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Preface

The technical report “Application of lumped-parameter models” is divided into three
numbered sections, and a list of references is situated after the last section. Tables, equa-
tions and figures are indicated with consecutive numbers. Cited references are marked
as e.g. Petyt (1998), with author specification and year of publication in the text.

The work within this report has only been possible with the financial support from
the Energy Research Programme (ERP)1 administered by the Danish Energy Author-
ity. The project is associated with the ERP programme “Soil–Structure interaction of
Foundations for Offshore Wind Turbines”. The funding is sincerely acknowledged.

Aalborg, December 11, 2006 Lars Bo Ibsen & Morten Liingaard

1In danish: “Energiforskningsprogrammet (EFP)”
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Chapter 1

Application of

lumped-parameter models

This technical report concerns the lumped-parameter models for a suction caisson
with a ratio between skirt length and foundation diameter equal to 1/2, embedded
into an viscoelastic soil. The models are presented for three different values of the
shear modulus of the subsoil (section 1.1). Subsequently, the assembly of the dy-
namic stiffness matrix for the foundation is considered (section 1.2), and the solu-
tion for obtaining the steady state response, when using lumped-parameter models is
given(section 1.2).

1.1 Lumped-parameter models for the suction caisson

The lumped-parameter models have been constructed according to the procedure in Ibsen
and Liingaard (2006c). After a brief summary of the modelling procedure for determining
the exact solution, the lumped-parameter models for each degree of freedom are given.

1.1.1 Determination of the exact solution for the dynamic stiffness

The frequency dependent dynamic stiffness coefficients are determined by means of a dy-
namic three-dimensional coupled Boundary Element/Finite Element (BE/FE) program
BEASTS by Andersen and Jones (2001). The evaluation of the impedance of suction
caisson foundations for offshore wind turbines have been reported in details in Ibsen and
Liingaard (2006b) and Ibsen and Liingaard (2006a).

The BE/FE model of the suction caisson consists of four sections: a massless finite
element section that forms the top of the foundation where the load is applied, a finite
element section of the skirts, a boundary element domain inside the skirts and, finally,
a boundary element domain outside the skirts that also forms the free surface. Again,
quadratic interpolation is employed. The models of the suction caisson and the subsoil
contain approx. 100 finite elements and 350 boundary elements. The mesh of the free
surface is truncated at a distance of 30 m (6 times radius R) from the centre of the
foundation. The model is illustrated in Figure 1.1. The properties of the soil and the
suction caisson used in the BE/FE analyses are given in Table 1.1. Note that ρf of the
lid of the caisson foundation is zero and and that ρf = ρs for the skirt, in order to model
a massless foundation.

— 1 —



2 Application of lumped-parameter models

t

R

H

lid

skirt

Elastic soil

(a) (b)

Figure 1.1: Geometry (a) and BE/FE model (b) of the suction caisson.

The dynamic behaviour of the caisson is influenced by ratio between the stiffness
of the soil and the stiffness of the structure, see Ibsen and Liingaard (2006b). For low
values of Gs the influence of the skirt flexibility vanishes, i.e. the caisson reacts as a rigid
foundation. Rigid behaviour can be assumed for Gs ≤ 1.0 MPa (Ef is constant). On the
other hand, the dynamic behaviour of the suction caisson tends towards the frequency
dependent behaviour of the surface foundation for high values of Gs (1000 MPa). To
show the effects of Gs on the dynamic behaviour of the caisson, the sliding (horizontal)
impedance for three values of Gs is shown in Figure 1.2. Note that the impedance
changes as the shear modulus of the soil Gs increases. The impedance for Gs = 1 MPa
and Gs = 10 MPa corresponds to that of a rigid suction caisson where the influence of
the skirt flexibility vanishes. In contrast, the impedance for Gs = 100 MPa corresponds
more or less to the behaviour of a surface footing.

Table 1.1: Model properties for the BE/FE analyses

Property value

Foundation radius R 6 m
Skirt length H 6 m
Skirt thickness t 30 mm

Shear modulus (soil)† Gs 1,10,100 MPa
Poisson’s ratio (soil) νs 0.25
Mass density (soil) ρs 1000 kg/m3

Loss factor (soil) ηs 5 %
Young’s modulus (foundation) Ef 210 GPa
Poisson’s ratio (foundation) νf 0.25
Mass density (foundation)‡ ρf 0/1000 kg/m3

Loss factor (foundation) ηf 2 %

† The models are constructed for three values of Gs
‡ρf = 0 for the lid of the caisson and ρf = ρs for the skirt

Ibsen & Liingaard



1.1 Lumped-parameter models for the suction caisson 3
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Figure 1.2: Sliding impedance: variation of soil stiffness. νs = 0.25 and ηs = 5%.
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4 Application of lumped-parameter models

Table 1.2: Vertical: Type and numbers of internal degrees of freedom for the lumped-
parameter models

Gs Type No. of internal dofs

1.0 3 second-order (kcm†) 3

10 2 second-order (kcm†) + 1 first-order (kcm‡) 3

100 2 second-order (kcm†) + 1 first-order (kcm‡) 3

† Spring-dashpot-mass model, see Figure 1.10b in Ibsen and Liingaard (2006c)
‡ Spring-dashpot-mass model, see Figure 1.9b in Ibsen and Liingaard (2006c)

1.1.2 Lumped-parameter models for vertical vibrations

The type of approximation for the vertical lumped-parameter models is summarized in
Table 1.2 and the approximation is compared with the rigourous solution in Figure 1.3.
The pole-residue coefficients, the stiffness, damping and mass matrices of the models are
given in the following.

Pole-residue coefficients

Table 1.3: Vertical: Poles and residues

Poles s Residues A

Gs = 1 MPa −3.6431 + 5.0238i −5.7562 − 25.4628i
−3.6431 − 5.0238i −5.7562 + 25.4628i
−1.2197 + 2.8101i −2.5259 + 3.6613i
−1.2197 − 2.8101i −2.5259 − 3.6613i
−0.5940 + 0.9980i −0.3678 + 5.1392i
−0.5940 − 5.9980i −0.3678 − 5.1392i

Gs = 10 MPa −2.5113 +0.5776
−0.8520 + 4.5455i −1.1955 − 2.3842i
−0.8520 − 4.5455i −1.1955 + 2.3842i
−0.7600 + 2.2086i −1.1895 − 0.2391i
−0.7600 − 2.2086i −1.1895 + 0.2391i

Gs = 100 MPa −23.8012 +89.6892
−1.1905 + 2.2720i −0.4714 + 2.8058i
−1.1905 − 2.2720i −0.4714 − 2.8058i
−0.9607 + 4.7741i +0.4145 + 1.7268i
−0.9607 − 4.7741i +0.4145 − 1.7268i

Ibsen & Liingaard



1.1 Lumped-parameter models for the suction caisson 5

Matrices for the models

The resulting matrices of the models are given by Equations 1.1 and 1.2. The model
structure stated in Equation 1.1 corresponds to the lumped-parameter model with three
complex conjugate poles (Gs = 1 MPa), whereas the model structure stated in Equa-
tion 1.2 corresponds to the lumped-parameter models with one real and two complex
conjugate poles (Gs = 10 MPa and 100 MPa). The corresponding coefficients are listed
in Table 1.4.

KVV = K0

V V









γ2

1

µ1

+
γ2

2

µ2

+
γ2

3

µ3

−κ1 −κ3 −κ5

−κ1 κ1 + κ2 0 0
−κ3 0 κ3 + κ4 0
−κ5 0 0 κ5 + κ6









(1.1a)

CVV =
R

cS

K0

V V









c∞ −γ1 −γ2 −γ3

−γ1 2γ1 0 0
−γ2 0 2γ2 0
−γ3 0 0 2γ3









(1.1b)

MVV =
R2

c2

S

K0

V V









0 0 0 0
0 µ1 0 0
0 0 µ2 0
0 0 0 µ3









(1.1c)

KVV = K0

V V









γ2

1

µ1

+
γ2

2

µ2

+
γ2

3

µ3

−κ1 −κ3 0

−κ1 κ1 + κ2 0 0
−κ3 0 κ3 + κ4 0
0 0 0 0









(1.2a)

CVV =
R

cS

K0

V V









c∞ −γ1 −γ2 −γ3

−γ1 2γ1 0 0
−γ2 0 2γ2 0
−γ3 0 0 γ3









(1.2b)

MVV =
R2

c2

S

K0

V V









0 0 0 0
0 µ1 0 0
0 0 µ2 0
0 0 0 µ3









(1.2c)

Note that the limiting damping parameter for Gs = 100 MPa has been fitted manually.
Since the impedance for high values of Gs approaches the frequency dependent behaviour
of the surface footings, the solution in Ibsen and Liingaard (2006b) is not valid. c∞ for
Gs = 100 MPa in Table 1.4 is in between the value for the suction caisson and a surface
footing.
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6 Application of lumped-parameter models

Table 1.4: Vertical: Model coefficients

κ coeff. Value γ coeff. Value µ coeff. Value misc Value

Gs = 1 MPa κ1 11.8449 γ1 2.8176 µ1 0.7734 c∞ 2.2581
κ2 17.9400 γ2 0.0037 µ2 0.0062 K0

V V 7.9747
κ3 0.6215 γ3 0.2296 µ3 0.1882
κ4 −0.3958
κ5 2.3510
κ6 −0.5848

Gs = 10 MPa κ1 2.5145 γ1 1.3043 µ1 1.5309 c∞ 2.3107
κ2 30.2269 γ2 0.8653 µ2 1.1385 K0

V V 7.7933
κ3 2.2228 γ3 0.0916 µ3 0.0365
κ4 3.9882

Gs = 100 MPa κ1 −0.4212 γ1 0.0107 µ1 0.0111 c∞ 0.4208†

κ2 0.6852 γ2 0.0145 µ2 0.0122 K0

V V 6.4658
κ3 0.4132 γ3 0.1583 µ3 0.0067
κ4 −0.3329

† Manual fit.

Ibsen & Liingaard
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Figure 1.3: Vertical impedance: Boundary element solution and the corresponding
lumped-parameter approximation. νs = 0.25 and ηs = 5%.
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8 Application of lumped-parameter models

Table 1.5: Sliding: Type and numbers of internal degrees of freedom for the lumped-
parameter models

Gs Type No. of internal dofs

1.0 3 second-order (kcm†) 3

10 3 second-order (kcm†) 3

100 2 second-order (kcm†) + 1 first-order (kcm‡) 3

† Spring-dashpot-mass model, see Figure 1.10b in Ibsen and Liingaard (2006c)
‡ Spring-dashpot-mass model, see Figure 1.9b in Ibsen and Liingaard (2006c)

1.1.3 Lumped-parameter models for sliding vibrations

The type of approximation for the horizontal lumped-parameter models is summarized in
Table 1.5 and the approximation is compared with the rigourous solution in Figure 1.4.
The pole-residue coefficients, the stiffness, damping and mass matrices of the models are
given in the following.

Pole-residue coefficients

Table 1.6: Sliding: Poles and residues

Poles s Residues A

Gs = 1 MPa −3.1835 + 4.8983i −14.2305 − 32.9079i
−3.1835 − 4.8983i −14.2305 + 32.9079i
−0.5497 + 5.7479i −1.6722 + 4.9951i
−0.5497 − 5.7479i −1.6722 − 4.9951i
−1.0329 + 4.4915i +7.9207 + 11.3350i
−1.0329 − 4.4915i +7.9207 − 11.3350i

Gs = 10 MPa −2.9289 + 7.0308i −6.6629 − 23.0006i
−2.9289 − 7.0308i −6.6629 + 23.0006i
−0.5447 + 5.7685i −0.8154 + 3.0212i
−0.5447 − 5.7685i −0.8154 − 3.0212i
−0.8437 + 3.7649i −2.4717 + 4.9915i
−0.8437 − 3.7649i −2.4717 − 4.9915i

Gs = 100 MPa −14.9506 +45.7048
−0.6453 + 5.5078i −0.0784 + 0.6483i
−0.6453 − 5.5078i −0.0784 − 0.6483i
−1.2456 + 3.0948i −0.9869 + 2.9066i
−1.2456 − 3.0948i −0.9869 − 2.9066i

Ibsen & Liingaard



1.1 Lumped-parameter models for the suction caisson 9

Matrices for the models

The resulting matrices of the models are given by Equations 1.3 and 1.4. The model
structure stated in Equation 1.3 corresponds to the lumped-parameter model with three
complex conjugate poles (Gs = 1 and 10 MPa), whereas the model structure stated in
Equation 1.4 corresponds to the lumped-parameter model with one real and two complex
conjugate poles (Gs = 100 MPa). The corresponding coefficients are listed in Table 1.7.

KHH = K0

HH









γ2

1

µ1

+
γ2

2

µ2

+
γ2

3

µ3

−κ1 −κ3 −κ5

−κ1 κ1 + κ2 0 0
−κ3 0 κ3 + κ4 0
−κ5 0 0 κ5 + κ6









(1.3a)

CHH =
R

cS

K0

HH









c∞ −γ1 −γ2 −γ3

−γ1 2γ1 0 0
−γ2 0 2γ2 0
−γ3 0 0 2γ3









(1.3b)

MHH =
R2

c2

S

K0

HH









0 0 0 0
0 µ1 0 0
0 0 µ2 0
0 0 0 µ3









(1.3c)

KHH = K0

HH









γ2

1

µ1

+
γ2

2

µ2

+
γ2

3

µ3

−κ1 −κ3 0

−κ1 κ1 + κ2 0 0
−κ3 0 κ3 + κ4 0
0 0 0 0









(1.4a)

CHH =
R

cS

K0

HH









c∞ −γ1 −γ2 −γ3

−γ1 2γ1 0 0
−γ2 0 2γ2 0
−γ3 0 0 γ3









(1.4b)

MHH =
R2

c2

S

K0

HH









0 0 0 0
0 µ1 0 0
0 0 µ2 0
0 0 0 µ3









(1.4c)

Note that the limiting damping parameter for Gs = 100 MPa has been fitted manually.
Since the impedance for high values of Gs approaches the frequency dependent behaviour
of the surface footings, the solution in Ibsen and Liingaard (2006a) is not valid. c∞ for
Gs = 100 MPa in Table 1.7 is in between the value for the suction caisson and a surface
footing.
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10 Application of lumped-parameter models

Table 1.7: Sliding: Model coefficients

κ coeff. Value γ coeff. Value µ coeff. Value misc Value

Gs = 1 MPa κ1 18.5077 γ1 4.4095 µ1 1.3851 c∞ 2.1480
κ2 28.7646 γ2 0.0862 µ2 0.1569 K0

HH 9.4540
κ3 3.0895 γ3 0.5374 µ3 0.5203
κ4 2.1411
κ5 −7.1135
κ6 18.1655

Gs = 10 MPa κ1 8.9522 γ1 2.2798 µ1 0.7784 c∞ 2.2035
κ2 36.2012 γ2 0.0344 µ2 0.0631 K0

HH 9.2162
κ3 1.5156 γ3 0.1821 µ3 0.2158
κ4 0.6045
κ5 3.0832
κ6 0.1297

Gs = 100 MPa κ1 0.1224 γ1 0.0013 µ1 0.0021 c∞ 0.9275†

κ2 −0.0590 γ2 0.0423 µ2 0.0339 K0

HH 7.8288
κ3 0.8450 γ3 0.2045 µ3 0.0137
κ4 −0.4672

† Manual fit.

Ibsen & Liingaard
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Figure 1.4: Sliding impedance: Boundary element solution and the corresponding
lumped-parameter approximation. νs = 0.25 and ηs = 5%.
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12 Application of lumped-parameter models

Table 1.8: Rocking: Type and numbers of internal degrees of freedom for the lumped-
parameter models

Gs Type No. of internal dofs

1.0 2 second-order (kcm†) + 1 first-order (kcm‡) 3

10 2 second-order (kcm†) + 1 first-order (kcm‡) 3

100 2 second-order (kcm†) + 1 first-order (kcm‡) 3

† Spring-dashpot-mass model, see Figure 1.10b in Ibsen and Liingaard (2006c)
‡ Spring-dashpot-mass model, see Figure 1.9b in Ibsen and Liingaard (2006c)

1.1.4 Lumped-parameter models for rocking vibrations

The type of approximation for the rocking lumped-parameter models is summarized in
Table 1.8 and the approximation is compared with the rigourous solution in Figure 1.5.
The pole-residue coefficients, the stiffness, damping and mass matrices of the models are
given in the following.

Pole-residue coefficients

Table 1.9: Rocking: Poles and residues

Poles s Residues A

Gs = 1 MPa −2.2574 3.0119
−0.4660 + 4.2593i +0.2815 + 0.9699i
−0.4660 − 4.2593i +0.2815 − 0.9699i
−0.2503 + 6.2918i +0.0514 − 0.2789i
−0.2503 − 6.2918i +0.0514 + 0.2789i

Gs = 10 MPa −8.2898 + 5.8728i −11.3577 − 30.0471i
−8.2898 − 5.8728i −11.3577 + 30.0471i
−0.9062 +0.1849
−0.7761 + 4.2620i +0.8639 + 1.9198i
−0.7761 − 4.2620i +0.8639 − 1.9198i

Gs = 100 MPa −21.2318 +30.5256
−2.2326 + 0.4371i −1.2139 − 4.1473i
−2.2326 − 0.4371i −1.2139 + 4.1473i
−0.6393 + 4.3133i +0.4135 + 0.2652i
−0.6393 − 4.3133i +0.4135 − 0.2652i
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Matrices for the models

The resulting matrices of the models are given by Equation 1.5. The model structure
stated in Equation 1.5 corresponds to the lumped-parameter models with one real and
two complex conjugate poles. The corresponding coefficients are listed in Table 1.10.

KMM = K0

MM









γ2

1

µ1

+
γ2

2

µ2

+
γ2

3

µ3

−κ1 −κ3 0

−κ1 κ1 + κ2 0 0
−κ3 0 κ3 + κ4 0
0 0 0 0









(1.5a)

CMM =
R

cS

K0

MM









c∞ −γ1 −γ2 −γ3

−γ1 2γ1 0 0
−γ2 0 2γ2 0
−γ3 0 0 γ3









(1.5b)

MMM =
R2

c2

S

K0

MM









0 0 0 0
0 µ1 0 0
0 0 µ2 0
0 0 0 µ3









(1.5c)

Table 1.10: Rocking: Model coefficients

κ coeff. Value γ coeff. Value µ coeff. Value misc Value

Gs = 1 MPa κ1 −0.1161 γ1 0.3572 µ1 1.4275 c∞ 0.8055
κ2 56.7137 γ2 0.0202 µ2 0.0433 K0

MM 16.5930
κ3 −0.5946 γ3 0.5910 µ3 0.2618
κ4 1.3887

Gs = 10 MPa κ1 11.9561 γ1 1.2770 µ1 0.1540 c∞ 0.8415
κ2 3.9427 γ2 0.0561 µ2 0.0722 K0

MM 15.8830
κ3 −1.0696 γ3 0.2252 µ3 0.2485
κ4 2.4251

Gs = 100 MPa κ1 −0.5945 γ1 0.0820 µ1 0.1283 c∞ 0.3959†

κ2 3.033 γ2 8.6772 µ2 3.8865 K0

MM 11.8941
κ3 19.9167 γ3 0.0677 µ3 0.0032
κ4 0.1989

† Manual fit.

Note that the limiting damping parameter for Gs = 100 MPa has been fitted man-
ually. Since the impedance for high values of Gs approaches the frequency dependent
behaviour of the surface footings, the solution in Ibsen and Liingaard (2006a) is not valid.
c∞ for Gs = 100 MPa in Table 1.10 is in between the value for the suction caisson and
a surface footing.
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Figure 1.5: Rocking impedance: Boundary element solution and the corresponding
lumped-parameter approximation. νs = 0.25 and ηs = 5%.
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Table 1.11: Coupling: Type and numbers of internal degrees of freedom for the lumped-
parameter models

Gs Type No. of internal dofs

1.0 2 second-order (kcm†) + 1 first-order (kcm‡) 3

10 2 second-order (kcm†) + 1 first-order (kcm‡) 3

100 2 second-order (kcm†) + 1 first-order (kcm‡) 3

† Spring-dashpot-mass model, see Figure 1.10b in Ibsen and Liingaard (2006c)
‡ Spring-dashpot-mass model, see Figure 1.9b in Ibsen and Liingaard (2006c)

1.1.5 Lumped-parameter models for the coupling term

The type of approximation for the coupling lumped-parameter models is summarized in
Table 1.11 and the approximation is compared with the rigourous solution in Figure 1.6.
The pole-residue coefficients, the stiffness, damping and mass matrices of the models are
given in the following.

Pole-residue coefficients

Table 1.12: Coupling: Poles and residues

Poles s Residues A

Gs = 1 MPa −3.2542 +9.7824
−0.6757 + 4.2024i +1.4116 + 3.6383i
−0.6757 − 4.2024i +1.4116 − 3.6383i
−0.3401 + 5.9793i +1.0812 + 1.3791i
−0.3401 − 5.9793i +1.0812 − 1.3791i

Gs = 10 MPa −2.9049 +5.5089
−0.5912 + 4.1399i +1.9160 + 2.2139i
−0.5912 − 4.1399i +1.9160 − 2.2139i
−0.4251 + 6.1778i +2.2902 − 0.0207i
−0.4251 − 6.1778i +2.2902 + 0.0207i

Gs = 100 MPa −3.5564 + 8.5065i +21.7153 + 3.5724i
−3.5564 − 8.5065i +21.7153 − 3.5724i
−1.2170 +0.2659
−0.9167 + 3.5203i +2.7409 + 1.3198i
−0.9167 − 3.5203i +2.7409 − 1.3198i
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16 Application of lumped-parameter models

Matrices for the models

The resulting matrices of the models are given by Equation 1.6. The model structure
stated in Equation 1.6 corresponds to the lumped-parameter models with one real and
two complex conjugate poles. The corresponding coefficients are listed in Table 1.13.

KHM = K0

HM









γ2

1

µ1

+
γ2

2

µ2

+
γ2

3

µ3

−κ1 −κ3 0

−κ1 κ1 + κ2 0 0
−κ3 0 κ3 + κ4 0
0 0 0 0









(1.6a)

CHM =
R

cS

K0

HM









c∞ −γ1 −γ2 −γ3

−γ1 2γ1 0 0
−γ2 0 2γ2 0
−γ3 0 0 γ3









(1.6b)

MHM =
R2

c2

S

K0

HM









0 0 0 0
0 µ1 0 0
0 0 µ2 0
0 0 0 µ3









(1.6c)

(1.6d)

Table 1.13: Coupling: Model coefficients

κ coeff. Value γ coeff. Value µ coeff. Value misc Value

Gs = 1 MPa κ1 −3.1170 γ1 0.1836 µ1 0.5399 c∞ 1.3253
κ2 22.4813 γ2 0.0931 µ2 0.1377 K0

HM −6.4765
κ3 −2.0263 γ3 0.9238 µ3 0.2839
κ4 4.5215

Gs = 10 MPa κ1 −5.0128 γ1 0.8799 µ1 2.0697 c∞ 1.4061
κ2 84.3772 γ2 0.2917 µ2 0.4935 K0

HM −6.1043
κ3 −3.0686 γ3 0.6528 µ3 0.2247
κ4 11.6986

Gs = 100 MPa κ1 −0.4212 γ1 0.0107 µ1 0.0111 c∞ 0.4208†

κ2 0.6852 γ2 0.0145 µ2 0.0122 K0

HM −4.0359
κ3 0.4132 γ3 0.1583 µ3 0.0067
κ4 −0.3329

† Manual fit.

Note that the limiting damping parameter for Gs = 100 MPa has been fitted man-
ually. Since the impedance for high values of Gs approaches the frequency dependent
behaviour of the surface footings, the solution in Ibsen and Liingaard (2006a) is not valid.
c∞ for Gs = 100 MPa in Table 1.13 is in between the value for the suction caisson and
a surface footing.
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Figure 1.6: Coupling impedance: Boundary element solution and the corresponding
lumped-parameter approximation. νs = 0.25 and ηs = 5%.
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18 Application of lumped-parameter models

Table 1.14: Torsion: Type and numbers of internal degrees of freedom for the lumped-
parameter models

Gs Type No. of internal dofs

1.0 2 second-order (kcm†) + 1 first-order (kcm‡) 3

10 2 second-order (kcm†) + 1 first-order (kcm‡) 3

100 2 second-order (kcm†) + 1 first-order (kcm‡) 3

† Spring-dashpot-mass model, see Figure 1.10b in Ibsen and Liingaard (2006c)
‡ Spring-dashpot-mass model, see Figure 1.9b in Ibsen and Liingaard (2006c)

1.1.6 Lumped-parameter models for the torsional term

The type of approximation for the torsional lumped-parameter models is summarized in
Table 1.14 and the approximation is compared with the rigourous solution in Figure 1.7.
The pole-residue coefficients, the stiffness, damping and mass matrices of the models are
given in the following.

Pole-residue coefficients

Table 1.15: Torsion: Poles and residues

Poles s Residues A

Gs = 1 MPa −2.0852 + 4.7267i −0.9261 − 3.4940i
−2.0852 − 4.7267i −0.9261 + 3.4940i
−1.3704 +0.8947
−0.5230 + 4.4196i −0.0782 + 1.6683i
−0.5230 − 4.4196i −0.0782 − 1.6683i

Gs = 10 MPa −2.8905 + 5.2170i −1.6770 − 4.9680i
−2.8905 − 5.2170i −1.6770 + 4.9680i
−1.2508 +0.6362
−0.5122 + 4.3775i −0.1489 + 1.5255i
−0.5122 − 4.3775i −0.1489 − 1.5255i

Gs = 100 MPa −4.6430 +8.7857
−0.6051 + 4.2483i +0.4685 + 1.4270i
−0.6051 − 4.2483i +0.4685 − 1.4270i
−0.4184 + 7.1604i +0.9069 + 1.0041i
−0.4184 − 7.1604i +0.9069 − 1.0041i
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Matrices for the models

The resulting matrices of the models are given by Equation 1.7. The model structure
stated in Equation 1.7 corresponds to the lumped-parameter models with one real and
two complex conjugate poles. The corresponding coefficients are listed in Table 1.16.

KTT = K0

TT









γ2

1

µ1

+
γ2

2

µ2

+
γ2

3

µ3

−κ1 −κ3 0

−κ1 κ1 + κ2 0 0
−κ3 0 κ3 + κ4 0
0 0 0 0









(1.7a)

CTT =
R

cS

K0

TT









c∞ −γ1 −γ2 −γ3

−γ1 2γ1 0 0
−γ2 0 2γ2 0
−γ3 0 0 γ3









(1.7b)

MTT =
R2

c2

S

K0

TT









0 0 0 0
0 µ1 0 0
0 0 µ2 0
0 0 0 µ3









(1.7c)

(1.7d)

Table 1.16: Torsion: Model coefficients

κ coeff. Value γ coeff. Value µ coeff. Value misc Value

Gs = 1 MPa κ1 1.9481 γ1 0.7212 µ1 0.3459 c∞ 0.7257
κ2 7.2834 γ2 0.0008 µ2 0.0015 K0

TT 19.4817
κ3 0.1500 γ3 0.4764 µ3 0.3477
κ4 −0.1199

Gs = 10 MPa κ1 2.5375 γ1 0.6772 µ1 0.2343 c∞ 0.7382
κ2 5.7962 γ2 0.0032 µ2 0.0063 K0

TT 19.1516
κ3 0.2923 γ3 0.4066 µ3 0.3251
κ4 −0.1697

Gs = 100 MPa κ1 −2.1190 γ1 0.1165 µ1 0.2784 c∞ 0.5363†

κ2 16.4413 γ2 0.0292 µ2 0.0482 K0

TT 16.5191
κ3 −0.7566 γ3 0.4075 µ3 0.0878
κ4 1.6437

† Manual fit.

Note that the limiting damping parameter for Gs = 100 MPa has been fitted man-
ually. Since the impedance for high values of Gs approaches the frequency dependent
behaviour of the surface footings, the solution in Ibsen and Liingaard (2006a) is not valid.
c∞ for Gs = 100 MPa in Table 1.16 is in between the value for the suction caisson and
a surface footing.
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Figure 1.7: Torsional impedance: Boundary element solution and the corresponding
lumped-parameter approximation. νs = 0.25 and ηs = 5%.
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1.2 Assembly of the global dynamic stiffness matrix

The dynamic stiffness for each degree of freedom is given by three matrices Kdof , Cdof

and Mdof . The subscript ’dof’ denotes the degree of freedom, which is either VV, HH,

MM, TT or HM. The matrices describing the dynamic stiffness for each of the degrees
of freedom are denoted as local matrices in the following. Each local matrix contains
frequency independent coefficients, which are determined by the procedure applied in
the previous sections. The size of Kdof , Cdof and Mdof are given by the numbers and
types of discrete elements used to approximate the dynamic stiffness. The size of the
local matrices are denoted by ndof .

1.2.1 Structure of the local dynamic stiffness matrices

Each local matrix can be divided into four sections. The first section contain the stiffness,
damping or mass coefficient of the external node of the lumped-parameter model, i.e the
coefficient that enters the finite element formulation of the structural system. The second
section contains the coefficients of the internal nodes of the lumped-parameter model,
and finally, the third and fourth section contain coefficients that link the external and
internal nodes. The structure of Kdof , Cdof and Mdof are given as

Kdof =









k
11

dof
k
12

dof

k
21

dof
k
22

dof









, Cdof =









c
11

dof
c
12

dof

c
21

dof
c
22

dof









, Mdof =









m
11

dof
m

12

dof

m
21

dof
m

22

dof









.

(1.8)

The sub-matrices, denoted by the subscript 11, contain only one component (1×1 matri-
ces), The size of the sub-matrices denoted by the subscript 22 is (ndof − 1)× (ndof − 1),
and the size of the sub-matrices denoted by the subscript 12 and 21 are 1 × (ndof − 1)
and (ndof − 1) × 1, respectively.

1.2.2 Structure of the global dynamic stiffness matrices

The dynamic stiffness relation for a generalized massless axisymmetric rigid foundation
with six degrees of freedom (one vertical, two horizontal, two rocking and one torsional)
is given in Ibsen and Liingaard (2006c). The stiffness formulation is given by a im-
pedance matrix, Sij (a0), relating the displacements and forces acting on the foundation.
Sij (a0) is a frequency dependent matrix with complex components, which does not fit
into the framework of ordinary finite element codes. However, the lumped-parameter
model represents a unbounded soil domain, and the soil-structure interaction of a mass-
less foundation can be modelled by relatively few springs, dashpots and masses, all with
real frequency-independent coefficients. Each degree of freedom at the foundation node
of the structural model is coupled to a lumped-parameter model that may consist of
additional internal degrees of freedom.

In this subsection the structure of the global dynamic stiffness matrices, based on
the lumped-parameter models, will be explained. The global dynamic stiffness matrices
are given for two- and three-dimensional problems.
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Global dynamic stiffness matrices for 2D

A two-dimensional beam member is capable of axial deformation and ending in one
principal plane. Each node in the finite element formulation is described by three degrees
of freedom. For details, see Petyt (1998). The global matrices, K

2D, C
2D and M

2D,
representing the dynamic stiffness of a two-dimensional foundation are as follows

K
2D =

































k
11

HH
0 k

11

HM
k
12

HH
0 0 k

12

HM
0

0 k
11

VV
0 0 k

12

VV
0 0 0

k
11

HM
0 k

11

MM
0 0 k

12

MM
0 k

12

HM

k
21

HH
0 0 k

22

HH
0 0 0 0

0 k
21

VV
0 0 k

22

VV
0 0 0

0 0 k
21

MM
0 0 k

22

MM
0 0

0 0 k
21

HM
0 0 0 k

22

HM
0

k
21

HM
0 0 0 0 0 0 k

22

HM

































(1.9a)

C
2D =
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(1.9b)

M
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VV
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VV
0 0 0
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HH
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(1.9c)

The upper left part of the matrices are to be added to the foundation node of the
structural finite element model. The remaining components of the matrices correspond
to the additional internal degrees of freedom, arising from the lumped-parameter models.
The number of additional degrees of freedom for the two-dimensional model is (nV V −
1)+(nHH −1)+(nMM −1)+2(nHM −1), i.e. the sum of the additional internal degrees
of freedom.
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Structural system matrix

Foundation matrix

Common dofs

Coupling dofs

Coupling dofs

Internal dofs

Figure 1.8: Assembly between global foundation matrices and the structural system.

The assembly between the global matrices of the foundation and the system matrices of
the structural system is sketched in Figure 1.8.

Global dynamic stiffness matrices for 3D

A three-dimensional beam member is capable of axial deformation, bending in two prin-
cipal planes and torsion about the beam axis. Each node in the finite element formulation
is described by six degrees of freedom. For details, see Petyt (1998). The global ma-
trices, K

3D, C
3D and M

3D, representing the dynamic stiffness of a three-dimensional
foundation are as follows:

K
3D =

[

k̄
11

k̄
12

k̄
21

k̄
22

]

,C3D =

[

c̄
11

c̄
12

c̄
21

c̄
22

]

,M3D =

[

m̄
11

m̄
12

m̄
21

m̄
22

]

(1.10)
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where k̄
11, k̄

12, k̄
21 and k̄

22 are given as

k̄
11 =
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(1.11a)
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(1.11b)
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22 =

































k
22

VV
0 0 0 0 0 0 0 0 0

0 k
22

HH
0 0 0 0 0 0 0 0

0 0 k
22

HH
0 0 0 0 0 0 0

0 0 0 k
22

TT
0 0 0 0 0 0

0 0 0 0 k
22

MM
0 0 0 0 0

0 0 0 0 0 k
22

MM
0 0 0 0

0 0 0 0 0 0 −k
22

HM
0 0 0

0 0 0 0 0 0 0 k
22

HM
0 0

0 0 0 0 0 0 0 0 k
22

HM
0

0 0 0 0 0 0 0 0 0 −k
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(1.11d)

The sub-matrices in C
3D and M

3D are similar to those for K
3D, given by the equations

in 1.11. The sub-matrices are obtained by replacing k by c and m, respectively. The
number of additional degrees of freedom for the three-dimensional model is (nV V − 1) +
2(nHH − 1) + (nTT − 1) + 2(nMM − 1) + 4(nHM − 1). Note that the rows in k̄

11 (and
hence c̄

11 and m̄
11) can be interchanged, depending on the arrangement of the degrees
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of freedom in the structural finite element formulation. Appropriate rearrangement of
the remaining sub-matrices (k̄12, k̄

21 and k̄
22) should then be performed as well.

1.3 Direct analysis of the steady state response for

lumped-parameter models

The steady state response is determined by solving the equation of motion for a harmonic
response, given by

Mü + Cu̇ + Ku = feiωt, (1.12)

where M, C and K are the mass, damping and stiffness matrices of the vibrating struc-
ture, respectively. M, C and K are assembled from the global matrices of the foundation
and the system matrices of the structural system, as sketched in Figure 1.9. u is a column
vector containing the nodal displacements and f is a column vector of nodal forces. t is
time and i is the imaginary unit, i =

√
−1. The equation of motion in Equation 1.12 is

solved by direct analysis (Petyt 1998). The solution to Equation 1.12 is then

u =
[

K − ω2
M + iωC

]

−1

feiωt (1.13)

u =
[

K− ω2
M + iωC

]

−1
feiωt

Components of the structural model

Components of the foundation model

Figure 1.9: Structure of the matrices and vectors for the direct analysis.
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