 33: Annual Conference on Neural In-
formation Processing Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual. Ed. by
Hugo Larochelle et al.

Dao, Tri et al. (2022). “FlashAttention: Fast and Memory-Efficient Exact Attention with
IO-Awareness”. In: NeurIPS.

383

https://arxiv.org/abs/2009.14794
https://arxiv.org/abs/2009.14794

Dean, Jeffrey and Sanjay Ghemawat (2004). “MapReduce: Simplified Data Processing on
Large Clusters”. In: OSDI, pp. 137–150.

Debarre, Thomas et al. (2022). “Sparsest piecewise-linear regression of one-dimensional
data”. In: Journal of Computational and Applied Mathematics 406, p. 114044.

Dettmers, Tim et al. (2022). “LLM.int8(): 8-bit matrix multiplication for transformers at
scale”. In: Advances in Neural Information Processing Systems. Vol. 35.

Donoho, David L (2006). “Compressed sensing”. In: IEEE Transactions on Information
Theory 52.4, pp. 1289–1306.

Dosovitskiy, Alexey et al. (2021). “An Image is Worth 16x16 Words: Transformers for Image
Recognition at Scale”. In: arXiv preprint arXiv:2010.11929. arXiv: 2010.11929 [cs.CV].

Duris, Pavol, Zvi Galil, and Georg Schnitger (1984). “Lower bounds on communication com-
plexity”. In: Proceedings of the Sixteenth Annual ACM Symposium on Theory of Com-
puting, 81–91.

Dym, H. and H. P. McKean (1972). Fourier series and integrals. Probability and Mathemat-
ical Statistics. Vol. 14. New York-London: Academic Press. X,295 p. $ 18.50 (1972).

E, Weinan, Chao Ma, and Lei Wu (2019). “The Barron Space and the Flow-induced Function
Spaces for Neural Network Models”. In: arXiv preprint arXiv:1906.08039.

Edelman, Benjamin L. et al. (2022). “Inductive Biases and Variable Creation in Self-Attention
Mechanisms”. In: International Conference on Machine Learning.

Eldan, Ronen and Ohad Shamir (June 2016). “The Power of Depth for Feedforward Neural
Networks”. In: CoRR. Proceedings of Machine Learning Research abs/1512.03965. Ed. by
Vitaly Feldman, Alexander Rakhlin, and Ohad Shamir, pp. 907–940. arXiv: 1512.03965.

Elhage, Nelson et al. (2021). “A Mathematical Framework for Transformer Circuits”. In:
Transformer Circuits Thread. https://transformer-circuits.pub/2021/framework/index.html.

Ergen, Tolga and Mert Pilanci (2021). “Convex geometry and duality of over-parameterized
neural networks”. In: Journal of Machine Learning Research 22.212, pp. 1–63.

Fischer, Paul and Hans-Ulrich Simon (1992). “On learning ring-sum-expansions”. In: SIAM
Journal on Computing 21.1, pp. 181–192.

Folland, Gerald B. (1999). Real analysis. Modern techniques and their applications. 2nd ed.
Pure Appl. Math., Wiley-Intersci. Ser. Texts Monogr. Tracts. New York, NY: Wiley.
isbn: 0-471-31716-0.

384

https://arxiv.org/abs/2010.11929
https://arxiv.org/abs/1512.03965

Frei, Spencer, Niladri S Chatterji, and Peter L Bartlett (2022). “Random feature ampli-
fication: Feature learning and generalization in neural networks”. In: arXiv preprint
arXiv:2202.07626.

Funahashi, Ken-ichi (1989). “On the approximate realization of continuous mappings by
neural networks”. In: Neural Networks 2.3, pp. 183–192.

Furst, Merrick, James B Saxe, and Michael Sipser (1984). “Parity, circuits, and the polynomial-
time hierarchy”. In: Mathematical systems theory 17.1, pp. 13–27.

Gal, Yarin and Zoubin Ghahramani (2016). “Dropout as a Bayesian approximation: Rep-
resenting model uncertainty in deep learning”. In: International Conference on Machine
Learning.

Galanti, Tomer et al. (2022). “SGD and Weight Decay Provably Induce a Low-Rank Bias in
Neural Networks”. In: arXiv preprint arXiv:2206.05794.

Gale, David (1963). “Neighborly and cyclic polytopes”. In: Proc. Sympos. Pure Math. Vol. 7,
pp. 225–232.

Ghaffari, Mohsen, Fabian Kuhn, and Jara Uitto (Nov. 2019). “Conditional Hardness Results
for Massively Parallel Computation from Distributed Lower Bounds”. In: IEEE 60th
Annual Symposium on Foundations of Computer Science, pp. 1650–1663.

Goodrich, Michael T, Nodari Sitchinava, and Qin Zhang (2011). “Sorting, searching, and
simulation in the mapreduce framework”. In: International Symposium on Algorithms
and Computation. Springer, pp. 374–383.

Gu, Albert and Tri Dao (2023). Mamba: Linear-Time Sequence Modeling with Selective State
Spaces. arXiv: 2312.00752 [cs.LG].

Guha, Sudipto and Andrew McGregor (2009). “Stream Order and Order Statistics: Quantile
Estimation in Random-Order Streams”. In: SIAM Journal on Computing 38.5, pp. 2044–
2059. eprint: https://doi.org/10.1137/07069328X.

Györfi, László et al. (2002). A distribution-free theory of nonparametric regression. Vol. 1.
Springer.

Hahn, Michael (2020). “Theoretical Limitations of Self-Attention in Neural Sequence Mod-
els”. In: Trans. Assoc. Comput. Linguistics 8, pp. 156–171.

Hanin, Boris (2021). “Ridgeless Interpolation with Shallow ReLU Networks in 1D is Nearest
Neighbor Curvature Extrapolation and Provably Generalizes on Lipschitz Functions”. In:
arXiv preprint arXiv:2109.12960.

385

https://arxiv.org/abs/2312.00752
https://doi.org/10.1137/07069328X

Hanin, Boris and David Rolnick (2019). “Deep relu networks have surprisingly few activation
patterns”. In: Advances in Neural Information Processing Systems, pp. 359–368.

Hanson, Stephen and Lorien Pratt (1988). “Comparing biases for minimal network construc-
tion with back-propagation”. In: Advances in Neural Information Processing Systems 1.

Hao, Yiding, Dana Angluin, and Robert Frank (2022). “Formal Language Recognition by
Hard Attention Transformers: Perspectives from Circuit Complexity”. In: Trans. Assoc.
Comput. Linguistics 10, pp. 800–810.

He, Kaiming et al. (2016). “Deep residual learning for image recognition”. In: Proceedings of
the IEEE conference on computer vision and pattern recognition, pp. 770–778.

Helmbold, David, Robert Sloan, and Manfred K Warmuth (1992). “Learning integer lattices”.
In: SIAM Journal on Computing 21.2, pp. 240–266.

Hewitt, John and Christopher D Manning (2019). “A structural probe for finding syntax
in word representations”. In: Proceedings of the 2019 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Technologies.

Hinton, Geoffrey E (1987). “Learning translation invariant recognition in a massively parallel
networks”. In: International Conference on Parallel Architectures and Languages Europe.

Hochreiter, Sepp and Jürgen Schmidhuber (1997). “Long Short-Term Memory”. In: Neural
Computation 9, pp. 1735–1780.

Hornik, Kurt, Maxwell Stinchcombe, and Halbert White (July 1989). “Multilayer Feedfor-
ward Networks Are Universal Approximators”. In: Neural Netw. 2.5, pp. 359–366.

Hsu, Daniel et al. (2021). “On the Approximation Power of Two-Layer Networks of Random
ReLUs”. In: Conference on Learning Theory, COLT 2021, 15-19 August 2021, Boulder,
Colorado, USA. Ed. by Mikhail Belkin and Samory Kpotufe. Vol. 134. Proceedings of
Machine Learning Research. PMLR, pp. 2423–2461.

Im, Sungjin et al. (2023). “Massively Parallel Computation: Algorithms and Applications”.
In: Foundations and Trends® in Optimization 5.4, pp. 340–417.

Jacot, Arthur, Franck Gabriel, and Clément Hongler (2018). “Neural Tangent Kernel: Con-
vergence and Generalization in Neural Networks”. In: Proceedings of the 32Nd Interna-
tional Conference on Neural Information Processing Systems. NIPS’18. Montréal,
Canada: Curran Associates Inc., pp. 8580–8589.

Ji, Ziwei, Matus Telgarsky, and Ruicheng Xian (2019). Neural tangent kernels, transportation
mappings, and universal approximation. arXiv: 1910.06956 [cs.LG].

386

https://arxiv.org/abs/1910.06956

Jin, Hui and Guido Montúfar (2020). “Implicit bias of gradient descent for mean squared
error regression with wide neural networks”. In: arXiv preprint arXiv:2006.07356.

Jumper, John et al. (2021). “Highly accurate protein structure prediction with AlphaFold”.
In: Nature 596.7873, pp. 583–589.

Kacham, Praneeth, Vahab Mirrokni, and Peilin Zhong (2023). PolySketchFormer: Fast Trans-
formers via Sketches for Polynomial Kernels. arXiv: 2310.01655 [cs.LG].

Kakade, Sham M, Karthik Sridharan, and Ambuj Tewari (2008). “On the complexity of linear
prediction: Risk bounds, margin bounds, and regularization”. In: Advances in Neural
Information Processing Systems 21.

Kamath, Pritish, Omar Montasser, and Nathan Srebro (2020). “Approximate is good enough:
Probabilistic variants of dimensional and margin complexity”. In: Conference on Learning
Theory. arXiv: 2003.04180 [cs.LG].

Karchmer, Mauricio and Avi Wigderson (1988). “Monotone circuits for connectivity require
super-logarithmic depth”. In: Proceedings of the Twentieth Annual ACM Symposium on
Theory of Computing.

Karloff, Howard, Siddharth Suri, and Sergei Vassilvitskii (Dec. 2010). “A Model of Com-
putation for MapReduce”. In: Twenty-first Annual ACM-SIAM Symposium on Discrete
Algorithms, pp. 938–948.

Keriven, Nicolas and Gabriel Peyré (2019). “Universal invariant and equivariant graph neural
networks”. In: Advances in Neural Information Processing Systems 32.

Kileel, Joe, Matthew Trager, and Joan Bruna (2019). “On the expressive power of deep
polynomial neural networks”. In: Advances in Neural Information Processing Systems,
pp. 10310–10319.

Kim, Jinwoo et al. (2022). Pure Transformers are Powerful Graph Learners. arXiv: 2207.
02505 [cs.LG].

Kimeldorf, George and Grace Wahba (1971). “Some results on Tchebycheffian spline func-
tions”. In: Journal of mathematical analysis and applications 33.1, pp. 82–95.

Kingma, Diederik P. and Jimmy Ba (2014). Adam: A Method for Stochastic Optimization.
arXiv: 1412.6980 [cs.LG].

Klusowski, Jason M and Andrew R Barron (2016). “Risk bounds for high-dimensional ridge
function combinations including neural networks”. In: arXiv preprint arXiv:1607.01434.

387

https://arxiv.org/abs/2310.01655
https://arxiv.org/abs/2003.04180
https://arxiv.org/abs/2207.02505
https://arxiv.org/abs/2207.02505
https://arxiv.org/abs/1412.6980

Klusowski, Jason M. and Andrew R. Barron (Dec. 2018). “Approximation by Combinations
of ReLU and Squared ReLU Ridge Functions With L1 and L0 Controls”. In: IEEE
Transactions on Information Theory 64.12.

Kohler, Michael and Adam Krzyżak (2005). “Adaptive regression estimation with multilayer
feedforward neural networks”. In: Nonparametric Statistics 17.8, pp. 891–913.

Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton (2012a). “ImageNet Classification
with Deep Convolutional Neural Networks”. In: Advances in Neural Information Pro-
cessing Systems 25: 26th Annual Conference on Neural Information Processing Systems
2012. Proceedings of a meeting held December 3-6, 2012, Lake Tahoe, Nevada, United
States. Ed. by Peter L. Bartlett et al., pp. 1106–1114.

Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E Hinton (2012b). “Imagenet classification
with deep convolutional neural networks”. In: Advances in neural information processing
systems 25, pp. 1097–1105.

Kurková, Vera and Marcello Sanguineti (2001). “Bounds on rates of variable-basis and neural-
network approximation”. In: IEEE Transactions on Information Theory 47.6, pp. 2659–
2665.

Lecun, Y. et al. (Nov. 1998). “Gradient-based learning applied to document recognition”.
In: Proceedings of the IEEE 86 (11), pp. 2278–2324.

Lee, Holden et al. (2017). “On the ability of neural nets to express distributions”. In: Con-
ference on Learning Theory. PMLR, pp. 1271–1296.

Lefkowitz, Melanie (Sept. 2019). “Professor’s perceptron paved the way for AI – 60 years too
soon”. In: Cornell Chronicle.

Leoni, Giovanni (2017). A first course in Sobolev spaces. 2nd edition. Vol. 181. Grad. Stud.
Math. Providence, RI: American Mathematical Society (AMS). isbn: 978-1-4704-2921-8;
978-1-4704-4226-2.

Li, Husheng (2018). Analysis on the Nonlinear Dynamics of Deep Neural Networks: Topo-
logical Entropy and Chaos. arXiv: 1804.03987 [cs.LG].

Li, Tien-Yien and James A Yorke (1975). “Period three implies chaos”. In: The American
Mathematical Monthly 82.10, pp. 985–992.

Li, Yuxuan and James L. McClelland (2022). Systematic Generalization and Emergent Struc-
tures in Transformers Trained on Structured Tasks. arXiv: 2210.00400 [cs.LG].

Likhosherstov, Valerii, Krzysztof Choromanski, and Adrian Weller (2021). “On the expressive
power of self-attention matrices”. In: arXiv preprint arXiv:2106.03764.

388

https://arxiv.org/abs/1804.03987
https://arxiv.org/abs/2210.00400

Liu, Bingbin et al. (2022). Transformers Learn Shortcuts to Automata. arXiv: 2210.10749
[cs.LG].

Loukas, Andreas (2019). “What graph neural networks cannot learn: depth vs width”. In:
arXiv preprint arXiv:1907.03199.

Maennel, Hartmut, Olivier Bousquet, and Sylvain Gelly (2018). “Gradient descent quantizes
ReLU network features”. In: arXiv preprint arXiv:1803.08367.

Maiorov, V.E (1999). “On Best Approximation by Ridge Functions”. In: Journal of Approx-
imation Theory 99.1, pp. 68 –94.

Malach, Eran (2023). Auto-Regressive Next-Token Predictors are Universal Learners. arXiv:
2309.06979 [cs.LG].

Malach, Eran and Shai Shalev-Shwartz (2019). “Is Deeper Better only when Shallow is
Good?” In: arXiv preprint arXiv:1903.03488 abs/1903.03488. arXiv: 1903.03488.

Malach, Eran et al. (2021a). “Quantifying the Benefit of Using Differentiable Learning over
Tangent Kernels”. In: arXiv preprint arXiv:2103.01210.

Malach, Eran et al. (2021b). “The Connection Between Approximation, Depth Separation
and Learnability in Neural Networks”. In: arXiv preprint 2102.00434.

Maron, Haggai et al. (2019). “On the universality of invariant networks”. In: International
Conference on Machine Learning.

Martens, James et al. (2013). “On the representational efficiency of restricted boltzmann
machines”. In: Advances in Neural Information Processing Systems 26. Ed. by C. J. C.
Burges et al. Curran Associates, Inc., pp. 2877–2885.

McCulloch, Warren S. and Walter Pitts (1943). “A logical calculus of the ideas immanent in
nervous activity”. In: The Bulletin of Mathematical Biophysics 5, pp. 115–133.

Meir, Ron and Tong Zhang (2003). “Generalization error bounds for Bayesian mixture algo-
rithms”. In: Journal of Machine Learning Research 4.Oct, pp. 839–860.

Mendelson, Shahar, Alain Pajor, and Nicole Tomczak-Jaegermann (2007). “Reconstruction
and subgaussian operators in asymptotic geometric analysis”. In: Geometric and Func-
tional Analysis 17.4, pp. 1248–1282.

Merrill, William and Ashish Sabharwal (2022). A Logic for Expressing Log-Precision Trans-
formers. arXiv: 2210.02671 [cs.LG].

389

https://arxiv.org/abs/2210.10749
https://arxiv.org/abs/2210.10749
https://arxiv.org/abs/2309.06979
https://arxiv.org/abs/1903.03488
https://arxiv.org/abs/2210.02671

Merrill, William and Ashish Sabharwal (2023a). The Expressive Power of Transformers with
Chain of Thought. arXiv: 2310.07923 [cs.LG].

— (2023b). “The Parallelism Tradeoff: Limitations of Log-Precision Transformers”. In: Trans-
actions of the Association for Computational Linguistics 11, 531–545.

Merrill, William, Ashish Sabharwal, and Noah A. Smith (2022). “Saturated Transformers
are Constant-Depth Threshold Circuits”. In: Transactions of the Association for Com-
putational Linguistics 10, 843–856.

Metropolis, N, M.L Stein, and P.R Stein (1973). “On finite limit sets for transformations on
the unit interval”. In: Journal of Combinatorial Theory, Series A 15.1, pp. 25 –44.

Mhaskar, Hrushikesh Narhar (2004). “On the tractability of multivariate integration and
approximation by neural networks”. In: Journal of Complexity 20.4, pp. 561–590.

Minsky, Marvin and Seymour A Papert (1969). Perceptrons: An introduction to computa-
tional geometry. MIT press.

Misiurewicz, Michal and Wieslaw Szlenk (1980). “Entropy of piecewise monotone mappings”.
In: Studia Mathematica 67, pp. 45–63.

Mitzenmacher, Michael and Eli Upfal (2017). Probability and computing: Randomization and
probabilistic techniques in algorithms and data analysis. Cambridge University Press.

Montufar, Guido F et al. (2014). “On the number of linear regions of deep neural networks”.
In: Advances in neural information processing systems. Ed. by Z. Ghahramani et al.
Curran Associates, Inc., pp. 2924–2932.

Morris, Christopher et al. (2019). “Weisfeiler and leman go neural: Higher-order graph neural
networks”. In: AAAI Conference on Artificial Intelligence.

Mousavi-Hosseini, Alireza et al. (2022). “Neural Networks Efficiently Learn Low-Dimensional
Representations with SGD”. In: arXiv preprint arXiv:2209.14863.

MPICH (2023). MPI Allreduce.

Murata, Noboru (1996). “An Integral Representation of Functions Using Three-layered Net-
works and Their Approximation Bounds”. In: Neural Networks 9.6, pp. 947–956.

Neal, Radford M. (1996). Bayesian learning for neural networks. Vol. 118. Lect. Notes Stat.
New York, NY: Springer. isbn: 0-387-94724-8.

390

https://arxiv.org/abs/2310.07923

Neyshabur, Behnam, Ryota Tomioka, and Nathan Srebro (2015). “In Search of the Real
Inductive Bias: On the Role of Implicit Regularization in Deep Learning.” In: ICLR
Workshop.

Nisan, Noam and Avi Wigderson (1993). “Rounds in Communication Complexity Revisited”.
In: SIAM Journal on Computing 22.1, pp. 211–219. eprint: https://doi.org/10.1137/
0222016.

Olson, Matthew, Abraham Wyner, and Richard Berk (2018). “Modern neural networks gen-
eralize on small data sets”. In: Advances in Neural Information Processing Systems 31.

O’Neil, Patrick E. (1971). “Hyperplane cuts of an n-cube”. In: Discrete Mathematics 1.2,
pp. 193–195.

Ongie, Greg et al. (2019). “A Function Space View of Bounded Norm Infinite Width ReLU
Nets: The Multivariate Case”. In: International Conference on Learning Representations.
arXiv: 1910.01635 [cs.LG].

OpenAI (2023). GPT-4 Technical Report. arXiv: 2303.08774 [cs.CL].

Oren, Matanel et al. (2024). Transformers are Multi-State RNNs. arXiv: 2401.06104 [cs.CL].

Papadimitriou, Christos H. and Michael Sipser (1982). “Communication complexity”. In:
Proceedings of the Fourteenth Annual ACM Symposium on Theory of Computing, 196–200.

Parhi, Rahul and Robert D Nowak (2021a). “Banach Space Representer Theorems for Neural
Networks and Ridge Splines.” In: Journal of Machine Learning Research 22.43, pp. 1–40.

— (2021b). “Near-Minimax Optimal Estimation With Shallow ReLU Neural Networks”. In:
arXiv preprint arXiv:2109.08844.

Peleg, David (2000). Distributed computing: a locality-sensitive approach. SIAM.

Pérez, Jorge, Pablo Barceló, and Javier Marinkovic (2021). “Attention is turing complete”.
In: Journal of Machine Learning Research 22.1, pp. 3463–3497.

Pérez, Jorge, Javier Marinković, and Pablo Barceló (2019). “On the turing completeness of
modern neural network architectures”. In: arXiv preprint arXiv:1901.03429.

Pinkus, Allan (1999). “Approximation theory of the MLP model in neural networks”. In:
Acta Numerica Vol. 8, 1999. Cambridge: Cambridge University Press, pp. 143–195. isbn:
0-521-77088-2.

391

https://doi.org/10.1137/0222016
https://doi.org/10.1137/0222016
https://arxiv.org/abs/1910.01635
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2401.06104

Poole, Ben et al. (June 2016). “Exponential expressivity in deep neural networks through
transient chaos”. In: arXiv e-prints, arXiv:1606.05340, arXiv:1606.05340. arXiv: 1606.
05340 [stat.ML].

Qi, Charles R et al. (2017). “Pointnet: Deep learning on point sets for 3d classification and
segmentation”. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition.

Radford, Alec et al. (2019). “Language Models are Unsupervised Multitask Learners”. In:
OpenAI blog 1.8, p. 9.

Raghu, Maithra et al. (Aug. 2017). “On the expressive power of deep neural networks”. In:
Proceedings of the 34th International Conference on Machine Learning-Volume 70. Ed.
by Doina Precup and Yee Whye Teh. Vol. 70. Proceedings of Machine Learning Research.
JMLR. org. International Convention Centre, Sydney, Australia: PMLR, pp. 2847–2854.

Rahimi, Ali and Benjamin Recht (2008). “Random Features for Large-Scale Kernel Ma-
chines”. In: Advances in Neural Information Processing Systems 20. Ed. by J. C. Platt
et al. Curran Associates, Inc., pp. 1177–1184.

— (2009). “Weighted Sums of Random Kitchen Sinks: Replacing minimization with ran-
domization in learning”. In: Advances in Neural Information Processing Systems 21. Ed.
by D. Koller et al. Curran Associates, Inc., pp. 1313–1320.

Rogers, Anna, Olga Kovaleva, and Anna Rumshisky (Dec. 2020). “A Primer in BERTology:
What We Know About How BERT Works”. In: Transactions of the Association for
Computational Linguistics 8, 842–866.

Rosenblatt, Frank (1958). “The perceptron: a probabilistic model for information storage
and organization in the brain.” In: Psychological review 65 6, pp. 386–408.

Rosser, Barkley (1941). “Explicit Bounds for Some Functions of Prime Numbers”. In: Amer-
ican Journal of Mathematics 63.1, pp. 211–232.

Rosset, Saharon et al. (2007). “ℓ1 regularization in infinite dimensional feature spaces”. In:
Conference on Learning Theory.

Roughgarden, Tim, Sergei Vassilvitskii, and Joshua Wang (Nov. 2018). “Shuffles and Circuits
(On Lower Bounds for Modern Parallel Computation)”. In: Journal of the ACM 65, pp. 1–
24.

Roweis, Sam and Lawrence Saul (Dec. 2000). “Nonlinear Dimensionality Reduction by Lo-
cally Linear Embedding”. In: Science 290.5500, pp. 2323–2326.

392

https://arxiv.org/abs/1606.05340
https://arxiv.org/abs/1606.05340

Rubin, Boris (1998). “The Calderón reproducing formula, windowed X-ray transforms, and
Radon transforms in Lp-spaces”. In: The Journal of Fourier Analysis and Applications
4.2, pp. 175–197.

Rudin, Walter (1987). Real and complex analysis. 3rd ed. New York, NY: McGraw-Hill. isbn:
0-07-054234-1.

Rumelhart, David E., Geoffrey E. Hinton, and Ronald J. Williams (1986). “Learning repre-
sentations by back-propagating errors”. In: Nature, London 323.6088, pp. 533–536.

Safran, Itay, Ronen Eldan, and Ohad Shamir (2019). “Depth separations in neural networks:
what is actually being separated?” In: Conference on Learning Theory. PMLR, pp. 2664–
2666.

Safran, Itay and Ohad Shamir (2017). “Depth-Width Tradeoffs in Approximating Natural
Functions with Neural Networks”. In: International Conference on Machine Learning.
arXiv: 1610.09887 [cs.LG].

Sanford, Clayton, Daniel Hsu, and Matus Telgarsky (2023). Representational Strengths and
Limitations of Transformers. arXiv: 2306.02896 [cs.LG].

— (2024). “Transformers, parallel computation, and logarithmic depth”. In: CoRR abs/2402.09268.
arXiv: 2402.09268.

Sanford, Clayton Hendrick and Vaggos Chatziafratis (2022). “Expressivity of Neural Net-
works via Chaotic Itineraries beyond Sharkovsky’s Theorem”. In: International Confer-
ence on Artificial Intelligence and Statistics, AISTATS 2022, 28-30 March 2022, Virtual
Event. Ed. by Gustau Camps-Valls, Francisco J. R. Ruiz, and Isabel Valera. Vol. 151.
Proceedings of Machine Learning Research. PMLR, pp. 9505–9549.

Santoro, Adam et al. (2017). “A simple neural network module for relational reasoning”. In:
Advances in Neural Information Processing Systems 30.

Sauer, Norbert (1972). “On the density of families of sets”. In: Journal of Combinatorial
Theory, Series A 13.1, pp. 145–147.

Savarese, Pedro et al. (2019). “How do infinite width bounded norm networks look in function
space?” In: Conference on Learning Theory.

Schmidt-Hieber, Johannes (2020). “Nonparametric regression using deep neural networks
with ReLU activation function”. In: The Annals of Statistics 48.4, pp. 1875–1897.

Schmitt, Michael (2000). “Lower bounds on the complexity of approximating continuous
functions by sigmoidal neural networks”. In: Advances in neural information processing
systems, pp. 328–334.

393

https://arxiv.org/abs/1610.09887
https://arxiv.org/abs/2306.02896
https://arxiv.org/abs/2402.09268

Sharkovsky, OM (1964). “Coexistence of the cycles of a continuous mapping of the line into
itself”. In: Ukrainskij matematicheskij zhurnal 16.01, pp. 61–71.

— (1965). “On cycles and structure of continuous mapping”. In: Ukrainskij matematicheskij
zhurnal 17.03, pp. 104–111.

Shelah, Saharon (1972). “A combinatorial problem; stability and order for models and the-
ories in infinitary languages”. In: Pacific Journal of Mathematics 41.1, pp. 247–261.

Shevchenko, Alexander, Vyacheslav Kungurtsev, and Marco Mondelli (2021). “Mean-field
Analysis of Piecewise Linear Solutions for Wide ReLU Networks”. In: arXiv preprint
arXiv:2111.02278.

Siegel, Jonathan W and Jinchao Xu (2021). “Characterization of the variation spaces corre-
sponding to shallow neural networks”. In: arXiv preprint arXiv:2106.15002.

Silver, David et al. (2016). “Mastering the game of Go with deep neural networks and tree
search”. In: Nat. 529.7587, pp. 484–489.

Sonoda, Sho et al. (2020). On the Approximation Lower Bound for Neural Nets with Random
Weights. arXiv: 2008.08427 [cs.LG].

Strobl, Lena (2023). Average-Hard Attention Transformers are Constant-Depth Uniform
Threshold Circuits. arXiv: 2308.03212 [cs.CL].

Strobl, Lena et al. (2023). Transformers as Recognizers of Formal Languages: A Survey on
Expressivity. arXiv: 2311.00208 [cs.LG].

Sun, Yitong, Anna Gilbert, and Ambuj Tewari (2018). On the Approximation Properties of
Random ReLU Features. arXiv: 1810.04374 [stat.ML].

Sutskever, Ilya, Oriol Vinyals, and Quoc V. Le (2014). “Sequence to Sequence Learning
with Neural Networks”. In: Advances in Neural Information Processing Systems 27: An-
nual Conference on Neural Information Processing Systems 2014, December 8-13 2014,
Montreal, Quebec, Canada. Ed. by Zoubin Ghahramani et al., pp. 3104–3112.

Telgarsky, Matus (2015). “Representation benefits of deep feedforward networks”. In: arXiv
preprint arXiv:1509.08101.

— (June 2016). “Benefits of Depth in Neural Networks”. In: 29th Annual Conference on
Learning Theory. Ed. by Vitaly Feldman, Alexander Rakhlin, and Ohad Shamir. Vol. 49.
Proceedings of Machine Learning Research. Columbia University, New York, New York,
USA: PMLR, pp. 1517–1539.

394

https://arxiv.org/abs/2008.08427
https://arxiv.org/abs/2308.03212
https://arxiv.org/abs/2311.00208
https://arxiv.org/abs/1810.04374

Telgarsky, Matus (2022). “Feature selection with gradient descent on two-layer networks in
low-rotation regimes”. In: arXiv preprint arXiv:2208.02789.

Turkoglu, Mehmet Ozgur et al. (2021). “Gating revisited: Deep multi-layer RNNs that can
be trained”. In: IEEE Transactions on Pattern Analysis and Machine Intelligence 44.8,
pp. 4081–4092.

Vapnik, Vladimir Naumovich and Aleksei Yakovlevich Chervonenkis (1968). “The uniform
convergence of frequencies of the appearance of events to their probabilities”. In: Doklady
Akademii Nauk 181.4, pp. 781–783.

Vardi, Gal et al. (2021). “Size and depth separation in approximating benign functions with
neural networks”. In: Conference on Learning Theory.

Vaswani, Ashish et al. (2017). “Attention is All you Need”. In: Advances in Neural Informa-
tion Processing Systems 30.

Vershynin, Roman (2018). High-dimensional probability: An introduction with applications
in data science. Cambridge University Press.

Wang, Huiyuan and Wei Lin (2021). “Harmless Overparametrization in Two-layer Neural
Networks”. In: arXiv preprint arXiv:2106.04795.

Wang, Ziwei et al. (2022). “Quantformer: Learning extremely low-precision vision transform-
ers”. In: IEEE Transactions on Pattern Analysis and Machine Intelligence.

Warren, Hugh E (1968). “Lower bounds for approximation by nonlinear manifolds”. In:
Transactions of the American Mathematical Society 133.1, pp. 167–178.

Wei, Colin, Yining Chen, and Tengyu Ma (2022). Statistically Meaningful Approximation: a
Case Study on Approximating Turing Machines with Transformers. arXiv: 2107.13163
[cs.LG].

Wei, Colin et al. (2019). “Regularization matters: Generalization and optimization of neural
nets vs their induced kernel”. In: Advances in Neural Information Processing Systems 32.

Williams, Francis et al. (2019). “Gradient dynamics of shallow univariate ReLU networks”.
In: Advances in Neural Information Processing Systems 32.

Xu, Keyulu et al. (2018). “How powerful are graph neural networks?” In: arXiv preprint
arXiv:1810.00826.

Yao, Andrew Chi-Chih (1979). “Some complexity questions related to distributive computing
(preliminary report)”. In: Proceedings of the Eleventh Annual ACM Symposium on Theory
of Computing.

395

https://arxiv.org/abs/2107.13163
https://arxiv.org/abs/2107.13163

Yao, Shunyu et al. (2021). “Self-Attention Networks Can Process Bounded Hierarchical Lan-
guages”. In: Proceedings of the 59th Annual Meeting of the Association for Computational
Linguistics and the 11th International Joint Conference on Natural Language Processing.

Yehudai, Gilad and Ohad Shamir (2019). “On the Power and Limitations of Random Features
for Understanding Neural Networks”. In: Advances in Neural Information Processing
Systems 32. arXiv: 1904.00687 [cs.LG].

Young, Lai-Sang (1981). “On the prevalence of horseshoes”. In: Transactions of the American
Mathematical Society 263, pp. 75–88.

Yun, Chulhee et al. (2020). “Are Transformers universal approximators of sequence-to-
sequence functions?” In: International Conference on Learning Representations.

Yurinskii, V. V. (1976). “Exponential inequalities for sums of random vectors”. In: Journal
of Multivariate Analysis 6, pp. 473–499.

Zaheer, Manzil et al. (2017). “Deep sets”. In: Advances in Neural Information Processing
Systems 30.

Zhang, Chiyuan et al. (2017). “Understanding deep learning requires rethinking generaliza-
tion”. In: ICLR.

— (2021). “Understanding deep learning (still) requires rethinking generalization”. In: Com-
munications of the ACM 64.3, pp. 107–115.

Zhang, Kaiqi and Yu-Xiang Wang (2022). “Deep Learning meets Nonparametric Regression:
Are Weight-Decayed DNNs Locally Adaptive?” In: arXiv preprint arXiv:2204.09664.

Zhang, Yi et al. (2023). Unveiling Transformers with LEGO: a synthetic reasoning task.
arXiv: 2206.04301 [cs.LG].

Ziegler, Günter M (2006). “Lectures on Polytopes”. In: Graduate Texts in Mathematics 152.

Zweig, Aaron and Joan Bruna (2022). “Exponential Separations in Symmetric Neural Net-
works”. In: CoRR abs/2206.01266. arXiv: 2206.01266.

396

https://arxiv.org/abs/1904.00687
https://arxiv.org/abs/2206.04301
https://arxiv.org/abs/2206.01266

	Acknowledgments
	Dedication
	Introduction
	Historical context and background
	Overview of neural architectures
	Outline of results

	Shallow random feature networks: dimensionality, smoothness, and width trade-offs
	Introduction
	Preliminaries
	Positive results for Lipschitz targets
	Negative results for Lipschitz targets
	Positive and negative results for Sobolev targets
	Conclusion

	Powers of depth and the discrete dynamical systems lens
	Introduction
	Depth-width tradeoffs via chaotic itineraries
	Periods, phase transitions, and function complexity
	Supplemental background on discrete dynamical systems and itineraries
	Conclusion

	Intrinsic dimensionality of bounded-norm shallow neural network interpolants
	Introduction
	Preliminaries
	Intrinsic dimensionality of solutions to the variational problem for parity
	Generalization properties of solutions to the variational problem
	Generality of the averaging technique for minimizing R-norm
	An alternative variational norm
	Conclusion

	Associative capabilities of multi-headed attention layers
	Introduction
	Preliminaries
	Sparse averaging and self-attention embedding dimension
	Sparse averaging and limitations of alternative architectures
	Pairwise and triple-wise tasks
	Conclusion

	Parallelizability of deep transformer networks
	Introduction
	Preliminaries
	Relating transformers and MPC
	Transformers for k-hop induction heads
	Detailed empirical analysis of k-hop induction heads
	Separations between transformers and alternative architectures
	Proofs of low-level attention constructions
	Conclusion and future work

	Epilogue
	References

