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Automating the recreation of gene and mixed gene-compound networks
from Kyoto Encyclopedia of Genes and Genomes (KEGG) Markup Language
(KGML) files is challenging because the data structure does not preserve the
independent or loosely connected neighborhoods in which they were
originally derived, referred to here as its topological environment. Identical
accession numbers may overlap, causing neighborhoods to artificially
collapse based on duplicated identifiers. This causes current parsers to
create misleading or erroneous graphical representations when mixed
gene networks are converted to gene-only networks. To overcome these
challenges we created a python-based KEGG NetworkX Topological (KNeXT)
parser that allows users to accurately recapitulate genetic networks andmixed
networks from KGML map data. The software, archived as a python package
index (PyPI) file to ensure broad application, is designed to ingest KGML files
through built-in APIs and dynamically create high-fidelity topological
representations. The utilization of NetworkX’s framework to generate tab-
separated files additionally ensures that KNeXT results may be imported into
other graph frameworks and maintain programmatic access to the original x-y
axis positions to each node in the KEGG pathway. KNeXT is a well-described
Python 3 package that allows users to rapidly download and aggregate
specific KGML files and recreate KEGG pathways based on a range of user-
defined settings. KNeXT is platform-independent, distinctive, and it is not
written on top of other Python parsers. Furthermore, KNeXT enables users to
parse entire local folders or single files through command line scripts and
convert the output into NCBI or UniProt IDs. KNeXT provides an ability for
researchers to generate pathway visualizations while persevering the original
context of a KEGG pathway. Source code is freely available at https://github.
com/everest-castaneda/knext.
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1 Introduction

As network analyses become progressively feasible due to the increasing scalability and
access to graph algorithms (Shannon et al., 2003; Lumsdaine et al., 2007; Hagberg et al.,
2008) researchers are leveraging biological interaction graphs to derive new information,
impute missing data, and drive decisions (Yue et al., 2019). Consequently, there often exists
a need to visualize and extract information independent of a network’s original context and
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preserve the underlying graph structure to enable novel
interrogation of the data (Bernstein et al., 2021).

Experimentally verified biological pathways play a key role in
graphical analyses and are vital to hypothesis-testing and cross-
validation experiments (Yu et al., 2017). One of the most widely
used network pathway databases is the Kyoto Encyclopedia of
Genes and Genomes (KEGG) (Kanehisa et al., 2022). KEGG hosts
a series of experimentally verified and manually crafted biological
pathways procured from various species and, most notably, all
pathways can be externally downloaded as a network map written
in KEGG Markup Language (KGML), a proprietary XML format.
In order to parse, recreate, or convert KEGG pathways, KGML
files require computational assistance for manipulation
(Wrzodek et al., 2011). Currently, several software tools exist
to parse KGML files: graphite, a bioconductor package which
creates compound propagated genomic networks (Sales et al.,
2012), CyKEGGParser, a Cytoscape application that fixes issues
in KEGG-generated graphs (Nersisyan et al., 2014), KEGG2NET
(Chanumolu et al., 2021), which converts KGML files into
directed acyclic graphs, Biopython, a KGML parser for
graphics rendering and data acquisition in Python (Cock
et al., 2009), and KEGGParser, a MATLab-based parser and
editor (Arakelyan and Nersisyan, 2013). Each parser fulfills a
role in conforming, correcting, or converting pathways for use in
other analyses, providing benefit where strict gene-only networks
are required for input (Chen et al., 2017).

One fundamental challenge of creating automated KEGG
parsers is to produce biologically-relevant representations of
KGML pathways while maintaining the integrity of underlying
data (Yu et al., 2017; Bernstein et al., 2021). Here we describe a
python-based KEGG NetworkX Topological (KNeXT) parser that
builds upon existing strategies by providing improved
biologically-relevant representations of genetic networks and
mixed networks from KGML data. To summarize, genetic
networks are composed entirely of gene-gene interactions that
avail themselves to semantic similarity analysis. (Díaz-Montaña
et al., 2017). In contrast, mixed networks retain information
regarding biological systems, such as interacting pathways, and
chemical interactions Kanehisa et al. (2015). Due to the complex
nature of KEGG graphs, parsers must produce output that can
adapted for novel contexts, (Sales et al., 2012), and, furthermore,
offer the ability to facilitate visualization, which is crucial for

complex network data Sato et al. (2023). Hence, KNeXT converts
KGML maps into tab-delimited files that are readily useable in
other software analyses and visualization tools such as Cytoscape
(Shannon et al., 2003) and NetworkX (Hagberg et al., 2008). An
overarching difference between KNexT and other software is that
it discriminates between genes and compounds in different
topological configurations by utilizing the KGML file’s entry
identifications as terminal modifiers. This allows users to
derive networks in their original orientation and capture
subgraphs. These topologies and overlapping nodes are a
derivative of pathways which reflect spaciotemporally regulated
complexes (Hurst et al., 2004) such as the cell cycle and cohesin
loading (Litwin and Wysocki, 2018). KNexT features commands
that enable users to recreate graphs as mixed networks or gene
networks with compound propagation and “AND/OR group”
parsing, similar to graphite (Sales et al., 2012). The resulting
tab-delimited edge list also features notations of interactions that
are derived from compound propagation or clique isolation and,
if applicable, the original weights derived from the KGML file.
KNeXT additionally provides access to a dictionary of nodes and
their x-y axis coordinates for aiding in re-creation of the original
KEGG layout in NetworkX.

2 Materials and methods

2.1 Overview

KNeXT is implemented in Python3 (v.3.9) and uses the NetworkX
library (v.3.1) (Hagberg et al., 2008) for creating gene-only networks.
Users may use the embedded KNeXT command, get-kgml, see Table 1
for a complete list of KNeXT commands, to retrieve species-specific
KGML files using KEGG’s application program interface (API).
Alternatively, users may specify local KGML files or directories as
source materials. Pathway reconstruction is handled by the NetworkX
shortest path framework. This approach implements compound
propagation as described in (Sales et al., 2012) and Figure 1 to
remove compounds from the network and avoid disconnected graph
representations, and convert “AND/OR” type interactions into
individual nodes (Sales et al., 2012). The shortest path framework is
also used when transiting groups with undefined KEGG Orthology
(KO) accession numbers.

TABLE 1 Summary statistics for all Kolmorogov-Smirnov tests for normality.

Graph Variable measured KS statistic p-value

KNeXT ppd 5.00 × 10−1 2.41 × 10−73

graphite ppd 5.00 × 10−1 6.89 ×−76

KNeXT greedy modularity 5.00 × 10−1 1.70 ×−71

graphite greedy modularity 5.00 × 10−1 1.70 ×−71

KNeXT “Unique” greedy modularity 5.10 × 10−1 3.13 ×−75

KNeXT Combo modularity 5.00 × 10−1 1.70 × 10−71

graphite Combo modularity 5.00 × 10−1 1.70 × 10−71

KNeXT “Unique” Combo modularity 5.20 × 10−1 3.64 × 10−157
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FIGURE 1
Example compound propagation. As described, KNeXT propagates genes by attaching edges between genes and then deleting the compound.
KNeXT always retains unique identifiers in compounds, but for simplicity, the compound illustrated does not contain an entry identification number.
KNeXT uses the shortest path algorithm in NetworkX to automate the propagation of compounds.

FIGURE 2
KNeXT’s schematic. (A). KNeXT may acquire the KGML file or the user may use a downloaded KGML file as input. After, KNeXT parses the input then
creates edges between genes, compounds, or other represented entities and attaches the entry identifier (id). There are four different outputs, which
include the following:mixed, mixed unique, genes, and genes unique. (B). Themixed “unique” network retains all entry ids as well as non-genomic entities
such as compounds. (C). The gene “unique” network retains only genes entities while also keeping entry ids to differentiate between genes involved
in differing spatial topologies. (D). The mixed network retains the entry ids for compounds to retain differentiation while removing all entry ids from gene
entities. (E). The gene network removes all entry ids, which is a similar output to graphite’s gene network.
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2.2 Parsing and output

KNeXT enables users to recreate KEGG pathways in the form
of gene-gene networks or mixed networks consisting of a

combination of genes, compounds, and pathways. See Figure 2
for an example of KNeXT’s process and Table 2 for programmatic
descriptions.

For gene only networks, KNeXT outputs a tab-separated value
(TSV) file consisting of source and target gene with appropriate
metadata, see Table 3 for example, Users may, in turn, visualize
gene-gene output using NetworkX’s standard visualization libraries.
Users wishing to maintain compounds, genes, and pathways may
use themixed command to output source and sink relationships, see
Table 4 for an example. Lastly, using the–names command adds a
“names” column for each accession, which enhances the ability to
edit data, see Table 5.

For both gene-only and mixed-graphs, the–unique flag will
generate a pathway with all genes and compounds with unique
identifiers to avoid overlapping nodes. KNeXT does this by
attaching unique terminal identifiers to each entry, ensuring
that distal nodes are not bridged after compound propagation,
see 2 B-C. Additionally, the terminal modifiers create distinct
nodes that recapitulate correct positioning for pathway
visualization. Users have the ability to use a–graphics flag to
generate a dictionary of each node and its x-y coordinates, see
Table 6 for an example. The resulting dictionary allows NetworkX
to readily recapitulate KEGG style network visualization. All
output can be readily converted into equivalent identifiers from
other databases using the convert command. The conversion tool
utilizes KEGG’s API to retrieve and map identifiers from Entrez
(Sayers et al., 2022) and UniProtKB (The UniProt
Consortium, 2023) IDs.

TABLE 2 Commands and descriptions.

Primary command Secondary command Description

knext get-kgml KEGG organism code gathers all KGML files for the species specified

knext genes [file] parse a single KGML file as a gene-only network

[folder] parse a folder of KGML files as gene-only network

–graphics get TXT file of x-y coordinates of each node

–unique adds a terminal modifier to all nodes

–names uses an api call to acquire gene, compounds, and pathway names

knext mixed [file] parse a single KGML file as a mixed network

[folder] parse a folder of KGML files as a mixed network

–graphics get a TXT file of x-y coordinates of each node

–unique adds a terminal modifier to all nodes

–names uses an api call to acquire gene, compounds, and pathway names

knext convert [file] convert KNeXT output TSV file to UniProt or Entrez ids

[folder] convert KNeXT output TSVs in a folder to UniProt or Entrez ids

–graphics [file] convert a graphics file to UniProt or Entrez ids

–graphics [path] convert a folder of graphics files to UniProt or Entrez ids

–unique use only if your file(s) have terminal modifiers

–uniprot converts to UniProt ids (Entrez ids are default)

TABLE 3 Example dataframe of gene-only network with metadata.

entry1 entry2 Type Value name

hsa:10000 hsa:1147 PPrel –> activation

hsa:100271927 hsa:22,800 PPrel –> activation

hsa:115727 hsa:4893 PPrel, PPrel –>,–> activation, activation

hsa:8503 hsa:7074 CPp Custom compound
propagation

. . . . . . . . . . . . . . .

TABLE 4 Example dataframe of mixed networks with metadata.

entry1 entry2 Type Value name

cpd:C00035-92 hsa:22800 PCrel — binding/association

cpd:
C00165-198

hsa:10125 PCrel, PCrel –>,.> activation,
indirecteffect

hsa:11186 hsa:83593 PPrel — binding/association

. . . . . . . . . . . . . . .
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2.3 Data acquisition

Graphite version 1.48.0 was used for all pathway analysis. Since
graphite contains its own database of pathways gathered from
KEGG Sales et al. (2012), we captured 313 human pathways that
are shared between both sources. See Supplementary Table S1 for a
complete listing of all KEGG codes for each pathway used in this
study and for R code used to export all pathways from the R
environment. In addition, we created a ground truth graph using
data from the UCSC Genome Browser using their filter to retrieve
only database supported information (Kent et al., 2022). For
simplicity, all relationships are represented as weightless
undirected acyclic graphs.

2.4 Pathway analysis and statistical testing

We used two metrics for pathway analysis, per pathway
difference (ppd) and modularity. For our analysis of ppd, we
used the following: ppd � set(A)−set(B)

n , where A is the set of all
the edges in the query graph, KNeXT or graphite, B is the set of
all the edges in the UCSC graph, and n is the number of pathways
used. In order to determine significance, we conducted a Mann-
Whitney-Wilcoxon test. Modularity was measured based on
(Clauset et al., 2004a; Blondel et al., 2008) using the module in

NetworkX (Hagberg et al., 2008). Briefly, Q � ∑
n

c�1
[Lc
m − γ( kc

2m)2]
where m is the number of edges in the graph, Lc is the number
of intra-community links for community c, kc is the sum of degrees
in the nodes in community c, and γ is the resolution parameter. Here
we used the default γ of one. For an equitable, non-biased approach,
we included both graphite and KNeXT in the comparison of

modularity against pathways generated using the–unique flag in
KNeXT. Hence, we conducted a Kruskal Wallis (KW) Analysis of
Variance (ANOVA) with a Dunnet’s (Dunn) post hoc cross
comparison test. Dunn’s test was corrected for multiple testing
using a Bonferroni correction. We used only non-parametric
testing due to all measures being non-normal in distribution, see
Table 1 for complete summary statistics of all Kolmogorov-
Smirnov tests.

2.5 Community detection

One feature of KNeXT is its ability to parse pathways with
terminal modifiers. Hence, we analyzed whether KNeXT’s
“–unique” output graphs increase modularity using two
different community detection algorithms. While the focus of
this work is not to survey all applicable algorithms, we used
greedy modularity (Clauset et al., 2004a), a module written in
NetworkX (Hagberg et al., 2008), and pyCombo, a python
wrapper around the C++ implementation of Combo
(Sobolevsky et al., 2014). Both these algorithms have shown
robust utility for capturing high modularity in human KEGG
pathways (Rahiminejad et al., 2019). All algorithms were
leveraged using default parameters, and, we used a seed of one
for pyCombo. Briefly, the fast greedy community detection
algorithm finds the community with the highest modularity
from an iterative process that assess communities as
community pairs are combined (Clauset et al., 2004a; b).
pyCombo is a combination algorithm that finds communities
with the highest modularity through using one of the following
processes: combining communities, splitting communities, or
moving nodes between communities (Sobolevsky et al., 2014).

3 Results

Automating the recreation of topologically relevant KEGG
graphs from KGML files is difficult to due overlapping protein,
gene, and compound identifiers. We do not know of any automated
parsers that modify or interpret equivalent identifiers to create
isolated connected components. KNeXT is intended to bridge
this gap and our results provide a comparative analysis with a
modern widely-used parser called graphite (Sales et al., 2012),
which has been cited in several recent studies (Bianco et al., 2017;
Gouy et al., 2017; Benedetti et al., 2020; Rahat et al., 2020; Hellstern
et al., 2021; Liang et al., 2022).

TABLE 5 Example dataframe of mixed compounds and genes along with their and gene and compound names.

entry1 entry1_name entry2 entry2_name

cpd:C00095-137 Levulose hsa:5290 phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha

hsa:10000 AKT serine/threonine kinase 3 hsa:6518 solute carrier family 2 member 5

hsa:207 AKT serine/threonine kinase 1 hsa:6518 solute carrier family 2 member 5

hsa:208 AKT serine/threonine kinase 2 hsa:6518 solute carrier family 2 member 5

. . . . . . . . . . . .

TABLE 6 Longform output of programmatic access to feature positions for
input into NetworkX.

Node Coordinates (x, y)

cpd:C01245-51 (889, 733)

cpd:C05981-22 (872, 282)

hsa:10000-23 (934, 283)

hsa:100137049-78 (1137, 533)

hsa:998-72 (1107, 445)

. . . . . .
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To illustrate the advantages of KNeXT we compare our novel
approach to graphite using theHomo sapiens Rat Sarcoma (RAS)
signaling pathway, a highly complex pathway with multiple effectors
and features (Vojtek and Der, 1998). The KEGG pathway features
two states, the active and inactive state, and a third independent state
that outlines guanine nucleotide exchange factors and their effectors.
Figure 3 is a recreation of the pathway as described in the KEGG
website https://www.genome.jp/kegg-bin/show_pathway?hsa04014.
To simplify the figure, we highlight pathways of interest and utilize
undirected edges. Briefly, only the immediate neighborhood around
compound C00165, DAG, is highlighted because it occurs in two
subgraphs but forms connections with different genes based on
which neighborhood it resides.

Relying on unmodified KGML files, automated parsers are
susceptible to overlapping nodes with the same identifiers, even
when the nodes are in disconnected or distant neighborhoods
(Figures 4A,D). As Figure 3 demonstrates, in the RAS pathway,
DAG is represented in both the activate and inactive states.
Although DAG is the exact same in either state, it exists in two
distant neighborhoods or toplogies, see Figure 4B. As a result, when
propagated with graphite, genes involved in PLCγ are bridged to
both RasGRFs and PKC, creating a topology not reflected in the
original KEGG diagram, compare Figures 4D,E. Figure 4D
highlights edges in dashed red lines that do not support the
original topology, and edges in dotted red lines are interactions
not reflected in the University of Southern California Genome
Browser Gene Interaction Track (Kent et al., 2022). While the
latter is desirable, the former is misleading because it establishes

connections between genes that are not indicated in the original
KEGG pathway nor have any scientific evidence supporting its
interactions (Kent et al., 2022). For example, the connection
between genes PLCE1 and PLCG1 (Figure 4D) inferred by
graphite does not appear in either KEGG topology, Figure 3,
in contrast to the KNeXT result that retains neighborhood topology,
Figure 4F. This is also illustrated when compounds are propagated
without the KNeXT terminal modifier, Figure 4C. KNeXT is able to
properly represent the relationship as two distinct connected
components, Figure 4F.

We conducted a comparative analysis to extrapolate across all
human pathways. Our first analysis was based on the validation
between the edges constructed in a ground truth graph, which was
gathered from the UCSC Genome Browser, and the edges generated
in each respective parser, KNeXT and graphite. Figure 5A shows the
results of a ppd between graphite and KNeXT. ppd was significantly
higher for graphite, 0.045 p-value, compared to KNeXT indicating
that a significant amount of unverified edges are inflated when
compound propagation does not regard unique identifiers between
each compound.

Our next analysis consisted of a survey of KNeXT’s ability to
capture subgraphs using the–unique flag, which creates independent
neighborhoods and unique topologies. This is the most prominent
feature that differs from conventional parsers. We found that each
pathway exhibited higher modularity compared to conventional
parsing methods, see Figures 5B,C for results. This trend was
consistent no matter which community detection algorithm we
used, compare Figures 5B,C.

FIGURE 3
Recreated RAS signaling pathway. KEGG’s hsa04014 pathway image recreated. We reformatted the graph to undirected edges and emphasized the
two connected components, in grey background, and the two neighborhoods, highlighted in red, we will be investigating. Genes are colored in green
while compounds are in dark blue.
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4 Discussion and conclusion

Topology, the spatial order of a graph’s edges and vertices, is a
highly relevant aspect of network use in biology (Pavlopoulos et al.,
2011; Gao et al., 2018).While identical gene or compound identifiers
may be represented in disparate neighborhoods within the KEGG
visualization framework, the existence of duplicate identifiers in the
KGML file may prohibit recapitulation of original structure.
Oftentimes, this will result in automated KGML parsers creating
misleading or incorrect gene-gene or mixed-compound
representations (Wrzodek et al., 2011; Arakelyan and Nersisyan,
2013; Nersisyan et al., 2014). Existing approaches, such as
graphite, provide a tremendous utility to the bioinformatics

and R communities and have demonstrated robustness across
several additional databases (Sales et al., 2012). However, while
KNeXT does not extend to additional databases, it does provide a
novel automated KGML parser for the Python community while
simultaneously addressing the pervasive issues driven by the KGML
inclusion of duplicate identifiers. KNeXT is able to distinguish gene
and compound localization within the larger topology without the
need for post-processing modifications (Arakelyan and Nersisyan,
2013; Nersisyan et al., 2014). It also produces x-y axis localizations
compatible with NetworkX, shown in Table 6, enabling rapid result
visualization.

It is important to note that KNeXT achieves its ability to accurately
reconstruct topology by adding uniquemodifiers to KEGG components

FIGURE 4
Mixed and gene only representations of the original KEGG pathway. (A). The mixed, genes and compound, representation of the hsa04014 pathway
generated by graphite using the mixed command. (B). Pathway hsa04014s immediate neighborhood centered on compound C00165 (DAG). Type
“AND” interactions are not individualized to emphasize what is originally given by the KGML files. Gene symbols within the type “AND” interactions are
notated with parenthesis. (C). The mixed genes and compound representation of the hsa04014 pathway parsed by KNeXT using the parse-mixed
command. (D). graphite’s gene only network representation of the hsa04014 pathway. Erroneous or otherwise misleading edges are marked in red
dashes, and furthermore, edges which have no scientific evidence are marked in red dotted lines. (E). Pathway hsa04014 from KEGG represented in gene
only form. Type “AND” interactions are not individualized to emphasize the original KGML file format. (F). The parsed hsa04014 pathway generated by
KNeXT using the parse-genes command. In both cases, KNeXT illustrates higher accuracy when recapitulating the two distal neighborhoods.
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via the–unique command. As a result, KNeXT outputs includemodifier
extensions to the original identifiers that need to be stripped before use
in identifiermapping tools outside of KNeXT’s convert implementation.

While KNeXT provides options for identifier mapping among Entrez
(Sayers et al., 2022), UniProtKB (The UniProt Consortium, 2023), and
KEGG (Kanehisa et al., 2022) ids, further experiments on fully realized,
terminally-modified, KEGG pathways produced by KNeXT will be
necessary to determine the impact of topology modification on
downstream analysis. This may include the future development of
tools for integrating KNeXT directly into larger packages such as
metaGraphite (Sales et al., 2019), netgsa (Hellstern et al., 2021) or
Cytoscape (Shannon et al., 2003). This will also include leveraging these
terminally modified pathways in algorithms that require strict
neighborhood embeddings such as graph autoencoders (GAE) (Lin
et al., 2023). Since we have shown that these pathways exhibit a
significant increase in modularity, it has been shown that GAEs
may benefit from modularity-based prior communities when
calculating embeddings (Salha-Galvan et al., 2022). Furthermore, the
ability to swiftly isolate subgraphs will be useful to remove genes, which
have a biased spatial pattern, such as housekeeping genes (Karathia
et al., 2016).

In addition, we have noticed a lack of edges within UCSC’s
graphical database. We attributed this to “OR” edges being
unaccounted. Further research will be needed to investigate
missing edges. Missing edges might be an artifact of automated
parsers, and of course, our parser fills in these gaps without
artificially inflating erroneous edges.

The KNeXT Python package will benefit users familiar with Python
3 and/or desire a command line interface to KGML downloading and
parsing. KNeXT provides automated tools that perform analogous
functions expected from modern KGML parsers (Sales et al., 2012)
while preserving the vital overarching topological structure of KEGG
source material. Our software reduces the complexity of isolating
connected components, externally visualizing graphs, and reducing
pathways into just their genetic components.
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FIGURE 5
Results of pathway analyses. Probability value (p) annotation is as
follows: ns: 0.050 < p < � 1.00,*: 0.010 < p ≤ 0.050, **:
0.0010 < p < � 0.01, ***: 0.00010 < p < � 0.0010, ****:
p ≤ 0.0001 (A). Results of aMann-Whitney-Wilcoxon two-sided test.
U-statistic is 4.66×104 and p is 4.70 × 10−2. (B). KW ANOVA results with
Dunn’s post hoc test and a Bonferonni correction for a comparison of
modularity using the greedy modularity algorithm for community
detection. KW ANOVA results were significant t − statistic = 4.94×101 and
p = 1.90 × 10−11. While post hoc comparison showed non-significance
between the graphite and KNeXT, p = 1.00, KNeXT “unique’s” average
modularity was significantly higher than both KNeXT and graphite, p is
1.24 × 10−9 and 1.04 × 10−8, respectively. (C). KW ANOVA results with
Dunn’s post hoc test and a Bonferroni correction for a comparison of
modularity using theCombocommunity detection algorithm. KWANOVA
results were significant t − statistic = 7.15×101 and p = 3.06 × 10−16. While
post hoc comparison showed non-significance between the graphite and
KNeXT, p = 1.00, KNeXT “unique” was significantly higher compared to
both KNeXT and graphite, p is 5.78 × 10−12 and 4.20 × 10−11, respectively.
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