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Abstract 
Gene content in genomes changes through several different 
processes, with gene duplication being an important contributor to 
such changes. Gene duplication occurs over a range of scales from 
individual genes to whole genomes, and the dynamics of this process 
can be context dependent. Still, there are rules by which genes are 
retained or lost from genomes after duplication, and probabilistic 
modeling has enabled characterization of these rules, including their 
context-dependence. Here, we describe the biology and 
corresponding mathematical models that are used to understand 
duplicate gene retention and its contribution to the set of biochemical 
functions encoded in a genome.
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Introduction
Richard Feynman left the quotation, “What I cannot create, I do not understand” on his blackboard at the time of his death.
Creation in mathematical modeling is writing down a model that describes a process. The retention of duplicate genes
over long evolutionary periods involves mechanisms and processes in population genetics, evolution, molecular biology,
ecology, and biochemistry. Here we describe the current state of modeling in the field of duplicate gene retention.

The genome can experience duplications of its content across a range of sizes, from incomplete duplications of single
genes to small-scale events (single duplicate genes created through tandem duplication or retrotransposition events) to
large scale events that involve multiple genes or even whole genomes. These events are broadly classified as whole
genome duplications (WGD) or small scale duplications (SSD): the two types have several key differences. WGD
duplicates are duplicated together with their interacting partners, and the population (and cellular) genetic model for the
initial fixation of WGD duplicates is less straightforward than for SSDs. WGD events can be either allopolyploidies or
autopolyploidies (see below). SSD duplicates typically do not see their interaction partners duplicated and initially have a
frequency of 1/(2Ne) in a diploid population. SSD duplicates are typically assumed to begin as identical copies, but this
isn’t always the case.1–6

In examining small-scale duplication, tandem duplicates may be identical at birth, but also may be born as chimeras or as
partial duplicates.2,7 Those that are non-identical can be viewed as partly along theway to functional divergence. Identical
duplicates aremore common at birth, but less common among older tandem duplicates.2,7 Similarly, genes that emerge by
retrotransposition are less common at birth, but because they are likely born in a different expression environment and
chromosomal location, diverge faster and are, relative to their birth rate, more common at older ages.8

Once duplicated, the accumulation of nonfunctionalizing mutations leading to the eventual loss of one copy through
neutral processes can be naturally modeled with an exponential decay distribution.9–12 Several factors can lead to
duplicate gene pairs losing their redundancy and falling under the action of natural selection; when this change occurs,
that pair will deviate from the neutral expectation of exponential loss.12–14 In general, it has been suggested by Wagner
(2005)15 that the expression cost of a duplicated gene leads to a fitness cost in its possessor, and a similar argument could
be made for a replication cost, especially for organisms that have limitations on genome size. Such a limitation would
occur when selection acts to minimize replication time in log phase growth.

More generally, duplicates can be retained as a mechanism to gain extra expression.16 An example of this in humans and
other mammals appears to be the convergent duplication and retention of copies of the amylase gene.17 Trypanosomes
seem to regulate gene expression more generally through gene duplication, with very few transcription factors in their
genomes.18,19 There is also a selective pressure to retain duplicates that physically interact in stoichiometric balance to
prevent misassembly of imbalanced heteromultimers or pathological interactions among their exposed hydrophobic
surfaces.20–24 Mechanisms of duplicate preservation that involve changes of function through mutation accumulation
include subfunctionalization,25,26 the partitioning of functions among copies from the pre-duplication ancestral state, and
neofunctionalization,16 the acquisition of a new beneficial function.

This review is focused on the characterization of different types of models with distinct assumptions that characterize the
duplicate gene retention process. The goal of all of thesemodels is to probabilistically predict which genes are likely to be
found in genomes that have WGD events of different ages and ongoing processes of SSD. Multiple models for all of the
processes described above exist and are discussed below together with their biological assumptions. Table 1 summarizes
the models that have been characterized here.

REVISED Amendments from Version 1

In response to reviewers, a few changes were made to the manuscript. Most importantly, a new table (Table 1) has been
added to summarize the models described and their biological assumptions. A paragraph has been added to describe
themechanisms of small scale duplication and corresponding retention profiles, including two new references. A clarifying
paragraph organizing the work has been added to the introduction. Lastly, a series of more minor presentation and
grammatical changes has been made.

Any further responses from the reviewers can be found at the end of the article
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Table 1. A summary of themodels described for duplicate gene retention together with their assumptions is
presented.

Model Name or
Description

What is Modeled and
Model Features

What is Assumed about
Biology

Key
Reference(s)

Duplicate Copy Presence or Coding Sequence Models

Population Moran
Model

Compares duplicate
frequency and age in a
population against a neutral
expectation

Relies upon dS to estimate age;
assumes deviation from neutrality
due to selection and not
demographics

81

Exponential Loss
Model

Models retention over time
with a simple loss rate

The simple loss rate is consistent
with a neutral process without any
onset of negative selection

9

Generalized Weibull
Hazard Model

Models retention over time
with mechanism-specific
hazards

Works on simplified assumptions
about average processes acting on
genes

12

POInT A single rate describing
presence and absence at a
syntenic location across
genomes

A single loss rate is consistent with
neutral loss without the onset of
negative selection

120

Ji et al. Tests for asymmetry in
evolutionary rate in the
coding sequence to infer
mechanisms

Assumes that asymmetry is due to
direct selection when other
processes can also generate
asymmetry; does not consider gene
expression changes

101

Duplicate Gene Expression Models

Gene Expression
Continuous Trait
Nested Hierarchy

A hierarchy of continuous
trait models is applied to look
at the evolution of expression
levels over a phylogeny

Works only on reconstructing a
phenotypic trait without knowledge
of the underlying genotypic
changes

CDROM Using asymmetry of rates of
gene expression divergence
to infer mechanisms

Works on phenotype without
considering underlying genotype;
assumes that asymmetry is due to
direct selection without other
processes acting

50

CLOUD Gene expression inference
for duplicates using an
Ornstein-Uhlenbeck Process
with a neural network

Works on phenotype without
considering the underlying
genotype

69

Integrated Models

Biophysical
Subfunctionalization
Plus Dosage Markov
Model

Integrates a biophysical
model for protein
interaction/misinteraction
with a previous Markov
model for
subfunctionalization

Assumes modularity of gene
regulatory units and ultimate
retention through complementary
gene expression changes

76

jPRIME models Exponential Loss model
integrated with lateral
transfer and speciation

Single rate exponential loss models
are consistent with neutrality
without negative selection

11

Maere et al. models Exponential Loss model
integrating across
duplication and divergence
processes

Paralog losses are due to drift, but
with differing chances of being
subject to such losses for different
functional classes of genes

113

Phase Type models Time to subfunctionalization
or loss of one gene copy post
duplication is modelled as
Phase Type distributed.

Assumes time until a loss of each
subfunction or the coding region
are each exponential (with different
rates). Assumes all functions are
protected by selection

91

QBD models Models the evolution of a
gene family within a species.
QBDs track ‘level’ the size of
the gene family as well as
information on the amount of
redundancy (the ‘phase’)

Assumes time until a loss of each
subfunction or the coding region
are each exponential (with different
rates). Assumes all functions are
protected by selection

94,95
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Gene Duplicability
Different retention mechanisms are differentially applicable to different genes. This has given rise to the notion of gene
duplicability, that some genes are inherently more duplicable than other genes.10,27,28 For a gene to be retained after
duplication, it ultimately needs to be either subfunctionalizable or neofunctionalizable.12 To be subfunctionalizable, a
gene must have at least two modular functions (biochemical activities, including binding, or modular expression
domains), such that there are mutations that can disable one subfunction without damaging others. The probability of
eventual subfunctionalization for two identical duplicate gene copies scales as 1 � 0.5(f � 1), where f is the number of
functions. The probability of neofunctionalization is harder to quantify, but either new selectable biochemical functions
or expression domains must be evolvable. At the coding sequence level, this is influenced by the fold, number of binding
partners, including those that are obligate heteromultimerization partners (proteins that obligately form multimers with
protein products from different genes),22,23 and type of function encoded.29–35 Network position and expression level
also influence gene duplicability.28,33,36–40 Empirically, there is a class of “duplication-resistant” genes where natural
selection apparently acts against themaintenance of both copies.35 Different genomesmight have different proportions of
genes that are duplicable, as well as that are subject to dosage constraints.41

In analyzing the retention of genes following two rounds of WGD, the Atlantic salmon genome paper42 presented a
conditional probability analysis suggesting that the gene duplicability hypothesis predicts that genes retained after one
round ofWGDmight be more likely to be retained after the second round. However, prior analyses from plants tended to
suggest that the factors that favor the retention of duplicates after a first polyploidy tend to be attenuated in subsequent
polyploidies.43 Support for the hypothesis from the test in Atlantic salmon was also lacking, but there is more complexity
to the process, including changing gene duplicability, the time-dependence of the retention process, and other factors,44,45

and probabilistic models that can be used as an expectation for different hypotheses are described below.41

The Biological Considerations as Building Blocks for Models
To model duplicate gene retention, one must describe what is mutable and selectable. Protein encoding genes must
function as proteins after transcription and translation. They are expressed at a given concentration in specific places and
at specific times. They then carry out various functions: binding, catalysis, or transport in interactionwith othermolecules
in the cell. This is what wemean by function. The expression domains for a protein are a quantitative description of where
and when expression occurs. There are cases where duplication is used as a mechanism for amplifying expression level,
although this seems to be a temporary situation in most organisms, with trypanosomes being a possible exception.

Modeling Expression Evolution of Duplicate Genes as a Stand-Alone Process
Though classical models for the retention of duplicate genes often consider their levels of sequence divergence, gene
expression data provide a promising source of underutilized information. In particular, gene expression data are now
widely available for many species and often consist of measurements across multiple conditions, which can include
tissues, sexes, and developmental stages. These measurements are an attribute of function, as knowledge of where and
when a gene is expressed provides insight into its biological roles. Indeed, Ohno proposed that the first step of functional
divergence between duplicate genes is their expression divergence.16 Thus, gene expression is a trait that can be exploited
to understand gene function and, in the case of duplicate genes, the divergence between their functions.

Many early studies compared expression levels between duplicate genes, finding that divergence between copies is often
widespread, rapid, and asymmetric.13,46–48 Yet expression divergence between duplicate genes does not provide
information about the exact mechanisms of their retention. For instance, both neofunctionalization and subfunctionaliza-
tion result in functional divergence between gene copies. Thus, it is important to compare the expression profiles of both
copies to that of the ancestral single-copy gene, as this can elucidate how each copy has changed since duplication. Such
an approach was developed about a decade ago49 and later implemented as the software CDROM.50 Applications of this
approach have uncovered widespread neofunctionalization in Drosophila,49 mammals,51 honeybees,52 and grasses.53

However, a key shortcoming of the approach of Assis and Bachtrog (2013)49 is that it does not account for stochastic
changes in gene expression arising from phenotypic drift.54 This obstacle can be overcome by modeling gene expression
evolution on the phylogenetic tree relating a pair of duplicates and their single-copy ancestor. There is a natural hierarchy
of models for describing how gene expression evolves along the branches of a phylogenetic tree. The simplest is
Brownian motion (BM), which models phenotypic drift without making any assumption of selection for a particular
expression level.55 The next level of the hierarchy is an Ornstein-Uhlenbeck (OU) process with stabilizing selection for a
particular expression level.56–60 Finally, one can utilize an OU process with a shift reflecting positive selection for an
optimal expression level.61–65 Another conceivable approach is to model the genotype driving expression evolution, but
this requires an understanding of the combinatorial role of promoters and enhancers regulating expression,66,67 which is
currently beyond our modeling capabilities.68
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With this in mind, researchers have recently begun to employ OU models for studying the expression evolution of
duplicate genes.24,69 Additionally, DeGiorgio and Assis (2021)69 developed CLOUD, which predicts retention mech-
anisms of duplicate genes by overlaying their OU model with a neural network.69 Though likelihood ratio tests (LRTs)
have classically been used for similar tasks with single-copy genes,24,58–61,70 machine learning approaches present
several advantages, such as the optimization ofmodel fit to training data, direct evaluation of performance on independent
test data, and ability to make predictions from data with correlated or conflicting signals.71 Further, such methods make
predictions solely from data,71 which can be advantageous when the underlying evolutionary model is unknown. Indeed,
CLOUD demonstrates excellent predictive performance, outshining CDROM in classifying retention mechanisms while
also being able to predict parameters corresponding to expression optima and strengths of selection and drift.69

Still, much remains to be done in this area. For one, many advanced machine learning algorithms have yet to be explored
in this context. Moreover, though expression data can provide a lot of useful information about a gene, this does not
necessarily mean that we should neglect other complementary sources, such as its sequence or protein structure. Another
advantage ofmachine learning is that it is notweighed down by additional information, as correlated or conflicting signals
can be reduced or even removed through regularization. However, the problem lies in extending the underlying OU
model to accommodate diverse pieces of information. Last, one can argue that themost important extension of such work
is to accommodate more species and gene copies. Currently, most researchers do not have access to expression data for
multiple of the same conditions inmany species, but this is soon to change as the cost of sequencing continues to decrease.
And of course, it is critical to assay the fates of gene families with more than two members, as many such families are
prominent across study systems and may be key to understanding adaptation.

Modeling the Evolutionary Cost of Gene Duplication
Analyses of duplicate genes often start from the premise that gene duplications are selectively neutral, creating redundant
copies that can potentially degrade through degenerative mutations.9,72 The patterns of which genes do and do not tend to
survive in duplicate and the dosage-balance hypothesis (see above) already suggest that gene duplications are not all
selectively neutral at birth. Asmentioned above,Wagner has extended this argument by showing that, at least inmicrobial
organisms, the gene expression costs associated with an extra gene copy are rarely if ever expected to be selectively
neutral.15,73 His model considers the per-time unit cost, in terms of high energy phosphate bonds, of expressing a
duplicate gene for different ranges of mRNA and protein levels, finding that, for reasonably large values of the effective
population size of microbial species, those energy costs are large enough to discount the hypothesis that the fate of a
duplication is primarily driven by neutral evolution.74 The principle that excess gene expression has measurable negative
fitness effects due to the costs of transcription and translation has been elegantly experimentally explored in E. coli.75

Dosage Imbalance Cost
It is well established that maintaining stoichiometric balance with interacting partners is an important driving force to
preserve duplicate genes in genomes while waiting for other preservation mechanisms to act. The mechanistic driving
force behind this is thought to be the prevention of the accumulation of exposed hydrophobic residues that populate
binding interfaces and can lead to misinteractions that might be deleterious to cells. An explicit model that relates fitness
to the expected concentration of surface hydrophobic residues has been generated and used to explore how this model
enables the transition to subfunctionalized states, with opposite trends observed after WGD and SSD.76 This model is a
mechanistic update over a previously described hazard functionmodel that did not model this underlying biochemistry.77

Population Genetic Considerations
In eukaryotic organisms, the baseline state for most chromosomes is diploidy. Either across the whole genome or for
individual loci, this diploid state is disrupted after gene duplication. Functional tetraploidy has meiotic implications that
are not present for SSD events (see42 for a discussion in Atlantic salmon). Over time, WGD events return to a state of
functional diploidy and may start that way for alloduplication events with the chromosome sets already diverged, as may
have been the case for Xenopus78 and Brassica species.79,80

However, so far, this divergence characterization has been viewed without the underlying population-level dynamics.
While more complex for WGD events, SSDs in diploid organisms begin with a frequency of 1/(2Ne) and must fix before
they are lost if they are going to be retained. The neutral expectation for eventual fixation of such duplicates is that they
will fix with a probability equal to their frequency. Classical population genetics then gives a time-dependent expectation
for the frequency based upon the age of the duplicate. Stark et al. (2021)81 have presented a population genetic model to
evaluate if the age-dependent frequency is unexpected for a duplicate evolving neutrally. The power of this approach was
evaluated using a Moran Model, with two selective parameters, one for selection on the duplicate itself, which can be
positive when total gene dosage amplification is beneficial or negative due to factors like expression and replication cost,
and the other for selection on the new function (for example neofunctionalization).
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In using this model with actual segregating duplicates, the frequency of a duplicate in a population can be measured
through population genomic sequencing. However, the age of the duplicate is the next question. For SNPs, population
geneticists examine the length of tracts of identity by descent to estimate the age of an allele (e.g., duplicate locus) (see82),
but a much simpler approach based upon pairwise pS values between copies may be possible. Application of these
approaches to real data has not been performed yet to evaluate their performance.

Those considerations are used to evaluate selection on the copy itself. Selection on the sequence of the duplicate might be
measured by a more rich data source and parametrization or in a simpler manner by examining ratios like pN/pS or using
tests like the McDonald-Kreitman test applied to duplicates.83

Interspecific and Phylogenetic Models
Moving from intraspecific to interspecific analysis of gene duplicates, including models that run on a single genome,
early work from Lynch and Conery (2000)9 and from Lynch, Force, and coworkers10,25,84 has been pioneering. The first
model presented by Lynch and Conery (2000)9 modeled duplicate gene retention expectations with a simple exponential
distribution. This assumes that no matter how long a gene has been in a genome, the instantaneous probability of loss is
constant, which is not consistent with retention mechanisms, but is useful as a nonfunctionalization null model. Konrad
et al. (2011)12 and Teufel et al. (2016)77 described sets of hazard functions that did not have the property of time-
independent hazard functions, and Zhao et al. (2015)85 presented an age-dependent birth-death process inspired by this
framework. Yohe et al. (2015)86 presented a theoretical gene tree-species tree reconciliation framework using the Konrad
et al. (2011)12 model, but this was never implemented as software. Arvestad et al. (2009)11 presented a formal
probabilistic gene tree-species tree reconciliation framework using the exponential distribution model and generated
software for this. Others have created similar software packages.87,88 Additional innovations to this framework have
included the treatment of synteny,89 and species level processes.90

Contemporaneously with the Lynch and Conery (2000)9 modeling, Force et al. (1999)25 presented a more mechanistic
framework for subfunctionalization and neofunctionalization as processes. This was formalized as a Markov Model by
Stark et al. (2017)91 and expanded upon by Wilson and Liberles (2023)76 to enable consideration of dosage balance.
Multi-scale Markov models reflect a further step in this trajectory.

Multi-Scale Markov Models
A wide range of multi-scale Markov models for the evolution of gene families has been studied in the literature. Models
with states that record very detailed information about biology are suitable for simulation-based analysis. However, such
models may not be useful for theoretical analysis due to the size of their state space. On the other hand, models with
simplified state space are useful for in-depth theoretical and numerical analysis, which often leads to novel biological
insights. Both types of models provide powerful tools for the analysis, and the choice of one over another may depend on
the types of biological questions one might want to answer.

As an example, Stark (2017)92 suggested a simulation model for the evolution of a family of genes, in which detailed
information is recorded within a binary-matrix of 0’s and 1s such that each row corresponds to a gene and each column
corresponds to its function. Later, Diao et al. (2022)93 applied the binary matrix model of Stark (2017)92 in their
simulation-based analysis, which led to some interesting biological insights. Their results suggested that when the rate of
gene duplication dominates the rate of gene loss, then the distribution of tree shapes is close to following the uniform
ranked tree shape (URT) distribution (i.e., the distribution for a constant birth-death process). However, when the
opposite is true, then gene trees are more balanced than the URT distribution.

Next, Stark et al. (2017)91 constructed amodel with a simplified state space, for the theoretical analysis of the evolution of
duplicate genes, see Figure 1. Themanageable size of the state space allowed them to derive analytical expressions for the
rates of subfunctionalization and pseudogenization. This led to the result, earlier predicted by classical models, that
models with subfunctionalization provided a better fit to the age distribution of duplicate genes than models with a
constant rate. Further, Diao et al. (2020)94 developed a more advanced model for the theoretical analysis of the evolution
of a family of duplicate genes that was based on the application of a level-dependent Quasi-Birth-and-Death (QBD)
process. The state (n,m,k) of their QBDmodel consists of the variables n andm representing the number of genes and the
number of the redundant genes respectively, and the variable k which, in a simplified manner, records the remaining
information about the family. The authors took advantage of both types of models. They used the simulation-based
binary matrix model of Stark (2017)92 to obtain detailed outputs and then fitted the parameters of their QBD to data
obtained from these outputs. Next, they derived biological insights by computing metrics based on the expressions from
the theory of QBDs, such as the stationary distribution of observing various states within themodel and the distribution of
the time it takes for the family to lose a gene. Soewongsono et al. (2023)95 then applied this QBDmodel to amore general
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problem of reconciliation, inwhich the task is to find amapping of a gene tree to a species tree, tomaximize the likelihood.
The authors provided an algorithm to compute the likelihood of the reconciliation given the available incomplete data.

Modeling Asymmetric Divergence and Gene Conversion in Duplicate Genes
Another angle to evaluate duplicate gene retention mechanisms involves an examination of evolutionary symmetry.
In fact asymmetric divergence between duplicate gene copies is relatively common.96 This result is particularly striking
when one considers that many tests have low power to detect asymmetry.97 The test that was employed uses an outgroup
gene from a relative lacking the duplication to polarize differences between the two paralogs, forming a triplet tree.
Maximum likelihood was then used to compare a symmetric model, where dS (Ks), dN (Ka), or dN/dS (Ka/Ks or omega)
was constrained to be equal for both paralogs, to an alternative model where the divergence statistic was allowed to differ
between paralogs.96 It is tempting to attribute to neofunctionalization cases where one paralog has accelerated evolution
relative to the other, but in fact many different modes of evolution can induce asymmetry.98 In fact, asymmetry in
divergence is arguably more interesting for the differences seen between duplicate genes created by different mecha-
nisms3 or as a means for detecting recent gene conversion. We have used the ancient polyploidy in baker’s yeast have
experienced very recent gene conversion, such that ancient polyploidy-produced paralogs in one species are more similar
to each other than those copies are to their orthologs in a closely related species, despite the fact that the divergence time
between the ortholog pairs is probably ten-fold lower than the time since the paralogs were formed.99

Gene conversion refers to several mutational mechanisms that can allow part of the sequence of one member of a gene
family to overwrite the corresponding region in another paralog, effectively erasing some of the divergence between the
two paralogs.100 Because such events violate the assumption of independent evolution between paralogs, they are
difficult to treat with standardmodels. Ji et al. (2016),101 have described a codonmodel of evolution that jointly considers
the paired codons from two paralogous genes, incorporating a parameter t modeling the frequency with which conversion
events alter the paralogs’ sequences. This model confirms the surprisingly high rate of gene conversion among the yeast
ribosomal proteins, which had previously and incorrectly been taken to represent themore general rate of gene conversion
among yeast paralogs.102

Whole Genome Duplication: Duplicate Losses, Modeling and Synteny
While approaches such as standard time-independent birth and death models can be applied to duplicate genes produced
byWGD, or polyploidies, there are complexities and opportunities introduced byWGD events that benefit from models
that are specific to them. Polyploidy refers to a variety of events that result in eukaryotic cells withmore than two copies of
the genome.103 Polyploid lineages are formed relatively often, but most quickly go extinct.104 However, great trunks of
the eukaryotic tree of life descend from surviving ancient polyploidy events, including all vertebrates and flowering
plants, as well as specific lineages of yeasts, ciliates, and other plants.105

Figure 1. Tomodel theevolutionof geneduplicates, Stark et al. (2017)91 constructedaMarkov chainwith state
space {0,1,…,z-1,S,P} and generatorQwhere z is the number of regulatory regions within the gene, and S and
P is are the subfunctionalization and the pseudogenization (absorbing) state, respectively. In the above
example of transitions with z=4, the regions hit by null mutations are in red, and the regions protected by selective
pressure are in yellow. This figure is adapted from Stark et al. (2017),91 which was published under an open access
license.
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Polyploid individuals can form through the merger of genomes from the same species, known as autopolyploidy, or
of distinct species, referred to as allopolyploidy.106 The relative frequency of formation of these two types of polyploids
may be approximately equal,107 but because allopolyploidy confers the potential benefits of both polyploidy and
hybridization, there is reason to suspect that most surviving ancient polyploidy events were allopolyploidies.107–109

The termWGD is potentially slightly misleading because it suggests that all genes in the genome are duplicated. Initially
they are. However, for any reasonably old polyploidy event, many or even most of the duplicate genes will have been
lost.109,110 Probably most of these losses occur through the fixation of loss-of-function mutations in one copy by genetic
drift, a process common to duplicates of all types.9 As described in the earlier characterization of duplicate retention
mechanisms, selection from various sources can also play a role.

Another Class of Models for Evolution After Polyploidization Events
The question of demonstrating that a particular genome has an ancient polyploidy in its history is a complex one111 and
somewhat distinct from our concerns here. However, one obvious consequence of a polyploidy is the production of a
group of duplicate genes that were all formed “at the same moment.” In principle, a neutral measure of paralog
divergence, such as the number of synonymous substitutions per synonymous site (Ks) should be able to detect a
polyploidy through the excess of duplicates with similar KS values.

9,47 While the actual practice of detecting polyploidy
events in this way requires care,112 it has been an extremely illuminating approach. For instance, in a pioneering study,
Maere et al. (2005),113 were able to fit a mixture of age models to the Arabidopsis thaliana genome and detect three
ancient polyploidies in its history. They further showed convergent retention of genes of similar function in duplicate after
these events.113 To do so, they modeled three distinct processes: 1) a basal continuous rate of single gene duplication,
2) a set of between one and three ancient polyploidy events and 3) continuous losses of duplicates created by processes
1 and 2. They evolved these three processes in simulated discrete Ks time intervals and fit the simulations to the observed
set of Ks values from duplicate genes found in the A. thaliana genome.

Maere et al.’s (2005)113 approach is elegant but challenging to implement: other analyses of a similar form have instead fit
mixtures of models to the observed duplicate divergences, combining a basal steady-state duplicate birth-death model
with one or more discrete events duplicating the entire genome (with the potential for the immediate removal of some of
these duplicates).112,114 Such approaches allow for testing hypotheses regarding the number of polyploidy events in the

Figure 2. A regionof tenancestral genesduplicated through the teleost-specific genomeduplication (TGD).125

Shown in the center in gray are the ten genes as they are found in the genome of the spotted gar (L. oculatus), which
lacks the TGD. The paralogous regions created by the TGD in the eight genomes possessing it are then shown above
andbelow the gar genes. The lines joining pairs of genes indicate that these genes are neighbors in the genome (i.e.,
they are in synteny). After the TGD, some duplicates survive in all (pink) or some (tan) genomes, while others have
been returned to single copy, either from the subgenome with more surviving genes (blue) or than with fewer
(green). Numbers at the top of each column/pillar are the orthology confidence estimates from POInT. In other
words, this figure gives the confidence for placing the genes in this orthology state relative to the other 28-1=255
orthology configurations. Genes are shownwith their Ensemble identifiers126 for reference. This figure is an original
figure produced by the authors for this review article.
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Figure 3. Modeling duplicate gene loss after polyploidy. A) Following Lewis (2001),122 a discrete state model M
allows an ancestral position to be duplicated (D), single copy (S1 or S2) or a fixed duplicate (Df). Transitions between
these states occur at rates proportional to model parameters α, ɛ, and γ. Losses occur along an assumed phyloge-
netic tree twith branch lengths l1..lt. The extant genomes are phased into a series of homologous columns or pillars:
eachgenomemayhaveoneor twohomologs present at a pillar (a state for complete homolog absencewill be added
to future versions of POInT). Different parental subgenomes within an extant genome can be distinguished (orange
verses tan) but subgenome identities between the genomes are unknown.B) ForN= 2 polyploid genomes, there are
2N possible orthology relations. At each pillar i, we can compute the likelihood of the observed gene presence and
absence data for a given orthology pattern XX using the model M and the tree t: Lixx|M,t. C) Using the synteny
relationships, the values Li00|M,t .. Li11|M,t can be conditioned on Li-100|M,t .. Li-111|M,t with a transition probability
matrixΘ. The elements ofΘdependonΘi,g, where i is thepillar number andg is thegenome. If synteny inmaintained
between pillars i and i+1 for genome g, Θi,g= ΘM, a global constant estimated by maximum likelihood (0≤ΘM≤1).
Otherwise Θi,g=0.5, meaning the orthology pattern at i is independent of that at i-1. This equation can be applied
recursively to compute the likelihood of the entire dataset with standard hidden Markov model approaches123: the
⨀ operator represents an element-wise vector product. The tree branch lengths and model parameters are
estimated from the data by maximum likelihood using standard numerical techniques.127 This figure is an original
figure produced by the authors for this review article.
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lineage of a genome, but the results require some caution in their interpretation due to the relatively modest information
provided by Ks values.

112

Polyploidy and Gene Synteny
Our discussion so far has considered signals such as gene tree topologies and divergencemeasureswhich are applicable to
all types of duplicate genes. However, for the specific case of a polyploidy, another type of highly informative data is
present: the gene order patterns among the duplicated and non-duplicated genes. These patterns are commonly referred to
as gene synteny. They were critical in identifying the first ancient polyploidy found in a eukaryotic genome115 and have
been used in many subsequent analyses of polyploid genomes.116–118 Figure 2 illustrates the principle that a WGD, in
contrast to SSDs, produces duplicate genes that preserve the gene order present in the unduplicated ancestor. Indeed,
these patterns can identify ancient polyploidies even in the limiting case where all the duplicate genes were subsequently
lost, provided that an outgroup genome lacking the polyploidy is available and the degree of chromosomal rearrangement
is not too large. Hence, synteny is often considered the best evidence of the presence of an ancient polyploidy, even if
formal tests using it are hard to develop.112,119

One example of the power of combining syntenic information with models of duplicate gene gain and loss can be seen
with POInT (the Polyploid Orthology Inference Tool)120,121 Assuming that the duplicate products of a WGD are known
through syntenic information (as in Figure 2), one can use the generic discrete character evolutionarymodel of Paul Lewis
(2001)122 to model the preservation or loss of duplicate copies in different genomes that share this WGD (Figure 3A).
Briefly, the loss model presumes that all loci (or pillars) start in a duplicated state D and then can undergo fates such as
loss (resulting in states S1 or S2) or fixation (Df). Such a model can be applied to the duplicate presence and absence data
for a group of genomes sharing the polyploidy. However, the difficulty arises that the orthology assignments between
those genomes are unknown. POInT hence computes the likelihood of the observed gene presence/absence data at each
pillar for all possible orthology relationship under a duplicate lossmodel. It then uses a hiddenMarkovmodel to condition
that set of likelihoods at the current pillar i on those from pillars 0..i-1- using a transition matrix Q.123 The elements of Q
are determined by whether or not synteny is preserved between i-1 and i in each genome.109

Once such a framework is in place, standard likelihood ratio tests124 can be used to test hypotheses about the
evolution of polyploid genomes such as what fraction of the duplicates appear to have been fixed120 or whether one
of the two parental genomes from an allopolyploid is favored when duplicates are lost.121 This second pattern, termed
biased fractionation, is likely indicative of an allopolyploidy108 and raises questions as to whether the subgenomes of
allopolyploid hybrids are functionally compatible.79

Concluding Thoughts
A number of models have been generated that describe different levels of duplicate gene retention with different levels
of mechanistic detail and as standalone models for individual problems, or as models that are integrated with other
problems. These models are summarized in Table 1. Two key elements of duplicate gene retention are coding sequence
function modeled using summary statistics (like dN/dS) or Markov models describing increasing layers of complexity
and expression evolution. These can also includemodels for syntenic position.While some of theMarkovmodels attempt
to integrate the two layers of evolution reflecting coding sequence function and expression in a sophisticated manner,
other approaches either use a simpler unifying factor, like [P] in a biophysical model or treat them independently or
without differential specification.Work in these directions is making substantial progress in capturing biological realism.
Modeling of duplicate gene retention can converge with the broader modeling frameworks being developed for the
genotype-phenotype map. While much of this modeling is in the realm of additive statistical association, the field of
computational systems biology includesmodeling frameworks that add another layer to the genotype-phenotypemap that
have not been touched much at the boundaries of the duplicate gene retention modeling field. Mechanistic models for
gene expression evolution will also be fruitful in this field. There is a lot of room to keep expanding these modeling
frameworks as genomic and other omic data accumulate for species and underlying populations and as biological
domain-specific modeling improves that can improve mechanistic duplicate gene retention models.

Data availability
No data are associated with this article.
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would suggest adding a table with all the various constraints for gene duplicability and retention 
listed in the different sections, summarizing which of them are considered by which model/paper. 
 
In addition, it would be interesting to discuss gene retention as a function not only of small-scale 
duplication versus whole-genome duplication, but also as a function of the type of small-scale 
events: duplication of a single gene versus duplication of larger segments, tandem duplication 
versus retrotransposition. 
 
Few other comments:

Mathematical formulae should be better written. This may be a problem linked to 
F1000Research's writing constraints? Writing “1-(0.5)^(f-1)” or event 1/2N is unclear. Is it 
1/(2N) or (1/2)N?

○

Although the target audience should be familiar with most of the biological and 
mathematical terms used, some are less obvious and should be explained, such as 
“heteromultimerization partners”.

○

On page 7, correct the sentence: “The relative frequency of formation of these two types of 
polyploids many be approximately equal”. I guess “many” should be replaced by “may”.

○

On the same page, 6th line before end: “As described, selection from various sources can 
also play a role.” As described where?

○

First part of Figure 2: I guess the segments, for each genome, above and below that for L. 
oculatus correspond to the two paralogous syntenies? That should be specified.

○

Caption of Figure 3: “Transitions between these states occur at rates proportional to model 
parameters ?, ɛ, and γ”. “?” should be corrected.

○

 
Is the topic of the review discussed comprehensively in the context of the current 
literature?
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Yes

Are all factual statements correct and adequately supported by citations?
Yes

Is the review written in accessible language?
Yes

Are the conclusions drawn appropriate in the context of the current research literature?
Yes

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Computational biology, phylogeny, gene/species tree reconciliation.

I confirm that I have read this submission and believe that I have an appropriate level of 
expertise to confirm that it is of an acceptable scientific standard.

Author Response ( ) 30 Jan 2024
David Liberles 

Response to Professor El-Mabrouk, Assis et al. 
 
This is an interesting review on the dynamic of gene retention and loss, depending on gene 
structure, gene function, the mechanism creating the duplicated copies, and other 
biological constraints. It presents various mathematical models characterizing such gene 
duplicates retention/loss dynamics in a context-dependent way. In particular, the difference 
between gene duplicates evolution depends on whether gene copies result from small scale 
duplication or whole genome duplication (WGD). The last part of the paper also explains the 
probabilistic and algorithmic ways of predicting WGD events. 
 
 
>We thank Dr. El-Mabrouk for these comments and review. 
 
My main criticism is that the review intermingles a variety of biological concepts and 
mathematical models, with no clear subdivision. The introduction should clearly explain the 
objective of the review and how it is organized. The content should be subdivided into 
coherent subsections. I would suggest adding a table with all the various constraints for 
gene duplicability and retention listed in the different sections, summarizing which of them 
are considered by which model/paper. 
 
 
>We have now added a paragraph to the introduction on the organization of the work. 
We have also added the suggested table. 
 
In addition, it would be interesting to discuss gene retention as a function not only of small-
scale duplication versus whole-genome duplication, but also as a function of the type of 
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small-scale events: duplication of a single gene versus duplication of larger segments, 
tandem duplication versus retrotransposition. 
 
 
>A discussion along these lines has been added. 
 
Few other comments:

Mathematical formulae should be better written. This may be a problem linked to 
F1000Research's writing constraints? Writing “1-(0.5)^(f-1)” or event 1/2N is unclear. Is 
it 1/(2N) or (1/2)N?

○

>This and other formula have now been written more formally.
Although the target audience should be familiar with most of the biological and 
mathematical terms used, some are less obvious and should be explained, such as 
“heteromultimerization partners”.

○

>An explanation of this term has been added.  
 

On page 7, correct the sentence: “The relative frequency of formation of these two 
types of polyploids many be approximately equal”. I guess “many” should be replaced 
by “may”.

○

>This has now been corrected.
On the same page, 6th line before end: “As described, selection from various sources 
can also play a role.” As described where?

○

>This sentence has now been clarified.
First part of Figure 2: I guess the segments, for each genome, above and below that 
for L. oculatus correspond to the two paralogous syntenies? That should be specified.

○

>This has now been specified in the figure legend.
Caption of Figure 3: “Transitions between these states occur at rates proportional to 
model parameters ?, ɛ, and γ”. “?” should be corrected.

○

>This has now been corrected.  
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Page 20 of 21

F1000Research 2024, 12:1400 Last updated: 22 MAR 2024



The benefits of publishing with F1000Research:

Your article is published within days, with no editorial bias•

You can publish traditional articles, null/negative results, case reports, data notes and more•

The peer review process is transparent and collaborative•

Your article is indexed in PubMed after passing peer review•

Dedicated customer support at every stage•

For pre-submission enquiries, contact research@f1000.com

 
Page 21 of 21

F1000Research 2024, 12:1400 Last updated: 22 MAR 2024

mailto:research@f1000.com

