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Preface

The technical report “Dynamic stiffness of suction caissons—vertical vibrations” is di-
vided into eight numbered sections, and a list of references is situated after the last
section. One appendix is placed at the end of the report. Tables, equations and figures
are indicated with consecutive numbers. Cited references are marked as e.g. Senders
(2005), with author specification and year of publication in the text.

The work within this report has only been possible with the financial support from
the Energy Research Programme (ERP)1 administered by the Danish Energy Author-
ity. The project is associated with the ERP programme “Soil–Structure interaction of
Foundations for Offshore Wind Turbines”. The funding is sincerely acknowledged.

Aalborg, December 13, 2006 Lars Bo Ibsen, Morten Liingaard & Lars Andersen

1In danish: “Energiforskningsprogrammet (EFP)”
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Chapter 1

Dynamic stiffness of suction

caissons—vertical vibrations

The dynamic response of offshore wind turbines are affected by the properties
of the foundation and the subsoil. The purpose of this report is to evaluate the
dynamic soil–structure interaction of suction caissons for offshore wind turbines. The
investigation is limited to a determination of the vertical dynamic stiffness of suction
caissons. The soil surrounding the foundation is homogenous with linear viscoelastic
properties. The dynamic stiffness of the suction caisson is expressed by dimensionless
frequency-dependent dynamic stiffness coefficients corresponding to the vertical degree
of freedom. The dynamic stiffness coefficients for the foundations are evaluated by
means of a dynamic three-dimensional coupled Boundary Element/Finite Element
model. Comparisons are made with known analytical and numerical solutions in order
to evaluate the static and dynamic behaviour of the Boundary Element/Finite Element
model. The vertical frequency dependent stiffness has been determined for different
combinations of the skirt length, Poisson’s ratio and the ratio between soil stiffness
and skirt stiffness. Finally the dynamic behaviour at high frequencies is investigated.

1.1 Introduction

Wind turbines have increased tremendously in both size and performance during the
last 25 years. The general output of the wind turbines is improved by larger rotors
and more powerful generators. In order to reduce the costs, the overall weight of the
wind turbine components is minimized, which means that the wind turbine structures
become more flexible and thus more sensitive to dynamic excitation at low frequencies.
The foundation principles for the recent major offshore wind farm projects in Europe
have been dominated by two types of foundation solutions: the gravitational foundation
and the monopile. Recent research and development projects Houlsby, Ibsen, and Byrne
(2005) have shown that suction caissons (see Figure 1.1) may be used as offshore wind
turbine foundations in suitable soil conditions and water depths up to approximately
40 meters. Suction caissons (also denoted as bucket foundations or skirted foundations)
have previously been used as anchors and foundations for several offshore platforms.
Here, the suction caissons are mainly subject to vertical and horizontal loads. On the
other hand, when suction caissons are applied as monopod foundations for wind turbines,
they must be able to sustain a significant overturning moment. At greater water depths
the monopod solution may become uneconomical and a foundation concept with three
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2 Dynamic stiffness of suction caissons—vertical vibrations

or four smaller suction caissons may become appropriate. The overturning moment is
then stabilized by the opposing vertical reactions of the suction caissons, see (Houlsby
et al. 2005; Senders 2005). The suction caisson is installed by using suction as the
driving force and does not require heavy installation equipment. Lowering the pressure
in the cavity between the foundation and the soil surface causes a water flow to be
generated, which again causes the effective stresses to be reduced around the tip of the
skirt. Hence, the penetration resistance is reduced. A fully operational 3.0 MW offshore
wind turbine was installed on a prototype of the suction caisson foundation at the test
field in Frederikshavn, Denmark in late 2002. The project is described in details in Ibsen
et al. (2005).

The purpose of this report is to evaluate the vertical impedance of suction caisson
foundations for offshore wind turbines, with the intention that the dynamic properties
of the foundation can be properly included in a composite structure–foundation system.
The frequency dependent dynamic stiffness is evaluated by means of a dynamic three-
dimensional coupled Boundary Element/Finite Element (BE/FE) program BEASTS by
Andersen and Jones (2001a). Initially, the solution methods for analysing soil–structure
interaction are briefly introduced in Section 1.2. Afterwards, the method applied in this
report, i.e. the coupled BE/FE model, is described in Section 1.3. The definitions of
static and dynamic stiffness for the suction caisson are presented in Section 1.4. Prior
to the analysis, two benchmark tests are shown in Section 1.5. The results obtained by
analysing the vertical dynamic stiffness of suction caissons are presented in Section 6
and the findings are discussed in Section 1.7. The main conclusions of the report are
given in Section 1.8. In this report the impedance is equal to the dynamic stiffness of
the foundation, i.e. the impedance contains both a real and an imaginary part.

1.2 Analysis methods for dynamic soil-structure
interaction

The classical methods for analysing vibrations of foundations are based on analytical
solutions for massless circular foundations resting on an elastic half-space. The classical
solutions by Reissner, Quinlan and Sung were obtained by integration of Lamb’s solu-
tion for a vibrating point load on a half-space (Richart et al. 1970; Das 1993). The
mixed boundary value problems with prescribed conditions under the foundation and
zero traction at the remaining free surface were investigated by Veletsos and Wei (1971)
and Luco and Westmann (1971). The integral equations of the mixed boundary value
problems were evaluated and tabulated for a number of excitation frequencies. A closed-
form solution has been presented by Krenk and Schmidt (1981). Whereas analytical and
semi-analytical solutions may be formulated for surface footings with a simple geometries,
numerical analysis is required in the case of flexible embedded foundations with complex
geometry. Thus, in the present analysis of suction caissons for offshore wind turbines, a
coupled boundary element/finite element model is applied. The Finite Element Method
(FEM) is very useful for the analysis of structure with local inhomogeneities and com-
plex geometries. However, only a finite region can be discretized. Hence, at the artificial
boundaries of the unbounded domain, e.g. soil, transmitting boundary conditions must
be applied as suggested by Higdon (1990), Higdon (1992) and (Krenk 2002). Numerous
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1.3 Boundary element/finite element formulation 3
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Figure 1.1: Image (a) and geometry (b) of the suction caisson.

concepts, including the Scaled Boundary Finite Element Method are presented by Wolf
and Song (1996), and Andersen (2002) gave a brief overview of different solutions tech-
niques. However, in the present analysis, wave radiation into the subsoil is ensured by a
coupling with the boundary element method. Since the full-space fundamental solution is
utilized, both the soil–foundation interface and the free soil surface must be discretized.
A smaller numerical model, i.e. a model with fewer degrees of freedom, may be obtained
with the use of other types of solutions, e.g. half-space solutions. However, this comes at
the cost that the fundamental solution can be very complicated, and often a closed-form
solution cannot be found. Furthermore, cavities in a half-space are known to give rise
to spurious modes of vibration when the half-space solution is applied (Pyl et al. 2004).
This is not the case for the full-space Green’s function. The work within the bound-
ary element formulation of dynamic soil–structure interaction has been reported by, for
example, Domínguez (1993), Domínguez (2003), Beskos (1987) and Beskos (1997).

1.3 Boundary element/finite element formulation

The dynamic stiffness of the suction caissons is evaluated by means of the dynamic
three-dimensional coupled Boundary Element Method/Finite Element Method program
BEASTS by Andersen and Jones (2001a). The boundary element part of BEASTS is
an extension of the theory presented by Domínguez (1993), which has been modified to
account for open domains and to allow a coupling with finite elements, see Andersen and
Jones (2001b) for details.

1.3.1 Boundary element formulation

Let x define a point in the three-dimensional Cartesian space and let ω denote the cyclic
frequency. The governing equation of motion for a three-dimensional body Ω in the
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4 Dynamic stiffness of suction caissons—vertical vibrations

frequency domain is then given by

∂σij (x, ω)

∂xj

+ ρBi (x, ω) + ω2ρUi (x, ω) = 0, x ∈ Ω, (1.1)

where summation is carried out over repeated indices. Ui (x, ω) (i=1,2,3) and σij (x, ω)
(j=1,2,3) are the complex amplitudes of the displacement field and the stresses, respec-
tively. The latter may be computed from the displacements by the constitutive relation.
Further, ρBi (x, ω) are the body forces. The boundary conditions on the surface Γ of the
body Ω are:

Ui (x, ω) = Ûi (x, ω) for x ∈ ΓU

Pi (x, ω) = P̂i (x, ω) for x ∈ ΓP

}

, Γ = ΓU ∪ ΓP , ΓU ∩ ΓP = ∅, (1.2)

where the displacement amplitude Ui (x, ω) is given on one part of the boundary, ΓU ,
and the surface traction Pi (x, ω) = σij (x, ω)nj (x) is given on the remaining part of
the boundary, ΓP . Here nj (x) are the components of the outward unit normal to the
surface. To obtain the boundary element formulation of Equation (1.1), a second state
U∗

il (x, ω; ξ) is identified as the fundamental solution to the equation of motion

∂σ∗

ijl (x, ω; ξ)

∂xj

+ ρδ (x − ξ) δil + ω2ρU∗

il (x, ω; ξ) = 0, (1.3)

where δ (x − ξ) is the Dirac delta function in vector form and δil is the Kronecker delta.
It should be noted that the Green’s function U∗

il (x, ω; ξ) represents a 3 × 3 matrix, i.e.
there are three displacement components at the receiver point x for each direction l of
the load applied at the source point ξ. In three dimensions, U∗

il (x, ω; ξ) has a singularity
of the order 1/r, whereas the corresponding stress field σ∗

ijl (x, ω; ξ) has a singularity of

the order 1/r2.
The fundamental solution is based on wave propagation in the full space and there-

fore only represents body waves emanating from the source, i.e. dilatation and shear
waves with phase velocities cP and cS , respectively. The velocities cP and cS are given
as

cP =

√

λ + 2G

ρ
, cS =

√

G

ρ
, (1.4)

where λ and G are the Lamé constants of the material, and ρ is the mass density. The
Lamé constants λ and G can be written in terms of Young’s modulus E and Poisson’s
ratio ν by the following relations:

G =
E

2 (1 + ν)
, λ =

νE

(1 + ν) (1 − 2ν)
(1.5)

Material damping is introduced by a complex Young’s modulus E∗, resulting in complex
Lamé constants. The complex Young’s modulus E∗ is given by

E∗ = E (1 + iη) , (1.6)

Ibsen, Liingaard & Andersen



1.3 Boundary element/finite element formulation 5

where η is the loss factor of the material and i =
√
−1 is the imaginary unit. Note that

the loss factor is assumed to be constant for all frequencies, i.e. hysteretic damping is
assumed.

The fundamental solution is applied as a weight function in the weak formulation of
the equation of motion (1.1) for the physical field and vice versa. After some manipula-
tions, and disregarding body forces in the interior of the domain, Somigliana’s identity
is derived:

Cil (x) Ul (x, ω) +

∫

Γ

P ∗

il (x, ω; ξ)Ul (ξ, ω, )dΓξ =

∫

Γ

U∗

il (x, ω; ξ)Pl (ξ, ω, )dΓξ (1.7)

Here P ∗

il (x, ω; ξ) is the surface traction related to the Green’s function U∗

il (x, ω; ξ).
Cil (x) is a doubly indexed scalar that only depends on the geometry of the surface
Γ. In particular, Cil(x) = 1/2δil on a smooth part of the boundary Γ and Cil(x) = δil

inside the body Ω. A detailed derivation of (1.7) and properties of Cil (x) are given in
(Andersen 2002; Domínguez 1993).

In order to evaluate the boundary integral equations in (1.7) for a point x on the
boundary, the surface is discretized into a finite number of boundary elements. The
boundary integral equation can then be solved numerically for any point x on the bound-
ary. The boundary can be discretized by different types of elements with varying order
of integration. In the present study, quadrilateral elements with quadratic interpolation
are employed, due to the fact that nine-noded boundary elements are superior in per-
formance and convergence compared to elements with constant or linear interpolation
(Andersen 2002).

To obtain the BE formulation, the state variable fields on the boundary are dis-
cretized. Uj (x) and Pj (x) be the vectors storing the displacements and tractions at the
Nj nodes in element j. The displacement and traction fields over the element surface Γj

then become

U (x, ω) = Φj (x)Uj (ω) , P (x, ω) = Φj (x)Pj (ω) , (1.8)

where Φj (x) is a matrix storing the interpolation, or shape, functions for the element.
This allows the unknown values of the state variables to be taken outside the integrals in
Equation (1.7). Finally, the three-row matrices originating from Equation (1.7) for each
of the observation points may be assembled into a single matrix equation for the entire
BE domain,

H (ω)U (ω) = G (ω)P (ω) . (1.9)

Component (i, k) of the matrices H (ω) and G (ω) stores the influence from degree-of-
freedom k to degree-of-freedom i for the traction and the displacement, respectively, i.e.
the integral terms on the left- and right-hand side of Equation (1.7). The geometric
constants Cil(x) are absorbed into the diagonal of H (ω).

1.3.2 Coupling of FE and BE regions

The finite element (FE) region of the model is formulated by the equation of motion in
the frequency domain (Andersen and Jones 2002):

(

−Mω2 + iC + K
)

U = KFEU = F, (1.10)

December 13, 2006



6 Dynamic stiffness of suction caissons—vertical vibrations

where M, C and K are the mass, damping and stiffness matrices, respectively. U contains
the nodal displacements and F the nodal forces. Hysteretic material damping is assumed,
i.e. C = ηK. Hence, the damping term is independent of the circular frequency ω.

In the subsequent analysis, the foundation consists of relatively thin structures
(skirt) and the use of boundary elements in this region is inappropriate due to the sin-
gularities of the Green’s functions. In these regions finite elements are used. In order
to couple a BE domain formulated in terms of surface tractions with an FE region with
loads applied in terms of nodal forces, a transformation matrix T is defined, such that
F = TP. Here F is the vector of nodal forces equivalent to the tractions P applied
on the surface of the domain. The transformation matrix only depends on the spatial
interpolation functions, i.e. the shape functions, for the elements along the interaction
boundary. Hence, T may be determined once and for all and applied in all analyses with
a given model geometry. Subsequently, for each frequency the matrix

TG
−1

H = KBE (1.11)

defines an equivalent dynamic stiffness matrix for the boundary element domain. This
operation turns the BE domain into a macro finite element. It should be noted that KBE

is a fully populated and asymmetrical matrix, as opposed to KFE which is a sparsely
populated, banded and symmetric matrix. For detailed discussion regarding the coupling
between a BE and FE regions, see Andersen and Jones (2001b).

1.4 Static and dynamic stiffness formulation

A generalized massless axisymmetric foundation with a rigid base has six degrees of
freedom: one vertical, two horizontal, two rocking and one torsional. The six degrees
of freedom and the corresponding forces and moments are shown in Figure 1.2. For a
harmonic excitation with the cyclic frequency ω, the dynamic stiffness matrix S is related
to the vector of forces and moments R and the vector of displacements and rotations U

as follows:

R = SU (1.12)

x1 x1

x2 x2

x3 x3

θM1

θM2 θT

U1

U2 W
M1

M2 T

H1

H2 V

(a) (b)

Figure 1.2: Degrees of freedom for a rigid surface footing: (a) displacements and rota-
tions, and (b) forces and moments.

Ibsen, Liingaard & Andersen



1.5 Benchmark tests 7

The component form of Equation (1.12) can be written as:
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(1.13)

where R is the radius of the foundation and Gs is the shear modulus of the soil. The
components in S are functions of the cyclic frequency ω and Poisson’s ratio of the soil
νs. The nonzero terms in S can be written as:

Sij (a0) = K0

ij [kij (a0) + ia0cij (a0)] , (i, j = H, M, T, V ) , (1.14)

where K0

ij is the static value of ij th stiffness component, whereas kij and cij are the
dynamic stiffness and damping coefficients, respectively. Furthermore, a0 = ωR/cS is
the dimensionless frequency where cS is the shear wave velocity of the soil. The real part
of Equation (1.14) is related to the stiffness and inertia properties of the soil–structure
system, whereas the imaginary part describes the damping of the system. For a soil
without material dissipation, cij reflects the geometric damping, i.e. the radiation of
waves into the subsoil.

In some situations it is useful to examine the magnitude and phase angle of Equa-
tion (1.14) in addition to the real and imaginary parts of the dynamic stiffness. The
magnitude (complex modulus) and the phase angle φij of Sij are given by

|Sij | = K0

ij

√

(kij)
2

+ (a0cij)
2
, φij = arctan

(

a0cij

kij

)

. (1.15)

1.5 Benchmark tests

The coupled BE/FE model of the suction caisson has been tested and compared with
known analytical and numerical results. The first comparison concerns the capability of
determining the static stiffness of the suction caisson by the BE/FE formulation. In the
second comparison the BE/FE model of the suction caisson has been used to reproduce
the vertical dynamic stiffness of a surface foundation by setting the skirt properties equal
to the properties of the surrounding soil.

1.5.1 Verification of the vertical static stiffness

The vertical static stiffness K0

V V corresponds to the stiffness of the soil-foundation system
without any inertial or material dissipation effects. The vertical static stiffness coefficient
has been determined by means of a static finite element analysis in ABAQUS (Abaqus
2003). These static results have been used as convergence criteria for the element mesh
size in the subsequent boundary element analyses of the dynamic stiffness. The reason
for using the static stiffness as convergence criteria is that the shape of the impedance
(location of peaks as function of frequency) converges with a relatively coarse mesh,
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8 Dynamic stiffness of suction caissons—vertical vibrations

compared to the actual magnitude of the impedance. Surprisingly, it turns out that the
magnitude of the impedance is the critical convergence parameter. The static stiffness
from the FE/BE models are estimated for a very low excitation frequency, a0 = 0.01,
where the inertial effects are negligible.

ABAQUS model

The static three-dimensional ABAQUS model of the suction caisson consists of a foun-
dation and near-field soil domain modelled by second order finite elements and a far field
soil domain modeled by infinite elements. The skirt of the suction caisson is flexible,
considering the fact that the skirt thickness is small compared to the height or diam-
eter of the foundation. The lid is assumed to be rigid. The lid is modelled as a solid
finite element section with a thickness of one meter and the same material properties
as the skirt. The ABAQUS model contains approximately 200,000 degrees of freedom
and the runtime is approximately 1 hour per stiffness coefficient on a 2.0 GHz P4 laptop
computer. The BE/FE model is described in the next subsection.

Results

The non-dimensional values of K0

V V are given for three different cases:

Different skirt lengths: – The static stiffness K0

V V is given for various ratios between the
foundation diameter D and the length of the skirt H in Table 1.1. The soil properties
are Gs = 1 MPa and νs = 1/3.

Different Poisson’s ratios: – The variation of K0

V V with respect to Poisson’s Ratio is
shown in Table 1.1. H/D=1 and Gs = 1 MPa.

Varying soil stiffness: – K0

V V is given for different values of the shear modulus Gs in the
soil in Table 1.1. H/D=1 and νs is 1/3.

The data are shown for fixed material properties of the foundation (Ef = 210 GPa,
νf = 0.25). The foundation radius is R = 5 m and the skirt thickness is t = 50 mm.
In general there is a good agreement between the values of K0

V V computed by FE and
BE/FE when it is taken into account that K0

V V has been calculated with two different
methods of analysis and discretization. There is a tendency of increasing deviations with
decreasing Poisson’s ratio and increasing skirt length. It should be noted that the static
vertical stiffness for low values of Gs (0.1 and 1.0 MPa) is equivalent to the stiffness
of a suction caisson with rigid skirts, whereas high values of Gs (approaching the shear
modulus of the skirts) correspond to the behaviour of a rigid base surface foundation.
The results agree with the work by Doherty and Deeks (2003) and Doherty et al. (2005)
who employed the scaled boundary finite element method to analyse the static stiffness
of suction caissons embedded in non-homogeneous elastic soil.

1.5.2 Reproduction of the vertical dynamic stiffness of a surface
footing

Next, the FE/BE model of the suction caisson (H/D = 1) is tested against known
analytical and numerical results for the vertical dynamic stiffness of a surface footing.
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Table 1.1: Vertical static stiffness

K0

V V FE K0

V V FE/BE Deviation

H/D = 1/4 7.25 7.39 −1.88 %
1 10.70 10.87 −1.60 %
2 14.61 14.99 −2.53 %

νs = 0.1 9.20 9.72 −5.38 %
0.2 9.74 10.13 −3.85 %
0.333 10.70 10.87 −1.60 %
0.4 11.32 11.39 −0.60 %
0.495 12.89 12.68 +1.64 %

Gs = 10
5 Pa 10.73 10.91 −1.65 %

10
6 Pa 10.70 10.87 −1.60 %

10
7 Pa 10.65 10.48 +1.58 %

10
8 Pa 10.03 10.19 −1.62 %

10
9 Pa 7.85 8.01 −2.03 %

In the BE/FE model of the suction caisson, the skirt has been given material properties
equal to the properties of the surrounding soil. The model of the suction caisson should
then be able to reproduce the results obtained for a massless surface footing. The results
obtained from the suction caisson model are compared with a BE/FE analysis of a surface
footing and a known analytical solution. The analytical solution given by Veletsos and
Tang (1987) is based on a perfect elastic half-space with Poisson’s ratio equal to 1/3,
and relaxed boundary conditions under the foundation are assumed, corresponding to
the condition of ‘smooth’ contact.

Boundary Element/Finite Element models

Due to symmetry only half the foundation is included. In the finite element region only
half the model needs to be analysed when a plane of symmetric exists. The degrees of
freedom in the plane of symmetry are simply eliminated in the system of equations in
order to satisfy the conditions at the interface between the modelled and non-modelled
part. The procedure for introducing a plane of symmetry in the BE region is more
complex, and will not be given here. The procedure for BE analysis of problems with
geometrical symmetry is discussed in details by Andersen and Jones (2001b).

The BE/FE model of the surface footing contains a massless circular foundation
with the radius R = 5 m. The foundation is modelled by 40 quadrilateral finite elements
employing quadratic interpolation. The thickness (height) of the foundation is one meter.
The soil is discretized into a total of 152 boundary elements with quadratic interpolation.
The model is illustrated in Figure 1.3a.

The BE/FE model of the suction caisson consists of four sections: a massless finite
element section that forms the top of the foundation where the load is applied, a finite
element section of the skirts, a boundary element domain inside the skirts and, finally, a
boundary element domain outside the skirts that also forms the free surface. The skirt
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10 Dynamic stiffness of suction caissons—vertical vibrations

of the suction caisson is considered flexible, and the lid is assumed to be rigid. The
lid is modelled as a solid finite element section with a thickness of one meter. Again,
quadratic interpolation is employed. The models of the suction caisson and the subsoil
contain approx. 100 finite elements and 350 boundary elements. The model is illustrated
in Figure 1.3b. For both numerical models, the soil is linear elastic with Gs = 1 MPa, νs

= 1/3 and ρs = 1000 kg/m3. The material of the surface foundation and the lid of the
suction caisson is linear elastic with Gs = 106 MPa, νs = 1/3 and ρs = 0 kg/m3. The
connection between soil and foundation corresponds to the condition of ‘rough’ contact
since the foundation and the surrounding soil have common degrees of freedom.

The mesh of the free surface for the surface foundation has been truncated at a
distance of 15 m (3 times radius R) from the centre of the footing, based on convergence
studies. Regarding the suction caisson (H/D = 1), the mesh of the free surface is
truncated at a distance of 30 m (6 times radius R) from the centre of the foundation. The
truncation distance for the models of the suction caisson depends on the skirt embedment.
Convergence studies for the worst case (H/D = 2) suggested a truncation distance of
30 m from the centre of the foundation. This length has been used for all the BE/FE
analyses of the suction caisson, regardless of embedment depth of the skirt. Adaptive
meshing could possibly improve the accuracy versus the number of degrees of freedom,
but this facility is currently not available in the BE/FE software.

For a given excitation frequency a vertical load equal to 1 N is applied in the centre
on top of the foundations and the complex displacements are computed. The complex
vertical dynamic stiffness is then determined from the load and the displacement response.
Note that load control has been used to generate the stiffness values. Displacement
control would be more appropriate, but this feature is currently not available in the
BE/FE software.

The models contains approximately 1000 (surface model) to 3000 (suction caisson
model) degrees of freedom and the runtime is approximately 5 to 30 minutes for each
excitation frequency on a 2.0 GHz P4 laptop computer.

(a) (b)

Figure 1.3: BE/FE models of (a) surface foundation and (b) suction caisson (H/D = 1).
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Figure 1.4: Vertical dynamic stiffness for a surface foundation calculated by two different
BE/FE models. The numerical results are compared with a known analytical solution.

Results

The BE/FE models have been utilized for 13 excitation frequencies in the range a0 ∈
]0;6]. The results obtained from the numerical models are given in Figure 1.4 together
with the known analytical solution reported by Veletsos and Tang (1987). The upper plot
shows the normalized magnitude |SV V |/K0

V V , and the phase angle φV V is shown in the
lower plot. First of all, the numerical models are able to reproduce the overall pattern of
the frequency dependent stiffness of the analytical solution, when it is considered that the
analytical solution by Veletsos and Tang (1987) is based on relaxed boundary conditions
and the boundary element solutions corresponds to welded, or rough, contact. The same
type of results have been reported by Alarcon et al. (1989). The results from the suction
caisson model with ‘soil skirts’ match the results of the surface foundation model quite
well, and it is concluded that the model of the suction caisson is able to reproduce the
frequency dependent behaviour of a surface foundation without introducing errors due to
the complexity of the model (two boundary element domains separated by a thin finite
element structure).
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12 Dynamic stiffness of suction caissons—vertical vibrations

1.6 Dynamic stiffness for vertical vibrations

In this section the dynamic stiffness is investigated for several different combinations
of the mechanical properties of the soil–foundation system. The first case concerns the
effects of Poisson’s ratio on the stiffness. In the second analysis the flexibility of the soil–
foundation system is investigated for different ratios between the soil and the foundation
stiffness. The third case is the variation of the stiffness due to a change in the skirt
length. The first two analyses are carried out for the frequency range a0 ∈ ]0;6], whereas
the third analysis is extended to a larger frequency range a0 ∈ ]0;12].
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Figure 1.5: Vertical dynamic stiffness: variation of Poisson’s ratio. H/D = 1, Gs = 1.0
MPa and ηs = 5%.
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1.6.1 Vertical dynamic stiffness—variation of Poisson’s ratio

The dynamic stiffness for different Poisson’s ratios is presented in this section. The skirt
length is fixed (H/D = 1). The model properties are Gs = 1.0 MPa, ρs = 1000 kg/m3,
ηs = 5 %, Ef = 210 GPa, νf = 0.25, ηf = 2 % and t = 50 mm. In order to model
a massless foundation ρf = 0 for the lid of the caisson and ρf = ρs for the skirt. In
Figure 1.5, the results are shown for 5 different values of Poisson’s ratio for the frequency
range a0 ∈ ]0;6]. The dynamic stiffness is relatively insensitive to variations in νs in
the range from 0.1 to 0.4. When νs approaches 0.5, the dynamic behaviour changes
significantly. The main reason for the change in the dynamic behaviour for νs close to
0.5 is the fact that cP /cS ∈ [

√
2;2] for νs ∈ [0;1/3], whereas cP /cS → ∞ for νs → 0.5.

Thus, for constant Gs the P-wave speed becomes infinite for νs → 0.5. Note that it
is possible to solve the BE system for νs = 0.5 by reordering the fundamental solution,
however, here the range in Poisson’s ratio is thought to cover fully drained (νs = 0.1−0.2)
to undrained (νs = 0.495) conditions.

1.6.2 Vertical dynamic stiffness—variation of soil stiffness

The influence of the ratio between the stiffness of the soil and the stiffness of the structure
is evident from the analysis of the static stiffness, see Table 1.1. The influence on the
dynamic behaviour is shown in Figure 1.6 for the frequency range a0 ∈ ]0;6]. The fixed
model properties are H/D = 1, νs = 1/3, ρs = 1000 kg/m3, ηs = 5 %, Ef = 210 GPa,
νf = 0.25, ηf = 2 % and t = 50 mm. To model a massless foundation ρf = 0 for the lid
of the caisson and ρf = ρs for the skirt.

The shape of the curve for high values of Gs (1000 MPa) is approaching the shape
of the frequency dependent behaviour of the surface foundation. When Gs decreases,
the local oscillations become more distinct and the influence of the skirt flexibility van-
ishes, i.e. the caisson reacts as a rigid foundation. Rigid behaviour can be assumed for
Gs ≤ 1.0 MPa.

1.6.3 Vertical dynamic stiffness—high-frequency behaviour

The variation of the dynamic stiffness due to a change in the skirt length H is presented
in the following. The BE/FE models for the analysis are similar to the model shown
in Figure 1.3b. The model properties are Gs = 1 MPa, νs = 1/3, ρs = 1000 kg/m3,
ηs = 5 %, Ef = 210 GPa, νf = 0.25, ηf = 2 % and t = 50 mm. . Note that ρf =
0 for the lid of the caisson and ρf = ρs for the skirt. In order to get a picture of the
high frequency behaviour of the suction caisson, the analyses have been performed for
the frequency range a0 ∈ ]0;12]. The components of the vertical dynamic stiffness for
H/D=1/4, 1 and 2 are shown in Figure 1.7.

The vertical dynamic stiffness of the caisson with a relatively small embedment depth
(H/D = 1/4) varies smoothly with the frequency, whereas the magnitude for H/D = 1
and 2 is characterized by distinct peaks, and it can be observed that the magnitude of
dynamic stiffness overall increases with the skirt length.

The normalized magnitude of the impedance is characterized by repeated oscillations
with local extremes. However, the average dynamic stiffness, measured over a wide range
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Figure 1.6: Vertical dynamic stiffness: variation of soil stiffness. H/D = 1, νs = 1/3 and
ηs = 5%.

of frequencies, appears to be increasing monotonously with increasing frequency, similar
to the situation for the surface footing in Figure 1.7.

I order to formulate the high-frequency behaviour of foundations by lumped-parameter
models (see Ibsen and Liingaard (2006b)) a dashpot is used to describe the high-frequency
impedance. The high-frequency behaviour is characterized by a phase angle approach-
ing π/2 for a0 → ∞ and a linear relation that passes through origo in a frequency vs.
magnitude diagram. The slope of the curve is equal to a limiting damping parameter
C∞

V V that describes the impedance for a0 → ∞, which in the case of the surface footing
is given by

C∞

V V = ρscP Ab, (1.16)

where Ab is the area of the base of the foundation. It should be noted that C∞

V V in
Equation (1.16) is highly sensitive to νs due to the fact that cP enters the equation. For
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Figure 1.7: Vertical dynamic stiffness: high frequency behaviour. Gs = 1.0 MPa, νs =
1/3 and ηs = 5%.

that reason cP may be inappropriate, and Gazetas and Dobry (1984) suggest the use
of Lysmer’s analog ‘wave velocity’ cLa=3.4cS/π(1 − νs). Wolf (1994) suggests another
approach where cP for νs ∈ [1/3;0.5] is constant, and equal to cP at νs = 1/3.

At high frequencies the wavelengths are small compared with the dimensions of the
source (or the vibrating surface). Thus, the soil immediately below the vibrating surface
of a smooth surface footing is only exposed to P-waves. However, the skirts of the
suction caisson generate additional S-waves due to a vertical high-frequency excitation.
For that reason, the limiting damping parameter C∞

V V of the suction caisson consists
of two contributions: one from the vibration of the lid and one originating from the
vibration of the skirt. C∞

V V of the suction caisson is then given by

C∞

V V = ρscP Alid + 2ρscSAskirt, (1.17)

where Alid and Askirt are the vibrating surface areas of the lid and the skirt, respectively.

December 13, 2006



16 Dynamic stiffness of suction caissons—vertical vibrations

0 2 4 6 8 10 12
0

0.5

1

1.5

2

2.5

3

Dimensionless frequency a0

c̃ V
V

Surface footing

H/D = 1/4

H/D = 1

H/D = 2

Figure 1.8: Vertical dimensionless damping coefficient c̃V V . Gs = 1.0 MPa, νs = 1/3
and ηs = 5%.

Note that S-waves are generated both inside and outside the skirt, hence the factor ‘2’
in the latter contribution in Equation (1.17). The discussion of the proper choice of cP

also applies here.
In order to verify that the high-frequency behaviour of the suction caisson, described

by (1.17), the damping term cV V in Equation (1.14) is compared with C∞

V V . This is
carried out by means of the dimensionless damping coefficient c̃V V , given by

c̃V V =
R
cS

cV V (a0)

C∞

V V

. (1.18)

At high frequencies c̃V V should tend towards unity if the expressions in Equations (1.16)
and (1.17) hold true (Dobry and Gazetas 1986). In Figure 1.8 the dimensionless damping
coefficient c̃V V is plotted for the suction caisson data together with the results for a sur-
face footing. It is evident that the dimensionless damping coefficient of the surface footing
tends towards unity as the frequency increases. With respect to the suction caisson the
problem is somewhat more complex. The high-frequency behaviour contains an infinite
number of resonance peaks as a0 → ∞. However, this behaviour cannot be quantified
by one single damping parameter, so the coefficient in Equation 1.17 reflects the aver-
age behaviour of high-frequency vibrations. It should be emphasized that the purpose
of determining the high-frequency dashpot parameters in Equations (1.16) and (1.17) is
to control the lumped-parameter model approximation of the high-frequency vibrations.
Note that cP at νs = 1/3 has been used in Equations (1.16) and (1.17).
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1.7 Discussion

There are several observations associated with the oscillations of the impedance of the
suction caissons:

� The peaks of the normalized magnitude are located at phase angles equal to π/2.

� The distance between the peaks is approximately ∆a0 = 3.0 - 3.5.

� The amplitude of the peaks increases significantly with skirt length.

However, the appearance of distinct peaks in the magnitude of the stiffness around certain
frequencies cannot be explained by the variation of skirt length, Poisson’s ratio and the
flexibility of the skirt. The fact that the oscillations are repeated for equal distances in
frequency suggests that the phenomenon is due to wave interference in the soil inside
the suction caisson. Since the amplitude of the peaks significantly increases with skirt
length, it seems reasonable to examine the axial impedance of an infinite cylinder, in
order to study the wave interference inside the caisson.

The dynamic stiffness per unit length of an infinite cylinder subjected to dynamic
vertical excitation in the axial direction is shown in Figure 1.9. The dynamic stiffness
is computed for ηs=0.00, 0.05 and 0.10, and the data are represented by the normalized
magnitude and the phase angle. The slope of the dashed line in Figure 1.9 is equal to
the limiting damping parameter C∞

zz per unit length of the infinite cylinder. Note that
the vertical motion of the infinitely long cylinder only generates S-waves, i.e. there is no
contribution of P-waves. The solution for the impedance of the infinite cylinder subjected
to dynamic vertical excitation in the axial direction is given in Appendix A.

The similarities of the impedance in Figure 1.7 and 1.9 are remarkable. However,
the normalized magnitudes are not to scale, but the patterns of the magnitude and phase
angle of the suction caissons (H ≥ 1) are equivalent to those of the infinite cylinder for
ηs = 0.05. The closed-form solution to the vertical dynamic stiffness SV V (ω) of the
infinite cylinder is given by

SV V (ω) =
K0

V V

RJ0 (kSR)K0 (ikSR)
, K0

V V = 2πRGs, (1.19)

where J0 is the Bessel function of the first kind and order 0, K0 is the modified Bessel
function of the second kind and order 0, whereas kS = ω/cS is the wavenumber of S-
waves. Recall that Gs is the shear modulus of the soil. Note that Equation (1.19) is
given by Equations (A.7) and (A.11) in Appendix A. As reported by Kitahara (1984),
J0(kSR) has a number of zeros for ηs = 0 and kS > 0. At the corresponding cyclic
frequencies, SV V (ω) becomes singular and the stiffness becomes infinite. These anti-
resonance frequencies are marked in Figure 1.9 by the vertical lines with the dash-dot
signature. The distance between the lines tends towards π for ω → ∞. Thus, the
nth anti-resonance mode occurs at the non-dimensional frequency a0 → π(n − 1/4) for
n → ∞.
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Figure 1.9: Solution for an infinite cylinder subjected to dynamic vertical excitation in
the axial direction.

1.8 Conclusion

In this report the vertical dynamic soil–structure interaction of the suction caisson foun-
dations for offshore wind turbines has been evaluated by means of a dynamic three-
dimensional coupled Boundary Element/Finite Element model.

Benchmark tests have been performed to determine the capability of estimating the
vertical static stiffness of the suction caisson by the BE/FE formulation, and there is
good agreement between the estimation of K0

V V by FE and BE/FE. Furthermore, the
BE/FE model of the suction caisson has been used to reproduce the vertical dynamic
stiffness of a surface footing. The results from the suction caisson model with ‘soil skirts’
match the results of the surface foundation model, and the model of the suction caisson
is able to reproduce the frequency dependent behaviour of a surface foundation without
introducing errors due to the complexity of the model.

The dynamic stiffness has been investigated for several different combinations of the
mechanical properties of the soil–foundation system, and the following observations can
be made:

� The vertical dynamic stiffness changes with the skirt length. For a relatively small
embedment depth (H/D = 1/4) the impedance varies smoothly with the frequency,
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whereas the impedance for H/D = 1 and 2 is characterized by distinct peaks.

� The dynamic stiffness is relatively insensitive to variations in νs in the range from
0.1 to 0.4. When νs approaches 0.5, the dynamic behaviour changes significantly
due to the fact that cP /cS → ∞ for νs → 0.5.

� The impedance for high values of Gs (1000 MPa) approaches the shape of the fre-
quency dependent behaviour of the surface foundation. When Gs decreases, the
local oscillations become more distinct and the influence of the skirt flexibility van-
ishes, i.e. the caisson reacts as a rigid foundation. Rigid behaviour can be assumed
for Gs ≤ 1.0 MPa.

Furthermore, the high-frequency behaviour of the suction has been investigated. Here,
the main conclusions are:

� Generally the magnitude of the impedance increases with the skirt length.

� The normalized magnitude of the impedance is characterized by repeated oscillations
with local extremes for a0 ∈ ]0;12]. However, the average dynamic stiffness appears
to be increasing monotonously with increasing frequency, similar to the situation for
of the surface footing.

� The phase angle for the suction caissons oscillate around π/2 for a0 > 4, and it will
eventually stabilize at higher frequencies.

� A limiting damping parameter C∞

zz that describes the impedance for a0 → ∞ has
been determined for applications involving lumped-parameter model approximation
of the high-frequency vibrations.

The repeated oscillations in the impedance of the suction caisson are due to resonance and
anti-resonance of the soil inside the suction caisson. This is concluded by comparing the
vertical impedance characteristics of the suction caisson to those of an infinite cylinder
subjected to dynamic vertical excitation in the axial direction.

This report has been focused on the analysis of the vertical component of the dy-
namic stiffness matrix S and the preliminary benchmark testing to ensure that the nu-
merical model is valid and able to capture the dynamic behaviour of the suction caisson.
The analysis of the coupled horizontal and moment loading and the torsional loading
conditions will be examined in Ibsen and Liingaard (2006a).
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Appendix A

Solution for an infinite cylinder

Consider an elastic full-space with material density ρ and shear modulus G. As depicted
on Figure A.1 the full-space is divided into two domains by an infinitely long circular
cylinder, the centre axis of which coincides with the x3-axis. The interior domain is
coined Ω1, and the remaining part of the full-space, i.e. the exterior domain, is coined
Ω2. The boundary of Ω1 is denoted Γ1 and has the outward unit normal n̂1(x), whereas
the boundary of Ω2 is denoted Γ2 and has the outward unit normal n̂2(x). Evidently, Γ1

coalesces with Γ2, and n̂1(x) = −n̂2(x) along the cylindrical interface, cf. Figure A.1.

Mode of anti-

resonance

Mode of

resonance

(a) (b)

r̂

n̂1

n̂2

x1

x2

x

ξξξ

r

θ = 2ϕ

ϕ

ϕ

z, x3

̺

̺

R
Ω1

Ω2

Γ1, Γ2

Figure A.1: Geometry of infinite cylinder and definition of polar coordinates: (a) (̺, z)-
plane and (b) (̺, θ)-plane. An observation point x with the plane coordinates (x1, x2) =
(−1, 0) is considered, and material is present on both sides of the cylindrical interface.

The cylindrical interface between Ω1 and Ω2 is subject to a harmonically varying
forced displacement with the cyclic frequency ω and applied in the x3-direction, i.e. along
the centre axis. This leads to pure antiplane shear wave propagation (SH-waves) in the
elastic material, i.e. there is no displacement in the x1- or x2-direction. Depending on
ω, the geometry of the cylinder and the wave propagation velocity cS =

√

G/ρ, the
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28 Appendix A – Solution for an infinite cylinder

excitation may lead to resonance or antiresonance as illustrated on Figure A.1. Further,
since the surface is smooth along the entire interface, the boundary integral equations
(1.7) for the two domains are reduced to

1

2
V1(x, ω) +

∫

Γ1

P ∗(x, ω;ξξξ)V1(ξξξ, ω)dΓξξξ =

∫

Γ1

V ∗(x, ω;ξξξ)P1(ξξξ, ω)dΓξξξ, (A.1a)

1

2
V2(x, ω) +

∫

Γ2

P ∗(x, ω;ξξξ)V2(ξξξ, ω)dΓξξξ =

∫

Γ2

V ∗(x, ω;ξξξ)P2(ξξξ, ω)dΓξξξ, (A.1b)

where V1(x, ω) and V2(x, ω) are the displacements in the x3-direction along the bound-
aries Γ1 and Γ2, respectively, whereas P1(x, ω) and P2(x, ω) are the corresponding sur-
face tractions. Further, P ∗(x, ω;ξξξ) is the surface traction related to the Green’s function
V ∗(x, ω;ξξξ). In the case of antiplane shear waves, the fundamental solutions providing the
response at the observation point x to a harmonically varying point force at the source
point ξξξ are given as Domínguez (1993)

V ∗(x, ω;ξξξ) =
1

2πG
K0(ikSr), P ∗(x, ω;ξξξ) = −kS

2π

∂r

∂n
K1(ikSr), r = ||r||2, r = x− ξξξ,

(A.2)
where Km is the modified Bessel function of the second kind and order m, whereas ∂r/∂n
defines the partial derivative of the distance r between the source and observation point
in the direction of the outward normal. With the definitions given on Figure A.1, and
further introducing n̂(ξξξ) = n̂1(ξξξ) = −n̂2(ξξξ), it becomes evident that

∂r

∂n
=

{

r̂(x, ξξξ) · n̂(ξξξ) = cos(ϕ) for x ∈ Γ1

−r̂(x, ξξξ) · n̂(ξξξ) = − cos(ϕ) for x ∈ Γ2

where r̂(x, ξξξ) =
x − ξξξ

||x − ξξξ||
2

.

(A.3)
Here ϕ is the angle between the distance vector r and the normal vector n̂. Finally,
in Equation (A.1) kS is the wavenumber of S-waves. In the case of hysteretic material
damping with the loss factor η,

kS =
ω

cS

, c2

S = (1 + iη)
G

ρ
. (A.4)

Now, the forced displacement is applied with constant amplitude V̂ (ω) and in phase along
the cylindrical interface, Γ ≡ Γ1. Accordingly, the traction on either side of the interface
will be uniform and in phase. Continuity of the displacements across the interface then
provides the result:

V1(x, ω) = V2(x, ω) = V̂ (ω), P1(x, ω) = P̂1(ω), P2(x, ω) = P̂2(ω), x ∈ Γ. (A.5)

Hence, Equation (A.1) may be rewritten as

V̂ (ω)

(

1

2
+

∫

Γ

P ∗(x, ω;ξξξ)dΓξξξ

)

= P̂1(ω)

∫

Γ

V ∗(x, ω;ξξξ)dΓξξξ, (A.6a)

V̂ (ω)

(

1

2
−

∫

Γ

P ∗(x, ω;ξξξ)dΓξξξ

)

= P̂2(ω)

∫

Γ

V ∗(x, ω;ξξξ)dΓξξξ, (A.6b)
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where use has been made of Equation (A.3). Addition of Equations (A.6a) and (A.6b)
provides a measure of the dynamic stiffness per unit surface of the interface related to
displacement along the cylinder axis. The stiffness per unit length of the infinite cylinder
then becomes

SV V (ω) = −LΓ

P̂ (ω)

V̂ (ω)
= −LΓ

2α
, P̂ (ω) =

1

2

(

P̂1(ω) + P̂2(ω)
)

, (A.7)

where LΓ is the length of the interface Γ, measured in the (x1, x2)-plane, and

α =

∫

Γ

V ∗(x, ω;ξξξ)dΓξξξ. (A.8)

Equations (A.7)–(A.8) hold for arbitrary geometries of the infinite cylinder. However, in
what follows a restriction is made to an infinite circular cylinder with the radius R, that
is with LΓ = 2πR. In order to compute α, the cylindrical polar coordinates (̺, θ, z) are
introduced such that

x1 = ̺ cos θ, x2 = ̺ sin θ, x3 = z. (A.9)

In these coordinates, the boundary Γ is defined by ̺ = R, 0 ≤ θ < 2π, −∞ < z < ∞.
In particular, when an observation point x with the plane coordinates (x1, x2) = (−1, 0)
is considered (see Figure A.1), the distance r between the source and observation point
becomes

r = R
sin 2ϕ

sin ϕ
= 2R cosϕ. (A.10)

Making use of the fact that θ = 2ϕ, Equation (A.8) may then be evaluated as

α =
1

2πG

∫ 2π

0

K0(ikSr)Rdθ =
1

π

R

G

∫ π

0

K0(2ikSR cosϕ)dϕ = −R

G
J0(kSR)K0(ikSR).

(A.11)
Here J0 is the Bessel function of the first kind and order 0. It is noted that K0(ikSR) → ∞
for kS → 0. Hence, SV V (ω) → 0 for ω → 0. Furthermore, J0(kSR) has a number of
zeros for η = 0 and kS > 0. At the corresponding circular frequencies, K∗

V V (ω) becomes
singular as reported by Kitahara (1984).
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