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S1 Substrate Fabrication

The top electrode and nanomesa array are patterned using nanosphere 

lithography processes,1–4 as illustrated in Figure S1. The starting substrate consists of an 

n++ Si substrate with 150 nm of thermally grown SiO2. Drop casting is used to form a 

hexagonal close packed array of 3um polystyrene microspheres on the surface of water 

in a trough, which is then drained and evaporated to deposit the microspheres on the 

surface. Reactive ion etching using an O2 plasma is employed to shrink the diameter of 

the spheres from 3um to ~2um. The top electrode is then deposited using E-beam 

evaporation, and consists of a bottom 5 nm Ti seed layer to facilitate adhesion followed 

by a 45 nm Au layer. The microspheres are then removed via sonication in toluene for 1 

minute. The remaining structure is an Au layer containing a hexagonal array of circular 

holes with 2um diameter and 3um spacing. The nanomesas are then fabricated by first 

depositing 1.5um microspheres onto the sample surface in a hexagonal close-packed 

array. The substrate and the microspheres are simultaneously etched by a plasma 

containing a combination of O2 and CHF3. 



Figure S1   Process flow for substrate patterning using nanosphere lithography.

S2 MoS2 Exfoliation and Transfer

MoS2 is exfoliated from a bulk 2H crystal (2D Semiconductors) and transferred to 

the sample substrate using a PDMS dry transfer method.5 The PDMS stamp is mounted 

face down on a glass slide fixed in place beneath an optical microscope. Below, on the 

microscope stage, the substrate is mounted faceup on top of a strip heater. The flake 

containing a monolayer region is then identified through the optical image of the 



microscope and aligned to a suitable area of the substrate also identified using the 

microscope. The microscope stage is then gradually raised until the substrate comes into 

contact with the PDMS. A strip heater is then supplied with 2.1W of power, warming the 

substrate to ~70C. The PDMS and substrate are left in contact for 30 minutes before the 

strip heater is powered off. Contact is maintained for an additional 15 minutes to allow the 

sample to cool. The microscope stage is then gradually lowered until the PDMS and 

substrate are no longer in contact, leaving the MoS2 flake transferred onto the substrate. 

Raman spectroscopy and photoluminescence (PL) were used to identify 

monolayer regions of MoS2. Optical characterization was performed using a 100x 

objective and an excitation laser wavelength of 532 nm at a laser power of 2 μW. Raman 

measurements were performed using an 1800 grooves/mm grating, and PL 

measurements were performed using a 300 grooves/mm grating. Characterization of the 

monolayer region is shown in Figure S2. The monolayer region is identified by the 

characteristic 20cm-1 separation of the Raman peaks6,7 and the PL peak at 656 nm 

corresponding to the A exciton energy.8 



Figure S2    Characterization of the exfoliated MoS2 flake after transfer to the patterned 
substrate. (a) Optical image of the flake, with monolayer region highlighted 
by the red border. (b) Raman and (c) PL characterization of the region 
within the red border, indicating monolayer MoS2. 

S3 Sample Topography

The fabricated sample structures consist of nanomesas embedded in circular 

holes with MoS2 transferred on top. The nanomesa profile is relatively flat on top, with 

tapered edges, as shown in Figure S3a. Figure S3b shows the AFM topography of the 

nanomesa covered by monolayer MoS2. The profiles of the nanomesas with and without 

MoS2 are comparable, suggesting that the MoS2 is in approximately conformal contact 

with the nanomesa, with tenting around the tapered edges, as shown in the linecuts in 

Figure S3c.



Figure S3 (a) AFM topography of an uncovered nanomesa centered in a circular 

hole region. (b) AFM topography of the nanomesa covered with monolayer MoS2 

presented in the main text. (c) Linecuts corresponding to the red dashed lines of the AFM 

data presented in (a) and (b).

S4 KPFM Methods

KPFM measurements are performed using an AIST Omegascope scanning probe 

system using a 2-pass method with lift height = 20 nm on the second pass for KPFM 

measurements, and an applied AC voltage with amplitude 2V and 1kHz frequency. The 

scan rate was 0.2 Hz on the first pass and 0.1 Hz on the second pass of KPFM 

measurements. Conductive Au-coated tips are used (OPUS 160AC GG) with cantilever 

spring constant 26 N/m and resonance frequency ~300kHz. Measurements were 

performed at room temperature in a dry N2 environment (<5% RH) to minimize effects of 

humidity on gated KPFM measurements.

S5 Dependence of KPFM Measurements on Gate Voltage

The application of gate voltage, Vg, modifies the tip voltage, Vt, measured with 

KPFM. When no monolayer is present, as in Figure S4, variations in Vg correspond 1:1 

to variations in Vt, indicating that surface contamination and humidity are hardly screening 

the applied field. There is also no observable contrast in Vt between the region with the 

nanomesa and the remainder of the flat SiO2 region, indicating minimal effect of our 

etching procedure on introducing changed defects that might interfere with KPFM 

measurements.



Figure S4    Dependence of Vt on Vg in a region without MoS2. (a) The topography of 
the region measured with AFM. (b) Dependence of Vt on Vg for the gated 
SiO2 region (within the circular hole) and the grounded Au region outside of 
the hole. The equation corresponds to the linear best fit for the dependence 
of Vt on Vg in the gated SiO2 region. (c)(d)(e) KPFM images of Vt 
corresponding to the region in (a), for Vt=-5V, 0V, and 5V, respectively. The 
scale bars represent 500 nm.

Introducing the MoS2 monolayer affects the Vt vs. Vg dependence according to 

the quantum capacitance, Cq. To calculate the dependence of Cq on the Fermi level, we 

consider the total electron concentration in the conduction band of a two-dimensional n-

type semiconductor, given by:

, (1)𝑛 = (𝑔2𝐷)(𝑘𝑏𝑇)ln (1 + exp [
(𝐸𝐹 ― 𝐸𝐶)

𝑘𝑏𝑇  ])

where  is the DOS of the conduction band of monolayer MoS2 normalized to its 𝑔2𝐷

thickness, kb is the Boltzmann constant, T is the temperature (~300K), EF is the Fermi 

level, and EC is the conduction band edge energy. Cq is then:9

,  (2)𝐶𝑞 = 𝑞2 ∂𝑛
∂𝐸𝐹

= 𝑞2𝑔2𝐷
exp [(𝐸𝐹 ― 𝐸𝐶)/𝑘𝐵𝑇]

1 + exp [(𝐸𝐹 ― 𝐸𝐶)/𝑘𝐵𝑇]



where q is the elementary charge magnitude. Equation 2 was used to generate Figure 

1c in the main text. As stated in the main text, this capacitance acts in series with the 

gate oxide capacitance, Cox, such that the change of Vt due to Vg is given by 

. (3)
𝑑𝑉𝑡

𝑑𝑉𝑔
=

1
𝐶𝑞

𝐶𝑜𝑥
+ 1

Equations 2 and 3 are together used to calculate the dependence of Vt on Vg in Figure 

1d in the main text.



Figure S5    a) Vt and b) A2w KPFM images acquired at various Vg. Data was used to 
acquire data in Fig 2d of the main text.



S6 Converting KPFM Measurements to the Hydrostatic Strain Distribution
We can quantify the amount of strain in the vicinity of the nanomesa using the 

strain deformation potentials for the conduction band. We approximate the EC 

deformation potential from the absolute uniaxial deformation potential at the K-point 

determined from DFT calculations.10 These deformation potentials give the shift in the 

absolute energy of the conduction band using the vacuum energy as a reference, i.e. 

these deformation potentials directly correspond to changes in , which is 𝛥(𝐸𝐶 ― 𝐸𝑣𝑎𝑐)

directly related to in our KPFM measurement at Vg=5V. Therefore, the KPFM image 𝛥𝑉𝑠𝑎𝑡
𝑡  

can be converted to a mapping of the strain in the following way:

, (4)∆𝑉𝑠𝑎𝑡
𝑡 ≈ 𝑎𝐶𝐵𝑀

𝑘 ∗ (∆𝜀ℎ𝑦𝑑)

where  is the deformation potential of hydrostatic strain at the K-point in the Brillouin 𝑎𝐶𝐵𝑀
𝑘

zone, which we approximate as 120meV/%,10 and  is the spatial variation of the in-∆𝜀ℎ𝑦𝑑

plane hydrostatic strain, which is related to the strain tensor as . In this 𝜀ℎ𝑦𝑑 = (𝜀11 + 𝜀22)/2

method, we are approximating that the shear and deviatoric strain deformation potentials 

are zero, which is a reasonable approximation at small strains.11,12 

S7 Calculating strain in MoS2 from AFM topography

We employ a method to calculate strain from the AFM topography that is similar to 

the method demonstrated by Darlington et. al. for TMD nanobubbles.13 The method is 

mainly derived according to the theory of mechanics of thin plates, which can be found in 

introductory references on the subject14 and will be briefly summarized here. Strain can 

be calculated from AFM topography using the Föppl-von Kármán equations describing 

the mechanics of thin plates subject to large out-of-plane deflections. Monolayer MoS2 



has a thickness much smaller than the lateral dimensions the flake and possesses 

negligible bending stiffness and it can be mechanically modeled as a thin plate. As a 

result, the stress components σxz, σyz, σzz are small compared to the other components 

of the stress tensor. The components of the in-plane strain tensor for plates are related 

to the stress by:
(5)𝜀𝑥𝑥 = (𝜎𝑥𝑥 ― 𝜈𝜎𝑦𝑦)/𝐸,

 (6)𝜀𝑦𝑦 =  (𝜎𝑦𝑦 ― 𝜈𝜎𝑥𝑥 )/𝐸,

   (7)𝜀𝑥𝑦 = (1 + 𝜈)𝜎𝑥𝑦/𝐸,

Where υ and E are the Poisson ratio and Young’s modulus of MoS2, respectively. The 

two-dimensional strain tensor for large transverse displacement of plates is given by:

, (8)𝜀𝛼𝛽 =
1
2(∂𝑢𝛼

∂𝑥𝛽
+

∂𝑢𝛽

∂𝑥𝛼) +
1
2

∂ℎ
∂𝑥𝛼

∂ℎ
∂𝑥𝛽

 

where u is the in-plane displacement and h is the transverse displacement. The equations 

for equilibrium of thin plates are derived by minimizing the free energy, which has a 

bending and stretching component. The equations of equilibrium, termed the Föppl-von 

Kármán equations, are:

, (9)𝐷∇4ℎ ― 𝑡
∂

∂𝑥𝛽(𝜎𝛼𝛽
∂ℎ
∂𝑥𝛼) = 𝑃

, (10)
∂𝜎𝛼𝛽

∂𝑥𝛽
= 0

where D is the bending stiffness, t is the thickness of the monolayer, and P is the external 

normal force per unit area. Solving these equations can be simplified by introducing the 

Airy stress function, χ, defined by:

. (11)𝜎𝑥𝑥 =
∂2𝜒

∂𝑦2, 𝜎𝑦𝑦 =
∂2𝜒

∂𝑥2, 𝜎𝑥𝑦 = ―
∂2𝜒

∂𝑥∂𝑦

With the Airy stress function defined in this way, the Föppl-von Kármán equations can be 

reduced from 3 to 2, since Equation 10 is automatically satisfied. A new equation can be 

derived by substituting Equations 8 and 11 into Equations 5-7 to derive an additional 

equation in terms of the stress function: 



. (12)∇4𝜒 + 𝐸{∂2ℎ

∂𝑥2

∂2ℎ

∂𝑦2 ― ( ∂2ℎ
∂𝑥∂𝑦)2} = 0

Equations 9 and 12 then form a complete system of equations for deflection of 

large plates. In principle, Equations 9 and 12 could be used to determine the deflection 

of plates for a given P; however, since we already know the deflection of the plate from 

the AFM topography, the stresses and strains can be readily obtained by solving for χ 

using Equation 12 alone. In order to solve this biharmonic equation for the stress function, 

we treat the problem as two weakly coupled Poisson equations: 13,15

, (13)∇2𝜓 = ― 𝐸{∂2ℎ

∂𝑥2

∂2ℎ

∂𝑦2 ― ( ∂2ℎ
∂𝑥∂𝑦)2}

. (14)∇2𝜒 = 𝜓

The procedure for solving for the strain is then to first solve Equation 13 using the 

gaussian curvature from the AFM topography, then solving Equation 14 using the result 

from solving Equation 13. It can be seen from the definition of the stress function that ψ 

is proportional to the trace of the in-plane stress tensor and therefore the hydrostatic 

strain. Solving for ψ gives a relation for the hydrostatic component of stress and strain 

derived from the height profile of the monolayer. Solving Equation 14 yields the remainder 

of the strain tensor, which is used to calculate the shear strain derived from the height 

profile of the monolayer. Figure S6 shows the shear strain solution derived from AFM 

data, defined as . The KPFM derived strain distribution does εshr =  (εxx ― εyy)2 + 4ε2
xy

not resemble the shear strain distribution derived from AFM, further indicating that the 

KPFM observed contrast is due to primarily hydrostatic strain. 

We assume the flat MoS2 area atop the Au to be relatively unstrained. Since the 

MoS2 beyond this boundary is relatively flat, the boundary condition ψ=0 is employed 

along the circular edge of the gated area. This boundary condition is equivalent to saying 

the change in area of the monolayer goes to zero on the flat area atop the Au electrode. 



For the additional degrees of freedom, the boundary condition χ=0 is applied around a 

circular perimeter which encloses the entire area with a large radius. The choice of 

constant for χ on the boundary does not affect the stress/strain result, as the stress and 

strain are derived from the second derivatives of χ. 

Figure S6. The in-plane shear component of the strain result derived from the 

topography.

S8 Curvature Extraction from AFM topography:

To extract the curvature data from AFM topography, local 3rd order polynomial 

surfaces were fit in a 7x7 pixel window around each point in the first pass of the AFM 

scan corresponding to the KPFM measurement at Vg=5V.  Second derivatives at the 

central point of each surface were taken to be the second derivatives of the topography 

data at that point. The pixel spacing is ~20 nm, and each window contains a maximum of 

1 inflection point in a 140 nm x 140 nm. The true topography could contain additional 

inflection points on smaller length scales, and the window size limits the lateral resolution 

of the curvature extraction; however, too small of a window size creates an unsmooth 

fitting due to noise in the AFM data. This is most prominently seen in the y derivatives, 

Figure S7d, which run perpendicular to the scan direction, as the drift between line scans 

is greater than the drift within a line scan along the x-axis. Median line filtering of the AFM 



data is used to reduce this noise. The 7x7 pixel window size was selected to balance 

lateral resolution and data smoothness. 

Figure S7  a) AFM topography used to derive curvature for strain calculations. b) The 
source term for Equation 3.21. (c), (d), (e) The individual components of the 
curvature of topography shown in (a).

S9 Determining the 2D strain tensor from the spatial variation of the hydrostatic 
strain

 As stated in the main text, the Airy stress function is related to the hydrostatic 

strain distribution according to:

. (15)∇2𝜒 = 𝜎𝑥𝑥 + 𝜎𝑦𝑦 =
2𝐸

1 ― 𝜐 ∗ 𝜀ℎ𝑦𝑑

 Solving Equation 15 for the Airy stress function provides the solution for the full 

strain tensor according via Equations 5-7 and 11. This step is equivalent to the second 



step of the procedure for calculating the strain from the AFM topography using the Föppl-

von Kármán equations, i.e. Equation 14, the difference being that for piezoelectric 

calculations we use ψ derived from the hydrostatic strain inferred from the KPFM 

measurement rather than from the solution to Equation 13. We set the boundary condition 

χ=0 around the circular perimeter of the gated area.

S10 CALCULATIONS OF PIEZOELECTRICITY:

The polarization field generated by piezoelectricity is then given by  𝑃𝑖 = 𝑒𝑖𝛼𝜀𝛼

where e is the piezoelectric tensor and ε is the strain in Voigt notation. The symmetry of 

the piezoelectric effect is determined by the symmetry of the lattice, and defined by the 

piezoelectric tensor, e, which for 2H crystals has the following form:

. (16)𝑒 = [𝑒11 ― 𝑒11 0
0 0 0
0 0 0

       
0 0 0
0 0 ― 𝑒11
0 0 0 ]

The piezoelectricity tensor only has 1 unique coefficient, e11, which is ~3.7x10-10 C/m for 

MoS2.16 The tensor defined in this way assumes an armchair direction along the x-axis 

and a zigzag direction along the orthogonal y-axis. In general, the lattice orientation is 

randomly aligned in relation to the AFM/KPFM coordinate system. Knowledge of the 

lattice orientation is required to properly calculate the effects of piezoelectricity.

We determine the orientation of the monolayer relative to our scan orientation 

using second harmonic generation (SHG). The two high-symmetry directions in MoS2 are 

referred to as the armchair and zigzag directions, illustrated in Figure S8a. The response 

is largest along the armchair directions of the crystal lattice,17 therefore, SHG 



measurements allow us to determine the relative orientation between the armchair 

direction and the axis of previous KPFM measurements and strain calculations.

SHG measurements were performed using a Yb:YAG laser (Light Conversion, 

Carbide 40 W) with the repetition rate of 100 kHz and the pulse width of 150 fs. The 1030 

nm laser beam was focused onto the sample using a ×50 microscope objective to a spot 

size of about 1 μm in diameter. A polarizing beamsplitter cube was placed before a 

longpass dichroic mirror to ensure the polarization uniformity of the excitation laser. In 

order to collect the polarimetry, a rotatable half wave plate was used to control the 

polarization of the excitation laser, while an analyzer was set in vertical and horizontal 

configurations in front of the detector to select the corresponding parallel and 

perpendicular SHG polar patterns. The SHG signal was passed through a 515 nm 

bandpass filter to filter the residual fundamental frequency, and then collected by a 

photomultiplier (Hamamatsu, H9305-01). The fast axis of the HWP is verified by aligning 

it with the fundamental beam using another properly aligned polarizer. 

Monolayer MoS2 belongs to the D3h symmetry group, leaving the independent 

non-vanishing element of the nonlinear susceptibility to be . 𝜒𝑦𝑦𝑦 = ― 𝜒𝑦𝑥𝑥 = ― 𝜒𝑥𝑥𝑦 = 𝜒𝑥𝑦𝑥

Therefore, the dependence of SHG intensity on the rotation angle of the lattice, θ, follows

 (16)𝐼 ∥ = 𝐼0𝑐𝑜𝑠(3𝜃 ― 3𝑐)2

 (17)𝐼 ⊥ = 𝐼0𝑠𝑖𝑛(3𝜃 ― 3𝑐)2

where  and  are the SHG intensity in the parallel and perpendicular 𝐼 ∥ 𝐼 ⊥

polarization, respectively, and c is the relative offset of the armchair direction from the 

horizontal axis. The SHG data is shown in Figure S8. The SHG response is larger along 

one of the armchair directions, which could be the result of uniaxial strain.18  Fitting the 

parallel and perpendicular polarization data in Figure S8(b,c) to Equations 16 and 17 

respectively, we determine that the 3 armchair directions of the sample are at angles of 

15, 135, and 255 degrees from the horizontal axis of KPFM and AFM measurements. 



Figure S8 a) Illustration of the MoS2 lattice depicting the high-symmetry armchair and 
zigzag directions. b) SHG results in the parallel polarization configuration for 
the monolayer region of MoS2. The dots correspond to the data, and the red 
line corresponds to the cos2(3θ-3c) fit for c = 15o. The six arrows point from 
the origin along the three armchair directions determined from the SHG 
result. c) SHG results in the perpendicular polarization configuration. The 
red line corresponds to the sin2(3θ-3c) fit for c = 15o. For (b) and (c), zero 
degrees corresponds to the horizontal axis of AFM and KPFM 
measurements.

To account for a rotated lattice orientation in piezoelectricity calculations, we apply 

a rotation transformation to the coordinate system of the strain tensor such that the x and 

y components of the new coordinate system lie along an armchair and zigzag direction, 

respectively:



, (18)𝜀𝜃 = 𝑅(𝜃)𝜀0𝑅𝑇(𝜃)  

where R and RT are the transformation matrix for rotation by θ and its transpose. The 

polarization field is then calculated in the rotated coordinates before being rotated back 

to the original coordinate system via , where P0 and Pθ are the dielectric 𝑃0 = 𝑅𝑇( ― 𝜃)𝑃𝜃

polarization field in the AFM coordinate system and the coordinate system rotated by θ, 

respectively. The piezoelectric bound charge is then calculated from P0 according to 𝜎𝑝𝑧

; however, either of P0 or Pθ can be used, as the divergence is invariant under = ―∇ ∙ 𝑃0

rotation.

In order to calculate the electrostatic potential generated by the piezoelectric 

bound charge distribution, we use the method of moments and the single point 

approximation.19 Calculating the potential generated by the piezoelectric charge 

distribution yields the result in Figure S7a. While there is some resemblance between the 

electrostatic potential due to piezoelectricity and the KPFM measurement in proximity to 

the nanomesa, the potential extends farther from the area of large strain than in the KPFM 

measurements of the main text. Contributions of the piezoelectric charge to the 

electrostatic potential decay with distance according to 1/r in the unscreened solution; 

however, neglected in these calculations is screening caused by free carriers in the MoS2 

monolayer, which can screen out the potential generated by piezoelectric bound charges. 

Screening in monolayer MoS2 does not follow the behavior of 3D Thomas Fermi 

screening with an effective screening length; rather, because the monolayer thickness is 

relatively comparable to the effective Bohr radius, screening must be considered for a 2D 

system. In the solution to the 2D screening problem, the potential decays with a 1/r3 

dependence which can be approximated by:20

, (19)𝜑(𝑟) =
𝑒𝑎2

4𝜖𝑟3(𝑚 ∗ 𝑘𝐵𝑇

𝜋𝑛ħ2 )2

where a is the effective Bohr radius, ϵ is the permittivity of MoS2, and n is the free carrier 
concentration.



The calculated electrostatic potential in the main text assumes screening with 

carrier concentration n=8x1010cm-2, which was chosen to approximately reproduce the 

peak potential variation of the unscreened solution. The screened solution alters the 

spatial distribution of the potential, mainly by confining the potential distribution to the 

bound charge distribution due to the 1/r3 dependence. The screened potential more 

closely resembles the spatial distribution of Vt measured by KPFM at Vg=-1V. 

Figure S9. (a) Electrostatic potential due to the piezoelectric bound charge calculated 
assuming no 

screening. (b) Electrostatic potential due to the piezoelectric bound charge 
calculated assuming screening and carrier concentration n=8x1010cm-2.

S11 Alignment of KPFM Data:

We can better compare the position of the calculated piezoelectric potential and 

the KPFM measurement at Vg=-1V by alignment of the topography data acquired during 

KPFM measurements. An alignment algorithm was used to align KPFM images at 

different Vg to account for electrostatic and thermal drift between images. The 

corresponding height images from the first pass, which are relatively constant with respect 

to Vg excluding lateral drift, are used to compute the relative offset between two height 

images by finding the shift in x and y which minimizes the sum of the pixel-by-pixel 

difference between the two images. This offset is then applied to the corresponding AFM 

and KPFM images to enable better point to point comparisons across Vg. We align the 



screened piezoelectric potential and Vt at Vg=-1V laterally using the offset computed 

between Vg=5V and Vg=-1V, as shown in Figure 5e of the main text.

S12 Other sites at 0V:

Figure S10. Characterization of strained monolayer MoS2 at differing locations from the main 
text. (a) and (b) are the AFM topography and corresponding KPFM at one location. (c) and (d) 
are the AFM topography and KPFM at a second location. A similar threefold symmetry near the 
top of the nanomesa, similar to that noted in the main text, can be seen in the KPFM images of 
both locations. The vertical line in KPFM contrast in d) is due to the boundary of the MoS2, 
which ends to the left of the nanomesa.
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