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Current Concepts

� Artificial Intelligence in medicine (AIM) and surgery (AIS) should be considered as two related but distinct entities. The combined use of AI and
deep learning along with human interpretation for automated measurements in orthopaedics yields excellent results.

� AI has been used successfully to facilitate decision making when it comes to prognostication. These models still require human oversight due to
the complex nature and variables involved.

� Robotic-assisted arthroplasty improves implant positioning in both hip and knee arthroplasty, there is less conclusive evidence to support
improvement in functional outcomes or long-term survival of these implants.

� Simulation technology is on the rise and is has been increasingly used as an adjunct to traditional models. These models cannot be used as a
substitute to traditional training.

Future Perspectives

� Abstract concepts such as intuition which are difficult to impart to a machine in the form of computer code remain elusive and further work is
needed to refine these processes to a point where human oversight is minimal or redundant.

� AI driven prognostication models remain in their infancy. More work is needed to guide treatment pathways and formulate strategies to guide
preventative medicine.

� Whilst robotic assisted surgery and Virtual reality has improved surgery in numerous domains, this has not yet translated to an improvement in
patient outcomes. Until these are achieved, further development may be required into the optimisation of these technologies.
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INTRODUCTION

Over the last two decades, the application of Artificial Intelligence
(AI) to the field of surgery has developed exponentially, with the number
of PubMed search results for “artificial intelligence” more than doubling
between 2019 and 2021, according to Chen et al. [1]. The surge of in-
terest in the orthopaedic applications for AI is also noticeable [2]. The
number of total publications and citations whose title, abstract, and/or
keywords refer to the field of AI in orthopaedics has grown by a factor of
ten between 2017 and 2021 [3]. Improvements in computer science,
processor speeds, and associated technologies have seen AI drive
increasing applications relevant to orthopaedic field [3]. Advances in
muskuloskeletal imaging [4], arthroplasty planning [5], robotics, and
computer navigated surgery [6] have proved to be useful tools in the
orthopaedic armarium. The rapid rise in the application of these tech-
nologies has not always been followed by an uptake in use, with many
remaining reluctant to engage with the technological tools available
fully. The causes for this phenomenon remain complex and multifacto-
rial. The associated cost, required retraining, and lack of thorough edu-
cation on the benefits of AI may all contribute in part to this slow uptake
of use. This current concepts review aims to synthesise the available
literature on the subject, facilitating the understanding of this complex
field and its application, relevance, and usefulness to the orthopaedic
surgeons.

To facilitate the reader's understanding of the literature, we have
broken down the subject matter into 5 broad categories:

� Diagnostics and enhanced decision support.
� Predictive analytics.
� Robotics and its use in surgical planning and augmentation.
� Rehabilitation.
� Teaching and training (including virtual reality [VR]).

This allows the reader to understand the impact of AI on the whole of
the patient care pathway. This starts at the level of diagnosis and imaging
of pathology, follows through to prognostication and prediction models.
The preoperative planning phase is covered as well as the impact of AI
technology on the operative process itself. Finally, the postoperative
management of patients (with an emphasis on bespoke rehabilitation and
telerehabilitation) is covered, with a final emphasis on the use of AI in
surgical training.

KEY DEFINITIONS

When examining the literature regarding AI, it is clear that multiple
terms are often used interchangeably. This in itself may be confusing; it is
essential to understand and define these terms clearly.

John McCarthy coined AI as a theory that computers could eventually
learn to perform tasks through pattern recognition and with minimal to
no human involvement [7]. AI is the theory and development of com-
puter systems able to perform tasks normally requiring human
intelligence.

The application of AI to medicine and surgery should be considered as
two related but distinct entities [8], with the former being used to
manage or treat patients without a specific interventional procedure as
the intended result of prognostic or diagnostic investigation.

The terms AI, machine learning (ML), and deep learning (DL) are
often used interchangeably [4]; however, there are differences in the
meaning of each term.

Whereas AI refers to technology that enables computers to mimic
human intelligence, ML is a subset of AI that allows machines to improve
their performance by developing experience with the help of statistical
and mathematical tools. ML algorithms can learn from examples to
enhance the accuracy of synthesised predicted models. ML algorithms
can also be trained in a supervised or unsupervised manner. An example
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of supervised learning is predictive modelling. This is a statistical tech-
nique to predict future behaviour. Predictive modelling solutions are a
form of data-mining technology that analyses historical and current data
in order to generate models, which in turn help predict future outcomes.
An example of unsupervised learning is cluster analysis which involves
applying clustering algorithms with the goal of finding hidden patterns or
groupings in a data set.

DL is essentially a more refined subtype of ML that studies compu-
tational models (deep neural networks) exposed to large datasets [4]. DL
is capable of unsupervised learning from unstructured data, filtering out
data input from variables of low relevance to a prediction of interest.

The applications of AI in surgery are potentially limitless, and an in-
depth investigation into all of these is beyond the scope of this article. For
ease of understanding, we have chosen to cover several key topics most
relevant to themodern orthopaedic surgeons. These are medical imaging,
prognostication, robotics in surgery, and rehabilitation as well as VR and
simulation.

DIAGNOSTICS AND ENHANCED DECISION SUPPORT

The assignment of AI-guided tasks was met with initial success.
Computer programs easily mastered complex calculations and mathe-
matical predictions that were difficult for humans to perform, particu-
larly with the advent of advanced computer processors. Paradoxically,
simpler tasks—such as image or object recognition [1]—were more
difficult for AI to master as they involved abstract concepts such as
intuition which are difficult to impart to a machine in the form of com-
puter code.

Nevertheless, AI has revolutionised each stage of the imaging
pathway, with improvements in imaging acquisition, interpretation,
reconstruction, and analysis [9]. Incorporating patient records, clinical
findings, and laboratory results has led to improved patient algorithms
capable of optimising patient-specific and appropriate imaging protocols.
AI has also improved the speed of imaging acquisition. This is particu-
larly relevant to imaging modalities such as magnetic resonance imaging
(MRI) [10]. Investigations that are reliant on ionising radiation have also
benefitted, with the overall dose associated with scans being reduced by
AI optimisation [11].
Plain radiographs

The application of AI to radiograph interpretation still requires
improvement. Most plain radiographs are reported by healthcare pro-
fessionals with narrative descriptions of the images being assessed. The
potential for AI to relieve some of the burden of routine image inter-
pretation may in time reduce the burden of workload, eliminating the
risk of stress-induced interpreter error, which has been reported to be as
high as 40% [1]. Inter- and intra-observer variability and the learning
curve associated with image reporting is also a problem in radiograph
interpretation. Examples of this phenomenon can be seen in the mea-
surement of acetabular component positioning—with DL measurement
tools being developed to facilitate this process [12].

AI-assisted estimation of bone age is more effective than diagnosis by
a radiologist operating alone—though the best results can be achieved
with the refinement of the technique with human assistance [13].

The use of AI and DL in interpreting automated measurements (leg
alignment, joint orientation and leg length) is of equal accuracy but more
time-effective than with human eyes alone [1]. It is important to note
that in these studies, severe deformities and poor image quality were
exclusion criteria and that human supervision remains an essential
component of using these techniques.

The use of ML and DL has excellent potential for application to
fracture detection. The recognition of common fracture patterns can be
imparted algorithmically to AI. Several studies have compared DL algo-
rithms to human performance when recognising fracture patterns [14].



A.-A. Khoriati et al. Journal of ISAKOS 9 (2024) 227–233
The accuracy of fracture detection was high. The sensitivity and speci-
ficity of hip fracture detection are as high as 97.1 % and 96.7 %,
respectively [15]. In fracture localisation, performance was lower,
ranging from 95.8 to 20% depending on fracture location.

Liu et al. compared the performance of orthopaedic surgeons with AI
at detecting tibial plateau fractures [16]. The accuracy of the recognition
algorithm was found to be comparable to human performance. However,
the main benefit was found to be in speed, with AI found to be 16 times
faster than orthopaedic surgeons.

There may be a role for AI in the detection of more specialised frac-
tures, which are difficult for the generalist orthopaedic surgeon to detect,
such as vertebral fractures. The rate of missed vertebral fractures can be
as high as 30 % on plain films [17]. Deep convolutional neural networks
designed to detect vertebral fractures are as accurate as orthopaedic
surgeons in detecting vertebral fractures. However, these were less ac-
curate than spine specialists [18], indicating room for improvement in
this field.

Other body areas studied include the wrist, femur, hand, and prox-
imal humerus [14]. In general, the accuracy of fracture detection is high,
ranging from 83 to 98%. With fracture classification, the accuracy ranges
from 70 to 90% in the limited studies available [14]. Some studies have
assessed the use of AI in measuring the curvature of the spine in scoliosis
[19,20]. AI has subsequently been used to detect disc herniation [21].

Advanced imaging

Studies have been performed on both MRI and computed tomogra-
phy, particularly in the setting of trauma [22]. The accuracy and speed of
detecting rib fractures are more accurate when radiologists employ the
assistance of a DL model. The use of AI-assisted diagnostics with MRI has
facilitated the detection of injuries to the anterior cruciate ligament
(ACL), Menisci and cartilage within the knee [1], with a systematic re-
view by Siouras et al. [23] suggesting that the use of AI in MRI has the
potential to be on par with human-level performance, showing a pre-
diction accuracy of 72.5–100%.

Overall, limited studies show that AI performance is comparable to
human interpreters. These studies are limited for several reasons, notably
their design. They are often based on one image projection. In reality, the
patient studied will have multiple views available, combined with a
history and clinical examination. All standards of pattern recognition
within these studies are set by human standards and, therefore, subject to
human error. Finally, the overall number of these studies could be higher
and of better quality. This fact, combined with the potential for publi-
cation bias, means that the potential for the use of AI may currently be
overplayed. A greater number of higher quality studies is needed.

PREDICTIVE ANALYTICS

AI can be used to facilitate decision-making with the recognition of
complex results of analyses such as risk predictions, prognostications,
and treatment algorithms. This can guide the patient's pathway within an
appropriate clinical context [24], though ultimately the treating surgeon
and patient must interpret any data and use it to guide a shared
decision-making process. This decision-making process can predict the
clinical outcome of patients based on clinical datasets, genomic infor-
mation, and medical images. Kim et al. were able to use ML to predict the
complication rate of adults undergoing spinal deformity corrective sur-
gery [25].

MLhasbeenused topredictminimal clinically importantdifferences in
patient-reported outcomes following osteochondral graft transplantation
in knee surgery [26]. This process has also been applied to
decision-making regarding surgical outcomes and expectations in hip
arthroscopy [27], the progression of knee arthritis [28] leading to
arthroplasty, the need for hospital admission following ACL surgery [29],
or the need for prolonged postoperative analgesic use following arthros-
copy [30].
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Clinical decision support systems have also been used to provide rec-
ommendations on the diagnosis and treatment of lower back pain [31],
with Hill et al. designing a screening tool which identified at-risk sub-
groups of patients and guided the provision of early secondary prevention
in primary care. AI may, therefore, be useful in efficiently allocating ser-
vices and improving referral pathways. These pathways must factor in a
number of variables, including age, gender, comorbidities, and ethnicity.

ROBOTICS AND ITS USE IN SURGICAL PLANNING AND
AUGMENTATION

The advent of the robot and its application to the field of orthopaedics
has developed rapidly over the last two decades. Robotic surgery utilises
the advantages of complex computer calculations to optimise surgical
performance, be it in the implantation of prostheses or implants, fracture
reduction, or in the rehabilitation of orthopaedic patients.

The rationale behind robotically augmented surgery lies in the basis
that the knowledge and experience of correct prosthetic implantation lie
ultimately with the surgeon. The ability to apply this skill consistently
and accurately may be deficient due to human error. Several generations
of robotically assisted tools have been developed to improve consistency
among arthroplasty surgeons to improve implant position and alignment
and, ultimately, patient outcomes (function and implant survival).
Computer programming and planning of implant position all revolve
around the accurate imaging of affected body parts, consideration of limb
alignment, and soft tissue tension. This, in turn, should theoretically
translate to correct bony preparation, precise cuts, and restoration of the
physiological function of the limb. Inaccuracy of this process inevitably
leads to implant malposition and, ultimately, failure [32].

Robotic systems may be known as “Closed” or “Open”. The former is
compatible only with the type of implant associated with the robot's
manufacturer. The latter allows for a broader range of implants. It is
ultimately up to the surgeon to weigh the pros and cons of each type of
robot and whether the features of an individual model outweigh the
restrictions of its use and the subsequent impact on surgical freedom.

Robotic systems may be image-based or imageless, with the former
system reliant on the preoperative visualisation of a patient's anatomy
and key mapping points used as reference points for device implantation
[33]. Preoperative imaging (CT or MRI) is crucial to this process. The
image-based approach allows for better preoperative preparation. Still, it
comes with the disadvantages of increased cost, radiation exposure (in
the case of CT), and reliance on imaging which must be taken close to the
time of surgery.

With imageless surgery, the detection and registration of the required
landmarks and surfaces directly on the patient's bones occur after expo-
sure intraoperatively. The advantages of this approach are the lower cost,
avoidance of preoperative radiation, and temporal flexibility of operative
intervention. These must be weighed against the disadvantages of 1. less
flexibility in the application of orthopaedic condition, of which all the
landmarks have to be constant e.g. arthroplasty but not fractures and 2.
more insufficient preparation, which may impede a surgeon's ability to
preselect appropriate implants and ensure their availability, particularly
in more complicated surgeries where the anatomy may require patient-
specific or rare implants.

Robotic systems may be known as active, passive, or semi-active.
Active robotic systems are pre-programmed by the surgeon, but after
registration, the level of human interaction is the lowest as the robot
performs autonomously [33]. Passive robots work oppositely, with the
robot merely guiding the surgical process, with the surgeon mainly in
control of the resection, with the robot providing a positioning guide
based on pre-planning. Some systems allow for the measurement of soft
tissue tension intraoperatively, permitting further verification of the
performed bony resection [34].

Semi-active systems follow a hybrid approach between the afore-
mentioned surgical techniques, allowing for surgical planning followed
by surgeon-controlled resection. This resection is augmented by haptic
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feedback and safety measures limiting deviation from the defined sur-
gical plan. The robot will regulate certain aspects of the resection, but
these features may be overridden by the surgeon, who remains in ulti-
mate control [33].

Robotics in arthroplasty

Most advances in robotics have occurred in lower limb arthroplasty,
representing over 90% of the implant market [33].

While it has been well established that robotic-assisted arthroplasty
has been proven to improve implant positioning in both hip and knee
arthroplasty, there is less conclusive evidence to support improvement in
functional outcomes or long-term survival of these implants [35,36]. An
economic analysis by Pierce et al. [37] revealed that robotic-assisted
surgery was associated with shorter length of stay, reduced utilisation
of services, and reduced 90-day costs comparedwith non-robotic-assisted
surgery. From a technical perspective, robotic-guided surgery has been
found to reduce the learning curve in the implantation of uni-
compartmental knee arthroplasty [38,39]. One must consider that au-
thors associated with the studies mentioned carry conflicts of interest.
Further evidence is needed with more research into the long-term out-
comes of robotic-assisted arthroplasty.

Robotics in spinal surgery

The most common focus of robotic surgery in spinal orthopaedics is
the use of computers to guide the placement of pedicle screws [40].
Freehand placement techniques have been historically used but are
associated with component misplacement and subsequent complications,
including neurological and vascular complications. Further advances in
the field will focus more on more complex fusion procedures such as
higher cervical fusions and S2-sacral-iliac screw placement [40].

The most extensively studied robotic spinal systems revolve around
several key steps [41]. Thefirst is preoperative planning, whereCT imaging
is uploaded to pre-programmed software, and the optimal implant trajec-
tory is calculated. A small robot is then mounted on the spine.
Three-dimensional syncing occurs whereby the preoperative imaging
ismatched to thepatient's anatomyvia intraoperativefluoroscopic imaging.
Finally, a robotic arm is used to guide the trajectory of instrumentation.

Future innovation in this field will revolve around augmented reality
as well as machine-guided image surgery which allows the operator to
perform surgery without the associated risk of radiation and will help
address line of sight issues which may hamper instrument tracking [40].

Robotics in trauma

Most of the existing literature concerning the use of robotics in or-
thopaedics involves robotically assisted elective procedures, as most of
these procedures have standardized technique and landmarks. Never-
theless, some studies have been performed on trauma patients. A recently
published systematic review [42] outlining the key benefits of
robotic-assisted fracture reduction has been used in several settings. The
review focused on the following parameters: planning time, operating
time, fluoroscopy time/frequency, screw placement accuracy, intra-
operative blood loss, postoperative physical performance/functional
outcomes and wound/fracture healing time.

Overall, a robotic intervention was found to have a net positive
impact on trauma surgery, with reduced operating [43]/fluoroscopy
times [44] and fluoroscopy frequency [44]. Improvements in screw
placement accuracy were reported in the fixation of pelvic fractures [45].
Although intraoperative blood loss was reduced, no current consensus
exists on the definition of a clinically relevant volume. The Standardised
Endpoints for Perioperative Medicine collaborative is currently con-
ducting a review to reach a consensus on this matter [46]. Postoperative
physical performance and functional outcomes were not enhanced in the
studies performed, and fracture healing times were unaffected.
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Overall, the available quality of evidence reviewed was considered
low, with a high risk of bias. It is difficult to find any directly tangible
benefits to the patient with the available body of evidence, especially
considering the increased cost of robotic surgical equipment. More work
is needed to justify the use of robotics more firmly in the future.

Robotics in rehabilitation

Robotic and sensor-based neurologic rehabilitation programmes are
well established and recommended for upper [47] and lower [48] limb
rehabilitation. The importance of rehabilitation following trauma or
elective procedures is proven, and the increasing paucity of available
rehabilitation resources may mean that clinicians should prove innova-
tive to cope with an increasing clinical burden.

Robotic treatment of the lower extremity focuses primarily on promoting
prescribed gait patterns

The treatment of upper limb injuries remains much more complex.
This is partly due to the complexity of upper limb movement (there are
27 degrees of freedom in the upper limb). Both the variety and
complexity of tasks required by the upper limb further complicate the
rehabilitative process. It has been mainly used in the training for prep-
aration of the myeloelectric prosthesis for upper limb amputees. This
enables patients to perform more intuitive movements when their pros-
thesis are available and in turn encourage compliance of the use of
prosthesis. In a recent pioneering study [47], Jakob et al. designed a
matrix-like approach to treating upper limb injuries using integrated
robotic and sensor-based devices to address distal and proximal training.
Patients were stratified by level of disability.

In a multicentre randomised controlled trial, robotic group therapy
was found to reduce costs by 50% with equivalent outcomes.

Much work remains to be done—and it should be noted that the
initial equipment and training costs may be high. However, any initial
expense or investment may eventually be offset by savings accrued by the
long-term economic benefits of computer-assisted rehabilitation without
adversely affecting patient outcomes.

REHABILITATION

There are further uses for AI in orthopaedic rehabilitation that extend
beyond robotics. Wearable technology offers a source of rich, epidemi-
ological data through surveillance of physical behaviour [49]. Smart
wearables employ AI to monitor behaviour, activity recognition, and
pattern recognition. This allows treating physician or physiotherapist to
monitor exercise adherence and accuracy, which can often be poor. Burns
et al. [50] tested performance accuracy on individuals who performed a
rotator-cuff exercise protocol whilst wearing an Apple Watch. Various
methods of supervised learning were used to classify exercise accuracy.
Simple interventions such as these which are easily adapted by patients
are promising, though further research on such techniques is warranted
as they are relatively novel.

Though the topic of augmented reality will be covered in more detail
further on, its use in the process of patient rehabilitation has increased in
recent years, with the development of technologies such as the Cave
Automatic Virtual Environment. This system consists in a square room
typically composed by either 4 or 6 six back projected screens which are
combined with glasses for 3D vision. This in turn provides a continuous
projection surface. A linked head-tracking device allows display of real-
time images according to the participant's point of view, while the
audio stimuli are delivered by speakers positioned around the device
[51]. Such devices are not only useful in helping create a controlled
environment where patient rehabilitation can be tested but they may also
allow rehabilitators to assess patient confidence and slowly build it up in
a measured, observable manner without subjecting the patient to undue
risk out in the community.
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Widespread advances in telecommunication technology have
increased our ability to deliver rehabilitation via the internet (i.e. tele-
rehabilitation). The use of such technology in conjunction with the
aforementioned VR and wearable technologies will no doubt broaden the
access of patients to rehabilitation, particularly when they are located in
remote areas which are poorly served by local healthcare services. This in
turn may ensure improved continuity of care as well as patients moni-
toring and postoperative counselling [52]. Several studies have shown
that telerehabilitation is effective to improve clinical outcomes in
disabling conditions [52]. In a systematic review of the literature con-
ducted by Agostini et al. [52], a strong positive effect was found for
patients following orthopaedic surgery, suggesting that the increased
intensity provided by telerehabilitation holds promise as a method of
rehabilitation.

SIMULATION, TEACHING, AND TRAINING IN ORTHOPAEDICS

The traditional orthopaedic approach to training has been one of
apprenticeship, whereby orthopaedic trainees are slowly guided towards
a more complex skill set based on operating time spent effectively
practising on patients under supervision. This training model bears sig-
nificant drawbacks regarding time efficiency and patient safety and relies
on the goodwill of surgical trainers within the context of adequate service
provision.

The concept of virtual surgical training has evolved to bypass some of
these obstacles. The aim is a more efficient surgical training model,
making optimal use of available technological resources to improve a
surgeon's skillset with maximal training opportunities at a minimal cost
to the patient. The first surgical simulators can be traced back to the early
nineties [53]. However, the relatively primitive technology resulted in a
reluctance to adopt technology as a surgical training tool.

With the advent of more modern simulation technology, research has
focused on adapting technology to allow surgeons to develop skills in
several fields, from procedural (arthroscopic/arthroplasty) to sensory
(haptic feedback technology).

The application of AI technology to simulators enhances the training
experience by providing personalised feedback to the user, while also
automating an immersive surgical experience for visualisation of patient
anatomy [54]. AI is able to enhance surgical training simulators by
evaluating a subject's performance and providing individualised feed-
back to the end user [55].

The value of retention of surgical skills gained in simulation has been
demonstrated at six months post training [56], though this finding is
contradicted in other parts of the literature [57]. It is important to note
that studies on the subject of retention are rare and usually involve
different procedures, so drawing any firm conclusions on the matter is
complex. Simulators fail to simulate the stressful conditions present in
emergency surgery. However, one could argue that the purpose of the
surgical simulation is to develop motor skills that are second nature, to be
deployed unconsciously in times of stress. In addition, it helps surgeons
to maintain the skills e.g. in the time of COVID – 19 where there is a lack
of cases.

For surgical simulators to be used successfully, they should be
deployed within a predetermined training framework containing several
key steps. These begin with a sound theoretical understanding of the
techniques used, followed by simple simulators and more complex tasks.
These are followed by a cadaveric test run before the surgeon in training
can operate on human patients. While this model is sound in theory, the
realities of the associated costs mean that such a model is likely to see an
uptake in general surgical use once the resources to do so become widely
and more cheaply available.

The future of arthroscopic simulators lies in the employment of haptic
feedback devices, though these are only widely available. Current active
haptic technology, which employs motors to simulate tactile feedback,
does not demonstrate sufficient face validity or match the sophistication
of passive haptic systems in high-fidelity arthroscopy simulators.
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VR IN SIMULATION

VR technology has come a long way in its application over the last two
decades. Initial application from its use in aerospace technology has
translated to use in multiple professional and recreational fields,
including engineering, gaming, military technology, and medical sci-
ence. The technology in question has been used for prosthetic sizing/
placement, remote surgery, phantom limb pain therapy, physical ther-
apy, joint injection as well as mobile app-based education [58].

The use of VR models can not only be employed in surgical training
but also within the operating theatre itself, with the ultimate aim being
aims to increase operative accuracy and improve safety by decreasing
procedure-related complications [58].

AI can be used in conjunction with VR to enhance the personalization
and adaptation of VR interventions. AI can also improve the interactivity
and realism of VR experiences by enabling natural language processing,
computer vision, and ML capabilities [59].

VR can be broken down into 3 subcategories [58].

1) Full visual immersion: This is in an artificial, computer-generated
environment. Artificial sounds and other stimuli may also be gener-
ated. This can be used in preoperative planning, patient education,
and surgical training.

2) Augmented reality: A digital display overlay on real-world surfaces,
which allows for depth perception. This may be used in preoperative
planning, intraoperative guidance, and training

3) Mixed reality: This technology uses a digital display overlay com-
bined with interactive projected holograms. The surgeon views the
real world while manipulating digital content generated by the device
using commands and hand gestures. This may be used in preoperative
planning, intraoperatively for guidance and in training.

The theory is that visual and retinal displays worn on a surgeon's face
in the form of goggles or glasses may relay information to the operator in
real-time—displaying both geometric guidance and the accuracy of in-
strument placement. Such technology has excellent synergy with other
technological advances, including robotic surgery, and the two tech-
niques are increasingly used in conjunction with one another.

Retinal displays and the use of mixed reality may also be used to view
3D representations of preoperative imaging, allowing surgeons to better
orientate themselves according to the patient's native anatomy.

There is level I evidence supporting the use of VR in surgical training
with increased procedural accuracy and the completion of tasks
demonstrated in medical students using the technology compared to
those using guides [60]. VR is thought to augment learning the proce-
dural workflow and movements required to perform surgical tasks.

A recent study comparing VR arthroscopic simulation [61] with
cadaveric models demonstrated superiority in task completion time.
There is scant evidence in the literature comparing the two training
techniques. The benefits of simulated surgery lie primarily in cost savings
compared to the expense and sparsity of cadaveric training models.

A potential benefit of augmented reality that has yet to be fully
explored is the potential reduction in radiation exposure to the patient
and operating theatre staff, with sensors being able to direct the surgeon
to place metalwork without the need for potentially harmful X-rays [62].

Although the initial costs associated with the use of VR technology
may seem prohibitive, surgeons considering its use should consider the
fact that these costs may be offset by the gains improved performance,
training and ultimately the patient.

CONCLUSIONS

The field of AI in orthopaedics is exponentially growing. It enhances
surgeons’ performance in many different areas, including diagnosis, and
precision of surgery. This in turn aims to improve the outcome of patients
care. The ability of surgeons to keep pace with this rapidly evolving field
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will be vital to exploiting future technological developments. Future
accessibility and education remain key to the achievement of this goal. A
significant volume of research contained within the engineering litera-
ture may not be readily accessible to orthopaedic surgeons and may not
reach readers with a clinical background [63]. Future integration of AI,
robotic, and VR-related education is the solution. Changes must be
implemented to medical and surgical curricula at an early stage in order
to ensure a future optimised for the highest quality of patient care.
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