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Preface

The technical report “Dynamic stiffness of suction caissons—torsion, sliding and rocking”
is divided into six numbered sections, and a list of references is situated after the last
section. Tables, equations and figures are indicated with consecutive numbers. Cited
references are marked as e.g. Novak and Sachs (1973), with author specification and
year of publication in the text.

The work within this report has only been possible with the financial support from
the Energy Research Programme (ERP)1 administered by the Danish Energy Author-
ity. The project is associated with the ERP programme “Soil–Structure interaction of
Foundations for Offshore Wind Turbines”. The funding is sincerely acknowledged.

Aalborg, December 13, 2006 Lars Bo Ibsen, Morten Liingaard & Lars Andersen

1In danish: “Energiforskningsprogrammet (EFP)”
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Chapter 1

Dynamic stiffness of suction

caissons—torsion, sliding and

rocking

This report concerns the dynamic soil–structure interaction of steel suction cais-
sons applied as foundations for offshore wind turbines. An emphasis is put on torsional
vibrations and coupled sliding/rocking motion, and the influence of the foundation ge-
ometry and the properties of the surrounding soil is examined. The soil is simplified
as a homogenous linear viscoelastic material and the dynamic stiffness of the suction
caisson is expressed in terms of dimensionless frequency-dependent coefficients corre-
sponding to the different degrees of freedom. The dynamic stiffness coefficients for the
skirted foundation are evaluated by means of a three-dimensional coupled boundary
element/finite element model. Comparisons with known analytical and numerical solu-
tions indicate that the static and dynamic behaviour of the foundation are predicted
accurately with the applied model. The analysis has been carried out for different
combinations of the skirt length and the Poisson’s ratio of the subsoil. Finally, the
high-frequency impedance has been determined for future use in lumped-parameter
models of wind turbine foundations in aero-elastic codes.

1.1 Introduction

Modern offshore wind turbines are flexible structures with resonance frequencies as low
as 0.15 Hz. Typically, this is close to the excitation frequencies related to waves and
turbine blades passing the tower. Thus a small change in the structural stiffness may
result in great changes in the response, for which reason a reliable computation of the
structural stiffness is required. This necessitates an accurate prediction of the soil–
structure interaction which is highly dependent on the properties of the soil as well as the
geometry of the foundation. A novel foundation method for offshore wind turbines is the
monopod suction caisson (Houlsby et al. 2005). For this particular kind of foundation,
the vertical component of the dynamic stiffness has been discussed in Ibsen and Liingaard
(2006a). By contrast, the focus of the present analysis is the impedance related to
torsional vibrations and coupled sliding/rocking motion. The previous work related to
the analysis of torsional vibrations and coupled sliding/rocking is briefly presented in
Section 1.2. Subsequently, a definition of the static and dynamic stiffnesses for the
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2 Dynamic stiffness of suction caissons—torsion, sliding and rocking

suction caisson is provided in Section 1.3. The analysis of the torsional dynamic stiffness
of the suction caisson is presented in Section 1.4 and the results obtained by analysing
the coupled sliding and rocking motion are given in Section 1.5. The main conclusions
of the report are given in Section 1.6. In this report the impedance is equal to the
dynamic stiffness of the foundation, i.e. the impedance contains both a real and an
imaginary part. The frequency dependent dynamic stiffness of the suction caisson is
evaluated in the frequency domain by means of the three-dimensional coupled Boundary
Element/Finite Element Method program BEASTS by Andersen and Jones (2001). The
basic concepts of the method and the preliminary benchmark tests to ensure that the
applied numerical model is able to capture the dynamic behaviour of the suction caisson
are described in Ibsen and Liingaard (2006a).

1.2 Previous work

Luco and Westmann (1971) investigated the torsional vibrations of a circular massless
footing resting on a homogeneous elastic half-space. They solved the system as a mixed
boundary value problems with prescribed conditions under the foundation and zero trac-
tion at the remaining free surface. The integral equations of the mixed boundary value
problems were evaluated and tabulated for a number of excitation frequencies. The ef-
fects of material damping on torsionally excited footings were reported by Veletsos and
Damodaran Nair (1974), while Wong and Luco (1985) presented tables of horizontal,
coupling, rocking, vertical and torsional impedance functions for rigid massless square
foundations resting on layered viscoelastic soil. The impedance functions for rigid square
foundations embedded in a uniform elastic half-space have been evaluated by means of
a hybrid approach by Mita and Luco (1989). Emperador and Domínguez (1989) applied
the boundary element method for analysis of the dynamic response of axisymmetric em-
bedded foundations. Approximate closed-form solutions for the torsional impedance of
circular embedded foundations have been reported by Novak and Sachs (1973) and Avilés
and Pérez-Rocha (1996). The coupled sliding/rocking vibrations of surface footings have
been reported by e.g. Veletsos and Wei (1971). This work will be used as the reference
solution for the subsequent analyses of the coupled sliding/rocking vibrations of the suc-
tion caissons. Bu and Lin (1999) have summarized the work with respect to analyses
of coupled sliding/rocking vibrations of foundations and further references will not be
repeated here.

1.3 Static and dynamic stiffness formulation

A massless rigid foundation has six degrees of freedom: one vertical, two horizontal (slid-
ing), two rocking and one torsional. The six degrees of freedom and the corresponding
forces and moments are shown in Figure 1.1, and in the general case all components of
displacement may be coupled. However, in the particular case of axisymmetric founda-
tions there is only a coupling between the horizontal sliding and rocking motion. Thus,
the vertical and torsional motion are completely decoupled from each other and from
the remaining degrees of freedom. Furthermore, for a circular footing with the radius
R it is advantageous to represent the relationship between displacements/rotations and

Ibsen, Liingaard & Andersen



1.3 Static and dynamic stiffness formulation 3

x1 x1

x2 x2

x3 x3

θM1

θM2 θT

U1

U2 W
M1

M2 T

H1

H2 V

(a) (b)

Figure 1.1: Degrees of freedom for a rigid surface footing: (a) displacements and rota-
tions, and (b) forces and moments.

forces/moments in a non-dimensional form. For harmonic excitation with the cyclic
frequency ω, the component form can be written as
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. (1.1)

Here Gs is the shear modulus of the soil which is complex if material damping is in-
troduced (see Ibsen and Liingaard (2006a) for details). The coupling terms, SHM and
SMH , are assumed to be equal. This assumption is discussed in Subsection 1.5.2. The
normalized dynamic stiffness depends on the cyclic frequency, ω, and Poisson’s ratio
of the soil, νs. A formulation that is independent of the mass density of the soil, ρs,
may be obtained by the introduction of the dimensionless frequency a0 = ωR/cS, where
cS =

√

Gs/ρs denotes the shear wave velocity of the soil. The normalized components
of the dynamic stiffness matrix given in Equation (1.1) can then be written as

Sij (a0) = K0

ij [kij (a0) + ia0cij (a0)] , (i, j = H, M, T, V ) , (1.2)

where K0

ij are the corresponding components of the static stiffness matrix and i =
√
−1

is the imaginary unit. The dimensionless dynamic stiffness and damping coefficients, kij

and cij , are both real. Both geometrical damping, i.e. the radiation of waves into the
subsoil, and possibly also material dissipation contribute to cij . The stiffness represen-
tation provided in terms of real and imaginary parts tends to be inconclusive in some
situations. Instead it is convenient to examine the magnitude |Sij | and phase angle φij

of Equation (1.2). These are defined as

|Sij | = |K0

ij |
√

(kij)
2

+ (a0cij)
2
, φij = arctan

(

a0cij

kij

)

. (1.3)

This representation of the dynamic stiffness will be applied throughout the report.
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4 Dynamic stiffness of suction caissons—torsion, sliding and rocking

1.4 Dynamic stiffness for torsional vibrations

In this section the torsional dynamic stiffness is investigated. The Poisson’s ratio has no
impact on the torsional stiffness, since torsional vibrations of the suction caisson only
produce shear waves. Hence, the analysis only concerns the variation of the normalized
torsional stiffness due to a change in the skirt length H . The geometry is sketched in
Figure 1.2a. This Section consists of four parts. Firstly, the Boundary Element/Finite
Element (BE/FE) model applied in the analysis is described. Secondly, the static tor-
sional stiffness obtained by the BE/FE model is presented and compared with results
from a static finite element analysis in ABAQUS (Abaqus 2003). Thirdly, the dynamic
stiffness for torsional vibrations is examined, and the last subsection presents the asymp-
totic impedance behaviour in the high frequency range.

1.4.1 Boundary Element/Finite Element model

The BE/FE model of the suction caisson is divided into four sections: a finite element
section that forms the top of the foundation (the lid), a finite element section of the skirt,
a boundary element domain inside the skirt and, finally, a boundary element domain
outside the skirt that also forms the free ground surface. Whereas the lid is massless, the
skirt has a mass density corresponding to that of the soil. This produces a model which
is directly comparable to a massless surface footing. The skirt of the suction caisson is
considered flexible, and the lid is assumed to be rigid. The lid is modelled as a solid
finite element section with a thickness of one meter. The elements utilized in the present
study are 9-noded quadrilateral boundary elements and 26-noded isoparametric finite
elements—both with quadratic spatial interpolation. The model of the suction caisson
and the subsoil contains approx. 100 finite elements and 350 boundary elements. The
mesh of the free surface is truncated at a distance of 30 m (∼ 6R) from the centre of the
foundation (see Ibsen and Liingaard (2006a)). The connection between the soil and the
foundation corresponds to the condition of ‘rough’ contact since the foundation and the

t

R

H

lid

skirt

Elastic soil

(a) (b)

Figure 1.2: Geometry (a) and BE/FE model (b) of the suction caisson.
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1.4 Dynamic stiffness for torsional vibrations 5

Table 1.1: Static torsional stiffness for different skirt lengths

H/D K0

TT FE K0

TT BE/FE Deviation

1/4 12.94 13.15 −1.63 %
1 32.36 32.43 −0.23 %
2 56.88 53.90 +5.52 %

surrounding soil have common degrees of freedom. The model is illustrated in Figure 1.2b.
Due to geometrical symmetry, only half the foundation is included in the model. In the
case of torsion, antisymmetric load and response are assumed. The BE/FE analysis has
been carried out for 40 equally spaced excitation frequencies in the range a0 ∈ ]0;10]. For
each frequency a pair of opposing horizontal forces are applied at the bottom of the lid in
order to create a torque. The resulting torsional response is computed, and the complex
dynamic stiffness is then determined as the ratio between the applied moment and the
resulting amplitude of the rotation. Note that load control has been used to generate
the stiffness values. Displacement control would be more appropriate, but this feature is
currently not available in the BE/FE software.

1.4.2 Static stiffness

The static torsional stiffness K0

TT has been computed for three different ratios between
the foundation diameter, D = 2R, and the skirt length, H . In all cases, the soil properties
are Gs = 1 MPa and νs = 1/3. The foundation material (steel) has the Young’s modulus
Ef = 210 GPa and the Poisson’s ratio νf = 0.25. The foundation radius is R = 5
m and the skirt thickness is t = 50 mm. The material properties of the soil and the
foundation are identified by the subscripts s and f, respectively. The results obtained
with the BE/FE program BEASTS are listed in Table 1.1 for H/D = 1/4, 1 and 2.
A comparison is made with the finite element solution provided by a three-dimensional
ABAQUS model. As indicated by Table 1.1, the two numerical models provide similar
results, indicating that both the ABAQUS and BEASTS models are nearly converged.
The deviation is properly due to the fact that better convergence has been obtained by
the FE solution.

1.4.3 Dynamic stiffness

The normalized torsional dynamic stiffness, |STT |/K0

TT is analysed for the three nor-
malized skirt lengths, H/D = 1/4, 1 and 2, and in the normalized frequency range
a0 ∈ ]0;10]. A comparison is made with two reference solutions. Firstly, the normalized
torsional dynamic stiffness has been found for a surface footing. This result has been
obtained by means of a three-dimensional BE/FE model with no skirt, i.e. with H = 0.
Secondly, the dynamic stiffness per unit length of an infinite hollow cylinder subjected to
dynamic excitation is evaluated by means of the two-dimensional coupled BE/FE pro-
gram TEA by Jones, Thompson, and Petyt (1999). The hollow cylinder is modelled with
64 quadrilateral finite elements employing quadratic interpolation. The interior and ex-
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6 Dynamic stiffness of suction caissons—torsion, sliding and rocking

terior soil domains are modelled with 64 boundary elements each. The model is sketched
in Figure 1.3, and plane strain is assumed. In all the analyses, the soil has the shear
modulus Gs = 1 MPa, the Poisson’s ratio νs = 1/3, the mass density ρs = 1000 kg/m3

and the loss factor ηs = 5%. Hysteretic material damping in the soil is assumed, i.e. the
loss factor is assumed to be constant for all frequencies. The foundation has the Young’s
modulus Ef = 210 GPa, the Poisson’s ratio νf = 0.25, the loss factor ηf = 2% and the
skirt thickness t = 50 mm. In order to model a massless foundation, the mass density is
ρf = 0 for the lid of the caisson and ρf = ρs for the skirt. As indicated by Figure 1.4,
the normalized magnitudes of the torsional impedance are similar for the surface footing,
the caissons and the infinite cylinder in the frequency interval a0 ∈ [0;2]. Note that the
actual magnitude of the impedance for each skirt length is scaled by the static values
given in Table 1.1. For a0 > 2 the impedance of all the skirted foundations are greater
than the impedance of the surface footing. The dynamic stiffness of the caisson with
a relatively small embedment depth (H/D = 1/4) varies smoothly with the frequency.
However, the normalized magnitudes for H/D = 1 and 2 are characterized by distinct
peaks close to a0 = 4, 7 and 10. The peaks become more pronounced when the skirt
length is increased, and the behaviour corresponds well to that of the infinite cylinder.
Between the peaks, the normalized torsional impedances for all skirt lengths are nearly
identical in magnitude. This is even the case for the infinite cylinder. However, K0

TT

(and therefore also |STT |) is increased significantly with an increase in the skirt length,
cf. Table 1.1. Further, the local peaks in the normalized magnitude are associated with a
significant change in the phase angle, φTT . The fact that the oscillations are repeated for
equal distances in frequency implies that the frequencies at the local peaks correspond
to anti-resonance modes of the soil inside the suction caisson. This behaviour is similar

(a) (b)

x1 x1

x2x3

Ωi

Ωo

Finite elements

Figure 1.3: Infinite hollow cylinder (a) and two-dimensional BE/FE model (b) of the
cylinder where Ωi and Ωo are the inner and outer boundary element domains, respectively.

Ibsen, Liingaard & Andersen



1.4 Dynamic stiffness for torsional vibrations 7
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π
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4

Figure 1.4: Torsional impedance: variation of skirt length. Gs = 1.0 MPa, νs = 1/3 and
ηs = 5%.

to the observed behaviour for vertical vibrations as presented in Ibsen and Liingaard
(2006a).

1.4.4 High-frequency limit

The limiting damping parameter C∞TT of the suction caisson consists of two contributions:
one from the vibration of the lid and one originating from the vibration of the skirt, see
Ibsen and Liingaard (2006a). C∞TT of the suction caisson is given by

C∞TT = ρscSJlid + (2ρscSAskirt)R2, (1.4)

where Jlid is the polar moment of inertia of the lid about the axis of rotation, and Askirt

is the surface area of skirt. Note that S-waves are generated both inside and outside the
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8 Dynamic stiffness of suction caissons—torsion, sliding and rocking

skirt, hence the factor ‘2’ in the latter contribution in Equation (1.4). The radius R is
the distance from skirt to the axis of rotation.

Ibsen, Liingaard & Andersen



1.5 Dynamic stiffness for coupled sliding–rocking vibrations 9

1.5 Dynamic stiffness for coupled sliding–rocking vibra-

tions

In this section the coupled sliding–rocking vibrations are investigated for several different
combinations of the mechanical properties of the soil–foundation system. The first case
concerns the effects of Poisson’s ratio on the stiffness. The second analysis investigates
the variation of the stiffness due to a change in the skirt length. Finally, the limiting
damping parameters for vibration in the high-frequency range are given.

1.5.1 Boundary Element/Finite Element model

The geometry and the discretization in the BE/FE models employed for the present
analyses are as described in the previous section. However, the load is applied differently.
For a given excitation frequency, two analyses are performed: one analysis with horizontal
loading at the base of the lid of the caisson, and one analysis with a set of opposing
vertical forces that are applied at each side of the foundation in order to create a rocking
moment. The first analysis provides a relation between the horizontal force and the
resulting displacements and rotations. The second analysis relates the applied moment
to the resulting displacements and rotations. The system can be written as a subset of
Equation 1.1, given as

[

H1/GsR
2

M2/GsR
3

]

=

[

SHH −SHM

−SMH SMM

] [

U1/R
θM2

]

. (1.5)

The two equations are then solved simultaneously, in order obtain the complex hori-
zontal sliding impedance, SHH , the rocking moment impedance, SMM , and the cou-
pling impedances, SHM and SMH . As already mentioned and further discussed below,
SHM = SMH within the precision of the model.

1.5.2 Static stiffness

The static stiffness coefficients of the coupled system have been determined by the BE/FE
models for a0 = 0.01, and then compared with the results of static finite element analyses
in ABAQUS. The non-dimensional values of K0

HH , K0

MM , K0

HM and K0

MH are given for
two different cases:

Different skirt lengths: – The static stiffness components are given for various ratios be-
tween the foundation diameter D and the length of the skirt H in Table 1.2. The
soil properties are Gs = 1 MPa and νs = 1/3.

Different Poisson’s ratios: – The variation of static stiffness with respect to Poisson’s
ratio is shown in Table 1.2. H/D = 1 and Gs = 1 MPa.

Note that the values in parentheses in Table 1.2 are obtained by the static finite element
analyses in ABAQUS. The data are shown for fixed material properties of the foundation
(Ef = 210 GPa, νf = 0.25). The foundation radius is R = 5 m and the skirt thickness
is t = 50 mm. In addition to the analyses listed above, it may be relevant to check the
influence of the skirt flexibility. However, a preliminary study indicates that changes
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10 Dynamic stiffness of suction caissons—torsion, sliding and rocking

Table 1.2: Coupled static stiffness.

K0

HH K0

MM K0

HM K0

MH

H/D = 1/4 8.00 (7.47) 8.51 (8.41) -3.13 (-2.68) -2.78 (-2.68)
1 13.92 (12.98) 52.91 (49.73) -18.28 (-16.11) -17.20 (-16.12)
2 18.61 (18.47) 198.87 (193.41) -44.80 (-43.02) -43.54 (-43.12)

νs = 0.1 12.49 (11.62) 49.75 (46.91) -17.11 (-15.19) -16.09 (-15.21)
0.2 13.01 (12.14) 50.83 (47.92) -17.50 (-15.53) -16.47 (-15.55)
0.333 13.92 (12.98) 52.91 (49.73) -18.28 (-16.11) -17.20 (-16.12)
0.4 14.54 (13.53) 54.42 (51.02) -18.86 (-16.54) -17.75 (-16.53)
0.495 15.74 (14.51) 57.79 (53.98) -20.19 (-17.42) -18.95 (-17.39)

in Ef and t within the range that is relevant for suction caissons have little impact
on the overall performance of the foundation compared with the skirt length and the
Poisson’s ratio of the ground. Therefore, this study will not be included in the present
analysis. The largest deviation between the results from the BE/FE model and the
ABAQUS models in Table 1.2 are: 7.4%, 7.2% and 16.8% for the sliding, rocking and
coupling term, respectively. Furthermore, the assumption of K0

HM = K0

MH holds true.
The maximum deviation between K0

HM and K0

MH is 11% in the BE/FE model and only
3.3% for the ABAQUS model. In general there is a good agreement between the values of
the impedance components computed by the FE and the BE/FE models. As expected,
all the stiffness components increase with the skirt length, cf. Table 1.2. The magnitude
of the sliding, rocking and coupling terms increase slightly with Poisson’s ratio, νs. This
is due to the fact that an increase in νs for a fixed value of Gs implies an increase in the
Young’s modulus, Es = 2Gs(1 + νs).

1.5.3 Dynamic stiffness—variation of Poisson’s ratio

The dynamic stiffness for different Poisson’s ratios is presented in this section. The
skirt length is fixed (H/D = 1), and the model properties are: Gs = 1.0 MPa, ρs =
1000 kg/m3, ηs = 5%, Ef = 210 GPa, νf = 0.25, ηf = 2% and t = 50 mm. In order to
model a massless foundation ρf = 0 for the lid of the caisson and ρf = ρs for the skirt.
In Figures 1.5–1.7, the results are shown for five different values of Poisson’s ratio and
for the frequency range a0 ∈ ]0;6]. Note that the range in Poisson’s ratio is thought to
cover fully drained (νs = 0.1− 0.2) to undrained (νs = 0.495) conditions. The analytical
solution for a surface footing proposed by Veletsos and Wei (1971) is included as reference.
Two numerical models of a massless surface footing are included for comparison with the
analytical solution. The sliding and rocking impedance of the surface footing have been
determined by a BE/FE model. In the case of the coupling between horizontal sliding
and rocking, numerical experiments indicate that convergence of the impedance cannot
be established with a reasonably low number of degrees of freedom in the BE/FE model.
In particular it has been found that both the magnitude and the phase of the impedance
is strongly dependent on the distance from the footing to the truncation edge of the
free ground surface. Adaptive meshing could possibly improve the accuracy versus the
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Figure 1.5: Sliding impedance: variation of Poisson’s ratio. Gs = 1.0 MPa and ηs = 5%.

number of degrees of freedom, but this facility is currently not available in the BE/FE
software. Therefore, instead of the coupled BE/FE model based on the Green’s function
for the full-space, an alternative method proposed by Andersen and Clausen (2005)
has been applied. Here the solution is established in the wavenumber domain, and the
fundamental solution for a half-space is employed. Moreover, the impedance is computed
directly by integration of the interaction forces between the footing and the subsoil. This
is in contrast to the BE/FE approach, in which the impedance is found by inversion of
the dynamic flexibility matrix. The latter approach may involve great inaccuracies with
respect to the coupling term since |SHM | is much smaller than |SHH | and |SMM |, in
particular in the high-frequency range.

The sliding and rocking impedances are clearly dependent on Poisson’s ratio. The
frequency at the first local extremum in the magnitude of the impedance in Figures 1.5
and 1.6 changes significantly with Poisson’s ratio. The first peak for νs = 0.1 occurs at
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Figure 1.6: Rocking impedance: variation of Poisson’s ratio. Gs = 1.0 MPa and ηs = 5%.

a0 = 3.2, whereas the first peak for νs = 0.4 is placed close to a0 = 4.5. However, the
second local extremum is found at the frequency a0 = 5.5− 5.7 for all values of Poisson’s
ratio. This behaviour is explained by the fact that sliding and rocking impedances are
governed by both shear wave propagation and compression wave propagation. More
specifically, the first peak in the response corresponds to antiresonance of P-waves inside
the caisson, whereas the second peak corresponds to antiresonance of S-waves. The latter
is independent of the Poisson’s ratio whereas an increase in νs involves an increase in cP .
Hence, the first peak in Figures 1.5–1.7 occurs at lower frequencies for lower Poisson’s
ratios.

The coupling impedance in Figure 1.7 follows the pattern of the horizontal and
moment impedances. Hence, an increase in the frequency provides an increase in the
magnitude of the coupling impedance over the normalized frequency range a0 ∈ ]0;6]. It
is noted that the phase angle of the coupling impedance is close to π radians for a0 = 0
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Figure 1.7: Coupling impedance: variation of Poisson’s ratio. Gs = 1.0 MPa and ηs =
5%.

and slightly increasing with the frequency in the range a0 ∈ ]0;6]. Accordingly the static
stiffness components K0

HM and K0

MH are negative, see Table 1.2. It is generally observed
that the coupling impedances of the suction caisson and the surface footing behave dif-
ferently. Thus, in the case of the surface footing a decrease of both the magnitude and
the phase of the coupling impedance with frequency is recorded in the interval a0 ∈ ]0;6].

A few remarks on the impedance of the surface footing: The sliding and rocking
impedance determined by the BE/FE model agrees very well with the analytical solution
reported by Veletsos and Wei (1971). Furthermore, the coupling terms obtained by
the alternative method (Andersen and Clausen 2005) is consistent with the coupling
reported by Veletsos and Wei (1971). Note that the analytical solution with respect to
the coupling term is an approximation, due to fact that the boundary conditions in the
interface between the soil and the footing are partly relaxed. Finally, it is emphasized
that the problem of determining the coupling between horizontal sliding and rocking
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Figure 1.8: Sliding impedance: variation of skirt length. Gs = 1.0 MPa, νs = 1/3 and
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only is encountered for the surface footing. The coupling between horizontal sliding and
rocking for the suction caisson is described satisfactorily by the BE/FE model.

1.5.4 Dynamic stiffness—variation of skirt length

The variation of the coupled dynamic stiffness components with respect to a change in
the skirt length H is presented in the following. The model properties are Gs = 1 MPa,
νs = 1/3, ρs = 1000 kg/m3, ηs = 5%, Ef = 210 GPa, νf = 0.25, ηf = 2% and
t = 50 mm. Again, ρf = 0 for the lid of the caisson and ρf = ρs for the skirt in order to
model a massless foundation. The magnitudes and the phase angles of the impedance
for H/D = 1/4, 1 and 2 are shown in Figures 1.8–1.10 for the frequency range a0 ∈ ]0;12].
The magnitudes are normalized with respect to the static stiffness coefficients listed in
Table ??, and the results achieved with two numerical models of a massless surface footing
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Figure 1.9: Rocking impedance: variation of skirt length. Gs = 1.0 MPa, νs = 1/3 and
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are included for comparison, see Subsection 1.5.3. In addition to this, the horizontal
sliding impedance of an infinitely long hollow cylinder (H/D = ∞) has been computed by
application of the two dimensional BE/FE code TEA as described in Subsection 1.4.3 for
the case of torsional vibrations. Evidently, a similar two-dimensional analysis cannot be
performed for the rocking and coupling impedances. With reference to Figure 1.8, there
is no indication of antiresonance of the waves inside the caisson with a relatively small
embedment depth (H/D = 1/4), i.e. there are no local peaks in the normalized magnitude
of the impedance component for sliding. Thus the dynamic behaviour is similar to that
of the surface footing, though the increase of the impedance with increasing frequency
is more pronounced for the skirted foundation than the surface footing. However, the
sliding impedances for H/D = 1 and 2 are characterized by a number of local tips and
dips. The peaks are not repeated with the normalized frequency interval ∆a0 = π. This
is the case for the vertical and torsional impedances, where the location of the peaks
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are governed by the shear waves only. In contrast to this, the location of the peaks for
the coupled sliding–rocking impedances are controlled by antiresonance of both shear
waves and compression waves. Clearly, the locations of the peaks in the magnitude
of the sliding impedance for H/D = 1 and 2 correspond to those for the infinitely long
cylinder. Likewise, the variation of the phase angle φHH is similar for H/D = 1, 2 and ∞,
cf. Figure 1.8. The magnitude of the horizontal impedance (Figure 1.8) seems to increase
with skirt length. However, the change from H/D = 1/4 to H/D = 1 is significant,
whereas only a small change is observed from H/D = 1 to H/D = 2. The magnitude
of the impedance for H/D = 2 is actually below the impedance for H/D = 1 at high
frequencies. This behaviour suggests that the horizontal vibrations are transmitted to
the surrounding soil at relatively shallow depths. Hence, the effects of increasing the
skirt length diminish with depth. This is not the case for the moment impedance in
Figure 1.9, where the effects of increasing the skirt length enlarge with depth. These
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tendencies are also evident in the static stiffness coefficients listed in Table 1.2. Finally,
the coupling impedance in Figure 1.10 increases moderately with an increase of the skirt
length, and again the phase angle is close to π radians for all frequencies. Otherwise, the
overall response is similar to the horizontal and moment impedances.

1.5.5 High-frequency limit

In this subsection the high-frequency behaviour is formulated by limiting damping pa-
rameters (coefficients of a dashpot) with the intention of use in lumped-parameter models
(Ibsen and Liingaard 2006b). The total geometrical damping is equal to the sum of the
waves radiating from the skirts and the lid of the caisson. The limiting damping pa-
rameter for the horizontal vibration (C∞HH) consists of three contributions: shear waves
radiating from the lid, shear waves radiating from the skirt parallel to the direction of
loading, and compression waves radiating from the skirt perpendicular to the direction
of loading. The high-frequency impedance for the rocking and coupling terms consist
of similar contributions, see (Bu and Lin 1999; Gazetas and Dobry 1984; Gazetas and
Tassoulas 1987; Fotopoulou et al. 1989; Wolf and Paronesso 1992) for further details.
Assuming that both the lid and the skirts of the suction caisson are rigid, the limiting
damping parameters C∞HH , C∞MM and C∞HM of the suction caisson are given by

C∞HH = ρscSπR2 + 2ρcSπRH + 2ρcP πRH, (1.6a)

C∞MM = ρscP

π

4
R4 + 2ρscP

1

3
πRH3 + 2ρscS

1

3
πRH3 + 2ρscSπR3H, (1.6b)

C∞HM = −2ρscS

1

2
πRH2 − 2ρscP

1

2
πRH2 = C∞MH . (1.6c)

Note that waves radiate from both inside and outside the skirts, hence the factor ‘2’ in
front of the appropriate contributions in Equations 1.6a–1.6c.

1.6 Conclusion

The impedance of suction caissons with respect to torsional vibrations and coupled
sliding–rocking vibrations has been analysed numerically, employing a three-dimensional
coupled Boundary Element/Finite Element model in the frequency domain.

1.6.1 Torsional vibrations

The torsional dynamic stiffness has been analysed with respect to the variation of the
stiffness due to a change in the skirt length H . The main conclusions are:

� The static torsional stiffness, K0

TT , obtained with the BE/FE model has been com-
pared with the results from a finite element analysis. There is good agreement
between the estimations of K0

TT provided by the two methods with a maximum
deviation of 5.52%

� The magnitude of the static and dynamic torsional stiffness increases with skirt
length.
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18 Dynamic stiffness of suction caissons—torsion, sliding and rocking

� The torsional impedance of the suction caisson with a relatively small embedment
depth (H/D = 1/4) varies smoothly with the frequency, whereas the torsional
impedances for H/D = 1 and 2 are characterized by distinct peaks in the normalized
magnitude close to a0 = 4, 7 and 10.

� The oscillations are repeated for equal distances in frequency, corresponding to an-
tiresonance modes in the soil inside the suction caisson.

� The torsional impedance of the suction caisson has been compared with the impedance
of an infinite cylinder subjected to a torsional moment. The change with frequency
in the magnitude and the phase angle of the impedance are equivalent for the suction
caisson and the infinite cylinder.

1.6.2 Coupled sliding–rocking vibrations

The impedance of the coupled sliding–rocking vibrations have been analysed with respect
to the effects of Poisson’s ratio and the skirt length. The following conclusions can be
made:

� The static stiffness has been calculated with a BE/FE model and a finite element
model. The largest deviation of the results of the two models are 7.4%, 7.2% and
16.8% for the sliding, rocking and coupling terms, respectively.

� The two coupling terms between sliding and rocking are equal, i.e. K0

HM = K0

MH ,
within the accuracy of the analysis. The maximum deviation between K0

HM and
K0

MH is 11%

� The sliding and rocking impedances are clearly dependent on the Poisson’s ratio
of the soil, and the local extremum in the magnitude of the impedance changes
significantly with Poisson’s ratio.

� The effects of increasing the skirt length diminish with depth with respect to the
horizontal impedance. The effects of increasing the skirt length enlarge with depth
with respect to the rocking impedance and the sliding–rocking coupling components.

� The coupled sliding–rocking impedances are characterized by a complex wave in-
terference pattern in the soil inside the skirts. The local peaks in the magnitude
of the impedance components are not repeated by ∆a0 = π, which is the case for
the vertical and torsional impedance components. The location of the peaks for the
coupled sliding–rocking impedances are controlled by antiresonance of both shear
waves and compression waves.

� The analysis of the horizontal impedance for an infinite hollow cylinder clearly shows
the anti-resonance frequencies of both shear waves and compression waves for the
vibrating cylinder. The results agree very well with the horizontal impedance of the
suction caissons.

Finally, it is noted that the high-frequency limits of the impedance components have
been established for the skirted foundation. These will be applied in combination with
the low-frequency impedances obtained with the BE/FE models in future formulations
of lumped-parameter models of suction caissons.
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