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Abstract 

Motif-Informed Analysis of Phenotype Heterogeneity in Cancer 

Qi Xu 

The University of Texas at Austin, 2023 

Supervisors: Jeanne Kowalski-Muegge, Lauren Ehrlich 

The landscape of cancer genomics harbors a wealth of DNA motifs, whose 

thorough analysis and integration provide a pivotal method to decipher the complex 

molecular interactions underlying cancer. This dissertation delineates novel computational 

methodologies for robust DNA motif analysis and data integration, aiming to elucidate the 

implications of DNA motifs on cancer heterogeneity and clinical outcomes. 

Chapter 1 lays the groundwork by showing the significance of DNA motifs in the 

genomic framework and delineating the current biomarkers in cancer. It highlights the 

opportunity that DNA motif analysis presents in unveiling a nuanced understanding of 

genomic interactions. It also indicates the motivations and specific aims of the study of 

both DNA motif quantification and co-localization analysis.  

In Chapter 2, a foundational marker for quantifying the prevalence of DNA 

repetitive motifs, termed as “Non-B DNA Burden”, is introduced. A user-centric platform 

is also developed to facilitate the efficient computation and visualization of this metric 

across various genomic scales. Together, they are offering a novel perspective for 

analyzing DNA motif heterogeneity.  
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Transitioning to Chapter 3, the focus evolves toward an integrated marker 

approach. By integrating the prevalence analysis of DNA motifs in conjunction with the 

frequency of co-localized mutations, novel markers mlTNB (mutation-localized total non-

B burden) and nbTMB (non-B informed tumor mutation burden) are proposed. Their 

potential in predicting cancer prognosis and treatment responses is specifically explored.  

Chapter 4 broadens the analytical foundation by defining MoCoLo (Motif Co-

Localization), a robust statistical framework for testing multi-modal DNA motif co-

localization. Through this framework, we are able to explore the complex interplay of 

genomic features and provide a methodical approach to investigate their co-localization in 

a multi-modal data integration context. Case studies are employed to showcase the utility 

of MoCoLo in examining the co-localization of genomic features, thus facilitating the 

understanding of genomic interactions that are pivotal to cancer biology.  

Chapter 5 synthesizes the findings from the preceding explorations, outlining the 

contributions of the developed methodologies to the field of cancer genomics and 

bioinformatics. It demonstrates the potential impact of DNA motif analysis and data 

integration on understanding phenotype heterogeneity in cancer and shows the prospective 

avenues it provides for impactful future research.  

Overall, this work is structured to contribute to the bioinformatics community by 

weaving together innovative tools and analyses focused on DNA motif analysis and data 

integration. It strives to pave a beneficial way forward to a deeper understanding of the 

cancer genome, thereby enhancing potential diagnostic and therapeutic strategies. 
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Chapter 1: Introduction 

1.1 BACKGROUND  

1.1.1 Overview of Motif-informed Analysis of Cancer Heterogeneity 

Phenotype Heterogeneity in Cancer. The complexity of cancer is underscored by 

phenotype heterogeneity, which manifests as divergent clinical outcomes, disease 

progression, and responses to treatment among patients with the same cancer type (Figure 

1.1). This heterogeneity is deeply rooted in the underlying tumor genetics and is driven by 

various genomic activities that lead to different disease manifestations1, 2. Researchers aim 

to elucidate the mechanisms contributing to this heterogeneity by examining the genetic 

underpinnings, particularly the roles of DNA motifs, which could offer new insights into 

biological diversity in cancer and inform tailored therapeutic strategies. 

Biomarkers. Genomic variations underpin the diversity observed in cancer, 

influencing tumor behavior, patient prognosis, and the efficacy of treatment modalities3, 4. 

Next-generation sequencing (NGS) has been instrumental in uncovering the genomic 

drivers of cancer, providing new information that has been critical in understanding cancer 

development and progression across various anatomical locations5-7. Biomarkers derived 

from these genomic insights have shown potential in stratifying patient outcomes and 

treatment responses2, 8. Yet, the response to treatment among patients with seemingly 

advantageous biomarkers is not always predictable, underscoring that these biomarkers are 

not perfect predictors of treatment success5, 7. The complexity of cancer heterogeneity 

requires a deeper exploration of the genomic landscape, which involves a multifaceted 

approach to biomarker development3, 9. 

DNA motifs. DNA motifs has been linked with treatment response during frequent 

genomic activities around them. For instance, microsatellites, short repetitive DNA motifs 
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also known as short tandem repeats, have been linked to immunotherapy responses due to 

their mutation rates10-12. Short tandem repeats represent one of many types DNA motifs13. 

A more extensive analysis of various types of DNA motifs may provide opportunities for 

discovering new biomarkers, enhancing our understanding of cancer heterogeneity and 

improving treatment predictability14. 

DNA Motifs and Biomarkers. In this broader genomic context, the role of DNA 

motifs as potential biomarkers is gaining recognition15, 16. Their prevalence and pattern 

within the genome, as well as their association with cancer phenotypes, underscore the 

importance of incorporating a wide array of DNA motifs into the development of new 

genomic biomarkers17. This expanded biomarker repertoire through the lens of DNA motif 

analysis could significantly refine our understanding of cancer heterogeneity and lead to 

improved, personalized treatment strategies18. 

 

 

Figure 1.1: Phenotype Heterogeneity in Cancer.  

This diagram depicts the complex interplay of factors that lead to variability in 

clinical outcomes and responses to treatments among cancer patients. Among these 
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factors, genotype play a pivotal role where genomic variations contributing 

significantly to the heterogeneity observed in patient phenotypes. Understanding 

these genetic underpinnings is crucial for advancing personalized medicine and 

developing tailored treatment strategies. The elements illustrated in this figure,  

phenotype heterogeneity19, patient outcomes20, treatment responses21, and the 

contributory role of genotypes in heterogeneity22, are fundamental in understanding 

the depicted concepts. 

 

1.1.2 DNA Sequence Motifs 

DNA sequence motifs are short, recurring patterns in DNA that are believed to have 

a biological significance23, 24. Often DNA motifs indicate sequence-specific binding sites 

for proteins such as nucleases and transcription factors that are involved in important 

regulation of gene expression, DNA replication, and DNA repair23, 25, aligning with the 

central dogma of molecular biology which describes how genetic information is transferred 

from DNA to RNA and then translated into functional proteins26. For instance, promoter 

sequence motifs are recognized binding sites for RNA polymerase, initiating the 

transcription process, which is the first step in the central dogma where information in 

DNA is transcribed into messenger RNA (mRNA)27, 28. Further, enhancer and silencer 

elements modulate the transcription rates of genes, thereby fine-tuning gene expression29. 

DNA motifs also encapsulate the broader notion of repetitive patterns and form structures 

and sites with biological significance30, 31. For example, short tandem repeats, comprising 

a repeating unit of one to six base pairs, are also referred to as microsatellites32. Inverted 

repeat sequences can fold back on themselves to form a stem-loop structure33. These 

repetitive DNA motifs, abundant in the genome, possess the ability to form non-B DNA 

structures34, 35. Altogether, the identification and analysis of DNA motifs are instrumental 
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to understanding the molecular mechanisms underlying various biological processes and 

diseases23, 24, 36.  

 

 

1.1.3 DNA Motif-informed Analysis 

Building upon their biological significance, the subsequent step entails a thorough 

analysis of these DNA motifs. The quantification and analysis of DNA motifs include 

identifying and measuring the occurrence and patterns of these motifs across the genome. 

Various computational and statistical methods are employed to delve into the prevalence, 

distribution, and interactions of DNA motifs among themselves and with other genomic 

elements37-40. By analyzing DNA sequence motifs in this manner, it offers a deeper 

understanding of genome structure, function, and regulatory dynamics that could be 

essential for unraveling the molecular basis of diseases like cancer24, 34, 41, 42. 

 

1.1.4 The Quantification of DNA Motifs 

The widespread presence and the consequential role of DNA motifs in genomic 

activity and disease pathology underscore a significant area of exploration in DNA 

bioinformatics38, 43. Investigating the quantification of these motifs as potential biomarkers 

holds promise for advancing the understanding of genomic intricacies and their 

implications in diseases, particularly cancer44, 45. An in-depth exploration into the 

quantification of DNA motifs could shed light on their prevalence, distribution, and 

interactions with other genomic elements, thereby elucidating their role in genomic 

stability, gene regulation, and disease susceptibility46-48. By delving into specific examples 
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of DNA motifs, the analysis will highlight their characteristics, and potential implications 

in genomic functionality and disease pathology. The objective is to build a robust 

foundation for understanding the potential of DNA motifs as novel biomarkers and their 

utility in advancing the domain of genomic medicine. 

 

1.1.5 The Existing Quantification of DNA-based Biomarkers  

Various methods have been developed to quantify genome-wide DNA motifs to 

evaluate the impact of certain genomic features such as mutations and copy number 

alterations. Techniques like next-generation sequencing are employed to delve into the 

genomic landscape, enabling DNA motifs quantification in different genomic contexts49, 

50. DNA-based biomarkers such as Tumor Mutational Burden (TMB) and Fraction of 

Genome Altered (FGA), provide valuable insights into the extent of genomic alterations, 

indicating genomic instability, a hallmark of cancer51, 52. These quantified DNA-based 

biomarkers are instrumental in understanding tumor dynamics, which, in turn, can have 

significant implications for diagnosis, prognosis, and treatment strategies in cancer.  

The Absolute Quantification of DNA Alterations. Somatic mutations are genetic 

changes that occur after birth and are not passed down to offspring53. TMB measures the 

total number of somatic mutations in a tumor54-57 as an absolute quantification metric. High 

TMB has been reported to be associated with better responses to immunotherapies like 

immune checkpoint inhibitors, making it a potentially valuable biomarker for such 

treatments58-61. Despite its potential, TMB also presents challenges, such as the necessity 

for a standard measurement across different sequencing platforms, the determination of a 

clear cutoff value for high TMB, and the heterogeneity when TMB is low in certain cancer 

types57, 62.  
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The Percentage Quantification of DNA Alterations. FGA is a measure of the 

percentage of the genome that is altered by somatic mutations and copy number variants63, 

considered to be a more comprehensive measure of the genetic complexity of a tumor than 

TMB. This is because FGA includes all types of somatic mutations, comprised of single 

nucleotide variants (SNV), insertions and deletions (Indels), and copy number alterations 

(CNA)64. However, interpreting the clinical significance of FGA values can still be 

challenging, especially without a well-defined threshold to categorize the extent of 

genomic alteration. There is also a study to showcasing the need of integrated 

quantification of FGA utilizing tumor purity and ploidy-adjusted FGA in 11 tumor types 

in genomic characterization of metastatic patterns in cancer63. This emphasizes the 

importance of integrating one-modality biomarker with other tumor attributes for a more 

nuanced understanding of genomic complexity. 

While these traditional quantitative markers offer insights into the genomic 

alterations present within tumors, they may not fully capture the complexity of the genomic 

fabric, particularly the role of structural genomic features such as non-canonical DNA 

motifs35. Such motifs, which often defy the typical B-DNA conformation, introduce an 

additional layer of genomic complexity. Their study, straddling the line between genome-

wide quantification and motif-level sequence assessment, bridges us to the opportunity of 

exploration the repetitive DNA motifs and cancer heterogeneity. 

 

1.1.6 The Repetitive DNA Motifs  

Repetitive DNA motifs. DNA primarily exists in the well-known B-DNA form, a 

right-handed helix65, 66. However, other structural conformations, known as non-B DNA, 

can occur under specific biological conditions, forming alternative DNA structures35. 
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Repetitive DNA motifs are abundant at genome-wide, which have the potential to adopt 

non-canonical DNA formations24, 67-69. The sequence patterns known as non-B DNA motifs 

vary in size from several tens to hundreds of nucleotides and are non-randomly distributed 

throughout the genome70-72.  

Major types of non-B DNA. Several non-B DNA forms have been identified, each 

with unique structures shaped by their specific sequences (Figure 1.2A) 73, 74. The G-

quadruplex, also known as “G4”, consists of segments of guanines linked by varying loops 

of other nucleotides, following the specific sequence pattern75. Z-DNA is characterized by 

its left-handed helical structure and alternating purine and pyrimidine strands76. Each locus 

of mirror, inverted, and direct repeats is composed of two sequences of repeats divided by 

a unique, non-repetitive section. Mirror repeats, which can include homopurine and 

homopyrimidine with a spacer of up to 100 nucleotides, have the potential to form H-DNA 

or triplex structures77. Inverted repeats, whether they have a spacer of up to 100 nucleotides 

or not, can lead to the formation of cruciform structures in DNA78, 79. Direct repeats, which 

may or may not include spacers up to 10 nucleotides, are capable of creating slipped-strand 

coformation80. A-phased repeats, which consist of three or more units of adenine or 

thymine chains ranging from three to nine nucleotides, separated by intervals of 10 base 

pairs, can induce bending or curvature in the DNA helix74, 81, 82. 

Roles of non-B DNA. non-B DNA structures have been reported to be associated 

with cancer83-87. It has been reported that approximately 13% of the human genome can 

form into non-B DNA structures88 (Figure 1.2B). Locations within the genome that contain 

a non-B DNA motif are typically called non-B DNA loci. Non-B DNA loci are involved 

in various cellular processes and have been connected to numerous human diseases24. They 

play a role in controlling gene expression89-93, support telomeres maintenance94, 95, and are 

active in the life cycle of transposable elements96. These loci also act as specific binding 
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sites for proteins and are thought to be involved in genetic recombination and the reduction 

of methylation in CpG islands97-99. If mutations disrupt the structural formation of these 

non-B DNA loci, it may be harmful to the organism. 

Non-B DNA and mutagenesis. The abundance of repetitive DNA motifs capable 

of forming non-B DNA structures in the human genome suggests that these elements are 

not random but have evolved to serve functional roles100. Sequences forming non-B DNA 

structures within genomes have been identified to promote genetic instability within human 

cancer genomes, thus having a potential role in cancer development24. They are associated 

with crucial processes such as DNA replication and transcription69. The occurrence of 

mutations is not consistently distributed in the cancer genome101-103. The presence of non-

B DNA is also linked with increased rates of mutations (Figure 1.2C). Elevated mutability 

has been observed within non-B DNA motifs67, 104-108. The role of Non-B DNA in 

mutagenesis is complex, with different mechanisms contributing to the elevated mutation 

rates at these motifs. For instance, slippage errors by DNA polymerase at microsatellite 

regions can lead to deletions, which are a type of mutation commonly associated with non-

B DNA regions109. This mutagenic potential of non-B DNA, particularly within cancer 

genomes, has been a focus of study, revealing a correlation between non-B DNA structures 

and the occurrence of mutations across various cancer types. 

In summary, non-B DNA and repetitive DNA motifs represent a significant facet 

of genomic research, with profound implications for understanding the molecular 

mechanisms of diseases and the evolutionary processes that shape genomes. The continued 

exploration of these motifs, particularly their role in disease pathology and as potential 

therapeutic targets, is essential for advancing the field of precision medicine and for the 

development of more personalized approaches to cancer treatment. 
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Figure 1.2: Major types of repetitive motif and non-B conformation.  

(A) The repetitive DNA motifs and the non-B DNA structure conformations110.  

(B) The overall distributions of non-B DNA motifs in all the chromosomes in 

human genome111.  

(C) Loci forming non-B DNA structures are a major driver of variation in 

nucleotide substitution levels across the genome106. 
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1.1.7 Motifs Analysis of Non-B DNA and Mutations in Cancer  

The interplay between non-B DNA motifs and mutations is a critical focus in 

genomic research, particularly within the context of cancer, where the mutagenic potential 

of these structures contributes to the variability in mutation rates seen across cancer 

types108, 112. Understanding the connection between non-B DNA motifs and mutations is 

pivotal for revealing the genetic landscape of cancer and for the exploration of new targeted 

therapies that address the unique mutational patterns driven by these motifs, underscoring 

their potential as biomarkers for personalized treatment approaches113. 

Given the relationship between non-B DNA and mutations67, 104, 105, the exploration 

of the interactions between DNA motifs, particularly non-B DNA motifs, and mutation 

sites presents a novel and innovative avenue to address these limitations. And 

understanding the spatial relationship between mutation hotspots and the role of alternative 

DNA structures (and repetitive motif regions) will be important to decipher cancer 

mutagenesis and the mechanisms underneath. 

By quantifying and analyzing DNA motifs through the integration of other genomic 

data, researchers can look deeper into the molecular mechanisms contributing to genomic 

instability. The integrated quantification of non-B DNA motifs and mutation sites could 

provide a more nuanced understanding of the genomic underpinnings of cancer, thereby 

addressing the gaps left by traditional markers.  

 

1.1.8 Challenges and Limitations of Existing Methodologies of Motif Analysis 

The field of genomics has seen the development of various computational tools 

aimed at analyzing different genomic features. Among them, MEME114, 115, ChromHMM37, 

116, and Segway117, 118 offer capabilities for motif discovery and chromatin state analysis. 
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However, these tools often focus on identifying transcription factor binding sites or 

segmenting genomic regions based on chromatin marks, which may not fully facilitate the 

comprehensive analysis of DNA motifs, particularly in the context of their quantification 

and co-localization with other genomic elements.  

Given the vast landscape of DNA motifs and their potential significance in genomic 

function and disease, a more tailored approach is essential to achieve a thorough 

investigation23, 74, 119. The quantification of DNA motifs across the genome and the 

examination of their spatial relationships with other genomic features can provide deeper 

insights into genomic interactions and their implications in diseases such as cancer. 

This work aims to introduce novel methodologies for DNA motif quantification 

and co-localization analysis, venturing beyond the scope of existing tools. The proposed 

approaches are designed to consider the granularity of DNA motifs, examining their 

prevalence, distribution, and interaction with other genomic elements across different 

genomic scales. The unique focus on DNA motif analysis in this work not only 

complements existing methods, but also opens a new avenue for understanding the intricate 

genomic interactions through DNA motifs-focused methodologies. 

 

1.2 START 

1.2.1 Motivation 

The exploration for alternative biomarkers stems from the inadequacy of employing 

existing markers solely in explaining prognosis and treatment responses57. For instance, 

there is heterogeneity in treatment response and prognosis that does not appear to be 

explained by typical cancer markers TMB and FGA in early-stage pancreatic cancer 

patients, since both measures tend to be low with limited variability. Specifically, while in 
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query of TCGA patients, the observed TMB and FGA levels among the pancreatic patient 

are not notably high62, while the progression-free survival are only around 5-15 months 

and vary across patient group120. Such cases indicated the potential inadequacy of relying 

exclusively on TMB and FGA to provide a comprehensive understanding of clinical 

outcomes across diverse cancer types. 

DNA motif analysis presents a promising way to unveil the tumor heterogeneity, 

enriching our understanding of genomic interactions, and potentially contributing to better 

diagnostic and therapeutic strategies in cancer treatment. The substantial amount of 

repetitive DNA sequence recently revealed in the human genome121 prompts the value of 

investigation into additional sources of genomic instability such as non-B DNA repetitive 

motifs which could unveil further insights in the complex nature of genomic interactions 

and their roles in cancer diagnosis and treatment122, 123.  

 

1.2.2 Goals 

The primary goal of this thesis is to devise computational methodologies for robust 

DNA motif analysis, with focused applications on cancer genomics. This entails the 

quantification of DNA motifs that serve as potential novel biomarkers and exploring their 

role in the cancer context. It includes predicting cancer prognosis and treatment responses 

while considering their potential associations with typical markers of genomic instability. 

The core focus is on enhancing the understanding and utility of DNA motif analyses for 

cancer prognosis, treatment responses, and genomic research. 

Through the specific application of DNA motifs analyses, the DNA markers 

focusing on non-B DNA and mutation sites have been developed and investigated with the 

quantification of non-B DNA motifs in the context of cancer. By developing new tools and 
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metrics, this effort aims to expand the understanding of the various non-B DNA types 

found in cancer, investigate their spatial interactions with tumor mutations, and explore 

how these interactions can be utilized to gain insights into cancer development, prognosis, 

and treatment approaches. 

 

1.3 AIMS 

1.3.1 Aim 1: Develop a Comprehensive Methodology for DNA Motif Quantification. 

This aim is devoted to devising a thorough methodology to quantify the prevalence 

of DNA motifs across various genomic levels including genes, signatures, and genomic 

sites. One application of the method will be on non-B DNA motifs, which have been 

associated with cancer etiology due to their potential to stimulate genetic instability in 

human cancer genomes124-128. A computing platform will also be constructed to facilitate 

the exploration and quantification of these DNA motifs, thereby introducing a novel 

biomarker as “DNA Motif Burden” in cancer. 

1.3.2 Aim 2: Define a Multi-Modal Motif-containing Markers Quantification  

This aim initiates with the goal of defining a methodology for the multi-modal 

quantification of motif-containing marker and explore their association with prognosis and 

treatment in cancer. As an illustrative example, this aim delves into the specific case of 

non-B DNA motifs and mutation sites (to derive integrated markers), given their reported 

contribution to regional variation in mutation rates106, 111, 129-131. Building on the 

understanding of non-B and mutations, this aim quantifies mutations within the realm of 

non-B DNA motifs and assesses non-B motifs with mutation-localized respectively, thus 

introducing novel biomarkers. The utility of these markers will be evaluated in various 
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cancer contexts, with the intent of augmenting the understanding of cancer prognosis, 

treatment responses, and outcomes through the lens of DNA motif analysis. 

 

1.3.3 Aim 3: Construct a Statistical Testing Framework for Multi-modal DNA 
Motif-containing Interactions. 

The objective of Aim 3 is to devise a statistical framework, MoCoLo (Motif Co-

Localization), to rigorously examine the spatial interactions between genomic features 

within a multi-modal DNA motif integration. MoCoLo will employ conditional motif co-

occurrence events to infer co-localization, using reverse conditional probabilities and a 

novel simulation approach that retains motif properties. Through integrating data from 

diverse modalities such as sequence motifs, epigenetic markers, and DNA-protein 

interactions, this testing framework aims to provide a richer insight into the spatial 

interactions through DNA motif analysis, that can be pivotal for deciphering underlying 

biological processes132. Within this aim, we seek to showcase the enhanced analytical 

power brought forth by multi-modal DNA motif integration, potentially contributing to a 

deeper understanding of genomic co-localization and its implications in cancer biology. 

 

1.3.4 An Overview of Objectives and Aims 

This work seeks to explore the intersection of DNA motif analysis and cancer 

genomics, aiming to fill a critical research gap in understanding the role of DNA motifs, 

especially non-B DNA, in cancer etiology. By introducing novel computational 

methodologies for DNA motif quantification and analysis, this research seeks to advance 

our understanding of genomic intricacies and their implications in cancer. The potential of 

DNA motifs as novel biomarkers, particularly in the context of non-B DNA structures and 
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their interaction with mutations, is a central focus, offering new perspectives in genomic 

medicine and cancer research. 
 

 

Figure 1.3: The goals and informatic method in the exploration of the motif-Informed 

analysis of heterogeneity in cancer. 

 

1.4 IMPACT 

These three aims collaboratively aim to enhance our understanding of cancer 

genomics through DNA motif analysis. By devising methods to quantify non-B DNA and 

to identify co-localized genomic features, this work may enable new biomarkers and 

therapeutic strategies, providing the opportunity to improve research of cancer genome.  
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In Aim 1, by studying non-B DNA structures and quantifying their repetitive 

sequences motifs, we hope to find new indicators of genomic stability in cancer, addressing 

a critical gap left by current B-DNA biomarkers like TMB and FGA. This could help better 

predict cancer progression and inform treatment plans, potentially improving personalized 

care in oncology.  

Aim 2 seeks to create new biomarkers by examining the interplay of non-B DNA 

motifs and mutation locations. By studying the association between non-B DNA motifs 

and mutations, the new biomarkers could help refine how we predict treatment responses 

and analyze outcomes, leading to the opportunity for more personalized treatment plans 

for cancer patients.  

Aim 3 proposes a new statistical testing framework to examine the spatial 

interactions between genomic features, giving insights into the genomic interactions 

through DNA motif analysis. It provides a comprehensive method to facilitate 

understanding spatial relationships of genomic features that could help identify new 

therapeutic targets and prognostic markers for different research applications. 

Together, they contribute to developing new computational tools, new prognostic 

markers, and new statistical methods, serving the goal of advancing cancer genomics 

through DNA motif-Informed analyses. This work is dedicated to decoding the genomic 

complexity of cancer, which hopefully will lead to improved patient outcomes and progress 

in oncology. 

 

1.5 SUMMARY 

Chapter 1 first provides the introductory background of DNA motifs, the 

quantification of DNA motifs, existing quantification of biomarkers, and the opportunities 
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of DNA motifs analysis in cancer. It further outlines the motivation behind the study, the 

specific aims, and the prospective impact. Chapter 2, through the non-B DNA motifs 

quantification, looks to identify a new biomarker to assess the prevalence of non-B DNA 

in cancer, and additionally offers a user-friendly platform for the analysis and visualization 

of non-B DNA motifs for a broad non-bioinformatic user base. Chapter 3 defines two 

integrated markers derived from the interactions of non-B DNA with mutations locations, 

which is found to indicate treatment responses and to analyze outcomes for cancer patients.  

Chapter 4 proposes a new statistical testing framework to explore the spatial interactions 

between genomic features, giving insights into the genomic interactions. Finally, Chapter 

5 summarizes the conclusions of the results drawn from the results of these investigations 

and discusses the future directions. 
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Chapter 2: The Foundational Marker: Quantifying the Prevalence of 
Non-B DNA Motifs 

(AIM 1: Develop a Comprehensive Methodology for DNA Motif Quantification) 

 

2.1 INTRODUCTION 

 This work has been previously published in Nucleic Acid Research1. 

 

Non-canonical DNA refers to DNA structures that differ from the canonical B-

DNA double helix structure, including G-quadruplexes, cruciform, slipped structures, 

triplexes, and Z-DNA24, 68, 69. It has been reported that approximately 13% of the human 

genome can form into non-B DNA structures88. This approximation can also vary 

depending on multiple factors including cellular types, cell processes or other factors. 

It has been discovered that non-B DNA-forming sequences can induce genetic 

instability in human cancer genomes, suggesting a role in cancer development24. However, 

the mechanisms through which non-B DNA structures contribute to cancer remain not fully 

understood. It is known that non-B DNA structures can disrupt the normal processes of 

central dogma133. For instance, the formation of DNA triplex and G-quadruplex structures 

may modulate the expression of cancer-related genes through these non-canonical 

formations68. The correlation analyses between DNA structure, gene expression, and 

mutation loads complement and extend more traditional approaches to show the 

mechanisms underlying cancer development134. Increased mutability has been identified 

 

1Qi Xu, Jeanne Kowalski*, NBBC: a non-B DNA burden explorer in cancer, Nucleic Acids Research, Volume 51, 
Issue W1, 5 July 2023, Pages W357–W364. DOI: 10.1093/nar/gkad379 Q.X. designed the platform, implemented the 
workflows, performed the analyses, drafted the figures and initial manuscript. J.K. conceived of the idea, directed the 
analyses plan, and edited the manuscript.  
*Co-corresponding author. 
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within non-B DNA motifs. Z-DNA has been demonstrated to be associated with gene 

expression regulation135 and G-quadruplexes has been shown to influence promoter 

activity 136 and the shaping of the cancer mutation burden134. Noncanonical DNA structures 

have been implicated as drivers of genome evolution69. 

While there are several non-B DNA databases and prediction tools that exist, the 

majority of these tools primarily focus on individual motif sequences in isolation74, 111. We 

introduce the concept of “non-B Burden” as a cancer biomarker, to provide the capacity to 

integrate these valuable non-B DNA motifs into a comprehensive, genomic-wide 

perspective. This viewpoint has been notably absent in prior non-B DNA research, which 

underscores its innovative nature and potential. A parallel concept in cancer research can 

be found in the idea of tumor mutation burden. In this context, individual mutations are 

typically examined independently. However, quantifying these mutations as a collective 

biomarker has the potential to provide valuable insights into the overall genomic instability 

of a cell or tumor. As tumor mutation burden can inform cancer prognosis and treatment 

response, our introduction of "Non-B Burden" holds a similar promise for assessing non-

B DNA motif prevalence and its potential for interpretation of biological processes, 

particularly within the realm of cancer research.  

In this chapter, we demonstrate how to assess genomic stability with a specific 

focus on non-B DNA structures. We present a detailed quantitative approach and 

normalization methods that are applicable at various genomic levels, including the gene-

level, signature-level, and sample-level. This foundational chapter establishes the 

framework for our study, laying the groundwork for understanding cancer through the 

quantification of non-B DNA motifs. It introduces the core concept and opens up 

opportunities for the development of more specific markers, which we will delve into in 

the subsequent chapter. 
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2.2 RESULTS 

2.2.1 Introducing “non-B burden” as a new marker in cancer. 

2.2.1.1 The calculation of non-B burden 

Quantification. Quantifying non-B DNA motifs’ prevalence involves the 

computation of a fundamental metric known as “Non-B Burden”, This metric serves as a 

quantitative representation of the prevalence of non-B DNA forming regions within the 

genome. The calculation method entails counting the occurrence of non-B forming regions 

associated with each specific non-B DNA type across the genomic landscape.  

Multiple-level design. The non-B burden can be quantified at multiple scales from 

the gene level, signature level and site level. Given a gene symbol or any genomic region, 

the non-B burden is calculated by quantifying the number of non-B forming motifs in the 

query regions. Considering the existence of multiple types of non-B structures, the non-B 

burden can be calculated as non-B type specific or in terms of the total burden, contributed 

from all types. To enable meaningful comparisons, we apply normalization methods, 

facilitating assessments of Non-B Burden across different genes or various non-B DNA 

structure types. 

Non-B Motifs. The Non-B DNA forming motif data is from the Non-B DB 2.0 

database137. An update to correct the A-Phased repeat motifs data was received from 

Frederick National Laboratory for Cancer Research. There are 7 non-B structure motifs 

included: A-phased repeat (APR, n = 2,386 motifs), G-quadruplexes (G4, n = 361,232 

motifs), Z-DNA (n = 404,192 motifs), inverted repeats (IR, n = 5, 771,570 motifs), mirror 

repeats (MR, n = 1,378,864 motifs), direct repeats (DR, n = 1,113,354 motifs), and short 

tandem repeats (STR, n = 2,826,360 motifs).   
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This quantification approach equips researchers with a structured means for 

evaluating the influence of non-B DNA structures on genomic stability by employing the 

concept of non-B Burden and its derivatives, offering crucial insights into their distribution 

and prevalence throughout diverse genomic contexts. 

 

2.2.1.2 The normalization of non-B burden  

To ensure meaningful comparisons, normalization techniques are applied, allowing 

for assessments of Non-B Burden across different genes or various non-B DNA structure 

types. The various non-B burden metrics included are raw motif counts (without 

normalization), normalization by region length, normalization by motif library size, and 

normalization by both length and library size.  

The concept of normalization in RNA-seq analysis, exemplified by metrics like 

CPM (Counts Per Million), RPKM (Reads Per Kilobase of transcript, per Million mapped 

reads), has played an inspiring role in shaping the approach to normalizing Non-B Burden. 

Like in RNA-seq, where these normalization techniques ensure the comparability of gene 

expression values across diverse samples, the normalization methods employed in non-B 

Burden calculations serve a similar purpose. They are specifically designed to enable 

meaningful comparisons of non-B Burden measurements across different genes (or 

genomic regions) and various non-B DNA types. 

The default unit of non-B burden is CPKM, counts per kilobase per million. This 

is used to normalize the non-B motif prevalence (counts) by the length of query regions 

(per kilobase, 103) and by the library sizes of non-B motifs (per million, 106). 

Normalization allows the comparison of non-B burden across regions (such as different 

gene regions) and across different non-B types. 
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Specifically, region and motif library normalized non-B burden is defined as:  

 
𝐶𝑜𝑢𝑛𝑡𝑠	𝑜𝑓	𝑛𝑜𝑛𝐵	𝑚𝑜𝑡𝑖𝑓𝑠	𝑜𝑣𝑒𝑟𝑙𝑎𝑝𝑝𝑒𝑑	𝑤𝑖𝑡ℎ	𝑞𝑢𝑒𝑟𝑦	𝑟𝑒𝑔𝑖𝑜𝑛𝑠	 ×	10! 	× 10"

𝑇𝑜𝑡𝑎𝑙	𝑛𝑜𝑛𝐵	𝑙𝑖𝑏𝑟𝑎𝑟𝑦	𝑠𝑖𝑧𝑒	 × 	𝑇𝑜𝑡𝑎𝑙	𝑞𝑢𝑒𝑟𝑦	𝑟𝑒𝑔𝑖𝑜𝑛	𝑙𝑒𝑛𝑔𝑡ℎ	 					(1) 

Here, 103 normalizes for query region length and 106 for non-B library size factor. 

 

Inspired by the established practices in RNA-seq analysis, these normalization 

techniques enhance the reliability and interpretability of non-B burden measurements, 

making them an essential component of this work for quantifying non-B DNA motifs. 

 

2.2.2 Non-B Burden at gene-, signature-, sample- levels and their applications. 

2.2.2.1 Overview: multiple-level non-B DNA burden  

The “Non-B Burden” is a versatile metric designed to cater to various genomic 

levels, addressing a range of potential use cases. It can be computed for individual genes 

(gene-level) or sets of genes (signature-level), as well as defined genomic regions, either 

individually (site-level) or in batches (sample-level). 

Gene-level. At the gene-level, the Non-B Burden serves to answer fundamental 

questions, such as the prevalence of non-B DNA formation within specific gene of interest. 

This metric quantifies the total Non-B Burden, encompassing all non-B DNA motifs within 

the gene region such as promoters, exons, and introns. Notably, it also provides options to 

quantify the composition of non-B burden contributed from different non-B types. Thus, 

the gene-level Non-B Burden can be presented in two formats: the total burden and the 

non-B type-specific burden. Together, this gene-level burden allows us to showcase the 
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fundamental utility of Non-B Burden for each gene and examine the composition of 

burdens among different non-B types within the total burden (Figure 2.1A). 

Signature-level. At the signature-level, the use of Non-B Burden emphasizes the 

importance of proper normalization. This level is particularly relevant when dealing with 

gene signatures, which represent lists of genes. And key questions here include identifying 

representative genes with the highest burden or understanding the distribution of a specific 

non-B type across genes within a signature (Figure 2.1B). In this case, a suitable 

normalization method is crucial to effectively compare burdens across non-B types and 

genes. We introduce both row-wise (across genes) and column-wise (within genes) to 

separately enable the burden comparison to address research needs. 

Site-level. The site-level computation of Non-B Burden represents the most 

generalized calculation on non-B burden, which allows for the calculation of non-B 

burdens at any genomic sites (from a sample, such as mutation sites), defined by its start, 

end, and chromosome location. For example, gene-level Non-B Burden can be viewed as 

a specific instance of site-level calculation but on a larger scale.  

Sample-level The power of site-level Non-B Burden lies in its ability to be 

leveraged to calculate sample-level Non-B Burden when a list of genomic sites associated 

with a sample is provided. For instance, a list of genomic sites, such as mutation sites or 

copy number segments is acquired from sequencing data that are associated with tumor 

samples. Through leveraging these tumor-associated genomic regions, we can compute the 

Non-B Burden associated with all mutation sites for each tumor sample and derive the 

sample-level Non-B Burden, which reflects the mutation-informed non-B DNA prevalence 

within each tumor sample. This metric can be presented in terms of the total burden or 

broken down by non-B types, with appropriate normalization methods applied (Figure 

2.1C). 
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Case studies. The various applications of multiple levels of non-B burden are 

illustrated through three distinct case studies. In Case 1, we present the foundational 

calculation of non-B burden for a single gene and examine the composition of this burden 

among different non-B types. Case 2 involves the calculation and comparison of non-B 

burden within a gene signature, providing insights into non-B burden heterogeneity 

analysis. In Case 3, we quantify the non-B burden associated with mutation sites and 

explore the sample-level non-B burden in tumors. 

 

2.2.2.2 Gene-level Non-B burden.  

Use cases: The goal in using this case is to demonstrate the fundamental query of 

a single gene for non-B burden analyses.    

Example: How Non-B DNA motifs affect mutation rate and facilitate genome 

instability69.  

The BRCA1 gene is one of the genes most commonly affected in hereditary breast 

and ovarian cancer138. The BRCA1 gene is a key DNA-repair protein, and its functional 

loss renders certain cells highly susceptible to DNA damage that triggers cancer139. Triple 

negative/basal-like tumors often accompany BRCA1 gene mutations and are aggressive 

with a poorer prognosis140-142. From NBBC, we observe BRCA1 to have the highest burden 

(burden CPKM = 0.84) from the triplex-forming structures (H-DNA) and STR is the 

second high burden source (burden CPKM = 0.65) (Figure 2.2A). H-DNA is a triple helix 

secondary structure formed by homopurine-homopyrimidine sequences with a minimum 

length of 12 nucleotides136. The G-content and length of DNA can affect the formation of 

non-B DNA structures, including H-DNA motifs. To further check the quality of motifs by 

looking into their composition, we use a “motif screen” module to find those with both 
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high %G percent and long motif lengths. Our cluster analyses of motif features revealed 

two triplex forming mirror repeat motifs residing on Chromosome 17 with relatively long 

length and high %G among all forming motifs (Figure 2.2B). The app can also output flank 

regions of the motif regions.  

 

2.2.2.3 Signature-level Non-B burden.  

Use cases: The goal in using this case is to demonstrate the application of a gene 

signature query for performing non-B burden analyses. As opposed to a single gene query, 

a multiple gene query involves comparison not only across non-B type but also across 

genes. Therefore, proper normalizations (gene length and non-B library size) of burdens 

are applied. For multiple signatures, our burden in batch module may be used to output 

non-B burdens for multiple gene lists. 

Example: Poly (ADP-ribose) polymerase inhibitors (PARPi) have shown efficacy 

in treating cancers143-145 with HR deficiencies, including those with mutations in the 

BRCA1 and BRCA2 genes146, which are critical for homologous recombination (HR) 

repair146-148. Non-B DNA structures are known to contribute to genetic instability and 

evolution, and they are recognized by DNA repair pathways, including the HR pathway106, 

149. G4 stabilization can activate the HR pathway, leading to the bypass DNA damage 

mediated by G4150. Other non-B DNA structures, such as triplexes, can also interfere with 

HR repair, and their presence can affect  genomic instability151. We used NBBC to 

explore the non-B DNA forming structure heterogeneity among 12 genes in the HR 

pathway: BRCA1, BRCA2, MRE11A, RAD51, ATM, RAD51C, RAD51D, BRIP1, CDK12, 

PALB2, CHEK2 and BARD1. Using the “gene screen” interface, we derived normalized 

total (among non-B types) burden for each gene, which resulted in CHEK2, BRCA2, and 
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PALB2 as the top three genes with the highest total non-B burden (Figure 2.3A). 

According to the dissection of non-B burden by each structure type, we observed that 

several high burdens appear to result from Triplex-forming MR, Cruciform IR and direct 

repeats (Figure 2.3B). For the CHEK2 gene in particular, the main sources of non-B 

burdens are from Triplex-MR (burden CPKM = 0.8, Cruciform-IR (CPKM = 0.62), and 

direct repeat (CPKM = 0.57). We next invoked the motif screen module and performed 

unsupervised clustering using motif length and %G feature. Taking CHEK2 and PALB2 

for instance, there are three specific motifs associated with direct repeat forming DNA 

structures with relatively long length and high %G (Figure 2.3C). By extracting these 

specific sequences, it allows for the further exploration of their potential role in PARP 

inhibitor response.  

 

2.2.2.4 Sample-level Non-B burden.  

Use cases: The goal of using this case is to demonstrate the ability to explore non-

B burden localized to site-level genomic coordinates from multiple genes and samples with 

use of the “burden in batch”.  

Application: We applied mutation-localized non-B burdens calculation to genome-

wide mutation sites for early-stage pancreatic cancer patient samples (n=104)120. In other 

words, 104 groups of genomic mutation regions from 104 samples were used as input for 

burden in batch calculation (Figure 2.4A).  Each group has its own specific mutation sites 

signature per sample. The mutations sites of each group were overlapped with non-B 

forming motif regions to calculate the non-B burden within each sample. For each sample, 

we derived a site-level non-B burden for each non-B DNA structure, resulting in a non-B 

burden output matrix of 104 (columns, input groups) x 6 (rows, non-B types) (Figure 
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2.4B). We performed a cluster analysis on these non-B burdens and compared overall 

survival (OS) between groups (Figure 2.4C). Among the 104 early-stage pancreatic 

patients, non-B burden clustering resulted in six patient clusters that differentiated by non-

B DNA structures burden, in which IR high burden samples (n=23, median OS=15 month) 

significantly differed in OS from DR high burden samples (n=23, median OS=30 month). 

The resulting output matrix of burdens on these sample can be used for other downstream 

analyses including supervised and unsupervised clustering, total burden calculation, 

association analyses and more depending on research questions.  

 

2.2.3 Non-B burden exploration platform  

To simplify the use of non-B burden calculation and introduce it for wide, non-

bioinformatic research uses, we introduce NBBC, A Non-B DNA Burden Explorer in 

Cancer. NBBC is an online web server that provide non-B burden calculation, non-B 

burden visualization and non-B motif exploration. 

NBBC includes two main analyses modules: “gene screen” and “motif screen” 

module. The “gene screen” layer serves to conduct non-B burden computations and offers 

normalizations that enable comparisons across genes or non-B structures. It provides 

visualizations for descriptive analysis of burden values, burden distribution, and burden-

based gene clustering. The “motif screen” layer is focused on motif exploration and is 

designed to define motifs with similar features, in terms of length and %Guanine content. 

For input, NBBC takes genes symbols, gene signatures, genomic regions, either by as a 

single query or in batch. It outputs DNA burdens either by non-B types or in total at gene 

level or at group level. 
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2.2.3.1 Overall design of NBBC 

The NBBC web server consists of three core functional modules. The overall design 

of NBBC is summarized in Figure 2.5. The first module is “gene screen.” This layer offers 

several computation and analyses options based on non-B burden for input query genes or 

regions. In terms of computation, this module derives the non-B burden calculation in user-

selected units to examine non-B burden composition for a query (on multiple gene levels) 

alongside several normalization options, to facilitate non-B burden comparisons among 

genes and/or non-B structures.  Several descriptive analyses are offered in the gene screen 

module with visualizations for exploring non-B burden values, distribution, and clustering 

at the gene-level. The second module offered in NBBC is “motif screen” in which users 

are able to undertake a more focused exploration of non-B motifs.  Through exploring 

these non-B motifs corresponding to the query of interest for analyses, users are able to 

perform clustering on any combination of motif-associated features: length, guanine 

content (%G), and adenine content (%A).  This capability allows users to conduct a more 

focused search for motifs with characteristics of interest within the context of their 

research.   

 

2.2.3.2 How to calculate non-B burden using NBBC.  

The NBBC app accepts input from three different levels: gene Signature-level, 

Gene-level, Site-level (Figure 2.6). The web server provides four options with which to 

satisfy users’ input requirements. The first option includes built-in cancer related signature 

gene sets from which the user can select that include DNA damage repair and response 

gene pathways, cancer hallmark gene set, oncogenes etc. A second built-in input option for 

user selection includes cancer cell line-specific molecular features that include mutations 
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and copy number alterations152. The third input option allows users to manually input a 

single or several genes through the web interfaces for when a quick gene query is of 

interest. The fourth input option allows users to upload a set of genomic coordinates 

representing genomic regions of interest, such as mutation sites, in which non-B burden is 

placed in the context of mutation-localized non-B burden. With these multiple options, the 

NBBC app covers non-B calculation at multiple levels and genomic resolution, from 

precise mutation sites to broad gene signatures. Additionally, NBBC offers a ‘burden in 

batch’ option that defines non-B burden for a set of signatures (e.g., molecular subtyping, 

samples, patient-derived models, etc.) to further explore the use of this potential marker in 

downstream analyses and experiments.   

 

2.2.3.3 Gene exploration of non-B burden. 

The output of initial query of non-B burden is a matrix formed by a list of genes 

and a list of non-B types. The data in the matrix represent the non-B burdens calculated by 

the web server and can be scaled with multiple types of normalizations offered in the app. 

The goal of gene layer in NBBC is to conduct a gene-level analyses of non-B representation 

that could prove helpful to focus on a single or subset of genes of interest for hypothesis 

generation. To address this goal, we visually dissect non-B burden into (a) burden 

distribution of each non-B type among the query genes; (b) total (cumulative) non-B 

burden for each gene in query; (c) composition of non-B burden representations at the gene 

level; and d) heatmap clustering of non-B burden among non-B types and genes (Figure 

2.7).  
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2.2.3.4 Motif exploration of non-B burden. 

The motif layer is designed for non-B motif-level exploration and selection of 

motifs from the gene screen analyses for insight on their heterogeneity with respect to user-

selected sequence features: length, %G, and %A. For this purpose, the motif screen module 

offers motif sequence-level, unsupervised clustering of features. For example, length and 

%G can be two major factors to consider when exploring motif selection from mirror 

repeats (Figure 2.8A).  Clustering of non-B forming sequences based on chosen sequence 

features can be viewed at both the gene-level (gene-informed) and non-B structure level 

(non-B informed). The clustering outcomes are represented using two visualizations, with 

each motif labeled by gene symbols and non-B types (Figure 2.8B-C). Within each 

visualization, users can select individual points or encircle a region on the graph to identify 

non-B motif sequences of interest. The chosen data points are then displayed in a table 

format, where users have the option to download or to include flank regions of motif 

sequences for additional downstream exploration (Figure 2.8D). 

NBBC serves as a valuable resource for researchers investigating the role of non-B 

DNA structures in cancer and other genetic diseases. By offering an accessible platform 

for analyzing and visualizing non-B DNA burden within a cancer context, NBBC enables 

the quantification and exploration of non-B DNA by a wide, non-bioinformatic user base.  

 

2.3 DISCUSSION 

In summary, the primary contribution of this chapter is the presentation of a 

comprehensive bioinformatic methodology for investigating “non-B burden” as potential 

biomarkers, offering a novel perspective on non-B DNA heterogeneity analyses. 
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Furthermore, the web server significantly enhances computational efficiency, providing 

scientists with a swift and efficient platform to quantify non-B burden.  

The recently published complete telomere-to-telomere assembly of the human 

genome121, which reveals a higher abundance of non-B DNA-forming sequences than 

previously identified, highlights the relevance of the quantification of non-B (repetitive 

sequences). The new reference genome, T2T-CHM13153, fills up the small portion (8%) of 

the genome previously left out that does not produce proteins and comprises highly 

repetitive DNA sequences located within and surrounding the telomeres and centromeres. 

This update covers a greater extent of repetitive DNA sequences that may offer further 

insights into non-B structures within the context of cancer.  

In addition to the novel introduction of new non-B burden metrics, the 

computational tool NBBC supports non-B burden calculation with various input types to 

maximize usability, applicability, and flexibility for a broad user base. The well-designed 

visualizations cater to users' needs, benefiting non-computational biologists in exploring 

non-B forming DNA motifs and the associated genomic burden within cancer gene 

signatures. Future plans involve expanding the workflow to provide additional support for 

a motif feature focus with the interpretation of input sequences. 

Currently the non-B burden calculation focuses on the reference genome, which is 

where the non-B forming sequences are predicted using non-B DB 2.0 database137. 

Although an option for calculating non-B burden by using genomic coordinates has been 

provided, to develop a method that accepts a user-defined sequence will further extend the 

capabilities of non-B burden calculation and make it further sample- and disease- specific.  

However, in order to achieve this function, simply adding a sequence input option 

may not be sufficient. Currently, non-B forming motifs derived from the reference genome 

have been pre-computed and their use widely accepted. For user-defined sequences, among 
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other things, there would need to be a formal exploration of how closely the reference 

genome resembles that of an input sequence to determine an accuracy level in prediction 

and represents a future research area. Additionally, the current workflow of non-B motif 

clustering is dependent on general sequencing properties such as sequence length and 

sequence composition. Considering the complexity of non-B forming sequencing with 

various kinds of repeat patterns, there is an opportunity to extract more features for 

exploration of non-B structure forming DNA sequences that will benefit the study of 

genomic instability in cancer. 

Despite the increasing interest in non-B DNA research, comprehensive analysis and 

exploration tools for non-B DNA as biomarkers within a cancer context are lacking. The 

absence of comparable quantification methods and tools underscores the need to first 

derive a novel metric of “non-B burden”, as introduced here, and subsequently utilize that 

metric for analyzing non-B type heterogeneity, as achieved with the development of NBBC 

web server. 

 

2.4 MATERIALS AND METHODS 

2.4.1 Data source and data pre-processing 

The Non-B DNA forming motif data are download from Non-B DB 2.0 database 

with hg19 build74, 111, 137. An update to correct the A-Phased repeat motifs data was received 

from Frederick National Laboratory for Cancer Research (personal communication). There 

are 7 non-B structure motifs included: A-phased repeat (APR, n = 2,386 motifs), G-

quadruplexes (G4, n = 361,232 motifs), Z-DNA (n = 404,192 motifs), inverted repeats (IR, 

n = 5, 771,570 motifs), mirror repeats (MR, n = 1,378,864 motifs), direct repeats (DR, n = 

1,113,354 motifs), and short tandem repeats (STR, n = 2,826,360 motifs). A subset of MR 
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and IR motifs are further delineated within the application to represent Triplex (Triplex-

MR, n = 412,028 motifs) and Cruciform (Cruciform-IR, n = 147,152 motifs) motifs, 

respectively. For input, NBBC offers several built-in cancer related gene sets for quick 

query, including cancer hallmark gene signatures from MSigDB databases154, DNA 

damage repair and response gene signatures from Lange et al155. Additionally, cancer cell 

line molecular signatures are extracted from Genomics of Drug Sensitivity in Cancer 

(GDSC) database152.  

 

2.4.2 Non-B burden visualization 

NBBC offers various visualizations for non-B burden quantification, facilitating 

the analysis and comparison of single and multiple genes in terms of their non-B burden 

composition. A bar plot is used to visualize the total non-B burden. A stacked bar plot and 

a bubble plot allows users to see the non-B burden by gene and type. A burden clustering 

function is also available within the heatmap format. A distribution plot is used to enable 

users to select genes with high and low burden from statistical intervals. The R package 

ggplot2156 and Plotly157 produce major visualizations. R Shiny158 provides interactive 

features. Heatmaps are visualized by ComplexHeatmap package159. 

 

2.4.3 Non-B motif clustering  

The motif layer performs sequence-level motif clustering for high-quality non-B 

motif detection. For example, the length and guanine contents (%G) are two major factors 

in deciding motif quality for non-B forming. We employ unsupervised clustering to define 

motifs with similar length and %G. The app supports multiple features for clustering 
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including length, guanine, adenine compositions in the non-B motif sequences. K-means 

clustering is applied for non-B forming motifs clustering using factoextra package160. The 

R package ggrepel161 are used to enhance visualization. The flank region extraction feature 

allows users to obtain the non-B forming regions, including additional flank sequences on 

both ends. This functionality facilitates further investigation beyond the scope of the 

application. Bedtools162 is employed to accomplish this extraction process. 

  



 49 

2.5 FIGURES 

 

Figure 2.1: Schematic Representation of Multiple Levels for Non-B Burden Calculations. 

(A) Single-gene level: Illustrates the computation of DNA burdens by non-B types 

for a singular gene. 

(B) Multiple-gene level: Demonstrates the calculation of DNA burdens by non-B 

types across multiple genes that require normalization for appropriate comparison 

across genes and non-B type. 

(C) Sample-level query: Facilitates the computation of non-B burdens by enabling 

batch input of multiple signatures at sample level.  

SignaturesGenes Samples
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Figure 2.2: Case 1: Assessment of Non-B Burden and Screening for Non-B Motifs within 

a Single Gene Query (Single-gene level). 

(A) Graphical representation of a single gene query. 

(B) Heterogeneity of Non-B Burden in BRCA1, illustrated through a bar plot 

categorizing six non-B types or subsets (DR, G4, STR, Z-DNA, MR, and IR) with 

non-B types represented on the x-axis. 

(C) Identification of two mirror repeat motifs within BRCA1, exhibiting high G% 

and long lengths, potentially forming triplex structures. 
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Figure 2.3: Case 2: Analysis of Non-B Burden in Genes from the Homologous Repair 

Pathway (Multiple-gene level). 

(A) Graphical representation of a multi-gene query. 

(B) A stacked bar plot representing the composition of different non-B burden types 

within each gene from HR pathways. 

(C-D) Motif clustering unveils three direct repeats in PALB2 and CHEK2 with high 

G% and extended lengths, analyzed both in the gene-informed (C) and non-B 

informed contexts (D).   
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Figure 2.4: Case 3: Analysis of Mutation-localized Non-B Burdens Across Multiple 

Samples (Sample-level and Site-specific).  

(A) Graphical illustration summarizing the process of non-B burden calculation at 

the sample level.  

(B) Heatmap representing clustering of mutation site-specific, sample-level non-B 

burdens across 104 early-stage pancreatic cancer samples.  

(C) A notable overall survival difference (p < 0.05) is observed between Cluster 1 

(high DR) and Cluster 3 (high IR). 
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Figure 2.5: Comprehensive Structure of NBBC.  

(A) Input includes genomic regions in query along with specified non-B types. 

(B) Initial module titled “Gene Screen” delves into non-B burden analysis for the 

provided gene query, followed by a subsequent module "Motif Screen" executing 

motif sequence exploration. 

(C) Output unveils the breakdown of burdens within queried regions, identifying 

genes with high burdens and non-B DNA sites with user-desired features. 
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Figure 2.6: Introduction to input options.  

NBBC supports multi-level burden queries and the current version provides four 

options at three levels for different goal and user circumstances. 

 (A) Signature-level input. The input includes popular cancer signatures, cell line 

molecular signatures or user-defined signatures. 

 (B) Gene-level input. The typical use is a quick single gene search by manual input 

and motif exploration with the query gene. 

 (C) Site-level input. It applies to burden queries at the high genomic resolution, 

such as cancer-specific mutation sites or regions with copy number alterations. 
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Figure 2.7: Non-B Burden with Gene Screen Layer Module.  

This layer scrutinizes non-B DNA burdens, furnishing multiple visualizations for a 

descriptive analysis concerning burden values, their distribution, and gene 

clustering based on burden.  

(A) A stacked bar plot is used to visualize the total non-B burden.  

(B) The distribution of non-B DNA burdens by non-B DNA motif types.  

(C) A bubble plot allows users to see the non-B DNA burden by gene and type.  

(D)A burden clustering function is also available within the heatmap format. 
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Figure 2.8: Utilizing Motif Screen Layer Module for Uncovering Potentially Viable Non-

B Forming Sequences. This module aids in sieving high-quality motifs 

likely to form non-B structures within the genes of interest, providing 

specific sequences for subsequent wet lab validations.  

(A) Interface for motif clustering. Users have the option to select two pre-

summarized motif sequence features for executing 2-dimensional clustering.  

(B-C) Motif clusters curated based on sequence features. Illustratively, motifs 

exhibiting high Guanine content (G%) coupled with appreciable lengths are 

spotlighted as candidates for consideration. A dual visualization scheme is offered 

- one tagging gene names (left, gene-informed) and the other categorizing non-B 

types (right, non-B informed).  

(D) In instances where exploration of motif flank regions is desired, the application 

facilitates the display of left- and right- flank regions for motifs according to user-

specified length, achieved via a real-time reference genome query.  

Non-B-InformedA

D

Gene-InformedB C
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Chapter 3: Integrated Markers: Quantifying the Prevalence of Non-B 
DNA Motifs Co-Localized with Mutation Sites 

(AIM2: Define a Multi-Modal Motif-containing Markers Quantification) 

 

PREFACE 

Part of this work was previously invited to be presented at the American Society of 

Clinical Oncology Annual meeting (ASCO 2023) and was published in the Journal of 

Clinical Oncology1.  The manuscript has been submitted and is currently under review.2 

 

Transitioning from Chapter 2 to Chapter 3, we shift from an emphasis on 

quantifying the non-B DNA motif prevalence, to design markers that integrate information 

from both non-B and mutation sites in cancer. The previous chapter laid critical 

groundwork by introducing the “Non-B Burden” as a novel metric, enabling an enhanced 

quantitative understanding of the interaction between DNA motifs and mutations. This 

chapter provides a further understanding of genomic instability in cancer. This Chapter 

evolves the concept of an integrated marker approach. By integrating the prevalence 

analysis of non-B DNA with the frequency of co-localized mutations, it allows a more 

intricate understanding of cancer biomarkers, mlTNB (mutation-localized total non-B 

burden) and nbTMB (non-B informed tumor mutation burden), which are further 

investigated in their capability to predict cancer prognosis and treatment response. 

   

 

1Qi Xu, and Jeanne Kowalski*. "Mutation-site localized non-B DNA burden and survival heterogeneity in 
early-stage pancreatic cancer." Journal of Clinical Oncology, no. 16 (June 01, 2023) 4166-4166. 
2Qi Xu, and Jeanne Kowalski*. "Using Non-B DNA Mutation Co-Localization to inform on  
Treatment Responses and Outcomes in Cancer." (In submission) 
*Corresponding author. 
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3.1 INTRODUCTION 

Genomic instability in cancer. The role of genomic instability in tumorigenesis 

has been central to cancer research163. It is not uncommon for cancer cells to exhibit 

mutations, chromosomal rearrangements, deletions, amplifications, or even the loss and 

gain of entire chromosomal arms164. Genomic instability has previously been associated 

with poor prognosis, and is recognized as one of the drivers of carcinogenesis and acquired 

therapeutic resistance49. 

TMB. Tumor Mutation Burden (TMB) is a pivotal metric that quantifies the total 

number of mutations within tumor genes, specifically measuring the number of somatic 

mutations per mega base of genome examined60, 165. TMB serves as both a measure of this 

genetic instability and a biomarker for the effectiveness of immunotherapies, especially 

immune checkpoint inhibitors61. A higher TMB might suggest a greater likelihood that the 

tumor will respond to such therapies166. Although high TMB is an indicator for 

immunotherapy, in certain cancer types that are considered “immunologically cold” such 

as pancreatic cancer167, TMB is not always high, which indicates a low burden of tumor 

neoantigens168. To further elucidate the nuances of TMB, there still remains a need for 

further research. 

Non-B DNA motifs. Non-canonical DNA structures, commonly termed as non-B 

DNA, deviate from the B-DNA double helix169. These structures encompass formations 

such as G-quadruplexes (G4), Z-DNA, mirror repeats (MR), direct repeats (DR), inverted 

repeats (IR), and short tandem repeats (STR)35, 170, 171. Within the genomic landscape, non-

B DNA structures emerge as notable entities. They disrupt the processes of DNA 

replication and transcription, thereby laying the foundation for genetic instability24, 100.  

non-B DNA and mutation. The propensity of these structures to induce mutations 

underscores their critical role in cancer initiation and progression105, 106, 108, 134. Their 
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increased susceptibility to change gives rise to an abundance of population variants linked 

to non-B DNA motifs and an amplified frequency of somatic mutations at these sites, 

notably in cancer contexts. Even though numerous variants tied to non-B DNA motifs may 

not have a profound impact, these motifs play a pivotal role in the genetic diversity of the 

human genome133, 172. As a result, they stand out as primary areas of interest for disease 

development and genetic discrepancies133. It is essential to factor in the importance of non-

B DNA motifs for predicting mutation frequencies and evaluating potential disease risks, 

while developing new biomarkers in the context of cancer. 

We investigated two novel biomarkers: nbTMB (non-B-informed tumor mutation 

burden) and mlTNB (mutation-localized total non-B DNA burden) and explored their role 

in predicting cancer prognosis and treatment response. We first described a Pan-Can 

immunotherapy analyses in which nbTMB appears to be linked with prognosis173. We 

explored the heterogeneity with TMB high and low patient groups by using nbTMB to 

investigate its role as a biomarker associated with post-immunotherapy survival. We next 

explored the use of nbTMB as a marker of altered cisplatin drug sensitivity in ovarian 

cancer. Our findings showed support for the further exploration of nbTMB as a potential 

marker of cisplatin sensitivity that may help to explain resistance when all other markers 

indicate otherwise. We next explored the use of mlTNB to quantify non-B burden and its 

association with prognosis in early-stage pancreatic cancer. Our results lend support to the 

further study of mlTNB as a differentiating marker of survival in pancreatic cancer patients 

that further may be informative on their heterogeneous response to treatment.  
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3.2 RESULTS 

3.2.1 The design of nbTMB and mlTNB, based on non-B and mutation co-
localization. 

Our investigation unveils two novel markers, nbTMB and mlTNB, aiming to 

quantify the multi-dimensions of non-B DNA motifs and the co-localized mutation sites. 

We intended to demonstrate their ability to act as localized mutation markers and gauge 

their utility as biomarkers across various cancer types. 

The two markers are calculated for each tumor profile at sample level. The mutation 

signatures are extracted from each tumor profile. The genomic-wide non-B forming region 

are further overlapped with the mutated regions for each tumor profile. Using the 

overlapped region by counting separately the number of mutation and non-B motifs 

involved, we are able to derive the two metrics, nbTMB and mlTNB, as the new biomarker 

to reflect the interplay between mutation and non-B DNA. The metric was further refined 

by optional normalizations to predict patient prognosis and treatment responses. 

nbTMB quantifies mutations within the realm of non-B as a non-B informed tumor 

mutation burden (Figure 3.1A-B). The mutation signatures are extracted from each tumor 

profile. The genomic-wide non-B forming region is further overlapped with the mutated 

regions for each tumor profile. Further, we calculate nbTMB percentage (nbTMBp) to 

describe the proportion of tumor mutations co-localized with non-B DNA structures, 

relative to total tumor mutations.  

On the other hand, mlTNB refers mutation localized non-B DNA burden as a 

quantification of non-B DNA motifs. Different from nbTMB, the marker, mlTNB, focuses 

on the counts of non-B motifs that contain mutation sites (Figure 3.1C-D). Due the various 

non-B types, the mlTNB is further calculated by non-B motif types. For the comparison 
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across non-B types and across samples, the burden value will also be normalized by both 

the number of mutations and the motif library size.  

 

3.2.2 The calculation of nbTMB and mlTNB 

nbTMB (non-B co-localization tumor mutation burden). nbTMB focuses on 

mutations, particularly those co-localized with non-B regions. The steps to calculate this 

metric include: (1) identify mutation signature within the dataset for each sample; (2) 

examine each mutation sites to determine whether it is co-localized with non-B motifs; (3) 

count all mutations that fall within these regions to derive the nbTMB value. As a derived 

metric, nbTMB Percentage (nbTMBp) provides a normalized perspective of nbTMB in 

relation to the total tumor mutation burden (TMB) to quantify the information complexity 

of the tumor mutation burden. It is calculated using the formula: 

 

𝑛𝑏𝑇𝑀𝐵	𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒	(𝑛𝑏𝑇𝑀𝐵𝑝) =
𝑛𝑏𝑇𝑀𝐵
𝑇𝑀𝐵  

Where: 

nbTMB = Number of mutations co-localized with non-B regions. 

TMB = Total tumor mutation burden for a given sample. 

 

mlTNB (Mutation co-localized non-B Burden). mlTNB is a metric that quantifies 

the burden of mutations co-localized with non-B motifs. The steps to calculate this metric 

include: (1) identify mutation signature; (2) examine the positions of non-B DNA motifs 

and determine whether it contained mutation sites localized within its region; (3) count all 

the mutation-localized non-B motifs to derive the mlTNB value.  
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For extension, considering there are multiple type non-B type such as G4, H-DNA, 

Z-DNA and so on, mlTNB can be derived for each of the non-B type specifically. 

Additionally, to enable comparison between samples and non-B types, the mlTNB is 

further normalized by the mutation size factor (divide the counts by total mutation length 

in each sample) and the non-B library factor (divide the counts by the total size of each 

non-B type). The calculation is described below: 

 

𝑚𝑙𝑇𝑁𝐵 =
𝑐𝑜𝑢𝑛𝑡𝑠	𝑜𝑓	𝑛𝑜𝑛𝐵	𝑚𝑜𝑡𝑖𝑓𝑠	𝑜𝑣𝑒𝑟𝑙𝑎𝑝𝑝𝑒𝑑	𝑤𝑖𝑡ℎ	𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛	𝑠𝑖𝑡𝑒𝑠	
𝑇𝑜𝑡𝑎𝑙	𝑛𝑜𝑛𝐵	𝑙𝑖𝑏𝑟𝑎𝑟𝑦	𝑠𝑖𝑧𝑒	 × 	𝑇𝑜𝑡𝑎𝑙	𝑙𝑒𝑛𝑔𝑡ℎ	𝑜𝑓	𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛	𝑠𝑖𝑡𝑒𝑠	 

Where: 

mlTNB = mutation-localized total non-B burden 

 

3.2.3 nbTMB linked with prognosis in immunotherapy.  

TMB has been reported as a prognostic biomarker to be associated with 

immunotherapy treatment174. High TMB is associated with better immunotherapy response 

in certain cancer types, such as melanoma and lung carcinoma (both non-small cell-, 

NSCLC and small cell- lung cancer, SCLC)175-177. However, even within TMB-high 

groups, TMB can still show heterogeneity. Patients with high-TMB receiving 

immunotherapy may still show unfavorable survival status. There are also not enough 

biomarkers that exist to further indicate prognosis within the low-TMB patient group. 

Herein, we explore the heterogeneity with TMB high/low groups using nbTMBp as a 

biomarker to investigate its association with prognosis. 

We first describe a Pan-Can immunotherapy analyses in which nbTMBp appears 

linked with prognosis. Although improved immunotherapy responses are reported to be 

associated with high TMB, outcomes remain heterogenous within TMB-high patients. 
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Accordingly, we explore the heterogeneity with TMB high/low groups using nbTMBp to 

investigate its role as a biomarker associated with post-immunotherapy survival.  

We analyzed the mutation data from patients who underwent immunotherapy based 

on the MSK-IMPACT study from 11 different cancer types175. Within each caner type, 

using the 80th percentile of TMB, we assigned patients into TMB -high and -low groups 

and compared their overall survival status (Figure 3.2B). We defined nbTMB for each 

patient sample by quantifying the numbers of mutations co-localized within non-B forming 

regions137. When comparing nbTMBp across groups, the TMB-high group exhibited a 

lower nbTMBp overall, relative to the TMB-low group (Figure 3.2C).  

Among pan-can patients categorized by TMB levels (high or low), a further 

distinction into “alive” and “deceased” based on overall survival (OS) reveals that the 

deceased cohort consistently exhibits a higher nbTMBp percentage across both TMB 

categories(Figure 3.2C). Within each TMB classified group, nbTMBp was significantly 

elevated in deceased patients, irrespective of their high/low status. A gene-level analysis 

of immune response signatures178 revealed an 86% overlap between mutations co-localized 

with non-B motifs and immune checkpoint inhibitor-outcome-linked genes (n=98) (Figure 

3.3C). 

Next, we performed clustering within the TMB-high patients based on their on 

nbTMBp, which revealed two patient subgroups (Figure 3.3A). The survival analysis 

shows significantly distinct (p< 0.01) difference in patient overall survival, where high-

TMB patients with higher nbTMBp is associated with a more unfavorable prognosis. It 

showed a shorter OS in the TMB-high patients of which at least 10% of TMB was nbTMB, 

as compared to those patients with less than 10% nbTMBp content. For comparison, the 

same analysis was applied to TMB as the clustering feature, in which no significant OS 

difference was observed (Figure 3.3B).  Altogether, our findings lend support for the 
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further study of nbTMBp as a potential marker of differential survival within TMB-high 

patients receiving immunotherapy. These results may reflect the potential contribution 

from non-B DNA to genomic instability for certain patients that have poor survival 

outcome, despite having high TMB.   

 

3.2.4 nbTMB and cisplatin resistance in ovarian cancer 

Cisplatin resistance is a major hurdle in effectively treating ovarian cancer179. 

Although cisplatin is commonly used for ovarian cancer treatment, drug resistance often 

arises due to a faulty apoptotic process, reducing treatment effectiveness180-184. Among the 

57 ovarian cell lines with mutation profiles, ~40% have TMB greater than ten as well as 

moderated FGA with the median at 56%, which indicates the potential role of genomic 

instability in platinum resistance185. Investigating how cells signal in response to 

chemotherapy from the perspective of genomic instability might shed light on its impact 

on treatment outcomes. 

We defined ovarian cell line-specific mutation signatures and corresponding 

nbTMBp for a cluster analysis that identified three cell line groups of varying nbTMBp 

from low to high (Figure 3.4B). Median nbTMBp significantly differed among the three 

clustered cell line groups. Association tests between TMB, FGA and tumor grade with 

nbTMBp-derived cell line clusters lacked significance, as did a correlation between TMB 

and nbTMBp among the ovarian cell lines. We examined the effect of clusters on cisplatin 

drug sensitivity in which increasing nbTMBp was significantly associated with decreasing 

cisplatin sensitivity. This finding was consistent for dose-response AUC with cisplatin 

(Figure 3.4C). For comparison, we performed the same analyses on carboplatin sensitivity 

which did not show the same result, suggesting a cisplatin specific nbTMBp effect. 
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Additionally, the use of TMB in a cluster analysis (Figure 3.5A) failed to show a similar 

result (Figure 3.5B). Altogether, our findings show support for the further exploration of 

nbTMBp as a potential marker of cisplatin sensitivity that may help to explain resistance 

when all other markers indicate otherwise.  

 

3.2.5 mlTNB quantifies non-B burden to indicate cancer prognosis.  

In contrast to nbTMBp, we next explore the use of mlTNB to quantify non-B 

burden and its association with survival in pancreatic adenocarcinoma (PAAD)170. PAAD 

is a highly aggressive cancer with poor outcomes186-188. Existing genomic instability 

measures have not proven informative in differentiating survival into clinically translatable 

patient groups for risk stratification120. As opposed to focusing on mutation numbers, 

mlTNB quantifies non-B DNA motif that contain mutation sites of each tumor samples to 

provide a more nuanced perspective (Figure 3.6A). 

Using the mutation profiles of 76 TCGA early-stage pancreatic patients who 

progressed, we quantified mlTNB for each sample and used it in a cluster analysis resulting 

in seven patient groups with differentiated non-B structure types (Figure 3.6B) that 

significantly differed in progression-free survival (PFS) (Figure 3.6C). Patients with high 

mlTNB characterized mainly by direct repeats (high mlTNB-DR burden) were associated 

with the longest PFS (n = 7, median = 25 months), while patients with high mlTNB in Z-

DNA had the shortest (n = 10, median = 5 months). PFS among other groups were similar: 

the patient group with high mlTNB associated with short tandem repeat (mlTNB-STR) (n 

= 13, median = 11 months); the sample group with featuring mirror repeats (high mlTNB-

MR) but not inverted repeats (IR) (n = 7, median = 12 months); and the group with MR 

with IR (n = 9, median = 15 months). 
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Patients with a high burden of mlTNB-DR exhibited mutation signatures enriched 

in MAPK and Notch signaling pathways, in contrast to other clusters. Specifically, Cluster 

1 (IR) was enriched with double-stranded break and mismatch repair pathways, Cluster 2 

(STR) with hedgehog and WNT signaling pathways, and Cluster 6 (MR) with interleukin-

4 signaling pathways. (Figure 3.6D). Additionally, 50% of high mlTNB-DR burden 

patients non-B and mutation co-localization resided on chromosome 5 (Figure 3.6E). In 

the shortest PFS (high mlTNB-ZDNA, cluster 5), chromosome 7 has the highest prevalence 

of non-B mutation co-localization (Figure 3.6F). There was a lack of significant 

association between mlTNB clusters with age, race, sex, PAAD subtypes189, 190, KRAS 

mutation status191, FGA, TMB, and tumor purity. Our results lend support to the further 

study of mlTNB as a differentiating marker of survival in PAAD patients that may further 

inform on their heterogeneous response to treatment.  

 

3.3 DISCUSSION 

In our exploration of non-B DNA and mutation interactions and their potential 

implications in the cancer context, we introduced two pivotal biomarkers: nbTMB and 

mlTNB, which demonstrate the multi-dimension roles in genomic instability in cancer 

prognosis and treatment efficacy. 

This research is not without its limitations. While we demonstrated clustering 

analyses, optimized thresholds for clinical application and proper variation of metrics may 

be needed. Also, while the correlation between nbTMB, mlTNB, and treatment responses 

is compelling, the mechanism is yet to be solidified. Future prospective studies are essential 

to validate the clinical applicability of these biomarkers and to show the mechanisms 
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underlying the observed associations. The application of continuous variables and setting 

up the threshold can be challenging. 

A highlight of this study revolves around the predictive potential of these 

biomarkers. For instance, the differentiating capacity of nbTMBp in determining 

immunotherapy response underscores the significance of understanding not just mutation 

load but the non-B DNA and the mutations. Similarly, the insights derived from ovarian 

cancer cases, where an increasing nbTMB burden revealed heightened cisplatin sensitivity, 

highlights the potential of these DNA motif markers. The early-stage pancreatic cancer 

data further builds on this, with non-B-specific mlTNB presenting a different view of 

survival based on the non-B burden and presence mutations of non-B forming region. 

These biomarkers, through the quantification of DNA motifs, offer a nuanced methodology 

to better inform treatment responses and outcomes in cancer, underscoring the imperative 

for a more comprehensive understanding of the interplay between non-B DNA, mutation, 

and cancer evolution. 

 

This foundational work in the previous chapter provided a methodology for 

understanding the genomic landscape in terms of non-B DNA motifs, by introducing the 

concept of "Non-B Burden" as a metric to quantify non-B DNA-forming motifs. 

Transitioning from this foundational focus, in Chapter 3, the scope expands to include a 

more integrated marker approach of investigating non-B and mutations site co-localization, 

thereby forming a more intricate understanding of biomarkers, nbTMB and mlTNB, for 

assessing in a more comprehensive way the prevalence of mutation and non-B DNA 

colocalizations in cancer.  

This integrated approach, examining the co-localization of mutation and non-B 

DNA, provides a more comprehensive biomarker for cancer, fostering a deeper 
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understanding of the interplay between non-B DNA structures and localized mutations. 

This progression sets the stage for further research into integrated biomarkers and genomic 

analysis, enhancing the understanding of the complex genomic mechanisms underlying 

cancer. 

 

3.4 MATERIALS AND METHODS 

3.4.1 Mutation signatures for cell lines and patient tumor samples.  

The mutation data was extracted from two major repositories: the Cancer Cell Line 

Encyclopedia (CCLE)192, 193 and The Cancer Genome Atlas (TCGA)194-197. Both sources 

offer a comprehensive view of mutational landscapes. The mutation data for patient 

samples and cell lines are separately downloaded from UCSC198. The specific dataset used 

for our analysis was identified as CCLE_DepMap_18Q2_maf_20180502. Mutational calls 

have been merged, focusing on the coding region and filtering out germline mutations. For 

patient mutation data, the somatic mutation dataset from TCGA is labeled as 

“mc3.v0.2.8.PUBLIC.maf.gz”199. The genome assembly for both dataset is hg19 build. 

 

3.4.2 Non-B forming motifs data preparation.  

The non-B motif data is downloaded from Non-B DB 2.0111. The non-B DNA 

forming motif data was obtained from Non-B DB 2.0 database with the hg19 build. An 

update to correct the A-Phased repeat motifs data was received from Frederick National 

Laboratory for Cancer Research (personal communication). There are motifs of 7 non-B 

structures including: A-phased repeats (APR, n = 2386 motifs), G-quadruplex motifs (G4, 

n = 361 232 motifs), Z-DNA motifs (n = 404 192 motifs), inverted repeats (IR, n = 5 771 
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570 motifs), mirror repeats (MR, n = 1 378 864 motifs), direct repeats (DR, n = 1 113 354 

motifs), and short tandem repeats (STR, n = 2 826 360 motifs). 

 

3.4.3 Genomic and survival data for immunotherapy patients. 

For a comprehensive analysis of patient responses to immunotherapy, we sourced 

processed mutation and clinical data from cBioPortal19. The project is referred as “TMB 

and Immunotherapy (MSK, Nat Genet 2019)”173. This dataset includes genomic and 

survival information from 1,661 tumor-normal pairs, covering a diverse range of cancer 

types. All samples within this collection were sequenced using the MSK-IMPACT 

assay200. 

 

3.4.4 Drug sensitivity and survival comparison  

The drug sensitivity data is downloaded from the CREAMMIST database201. Both 

IC50 data and AUC data for each compound were included. IC50 indicates the drug 

concentration needed to inhibit the cells by 50%. The unit of IC50 is log2 Concentration 

(uM). A lower IC50 indicates higher drug sensitivities. AUC, standing for Area Under the 

Curve, denotes the area beneath a dose-response curve, with 0% signifying no activity, and 

100% indicating complete inhibition of the cells across the tested dosages by a drug201. A 

high AUC indicates higher drug sensitivities. The range of AUC is between 0 ~ 100%. The 

survival data for TCGA (OS and DFS) is downloaded from cBioportal under “TGCA 

PanCan Altlas Studies”202, 203. The boxplot visualizations are generated with ggplots204 and 

ggpubr205 package. The survival analysis is conducted by survival and ggsurvfit R 

packages206, 207.  
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3.5 FIGURES 

 

 

 

Figure 3.1: Schematic representation of two distinct non-B-mutation biomarkers used for 

quantifying mutations and non-B DNA motifs in cancer contexts.  

(A) Visualization of the quantification process for mutations characterized by non-

B DNA motifs through co-localization. 

(B) Differentiation of the total mutation burden (TMB) into basic TMB (bTMB) 

and non-B specific TMB (nbTMB). 

(C) Representation of the non-B DNA motifs that contain mutations localized in it.  

(D) Distinction between the total non-B burden (TNB) and mutation-localized 

Total Non-B Burden (mlTNB). 
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Figure 3.2:  Role of nbTMBp in predicting the prognosis of cancer patients receiving 

immunotherapy. 

(A) Illustration highlighting the quantification of non-B informed mutations with 

the percentage of nbTMB used as a determinant for TMB composition.  

(B) Kaplan-Meier survival curve demonstrates that patients with elevated TMB 

have significantly improved overall survival compared to those with lower TMB 

when subjected to immunotherapy. 



 72 

(C) Among pan-can patients categorized by TMB levels (high or low), a further 

distinction into “alive” and “deceased” based on overall survival (OS) reveals that 

the deceased cohort consistently exhibits a higher nbTMBp percentage across both 

TMB categories. 
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Figure 3.3:  Delineating the Impact of nbTMBp on Patient Outcomes within TMB-High 

Cohorts. 
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(A) In the TMB-high patient cohort, individuals with elevated nbTMBp exhibit 

reduced survival rates relative to those with lower nbTMBp. 

(B) Further categorization of the TMB-high patient group by their TMB levels 

(high or low) reveals no significant difference in survival outcomes. 

(C) The Venn diagram illustrates the overlapping genes between the MSKCC-

Panel-468, those with non-B localized mutations, and the genes associated with the 

ICI-outcome signature178.  
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Figure 3.4 Influence of nbTMBp on Drug Sensitivity in Ovarian Cancer Cell Lines. 

(A) Proposed interaction between non-B and ROS, which modulates the activity of 

PIK3CA, thereby enhancing the sensitivity of Cisplatin compound in ovarian 

cancer.  

(B) Cell line clustering based on nbTMBp shows three distinct clusters, each 

characterized by varying levels of nbTMBp.  
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(C) nbTMBp shows a linear trend of increasing drug resistance of Cisplatin. This 

is evident in both IC50 metrics (where a lower value indicates increased sensitivity) 

and dose-response AUC (where a higher value indicates increased sensitivity). 

Such a correlation is absent in the case of another platinum-based compound 

Carboplatin. 
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Figure 3.5 TMB alone does not show correlation with drug sensitivities of Cisplatin and 

Carboplatin in ovarian cancer cell lines. 

(A) Cell lines are clustered into five groups based on TMB values, depicted through 

a heatmap showing the distribution of TMB across these clusters (left). The 

gradation of colors from blue to red indicates increasing TMB values. The ridge 

plot shows the distribution of cell lines across the five clusters, with the grade levels 

denoted by colors (right). 

(B) Drug sensitivity in relation to TMB clusters. Analysis of drug sensitivity across 

the TMB-driven clusters is presented for both Cisplatin (left two box plots) and 

Carboplatin (right two box plots) using AUC and IC50 metrics. Notably, there's an 

absence of a consistent linear correlation between TMB levels and the drug 

sensitivity metrics.  



 78 

 

Figure 3.6: Prognostic Significance of mlTNB in Pancreatic Cancer. 

(A) Schematic representation of mutation-localized total non-B burden 

categorization: TNB, mlTNB (mutation-localized), and mfTNB (mutation-free).  

(B) Clustering analysis of early-stage pancreatic cancer patients with progression, 

resulting in seven distinct clusters characterized by varying mlTNB burdens from 

different non-B types.  

(C) Kaplan-Meier progression-free survival (PFS) analysis for the identified seven 

patient clusters. 

(D) Comparative PFS survival curves for the cluster with the longest median PFS 

(mlTNB-DR, cluster 3) and the one with the shortest median PFS (mlTNB-ZDNA, 

cluster 5). 
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(E) Pathway enrichment analysis highlighting key gene mutation signatures across 

the clusters. 

(F) Chromosomal distribution of non-B mutation co-localizations that contribute to 

mlTNB burden.  
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Chapter 4: Broaden the Burden: A Statistical Framework For Testing 
Multi-Modal DNA Motif Co-Localization. 

(Aim 3: Construct a Statistical Testing Framework for Multi-modal DNA Motif-containing 

Interactions) 

 

PREFACE 

This work has been submitted and is currently under review1. 

 

Transitioning into Chapter 4, we extend the analysis from the exploration in the co-

localization of genomic feature to a more formalized statistical framework for motif co-

localization testing through DNA data integration. The previous chapter underscored the 

significance of co-localized relationships between genomic motifs to derive DNA motif 

markers, hinting at the complex interplay between these genomic features in cancer. It sets 

the basis for a deeper investigation into the integration of these genomic features, which is 

the focal point of this chapter, providing a statistical framework for genomic feature 

integration of multi-modality of DNA motif data.  

We extended the descriptive analysis of co-localization through a hypothesis testing 

framework. This shift represents a natural progression towards a more rigorous analytical 

approach, MoCoLo (Motif Co-Localization), for direct testing of sequence-level motif co-

localization. By providing a robust statistical methodology to test the co-localization of 

genomic features, it signifies a step towards a more sophisticated understanding of genomic 

 

1Qi Xu, Imee M.A. del Mundo, Maha Zewail-Foote, Brian T. Luke, Karen M. Vasquez*, Jeanne Kowalski*. 
MoCoLo: a testing framework for motif co-localization. Conceptualization JK, QX, KMV, MZF, IDM; Methodology 
and Formal Analysis, JK, QX, BTL; Writing – Original Draft Preparation, JK, QX; Editing of Original Draft, KMV, 
MZF, IDM.  
*Corresponding author. 
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interactions, enabling more nuanced insights into the mechanisms underlying genomic 

instability in cancer. Through corresponding case studies, we address the challenges 

associated with testing the co-localization of non-B DNA, and oxidative stress, as well as 

epigenetic markers, thereby showing our method for co-localization testing through multi-

modality of DNA motif data integration. 

 

4.1 INTRODUCTION 

The increasing number of genomic datasets produced by high-throughput 

sequencing and prediction algorithms have revealed interactions between genomic features 

and biological processes208-210. Although these interactions take many forms, their concept, 

derivation and evaluation remain embedded in the frequency of “co-occurrence”. Co-

occurrence describes an event in which two or more features are present, which can be 

tested for their appearance together more often than would be expected by chance132. 

Conversely, “co-localization” refers to an event in which two or more features are both 

present in the same spatial region/proximity. While co-localization requires co-occurrence, 

the latter does not imply the former. Herein, we focus upon sequence motif interaction by 

introducing a criterion that requires the occurrence of a genomic feature within another 

feature and vice-versa. We refer to this criterion as reciprocal sequence co-occurrence and 

define metrics that enable characterization of co-localization using it.    

Historically, for testing the co-occurrence of events, two general approaches are 

used, one based on a Fisher’s exact test211 and another based on Monte-Carlo simulation132, 

212. Statistical models rely on strict assumptions that may not always be suitable for 

genomic analyses. For example, parametric tests assume an a priori distribution that is 

oftentimes based upon independent events. These testing assumptions would be difficult 
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to address since they involve finding the optimal model and parameters to characterize 

varying lengths of genomic regions that are often correlated between molecular features. 

While empirical methods may overcome strict modeling assumptions, they require 

simulations that take into account sequence properties (e.g., length, nucleotide content) to 

generate meaningful results. This type of sequence property-informed simulation often 

comes with the price of high computational costs and thus, may be difficult to achieve in 

the absence of an efficient algorithm.  

Expanding the notion of the co-occurrence of events within a sequence motif 

context is challenging and is not a straightforward application of historical testing methods. 

In this context, approaches have been developed to describe (not test) for one-sided 

occurrence, i.e., the occurrence of one feature in another. The two most popular methods 

for this purpose are ChromHMM37, 116 and Segway213. ChromHMM uses a multivariate 

hidden Markov model to learn chromatin-state based on combinatorial presence of marks. 

Segway, on the other hand, employs a dynamic Bayesian network and operates at a 1bp 

resolution118, 213. Both methods were derived specifically for chromatin data and thus offer 

limited flexibility to handle various data types with varying motif lengths. Importantly, 

both methods describe one-sided co-occurrence and not co-localization.   

Herein, we introduce MoCoLo (Motif Co-Localization) as a framework for direct 

testing of sequence-level co-localization using empirical methods coupled with a high-

performance, low computational cost simulation algorithm. A class of hypotheses are 

constructed for testing the random occurrence of one feature in another feature and vice-

versa (i.e., reciprocal occurrence). For hypothesis testing, a simulation method is 

introduced that incorporates sequence properties to ensure that the simulated data is 

representative of the properties embedded in the observed data such that differences in 

occurrence due to confounding factors are minimized. We demonstrate the method with 
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two case applications for testing genome-wide co-localization between sequence-level 

molecular features of the same data type using histone modifications, and between different 

data types addressing if there are the genome-wide co-localizations of 8-oxo-dG oxidative 

regions and non-B DNA-forming sequences.  

 

4.2 RESULTS 

4.2.1 Overview of MoCoLo framework 

MoCoLo is an approach to test for global, genome-wide reciprocal co-occurrence, 

i.e., co-localization. We describe our method within the context of two genomic features, 

feature 1 and feature 2 (F1, F2) (Figure 4.1A). Each feature is defined by varying lengths 

and numbers of motifs (M1, M2). Interest is in addressing the question of whether these 

two feature motif libraries are co-localized and if so, to describe their co-localization by 

genomic region. This study provides a simulation-based approach to test co-localization of 

two genomic features, integrating the processes of hypothesis testing metric selection, 

property-informed simulation, and statistical evaluation.  

Reciprocal Co-localization Assessment. Our approach is designed for genome-

wide reciprocal co-localization assessments (Figure 4.1A). Existing methods mostly test 

co-localization within the same genomic data type. While examining the notion of co-

localization between motifs derived from different molecular data types, attention must be 

paid to the differences in sequence composition that define each data type (Figure 4.1E).  

It is essential to consider the impact of difference in motif types on co-localization 

evaluation. In Case 1, similar motif length distributions, typically stemming from the same 

data type, might result in comparable counts of co-occurrence between two features 

(Figure 4.1E, top). Conversely, Case 2 depicts a situation where the motif lengths of the 
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two features differ distinctly, potentially leading to one motif overlapping with multiple 

motifs from its counterpart (Figure 4.1E, bottom). Depending on the hypothesis and 

metric selected, these scenarios might produce varied results. 

Duo hypotheses and testing metric. Therefore, we introduce two hypotheses that 

are both necessary to infer co-localization between F1 and F2 motif libraries (Figure 4.1B, 

“4.4 Methods”). The first hypothesis, H01, tests genome-wide, whether the number of F1 

motifs in F2 motifs is greater than expected by random chance. Likewise, H02, tests 

genome-wide, whether the number of F2 motifs in F1 motifs is greater than chance. The 

two statistics for testing each hypothesis are based on estimates of conditional probabilities. 

A “pivot” feature needs to be designated for hypothesis testing, recognizing that differences 

between the two motif data types. The co-localization assessment uses the number of the 

overlapping pivot features in the other as metrics. 

Sequence Property-Informed Simulation. As an empirical method, MoCoLo 

simulates expected data under a specified null hypothesis and compare it to the actual 

observed data (Figure 4.1C). It offers a simulation method informed by sequence 

properties to closely retain the characteristics of each motif groups. Unlike typical methods 

that utilize random re-positioning of regions, our method includes information on motif 

properties such as nucleotide composition in addition to motif length. The simulation 

method is developed by introducing new concepts such as simulation pool construction, 

motif sets assembling and dynamic tolerance, together to ensure a more nuanced simulation 

while maintaining the computational efficiency (Figure 4.1F, “4.4 Methods”). 

We applied MoCoLo to two case studies that focused on defining co-localization 

of different genomic and epigenomic features using same and different data type. In our 

first case study (same data type), we investigated the co-localization of two histone 

markers, H4K20me3 and H3K9me3, in the human MCF-7 breast cancer cell line. Case 1 
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provides a straightforward example of testing co-localization with direct length-only 

simulation and underscores the importance of two hypothesis tests, as a proof-of-concept.  

Our second case study probed into the co-localization of non-B DNA motifs with 

8-oxo-dG lesion sites (different data type). We hypothesized that the distribution of 8-oxo-

dG and non-B DNA regions within the genome differs between motif features. Case 2 

highlights the need for feature-informed simulation in the testing framework. Here, both 

length and percentage of guanine (%G) were maintained to be similar and thus, minimize 

their differential effect in testing.  

 

4.2.2 Case 1: The same-data-type co-localization testing of histone markers in breast 
cancer 

Background. Histone modifications play a significant role in regulating gene 

expression and maintaining genome stability. Among these modifications, H4K20me3 and 

H3K9me3 are well known for their roles in the formation of heterochromatin, a condensed 

form of chromosomal DNA associated with repression of gene expression214-217. Our 

primary objective was to ascertain the extent of co-localization between H4K20me3 and 

H3K9me3 in the MCF-7 human breast cancer cell line utilizing the MoCoLo method as a 

proof-of-concept (Figure 4.2A). 

Co-localization testing. H4K20me3 and H3K9me3 are both histone modification 

data generated from CHIP-seq experiments, thus sharing a data type and displaying 

comparable peak length distributions (Figure 4.2B). For our co-localization analysis, we 

conducted tests bi-directionally: one approach simulated H4K20me3 regions (n=31,646 

regions) to establish the statistical distribution, and the alternate approach employed 

H3K9me3 regions (n=34,095 regions). Same lengths were retained while simulating 
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histone peak regions (n=100). We then evaluated the test by using two metrics in term of 

the overlapped H4K20me3 and the overlapped H3K9me3. Both metrics showed significant 

differences in the observed group compared to the expected group, suggesting co-

localization between these two histone markers. The count of overlapping regions is also 

assessed based on varying overlapping coverages (Figure 4.2C-D). In addition, we 

evaluated the co-localization at different genomic locations using the overlapped 

H4K20me3 as the evaluation metric. The results showed a higher number of overlapped 

regions in the observed group at exon, intergenic, intron, promoter-TSS (transcription start 

sites) and TTS (transcription termination sites) regions (Figure 4.2E).  

The initial dataset for this case study underwent analysis via the segment annotation 

tool, ChromHMM. This tool delineates genomic regions by highlighting co-occurrence 

states between H4K20me3 and H3K9me3218. With MoCoLo, we were able to formally test 

for co-localization between histone sites. Both approaches affirm the interaction between 

H4K20me3 and H3K9me3 sites, either in terms of co-occurrence using ChromHMM or 

co-localization using MoCoLo.     

 

4.2.3 Case2: The across-data-type co-localization testing of endogenous and 
exogeneous genomic features. 

Background. Genomic instability is a hallmark of cancer and other genetic 

diseases and can result from DNA damage from both exogenous and endogenous sources. 

Among the four DNA nucleotides (A, T, C, G), guanine (G) has the lowest redox potential 

and thus has the highest propensity for oxidative damage219-221. The oxidative lesion, 8-

oxo-dG, therefore serves as a ubiquitous marker of oxidative stress222, 223 and is a pre-

mutagenic lesion contributing to genome instability219, 224-226. Sequences that can adopt 
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alternative DNA structures are commonly enriched in guanines24, 219, 227, 228. Non-B DNA 

structures have also been shown to be co-localized with mutation hotspots in human cancer 

genomes170, 229 and can stimulate the formation of DNA double-strand breaks also 

jeopardizing genome stability230-232. Further, 8-oxo-dG lesions have been shown to be 

enriched and/or refractory to repair in some types of non-B DNA233-238, suggesting that 

these lesions may accumulate within such structure-forming sequences. The separate 

occurrence of 8-oxo-dG and non-B DNA-forming sequences are not uniformly distributed 

across the genome. The non-random distribution of 8-oxo-dG233 may be due to increased 

oxidative damage potential and/or varied repair efficiencies within the local environment. 

We examined if the genome-wide co-localization of 8-oxo-dG and non-B DNA-forming 

regions and whether it differs between non-B types (Figure 4.3A), which include A-phased 

repeats (APR), G-quadruplex DNA (G4 DNA), Z-DNA (ZDNA), direct repeats (DR), 

inverted repeats (IR), mirror repeats (MR, also H-DNA), and short tandem repeats (STR). 

The necessity of maintaining G-content in 8-oxo-dG region simulation. The 

accurate simulation of 8-oxo-G regions is intrinsically tied to preserving the G-content. 

When randomizing positions of 8-oxoG regions, it is imperative to retain the inherent G-

content. This stems from the fundamental nature of the 8-oxoG motifs; by their very 

definition, they are expected to encompass a specific G-content. Omitting this essential 

characteristic would lead to a misrepresentation in the simulation. From this standpoint, it 

becomes evident that the preservation of G-content is  important for the simulation step 

in this case.  

Testing results. The length of 8-oxo-dG regions from DIP-seq (Figure 4.3B) and 

the length of non-B motif (Figure 4.3C) show distinct difference. Notably, 8-oxo-dG peaks 

detected from DIP-seq experiments were overall large in length (median: ~500 bases) as 

compared to non-B DNA motifs (median: ~25 bases). This observation underscores the 
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needs of reciprocal hypothesis testing (Figure 4.1E). Further, the sequence property-

informed simulation method from MoCoLo was applied to 8-oxo-dG peaks (n= 50,027) 

for genomic region simulation (n=100) that retains guanine contents in addition to motif 

lengths. 

We observed a significantly higher number of 8-oxo-dG regions co-localizing with 

five non-B DNA structures (MR, DR, STR, G4, and APR) in the observed group. 

Conversely, for IR and Z-DNA, the 8-oxo-dG regions did not exhibit significant co-

localization when compared to other random genomic regions (Figure 4.3D and Figure 

4.5A). Furthermore, when evaluating using the non-B DNA motif count as the metric, we 

identified a significantly higher number of six types of non-B DNA-forming motifs that 

co-localized in 8-oxo-dG regions compared to the simulated group. These motifs include 

MR, DR, STR, G4, Z-DNA, and APR (Figure 4.3E and Figure 4.5B). 

The co-localization of APR-forming regions and 8-oxo-dG peak regions only 

indicate that APRs are located in proximity to the 8-oxo-dG region since A-tracts 

themselves do not contain guanines137. This is because the 8-oxo-dG peaks from DIP-seq 

experiments are ~500 bp while the A-phased repeats are ~25 bp. Therefore, a 25-bp APR 

motif may co-localize within a 500-bp 8-oxo-dG region from DIP-seq peaks but does not 

mean that the one-base-specific oxidative guanine is located within the A-phased repeats 

themselves. The difference in peak sizes between the two data sets reflects a limitation of 

the current experimental technology to detect 8-oxo-dG within relatively smaller peak 

regions. It would be more fitting if the 8-oxodG sites can be detected in a narrower region 

or at single-base resolution. 
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4.2.4 The dual hypothesis testing identified Z-DNA hotspots with 8-oxoG regions.  

Utilizing both “total overlapped 8-oxo-dG motifs” and “total overlapped non-B 

motifs” as evaluative metrics brings clarity to the intricacies of feature co-localization, as 

exemplified by the Z-DNA case. “Total overlapped 8-oxo-dG motifs” measures the total 

count of 8-oxo-dG regions that overlapped with non-B DNA, providing insights into the 

oxidative damage sustained by these motifs. In contrast, the “total overlapped non-B motif” 

captures the number of non-B DNA motifs present within 8-oxo-dG regions, signifying 

their placement within oxidatively damaged DNA regions. 

For 8-oxo-dG regions that are overlapped with Z-DNA, the total number of 8-oxo-

dG is not significantly higher in the observed group than random (Figure 4.3D). However, 

when we determined the total overlapped Z-DNA motifs within the 8-oxo-dG peak regions, 

the number is significantly higher in the observed group (p<0.001) than by random chance 

(Figure 4.3E). While these results may appear conflicting, it indicates a high number of 

overlapped Z-DNA-forming regions within each oxidative region and suggests that Z-

DNA may be more frequently affected by oxidative pressures marked by 8-oxo-dG (Figure 

4.3F). 

 

4.2.5 The post-testing comparison after co-localization testing. 

Analysis of comparing the co-localizations with 8-oxo-dG between various 

non-B types. MoCoLo provides further statistically testing functions to compare the co-

localization of different non-B structure and 8-oxo-dG regions. The goal is to test the co-

localization across genomic features. In this case, the example is the non-B DNA motif, 

which is stratified into 7 distinct types. This method is used to investigate whether a specific 
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type of non-B motif demonstrates a more pronounced co-localization with the 8-oxo-dG 

feature than its counterparts. 

To evaluate the co-localization between each pair of non-B types, we employ a 

permutation analysis (n=100). This involves reshuffling the non-B motif regions across the 

paired non-B types and conducting a subsequent co-localization analysis for each iteration 

to establish the null model. The count of overlapping 8-oxoG regions is utilized as the 

metric to compare co-localizations with oxidative regions across the seven non-B 

categories. These counts of overlapped regions are then normalized (by dividing by the 

total count of 8-oxo-dG regions or the respective non-B motif library sizes) to ensure 

comparability. 

In terms of the overlapped 8-oxoG regions (Figure 4.3G), we observed 

significantly higher proportion of 8-oxo-dG regions were found to co-localize with MR 

(60.0%) than with DR (52.6%) and Z-DNA (8.8%). The co-localization of 8-oxo-dG and 

with STR (61.6%) and G4 (25.3%) are significantly higher than with the Z-DNA 

conformations. It also shows significantly higher frequency in DR than in G4 and Z-DNA.  

The testing extension provides an alternative perspective to subgroups of genomic 

regions inherent to a singular genomic feature. Additionally, this approach melds both 

permutation (resampling within paired non-B types) and bootstrap (simulation of the 8-

oxo-dG region) methodologies. This provide more insights in the co-localization and helps 

us understand how endogenous damage in the DNA and its structures are linked. 
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4.2.6 Property-informed simulation ensures g-content retention in 8-oxo-dG 
simulations. 

Simulation design. A straightforward way to simulate genomic regions is to 

randomly place all regions independently While this satisfies length considerations, 

ensuring compositional accuracy, like matching nucleotide compositions, becomes 

challenging. The simulation here is not simply simulating the sequence. It is a searching 

strategy in which we use motif coordinates to find genomic regions whose sequences have 

a similar property to the actual motif at genome-wide (Figure 4.4A). Currently there is not 

a computation-effective workflow existing to simulate genomic regions with both length 

and g-content. To counter these inefficiencies, we introduced a new search strategy for 

simulation in MoCoLo (Figure 4.1F, see also “Appendix B”). Instead of a collective 

simulation of all motifs, motifs are simulated individually, populating a “simulation pool” 

tagged by motif traits such as length and composition. From this pool, we then select a 

motif set that mirrors our actual dataset. A built-in “dynamic tolerance” mechanism ensures 

efficient matching, preventing infinite loops by automatically adjusting the simulation 

tolerance, especially when an exact genome match is elusive.  

G-content variability. For 8-oxo-G regions, the G-content distribution presents 

two distinct peaks, approximately at 12.5% and 30.0%. A comparative analysis between 

simulations—with and without G-content restrictions—demonstrates the necessity to 

retain G% while simulating 8-oxo-dG regions. The property-informed simulation method 

in MoCoLo successfully preserves the dual-peak distribution, along with maintaining an 

identical length distribution (Figure 4.4B, left). In contrast, neglecting G-content in 

simulation retains only length distribution (Figure 4.4B, right).  

Simulation parameters. The selection of parameters plays a pivotal role in 

simulation. We can observe a minor shift in the g-content distribution, which reflects the 
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simulation tolerance (Figure 4.4B, left-top). Property-informed simulation in MoCoLo 

features “dynamic tolerance”. It is mainly regulated by two parameters: “starting tolerance 

(start)” and “incremental step (step)”. Using the G% simulation as an example, the starting 

tolerance can vary from zero (0), indicating that the simulated motif should precisely reflect 

the G% of the actual motif, to one (1), which suggests no G% restrictions. In scenarios in 

which the starting tolerance is excessively restrictive, the algorithm autonomously 

increases the tolerance in pre-defined increments determined by the “incremental step”. 

The specific values assigned to “starting tolerance” and “incremental step” dictate the 

characteristics of the simulated groups, subsequently affecting their resemblance to the 

actual data (Figure 4.4C). While using restrictive parameters ideally improves similarity, 

it might inversely affect computational efficiency, resulting in extended running time. 

Thus, users need to balance between efficiency and precision. 

 

4.3 DISCUSSION 

We introduce MoCoLo, a testing framework for genomic co-localization, which 

offers  several key innovations and advantages. First, MoCoLo employs a unique 

approach to co-localization testing that directly probes for genomic co-localization with 

duo-hypotheses testing. This means that MoCoLo can deliver more detailed and nuanced 

insights into the interplay between different genomic features. Second, MoCoLo features 

a novel method for informed genomic simulation, taking into account intrinsic sequence 

properties such as length and guanine-content. This simulation method enables us to 

identify genome-wide co-localization of 8-oxo-dG sites and non-B DNA forming region, 

providing a deeper understanding of the interactions between these genomic elements.  
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When applied to real-world data, MoCoLo revealed the significant co-localization 

of H4K20me3 and H3K9me3, vital for heterochromatin formation, in the MCF-7 breast 

cancer cell line. In addition, we were able to perform a genomic mapping between non-B 

DNA-forming regions and oxidatively damaged (8-oxo-dG) regions. Our results show 

significant co-localization of 5 types of non-B DNA-forming sequences within regions of 

8-oxo-dG lesions. Our findings regarding G4 is also consistent with a previous report 

showing significant enrichment of potential G4 structures within 8-oxodG peaks compared 

to randomly distributed regions in the human genome, as predicted by sequence-based G4 

models 239. In addition to the number of non-B DNA regions co-localized with 8-oxo-dG, 

we also calculated the total number of 8-oxo-dG regions co-localized with non-B. This 

additional metric revealed the high density of Z-DNA in 8-oxo-dG-containing regions. 

MoCoLo also provides capabilities to perform comparisons of co-localization status. As 

an example, we compared the co-localization status of the 7 non-B types with 8-oxo-dG 

and identify difference between these non-B types of their co-localization with oxidative 

regions. The 8-oxo-dG DIP-seq data was obtained from the MCF-10 breast cell line. Thus, 

it will also be informative to explore the same test in other cancer cell lines when the 8-

oxo-dG data is available to perform comparisons. 

Several strategies exist to indicate associations and co-occurrences in genomic 

studies (Table.1).  

Monte-Carlo Based Approaches. The design of MoCoLo relies on the principles 

of Monte-Carlo tests, which are non-parametric models that offer wide test statistics and 

randomization strategies. These tests, while affording flexibility, come with the inherent 

challenge of being computationally intensive, demanding precise customization. The 

degree to which data characteristics are retained in a null model can significantly influence 

the conclusions drawn from Monte-Carlo simulations. In an endeavor to perfect these 
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simulations, MoCoLo employs a property-informed simulation technique to uphold 

sequence properties. An innovative feature introduced is the “dynamic tolerance” in 

simulations, which modulates the tolerance level of sequence property differences between 

the observed and the simulated groups. The art of formulating a research question in Monte 

Carlo testing methods plays a pivotal role, as it directly corresponds to the chosen test 

statistic. A case in point would be the analysis of co-localization of two genomic features, 

F1 and F2. The query might revolve around whether F1 appears within F2 more than what 

random chance would suggest. Interestingly, such a proposition can also be viewed from 

an asymmetric perspective, mandating a diverse test statistic. In order to address both 

perspectives in a unified framework, MoCoLo introduces dual hypotheses to infer co-

localization between F1 and F2 motifs and offers two distinct metrics to test each 

hypothesis. 

Approaches based on fixed-window segmentation. A prevalent approach in 

analyzing the co-occurrence of genomic elements involves segmenting them into multiple 

predefined window sizes, allowing for the calculation of statistics at the window level. 

Chromatin annotation tools such as ChromHMM, can be used to indicate the co-occurrence 

of two genomic features (the emission probability of a chromatin state). However, using a 

single fixed resolution during analysis may not be intuitive to decide resolutions, especially 

when the two features in the testing have distinct length distribution. Therefore, despite the 

output (in terms of chromatin state annotations) of these tools can certainly be used as a 

foundation to study the co-localization of two genomic features, there are challenges 

existing such as: 1) setting up bin-sizes, 2) being restricted by statistical models, 3) no 

direct testing of significant p-value provided in the output, as the primary objective of 

segmentation tools isn’t to test co-localization but to infer the co-occurrence in chromatin 

states. 
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Analytical tests based on approaches. Basic analytical tests often rely on a 

straightforward null model, like that of Fisher’s exact test. When utilizing these tests, it’s 

crucial to assess if the data aligns with the null model and to understand the test’s resilience 

against any misalignments. Adopting an overly simplistic null model can lead to decreased 

P-values, heightening the chances of false positives. One implementation, Bedtools (35) 

provides implementation that can calculate the number of intervals that are overlapping 

and unique to each feature. But it requires that the number that are not present in each 

feature as the universal background be inferred. Constructing the control set demands 

meticulous attention when using analytical tests rooted in a universe of regions. Any 

disparities between the case and control data sets in attributes such as genomic variability 

and aggregation could compromise the test’s assumptions, potentially resulting in false 

positives. 

In summary, the main advantages of MoCoLo lie in its ability to handle dynamic 

and sequence-property-informed inputs, its reciprocal hypotheses testing, flexible 

simulation and its comprehensive output that allows for a more precise understanding of 

genomic feature co-localization. 

 

 

4.4 MATERIALS AND METHODS  

4.4.1 Testing hypotheses. 

We introduce two hypotheses that are both necessary to infer co-localization 

between F1 and F2 motif libraries. The first hypothesis, H01, tests genome-wide, whether 

the number of F1 motifs in F2 motifs is greater than zero. The second hypothesis, H02, 
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tests genome-wide, whether the number of F2 motifs in F1 motifs is greater than zero. 

Formally, we introduce the following two hypotheses:  

 

𝐻01:	𝑝#$ = 0	𝑣𝑠. 𝐻01𝑎:	𝑝#$ > 0; 	𝐻02:	𝑝$# = 0	𝑣𝑠. 𝐻02𝑎:	𝑝$# > 0 

where: 

𝑝#$ = 𝑃𝑟[𝐹1|𝐹2];		𝑝$# = 𝑃𝑟[𝐹2|𝐹1] 

 

Below, we introduce two metrics for testing each hypothesis: 

 

�̂�#$ = ∑%&#'($∑)&#'(#∑*&#
+,(!"-𝐼R𝐹#%)* ⊆ 𝐹$%T; 				 �̂�$# = ∑)&#'(#∑%&#'($∑*&#

+((#$)𝐼R𝐹$)%* ⊆ 𝐹#)T	 

 

where I{∙} is an indicator function, NF1 and NF2 are the number of motif libraries 

within features F1 and F2, respectively, and l(F1j) indicates the length of the jth motif from 

F1 feature with l(F2i) the length of the ith motif from F2 feature.  

 

4.4.2 Testing statistics. 

For gene-level overlap testing between two gene sets, denoted by G1 and G2, there 

exists options that are largely based on a Fisher exact test, with some popular choices being 

a Jaccard similarity coefficient and a hypergeometric distribution. If testing is two-sided, 

then we have no prior belief about direction and are simply testing whether the odds of 

success (‘overlap’) differs from 1 or not. On the other hand, one may be interested in a one-

sided test of whether the odds of success (‘overlap of G1’) is greater (or less) in G2. In this 

context of a one-sided scenario, though not explicitly stated as such, one gene set is defined 

as fixed (i.e., ‘pivot’) that is compared against the other. We propose an analogous 
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approach within a sequence context by introducing a feature variable pivot in which to 

conduct a (‘two-sided’) test of association, the collection of which, H01: F1 in F2 and H02: 

F2 in F1 tests for co-localization association between features and the separation of which 

enables a ‘one-sided’ alternative. For pivot selection: we define “pivot selection” as the 

choice of reference feature to derive evaluation metrics. For testing H01, we quantify the 

total number of F1 motifs in F2, and thus, F2 is the pivot feature. Likewise, for testing H02, 

we quantify the total number of F2 motifs in F1, and thus, F1 is the pivot feature. Hence, 

we can evaluate co-localization by the reciprocal sequence co-occurrence by exchanging 

reference and query feature motifs. 

 

4.4.3 Property-informed simulation  

Traditional brute force approaches simulate same-length genomic regions at 

random genome locations240. This step fulfills the length requirement in simulation. 

However, the composition of the motif sequences in these simulated regions needed to be 

further checked and only those with similar nucleotide compositions (e.g., similar %G) are 

retained to fulfill the composition requirement. This can be computationally intensive and 

inefficient due to the potential non-existence of same-length regions with matching 

composition, which may lead to infinite loop situations.  

To overcome these issues, we devised a novel optimal search strategy. As opposed 

to simultaneously simulating all motifs at once, instead, we simulated motifs individually 

and constructed a “simulation pool” that tags traits of interest for matching by motif length 

and composition. We then randomly sample a motif set (as set of simulated motifs with 

defined traits) from this pool that can be readily matched as the “random” counterpart of 

the actual data motif set. Considering that another region with the exact same traits as the 
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test region may not exist in the genome, with this approach, we were able to avoid the 

infinite loop created by enabling a “dynamic tolerance” that performs an automatic 

adjustment on the simulation tolerance.  

 

4.4.4 Data sources and processes 

Histone Data. The ChIP-seq data of H4K20me3 and H3K9me3 in the human 

MCF-7 breast cancer cell line was downloaded from the NCBI Gene Expression Omnibus 

(GEO) under accession no. GSE143653241. The processed ChIP-seq data was download 

from GEO under the H4K20me3_BR_MCF7 (GSM4271383) and 

H3K9me3_BR_MCF7_rep2 (GSM4703869).  

8-oxo-dG DIP-seq Data. The OxiDIP-Seq data was downloaded from the GEO 

database (GSE100234)239. It contained the genome-wide distribution of 8-oxo-dG 

accumulation the MFC10A breast cell line242. The processed peaks data were provided by 

the author in bed format.  

Non-B DNA motifs. Non-B DNA-forming motifs were extracted from the updated 

version Non-B DB v2.0 database (human hg19 reference genome)137. An update to correct 

the A-Phased repeat motifs data was received from Frederick National Laboratory for 

Cancer Research. It includes 13,966,212 motifs covering seven types of non-B structures: 

A-phased repeats, G-quadruplex DNA, Z-DNA, direct repeats, inverted repeats, mirror 

repeats, and short tandem repeats. 

 



 99 

4.4.5 Function implementation 

The functions bedtools_shuffle() and bedtools_random() from the ‘valr’ package 

are utilized to sample genomic regions at genome-wide162. The “within” parameter is used 

to control whether to perform the with-in chromosome simulation or not. The 

bedtools_coverage() is utilized to  quantify the overlapped regions between motifs from 

two genomic regions. Only with the length of overlapped region greater than 0 are the two 

regions considered co-localized. The visualization functions are implemented with the 

“ggplot2” package204, 243 as well as the “ComplexHeatmap” package159. 

 

4.4.6 Statistical Significance 

For the evaluation of statistical significance in the co-localization testing, a Monte-

Carlo based p-value is computed. This is executed for each formulated hypothesis. The 

computation involves a systematic comparison between metrics derived from both 

simulated and observed datasets. Specifically, the assessment quantifies the proportion 

wherein the metrics extracted from the simulated datasets surpass the corresponding 

metrics derived from the actual observed datasets. 
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4.5 FIGURES 

 

Figure 4.1: Overview of the MoCoLo framework for testing motif co-localizations.  

MoCoLo provides a simulation-based approach to test co-localization of two 

genomic features, integrating the processes of testing feature selection, property-

informed simulation, and statistical evaluation.  

(A) Input. For testing co-localization, the input encompasses the genomic motif 

regions associated with features F1 and F2.  

(B) Hypothesis testing. A “pivot” feature is designated for hypothesis testing, 

recognizing that differences between the two motif data types can affect testing 
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results (see also E). The co-localization assessment uses the number of the 

overlapping pivot feature in the other feature as metrics. 

(C) Simulation. The motif-property-informed simulations will be performed in the 

next step for each of the pivot motif groups selected (see also f). It takes motif 

sequence characteristics into consideration to maintain the resemblance between 

the actual and the simulation groups.  

(D) Significance evaluation. MoCoLo determines the significance of co-

localization by evaluating the two metrics reciprocally, incorporating Monte Carlo 

p-values in its results. If both hypothesis testing show significant p-value, the two 

features are evaluated with “co-localization via reciprocal occurrence”. If only one 

side of the tests shows significant p-value and not the other, the two features have 

“co-occurrence of one in the other” but not co-localization. 

(E) Motif type impact on co-localization testing. Case 1 showcases co-localization 

when the length distributions of motifs from two features are alike, often originating 

from the same data type. Case 2 illustrates a co-localization scenario where motifs 

from the two features have contrasting sequence lengths. Here, a motif from one 

feature might overlap with several motifs from the other feature. The chosen testing 

hypothesis and simulation method in such situations can yield different results. 

(F) Simulation design. The design of the simulation method in MoCoLo 

emphasizes a motif-property-informed approach. This includes simulating 

individual motifs, constructing simulation pools, and assembling the simulated 

motif sets. Additionally, a “dynamic tolerance” is utilized to enhance computation 

efficiency and ensure a close resemblance between the actual and simulated data. 
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Figure 4.2:  Analysis of Co-localization Between H4K20me3 and H3K9me3 Histone 

Markers with MoCoLo. 

(A) Schematic representation highlighting the goal to investigate the co-

localization significance between H4K20me3 and H3K9me3 histone 

modifications. 

(B) Quantification of peaks for both H4K20me3 and H3K9me3 markers in the 

MCF-7 breast cancer cell line, showcasing nearly comparable peak lengths: 31,646 

peaks for H4K20me3 and 34,095 peaks for H3K9me3.  

(C-D) Genome-wide mapping of overlaps between H4K20me3 and H3K9me3, 

where each marker serves alternately as a pivot. The overlap counts are presented 

based on diverse overlapping coverage percentages, which is determined by the 

minimum intersection dimension.  
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(E) Stratified analysis across different genomic regions like exons, intergenic 

spaces, introns, promoter-TSS, and TSS zones, detailing the co-localization of 

H4K20me3 in these domains (red dots represent actual observed overlaps, while 

blue dots indicate the expected overlaps under random distribution). 
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Figure 4.3: MoCoLo evaluate the co-localization between 8-oxo-dG and various non-B 

DNA structures. 

(A) Schematic representation showing the genome-wide mapping of 8-oxo-dG 

oxidative lesions and distinct non-B DNA motifs. 

(B-C) Illustrate the length distribution profiles of 8-oxo-dG lesions with a median 

around 500 bases and non-B DNA structures centered at approximately 25 bases. 
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(D) Quantification of observed 8-oxo-dG regions that align with specific non-B 

DNA structures. Of note, all but IR and Z-DNA non-B types exhibit pronounced 

co-localization with 8-oxo-dG. 

(E) Quantitative representation of non-B DNA motifs' co-localization frequency 

with 8-oxo-dG regions. Six non-B types show significant co-localization of their 

structure forming region and 8-oxo-dG region except IR. 

(F) While testing the co-localization between Z-DNA and 8-oxo-dG, there is a 

significantly higher frequency of overlapped Z-DNA in the observed group while 

there is no significant difference of overlapped 8-oxo-dG. The explanation is that 

there is a high enrichment of Z-DNA in the certain 8-oxo-dG regions. Therefore, 

while counting ZDNA, there are higher overlapped Z-DNA (bottom) while the 

overlapped 8-oxo-dG regions stay the same (top). The observation highlights the 

need and benefits of using two-metric evaluation of co-localization and the 

importance of pivot feature selection. 

(G) Comparative analysis of co-localization between different non-B types and 8-

oxoG. It investigates whether certain non-B types exhibit higher co-localization 

with 8-oxoG compared to others. The evaluation of co-localization by using the 

number of overlapped 8-oxoG regions as the metric and the testing result across 

non-B types. 
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Figure 4.4: Property-informed simulation with dynamic tolerance maintains G-content of 

motif sequence. 

(A) The examples of property-informed simulation that retain the properties of 

motif sequence in terms of lengths and g-contents. 

(B)  The distribution of G-Content of 8-oxo-dG region includes two G-content 

peaks for 8-oxo-G regions occur around 12.5% and 30.0%.  G-content focused 

simulations underline the significance of G% for 8-oxo-dG. Overlooking G-content 

captures only length variation, whereas MoCoLo maintains both dual-peak G-

content and length distribution, with a minor G-content shift hinting at the 

simulation's tolerance. In the figure legend, 0 represent the actual data and 1-5 

represent the simulation group. 

(C)  The flexibility of the simulation is primarily influenced by two hyper-

parameters: “starting tolerance (start)” and “incremental step (step)”. The range for 
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starting tolerance spans from zero — denoting an exact match to the G% of the 

original motif — to one, indicating no constraints on G%. If the starting tolerance 

is too stringent, the algorithm automatically adjusts the tolerance using defined 

increments set by the “incremental step”. The chosen values for “starting tolerance” 

and “incremental step” shape the attributes of the simulated groups, influencing 

their similarity to the real data. Top-left: An absence of G% constraint results in 

notable differences between simulated and actual groups; Bottom-right: Low 

start/step values result in heightened congruence between simulation and actual 

data, at the price of longer simulation time. 
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Figure 4.5: Comparative Distribution of Overlapped 8-oxo-dG and Non-B Motifs   

(A) The distribution of 8-oxo-dG motifs within non-B structures, categorized by 7 

distinct non-B types in the simulation group (depicted by grey vertical lines, 

n=100). The observed data are superimposed using colored lines: significant 

overlaps are highlighted in red, while non-significant overlaps are depicted in blue. 

(B) The distribution of non-B motifs within 8-oxo-dG structures in the simulation 

group (depicted by grey vertical lines, n=100). Similarly, overlaying colored lines 

represent equivalent data from the actual group, with red signifying statistical 

significance, and blue representing non-significance. 
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Figure 4.6: The distribution of feature lengths and their overlapped region lengths.  

(A) The lengths of H3K9me3 and H4K20me3 peak regions (blue). The lengths 

distribution of the intersected regions of two features.  

(B)  The lengths of 8-oxo-dG peak regions and all non-B forming motifs (blue). 

The length distribution of the intersected regions between 8-oxoG and non-B 

motifs. 
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4.6 TABLES 

Table 4.1: Overview of method comparison across different testing strategies. 

Strategy Bin-based Analytical Empirical 

Method ChromHMM Bedtools MoCoLo 

Testing Co-occurrence Association Co-localization 

Aspect of 
analysis Genomic annotation Genomic Association Genomic Co-localization 

Statistical 
method 

Hidden Markov model Fisher's Exact test 
Probability-based 

(Bernoulli distribution) (Binomial) 

Data 
resolution 200bp (user-defined bins) Dynamic Dynamic 

Pros 

- Scalable to multiple 
features 

- Embedded within 
Bedtools suite. 

Property-informed simulation: 
Retains sequence properties in 
simulations for testing. 

- Designed for chromatin 
state inference and 
annotation  

- Computationally 
efficient 

Dynamic tolerance: efficient 
computational cost. 

Cons 

- Bin size bias for differing 
feature lengths. 

- Background 
estimation can affect 
results. Require computation resources 

as an empirical method - Limited output without 
direct association testing or 
p-values. 

- Assumptions may 
oversimplify complex 
systems. 
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Table 4.2: The number of overlapped 8-oxoG regions and non-B DNA motifs in the 
observed and the expected group. 

Non-B Type metrics Total Observed 
(counts) 

Expected 
(counts) 

Observed 
(pct) 

Expected 
(pct) 

Direct Repeat 

Overlapped  
non-B  

50,027 26,314 10,424 52.60% 20.84% 

G Quadruplex Motif 50,027 12,672 7,767 25.33% 15.53% 
Inverted Repeat 50,027 22,610 32,289 45.20% 64.54% 

Mirror Repeat 50,027 29,996 12,958 59.96% 25.90% 

Short Tandem Repeat 50,027 30,826 18,316 61.62% 36.61% 

Z DNA Motif 50,027 4,378 3,947 8.75% 7.89% 
Direct Repeat 

Overlapped  
8-oxoG 

1,113,354 68,390 15,821 6.14% 1.42% 

G Quadruplex Motif 361,232 20,862 12,911 5.78% 3.57% 

Inverted Repeat 5,771,570 30,470 58,150 0.53% 1.01% 
Mirror Repeat 1,378,864 47,965 16,520 3.48% 1.20% 

Short Tandem Repeat 2,826,360 127,939 31,907 4.53% 1.13% 

Z DNA Motif 404,192 18,258 6,826 4.52% 1.69% 
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Chapter 5: Conclusion 

5.1 SUMMARY  

The entire study showcases a series of methodological advancements that focus on 

the quantification and analysis of DNA motifs. It contributes to a more nuanced 

understanding of the genomic complexity in the context of cancer and offers an opportunity 

for more insightful analyses across genomic studies that are based on motif quantitation 

and co-localization. The chapters separately describe: the quantitative formulation of 

genomic markers, evolving from DNA motifs-based foundational markers to integrated 

markers, and construct a robust statistical framework for testing DNA motif co-

localization. The case assessments across the three principal chapters underscore the strong 

potential these methodologies have to employ integrated DNA motif analysis to explore 

cancer progression, survival heterogeneity and treatment response, amplifying the central 

thesis focus. 
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5.2 CONTRIBUTIONS 

The contributions made in this thesis are intended to significantly enrich the domain of 

cancer genomics. 
• Non-B Burden, the foundation marker. Introduced the novel marker “Non-B 

Burden” to summarize the prevalence of non-B DNA motifs, employing multi-level 

calculations across diverse use instances. This metric lays the cornerstone for DNA 

motif quantification, using non-B DNA as a case study, significantly advancing our 

understanding of DNA motif implications in cancer. 

• nbTMB and mlTNB, the integrated markers. Introduced nbTMB and mlTNB, 

quantifying the prevalence of non-B DNA motifs in co-localization with tumor 

mutation sites in a integrative way, facilitating a more profound exploration of the 

symbiotic relationship between non-B DNA and tumor mutagenesis. The results 

unveil a deeper understanding of the interplay between non-B DNA and mutations, 

elucidating their association with cancer prognosis and treatment. 

• MoCoLo framework: Developed a formal statistical testing framework, MoCoLo, 

for motif co-localization analysis across different genomic data sources, leveraging 

the multi-modality DNA motif analyses and data integration. 

• Novel Associations in cancer: Demonstrated new associations between non-B 

DNA structures and specific cancer types, pathways, and survival outcomes. These 

findings have expanded our understanding of the role of repetitive motifs and non-

B DNA structures play in cancer biology. 

• A Non-B burden web server: Developed a comprehensive computation and 

visualization platform for non-B DNA exploration within the cancer context. It has 

provided researchers with a powerful platform for non-B DNA exploration. NBBC 

has demonstrated its practical utility in the research community. 

Collectively, these contributions help to enhance the field of DNA motif analysis 

in the future. They provide the foundation for further research and exploration in this 

critical area of cancer genomics.  
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5.3 FUTURE DIRECTIONS  

The methodologies developed in this thesis not only yield insightful findings, but 

also laid a fertile ground for future research endeavors. The avenues for expansion and 

exploration are broad, such as conducting the integrated analysis of DNA motifs, extending 

of DNA motif-based biomarker quantifications across a wider array of cancer types, and 

further investigating the mechanistic and clinical association of DNA motif quantification. 

 

5.3.1 Integrated DNA motifs analysis with multi-omics and multi-modality data 

The foundation laid by the MoCoLo framework in this thesis establishes a rigorous 

statistical infrastructure for motif co-localization analysis across an array of genomic data 

sources. This has been illustrated through the integration of multi-modal data, primarily 

focusing on Non-B DNA motifs and 8-oxoG motifs. However, the design of the MoCoLo 

framework lends itself to a broader adaptability, encompassing a wide range of motif-level 

data. This potential for generalization sets the stage for an expansive motif analysis 

endeavor in the future. The integration with other omics data, further augments the capacity 

of the MoCoLo framework, enabling a multi-dimensional understanding of cancer biology. 

This integrative approach facilitates the investigation into the interactions between DNA 

motifs and other molecular entities, which could unveil novel associations pivotal to cancer 

pathogenesis and progression. The adaptability and integration capability of the MoCoLo 

framework serve as a robust method for further research for understanding the intricate 

interplay between DNA motifs and the broader molecular landscape in cancer. 
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5.3.2 Expand the integrated quantification of DNA motifs to more cancer types.  

The extension of the methodologies and metrics formulated in this thesis to a 

diverse spectrum of cancer types and genetic diseases could further augment the scope and 

impact of the investigative findings. The groundwork laid by pan-cancer research projects 

like TGCA and CCLE provides an important foundation for extending the application of 

the developed methodologies244194. There are targetable alterations, mutational load, and 

complex mutation signatures across a vast array of cancer types245. By leveraging the 

methodologies across a wider spectrum of cancer types, it is possible to uncover novel 

associations between DNA motifs and specific cancers, pathways, and survival outcomes. 

The expansion could significantly enrich our understanding of the genomic features 

encapsulated by DNA motifs and their implications across different cancer landscapes. 

 

5.3.3 Investigating the mechanism of DNA motifs quantification and clinical 
association.   

The clinical landscape of genomic findings in cancer is continually evolving with 

the advancement of genomic testing and next-generation sequencing technologies. The 

emerging applications can be beneficial in monitoring treatment responses, characterizing 

mechanisms of resistance, and guiding therapeutic decisions. The investigation into the 

mechanistic underpinnings of DNA motifs quantification and their clinical associations 

could help bridge the gap between genomic research and clinical practice, fostering a more 

personalized approach to cancer care. 
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Appendix A: Overall design of NBBC web server 

 

A.1. THE WEB APPLICATION DEVELOPMENT 

The NBBC web application has been developed utilizing the R Shiny framework246. 

The front-end interface of the application is implemented with HTML247 widgets, 

Cascading Style Sheets248, and JavaScript249, ensuring a streamlined, user-centric 

experience. The architecture of the NBBC web application comprises three core functional 

modules: 

The first module is “gene screen”. This layer offers several computation and 

analyses options based on non-B burden for input query genes. In terms of computation, 

this module calculates non-B burden in user-selected units to examine burden compositions 

of non-B types for multiple genes alongside several normalization options to facilitate 

burden comparisons across genes and/or non-B types. Several descriptive analyses are 

offered in the gene screen module with visualizations for exploring non-B burden values, 

distribution, and clustering.  

The second module offered is “motif screen”, in which users can undertake a more 

focused exploration at motif level. Users can perform clustering on any combination of 

motif sequence features such as length and guanine content (%G). This capability allows 

users to conduct a more focused search for motifs with sequence characteristics of interest 

within the context of their research.   
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Appendix B: Sequence-informed simulation pipeline in MoCoLo 

B.1 The difference of sequence simulation and sequence-informed genomic region 
simulation 

B.1.1 Sequence Simulation (Shuffling Nucleotides).  

Sequence simulation pertains to the randomization of DNA, RNA, or protein 

sequences250. Its primary goal is to create randomized sequences to test the significance of 

specific sequence patterns, like motifs. The methodology typically involves rearranging 

nucleotides DNA/RNA or amino acids in proteins251. Such shuffling can maintain the 

general nucleotide or amino acid composition but alter the order, which is often employed 

for assessing sequence randomness. 

 

B.1.2 Genomic Region Simulation (Shuffling Numbers).  

This simulation concerns the randomization of genomic intervals, such as gene 

locations or regulatory regions. The objective is to generate random genomic regions or 

assess hypotheses about the distribution of certain genomic elements. The method 

generally involves shuffling numbers representing genomic coordinates252, 253, providing a 

randomized background to verify if observed genomic patterns hold statistical weight. It is 

extensively used for evaluating the randomness of genomic feature distribution, testing the 

significance of overlaps between genomic features, and generating null distributions for 

genomic pattern statistical testing253, 254. 
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B.1.3 Sequence-Informed Genomic Region Simulation (Shuffling Numbers but 
maintain composition). 

Sequence-informed genomic region simulation is a nuanced approach that 

integrates aspects of both sequence and genomic region simulations. While it involves the 

randomization of genomic intervals, it also takes into consideration specific sequence 

properties within those regions. For instance, when shuffling genomic coordinates, this 

method ensures that the selected regions maintain similar sequence characteristics, like G-

content, sequence motifs, or other nucleotide compositions. By doing so, it allows for a 

more refined and realistic simulation of genomic regions, ensuring that the randomized 

regions are not just random in terms of their location, but also in terms of their underlying 

sequence composition. This approach is especially valuable when studying phenomena 

where the sequence composition (e.g., GC-rich regions, CpG islands) plays an impactful 

role in the genomic feature. Thus, sequence-informed genomic region simulation provides 

a balanced mix of randomness and biological relevance, ensuring that simulated data 

closely mirrors the properties of real genomic regions. 

 

B.2 Simulation pool for sequence-informed genomic region simulation 

Traditional approaches simulate same-length genomic regions at random genome 

locations240. This step only fulfills the length requirement in simulation. However, the 

composition of the DNA motif sequences in these simulated regions are not further 

considered and only those with similar nucleotide compositions (e.g., similar %G) should 

be retained to fulfill the composition requirement. The brute force approach to sequence-

informed genomic region simulation can be both computationally demanding and 

inefficient. This is primarily because finding genomic regions of identical length with a 

matching composition might not always be possible, thereby potentially causing the 
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simulation to enter into endless loop scenarios. This inefficiency underscores the necessity 

for more sophisticated or optimized algorithms to handle the intricacies of genomic data, 

ensuring not only accurate simulations but also computational efficiency. 

To overcome these issues, we devised a novel optimal simulation strategy. As 

opposed to simultaneously simulating all motifs at once, instead, we simulated motifs 

individually and constructed a “simulation pool” that tags simulation motifs with their traits 

(sequence features of motifs). In this way, simulated motifs are all save and those that do 

not fulfill the requirement for one original motif may be recycled for another one. Utilizing 

this strategy, the algorithm minimizes simulation time at the expense of increased space 

complexity. We then randomly perform sampling a motif set (as set of simulated motifs 

with defined traits) from these simulation pools that can be readily extract as the simulated 

counterpart of the actual data motif set with randomization.  

 

B.3. Dynamic tolerance 

Genomic regions are complex and unique. When simulating a specific test region, 

it is possible that another region with the exact same traits does not exist elsewhere in the 

genome255. This presents a challenge in traditional simulation methods, where stringent 

matching criteria could lead the simulation into an infinite loop, constantly searching for a 

perfect match that might never be found. 

To address this challenge, we introduced the concept of "dynamic tolerance." 

Instead of rigidly adhering to fixed trait values, dynamic tolerance allows for a certain 

degree of flexibility. As the simulation progresses and fails to find an exact match, the 

tolerance parameters are adjusted automatically by the algorithm. This ensures the 

simulation does not get trapped in endless cycles and can efficiently find regions that are 
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close enough in properties to the input region. By implementing dynamic tolerance, we can 

achieve more realistic and feasible simulation outcomes, while also ensuring 

computational efficiency and avoiding potential pitfalls of rigid simulation methods. 

 

B.4 Evolution of Simulation: A Roadmap of Sequence "Informed" Simulation 
Methods. 

The Figure B.3 presents the progression of three simulation versions tested in the 

MoCoLo case study while we were developing the sequence-informed simulation for non-

B DNA motifs and 8-oxo-G regions co-localization. The initial version emphasizes 

maintaining consistent length between the original dataset and the simulated group. As this 

version primarily shuffles genomic coordinates, it offers efficient execution but does not 

retain enough sequence information. However, in order to retain the crucial sequence 

property, G-content, the computation efficiency became challenging and subsequent 

versions were developed. Due to the computational intensity of ensuring G-content 

consistency, the second version employs a strategy of sampling only 1,000 genomic 

regions for simulation in each run.  

However, it is more ideal to consider all DNA motifs and perform simulations. The 

third iteration introduces the "simulation pool" and "dynamic tolerance" designs. These 

enhancements enable a sequence-informed simulation that preserves both length and G-

content in the dataset while maintain a high computation efficiency. These refinements not 

only minimize unnecessary randomization, but also optimize the retention of each 

simulation run. This means unsuccessful simulations in one run might be repurposed for 

subsequent runs, which notably reduces time complexity. 
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B.5 Figures 

 

 

Figure B.1: Schematic representation of the simulation pool construction for sequence-

inform genomic region simulation, using 8-oxo-dG regions as an example. 

The strategy ensures that the guanine percentage (G%) of each region is preserved 

during simulations. Initially, a pool is formed for every authentic 8-oxo-dG region 

(Step 1). These pools consist of multiple simulated sequences, each maintaining the 

G% of the real region they correspond to. Once the simulation pools are populated 

(denoted by 52,298 pools), they are utilized for randomization purposes (Step 2). 

The design adopts principles of dynamic programming to optimize computational 

time by efficiently utilizing memory space. 
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Figure B.2: Dynamic Tolerance Adaptation in the MoCoLo's “SimulatePool()” Function. 

The depiction showcases the step-by-step simulation approach where, in instances 

of unsatisfactory outcomes, the tolerance level is incrementally adjusted.  This 

ensures the identification of genomic regions that satisfy the requirements while 

maintaining computational efficiency. The video demo on the left sequentially 

presents the simulation process, while the results are outlined on the right. 
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Figure B.3: Progression of Simulation Strategies in Sequence-Informed Genomic Region 

Simulation. 

This visual presents three distinct versions of simulation methods for non-B DNA 

motifs and 8-oxo-G regions. In Simulation V1, the emphasis is on maintaining the 

length of genomic regions through shuffling of coordinates. Transitioning to 

Simulation V2, the approach is refined to not only retain length but also ensure 

consistent G-content within simulations, albeit with a limit of 1,000 genomic 

regions for computational feasibility. Finally, Simulation V3 takes a more 

sophisticated approach by integrating both the "simulation pool" and "dynamic 

tolerance" mechanisms. This ensures the entire dataset is simulated in each run, 

while both length and G% remain consistent. The added advantage of this method 

is its ability to repurpose unforeseen simulations, optimizing both time and resource 

allocation. 
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