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TRP drop, TRP drop: a steady
patter of anti-schistosomal
target illumination
Daniel J. Sprague †, Claudia M. Rohr †

and Jonathan S. Marchant*

Department of Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, Milwaukee,
WI, United States
Infections caused by parasitic flatworms impart a significant disease burden. This

is well exemplified by the neglected tropical disease schistosomiasis, which

afflicts millions of people worldwide. The anti-schistosomal activity of various

chemotypes has been known for decades, but the parasite targets of many of

these remain undefined. Until recently, this included the current clinical therapy,

praziquantel (PZQ). However, the tempo of target discovery has recently

gathered pace, with discoveries of schistosome targets for praziquantel (PZQ)

and the anthelmintic benzodiazepine, meclonazepam (MCLZ). This steady patter

of target illumination has also revealed a pattern in that both PZQ and MCLZ

target members of the same ion channel subgroup—transient receptor potential

ion channels of the melastatin family (TRPM channels). PZQ activates one

member of this family (TRPMPZQ) and MCLZ activates a different channel

(TRPMMCLZ). Here, similarities and differences between these two new targets

are discussed. These data highlight the need for further study of TRPM channels

in parasitic flatworms given their vulnerability to chemotherapeutic attack.
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1 Introduction

Compounds that are active against parasitic flatworms (disease-causing flukes and

tapeworms) have been known for a long time (Keeling, 1968; Lammler, 1968; Katz, 1977).

However, our understanding of the mechanism of action of many of these anthelmintics

has long been proven incomplete as their targets within the parasite lack definition.

The current clinical therapy for schistosomiasis, praziquantel (PZQ, Figure 1A),

provides a very good example. Discovered by Bayer AG and Merck-KGaA in the early

1970s, it has been available for clinical use since 1978 (King and Mahmoud, 1989).

However, PZQ has lacked definition of a target in schistosomes for over 40 years (Park

et al., 2019; Park and Marchant, 2020; Brunetti et al., 2021). This lack of knowledge reflects

the challenges inherent to target identification, especially using parasite models, where key
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methods are often not available or difficult to execute. The lack of

target validation is a frustrating barrier for rational drug design.

Deciphering a target mechanism is a spur to drug development,

facilitating target-based screening campaigns, leading to

optimization and subsequent improvement of the drug candidate

through the preclinical pipeline. Further, knowledge of a target can

provide a better understanding of worm biology, illuminating

additional targets upstream and downstream in the relevant

signaling pathway. Finally, knowledge of the drug target facilitates
Frontiers in Parasitology 02
surveillance for drug resistance. While resistance mechanisms are

multifactorial, one obvious site for resistance is polymorphism

within the drug target itself where, for example, variation within

the ligand binding site can confer drug insensitivity (Glickman and

Sawyers, 2012). Target-driven resistance to antifolate drugs used for

malarial chemotherapy provides a well-known example (Cowell

and Winzeler, 2019).

The benzodiazepine, meclonazepam (MCLZ, Figure 1A),

patented in 1977 by Hoffman La Roche is another example of an
B

C

A

FIGURE 1

Praziquantel and meclonazepam target distinct schistosome TRPM channels. (A) Chemical structures of (R)-PZQ (left) and (S)-MCLZ (right), activators
of Sm.TRPMPZQ and Sm.TRPMMCLZ, respectively. (B) Top, schematic overview of Sm.TRPMPZQ (transcript, Smp_246790.1) and Sm.TRPMMCLZ

(transcript, Smp_333650.1). Exon organization of each ion channel is shown below the protein domain schematic (black, grey). Bottom, schematic
organization of other schistosome TRPM paralogs. Annotated domains are shown as follows: TRPM/SLOG domain (pink), PTHR13800 (a TRPM family
curation, gray), transmembrane helices (green), NUDIX hydrolase (purple), and ankyrin repeat domain (red and orange) with discrete repeats.
Genomic identifiers are from v18 of WormBase Parasite (Howe et al., 2017). The prior transcript identifier for Sm.TRPMPZQ was Smp_246790.5 in v17.
(C) Model of Sm.TRPMPZQ (left) and Sm.TRPMMCLZ (right) embedded in a lipid bilayer depicting the overall predicted structure and the location of the
binding site (star) for each drug within the VSLD cavity (S1–S4) of the ion channel. The pore domain (S5–S6) and the TRP helix are also shown.
Models were generated from AlphaFold (Varadi et al., 2022) and depict a single monomer of each ion channel.
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old compound with anti-schistosomal activity (Stohler, 1979).

MCLZ, like PZQ, causes schistosome paralysis and surface

damage (Pax et al., 1978; Bricker et al., 1983). Also, like PZQ,

MCLZ has long lacked definition of a molecular target. While

MCLZ is an enticing anti-schistosomal chemotype given its

efficacy against juvenile worms (Pica-Mattoccia et al., 2008), it

cannot progress as a clinical drug owing to host side effects

including sedation and psychomotor depression (Baard et al.,

1979). These effects are caused by benzodiazepine action on host

GABAA channels in the central nervous system, resulting in a

narrow therapeutic window (Baard et al., 1979). More broadly,

MCLZ is a ‘designer benzodiazepine’ (Brunetti et al., 2021) and a

drug of abuse. Identification of the parasite target of MCLZ would

provide an opportunity to engineer away the determinants

responsible for these detrimental host activities, a hope that has

kindled recurring interest in this ligand over several decades.

Recent work has now unmasked parasite targets for both PZQ

(Park et al., 2019) and MCLZ (Park et al., 2024), providing defined

candidates for further investigation. Both targets are ion channels

within the same subfamily, the melastatin family of transient

receptor potential ion channels, known as ‘TRPM’ channels. PZQ

activates a TRPM channel [named TRPMPZQ (Park et al., 2019;

Marchant, 2024)], and MCLZ activates a different TRPM family

member [named TRPMMCLZ (Park et al., 2024)]. These discoveries

now catalyze the opportunities enabled by target identification to

be realized.

In this mini-review, we highlight similarities (Section 2)

between these TRPM channel targets, as well as some differences

(Section 3) that could be important for deciphering the roles of

these ion channels in schistosome biology. The discussion (Section

4) identifies opportunities for future work.
2 Similarities

2.1 Similar ion channel family

The targets of PZQ and MCLZ are both ion channels. Both are

TRP channels. Both are siblings within the same TRPM subfamily

(Figure 1B). This clade of ion channels therefore emerges as a class

of targets with an enticing chemotherapeutic vulnerability.

In humans, TRPM channels serve as polymodal sensors that

respond to a broad diversity of stimuli and environmental cues

(Huang et al., 2020). They can be activated by changes in

temperature, osmolarity, and oxidative stress, as well as by

phytochemicals, endogenous mediators, and various classes of

synthetic ligands. The eight human TRPM channels (hTRPM1–8)

have diverse functions, playing roles in Ca2+ and Mg2+ homeostasis,

thermosensation, secretion, cell migration, inflammation,

immunomodulation, and cell adhesion (Huang et al., 2020).

These channels are being scrutinized as therapeutic targets in

multiple disease states and are the focus of various drug discovery

efforts (Koivisto et al., 2022).

Diversification of TRPM channels has occurred independently

within the lophotrochozoan lineage, distinct from the vertebrate

TRPM1–8 expansion (Burroughs et al., 2015; Zajac et al., 2021). As
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such, the pharmacological sensitivities of parasitic flatworm TRPM

channels will likely prove unique, presenting opportunities for

selective targeting. This has fortuitously proved the case with

PZQ which exhibits relatively few side effects on the human host.

Targeting TRPM channels in parasitic flatworms therefore seems a

viable strategy bolstered by the recent discovery of TRPMPZQ

and TRPMMCLZ.
2.2 Same binding pockets

Both PZQ and MCLZ are TRPM agonists and both engage their

TRPM targets through the same ligand binding site. This binding

pocket is formed from the first four transmembrane helices (S1–S4)

and the TRP helix of the ion channel, within the voltage–sensor-like

domain (VSLD) cavity (Figure 1C). The agonists of both parasitic

flatworm TRPM channels retain broadly similar physiochemical

properties (size, hydrophobicity, and chemical space) and

exploration of their structure–activity relationships has revealed

stringent requirements for agonism (Menezes et al., 2012;

McCusker et al., 2019; Park et al., 2021; Sprague et al., 2023).

These stringent requirements are imposed by architectural

determinants of the VSLD binding pocket. This VSLD binding

site resembles the ligand binding pocket found within the VSLD of

the human TRPM8 (Hs.TRPM8) channel, which, in vertebrates, can

accommodate a broad variety of chemotypes (Gonzalez-Muniz

et al., 2019). The structure of the Hs.TRPM8 pocket in complex

with various agonists and antagonists has been elaborated in

multiple structural studies over the last decade (Huang et al.,

2020), and conservation with the architecture of the parasite

TRPM binding pockets is evident (Park et al., 2021). This has

been demonstrated through modeling and functional profiling

following mutagenesis of conserved residues (Park et al., 2021).
2.3 Similar functions

Both drugs cause cellular depolarization, and both TRPMPZQ

and TRPMMCLZ show little evidence for desensitization in response

to PZQ or MCLZ under optimized recording conditions. Single cell

RNA sequencing data revealed both channels are expressed in

excitable cells in adult worms (Figures 2A, B), such that channel

activation would be expected to cause a protracted exocytosis

(nerves) and contraction (muscle). PZQ has been shown to

activate a native TRPMPZQ-like endogenous ion channel blocking

endogenous oscillations observed in motor neurons (Chulkov et al.,

2023). Both drugs cause spastic muscle contraction, and both

damage the tegument. That these grossly similar effects

(depolarization, muscle contraction, and tegument damage) are

similar for both drugs is perhaps unsurprising given that their

targets display similar properties and tissue expression patterns

(Figure 2C). Both channels are expressed throughout the parasitic

lifecycle (Lu et al., 2018), although given the signal amplification

inherent to ion channel action, mRNA levels of these TRPM

channels are low (Figures 2D, E). In hindsight, it is both obvious

and reassuring that two drugs with grossly similar phenotypic
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outcomes (muscle contraction, depolarization, and surface damage)

share a similar mechanism of action (TRPM agonists). This

prompts the question as to whether other drugs that cause similar

phenotypes also act as TRPM ligands.
3 Differences

3.1 Architecture

TRPMPZQ and TRPMMCLZ are distinct ion channels, differing in

their size and architecture. First, in terms of genomic organization

(Howe et al., 2017), the gene encoding Sm.TRPMPZQ (Smp_246790,
Frontiers in Parasitology 04
chromosome 3) spans ~150 kb and comprises 36 exons. TRPMMCLZ

is encoded by three exons within a gene spanning ~50 kb

(Smp_333650, chromosome 1; Figure 1B). This difference clearly

affords the possibility for a greater diversity of splice variants of

Sm.TRPMPZQ. The transcripts used for functional profiling of each

TRPM channel encode proteins of 2,268 amino acids

(Sm . TRPMPZQ , ~250 kDa) and 1 , 380 amino ac id s

(Sm.TRPMMCLZ, ~150 kDa). Assuming each TRPM monomer

assembles as a tetramer, the two TRPM channel complexes differ

in size (~1 MDa vs. ~600 kDa).

The modular organization of these two TRPM channels is also

distinct. The cytoplasmic, COOH-terminal region of Sm.TRPMPZQ

contains a nudix domain homologous to the mitochondrial ADP
B

C

D E

A

FIGURE 2

Expression profile of S. mansoni TRPMPZQ and TRPMMCLZ. Data were from the schistosome single-cell transcriptome atlas for (A) Sm.TRPMPZQ

(Smp_246790) and (B) Sm.TRPMMCLZ (Smp_333650) with overlap highlighted in (C). Data were downloaded from the Collins lab SchistoCyte Atlas
(Wendt et al., 2020; Wendt et al., 2021). Cell clusters where the channels show considerable overlap are highlighted for three neuronal (*) and a
muscle cluster (#). (D, E) Lifecycle stage expression data for mixed-sex infections for (D) Sm.TRPMPZQ and (E) Sm.TRPMMCLZ. Data were downloaded
(v7) and replotted from the Berriman Lab gene expression portal (Lu et al., 2018).
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ribose pyrophosphatase NUDT9 [NUDT9H (Perraud et al., 2001)],

that in vertebrate TRPM2 channels binds adenosine diphosphate

ribose (ADPR). Nothing is currently known about the binding

properties or specificity of this domain in TRPMPZQ. The enzymatic

capacity of this domain in TRPMPZQ is also unknown. Investigating

these unknowns could be of interest given the unique purine and

pyrimidine metabolic pathways in schistosomes (El Kouni, 2017;

Skelly et al., 2022) and the potential sensitivity of schistosomes to

oxidative stress (Huang et al., 2012). Sm.TRPMMCLZ has a shorter

cytoplasmic COOH terminal region, lacking any enzyme domain

(Himmel et al., 2020).

The N-terminal cytoplasmic domain of both TRPM channels

also differs. TRPM channels have traditionally been defined by the

presence of homologous NH2-terminal regions [‘TRPM homology

region’, MHR, structured as MHR1/2, MHR3, and MH4 domains

(Huang et al., 2020)]. The TRPM NH2 terminal regions display

sequence homology and topological homology with the SMF/

DprA-LOG (SLOG) superfamily found in bacteria and plants

(Himmel et al., 2020). This MHR/SLOG organization is

characteristic of the TRPM family compared with other TRP

subfamilies (Huang et al., 2020). Whereas TRPMPZQ displays this

distinctive TRPM architecture, TRPMCLZ lacks the NH2-terminal

MHR1/2 or SLOG domain (Figures 1B, C). Rather, the NH2

terminus of TRPMMCLZ contains modules reminiscent of

ankyrin-repeats, which are found downstream of the SLOG

domain in TRPM channels but are more commonly associated

with the TRPA, TRPC, TRPN, and TRPV channel subfamilies.

Finally, the channel pore domains may differ, as, based on

sequence comparison of the two channels, conservation appears

low. Future electrophysiological studies of TRPMMCLZ will be

needed to characterize the cation selectivity of TRPMMCLZ

compared with TRPMPZQ.
3.2 Ligand selectivity

As discussed earlier, PZQ and MCLZ engage the same VSLD

ligand binding pocket in their respective TRPM targets. However,

the architecture of the two binding pockets is distinct as both

channels show distinct ligand binding specificities: PZQ does not

activate TRPMMCLZ and reciprocally, MCLZ does not activate

TRPMPZQ (Park et al., 2024). One contributing factor is the

identity of an acidic residue within the channel TRP domain, that

acts as a gatekeeper residue for the VSLD pocket (Rohr et al., 2023).

In TRPMPZQ, this residue is an aspartic acid residue that does not

impair PZQ occupancy of the VSLD binding site. However, in the

other schistosome TRPM channels, including TRPMMCLZ, this

residue is a glutamic acid that appears non-permissive of PZQ

occupancy of the VSLD pocket impairing PZQ association (Rohr

et al., 2023). Whether other TRPM channels interact with MCLZ

will require further investigation, and clearly, differences between

the TRPM ortholog binding pockets will dictate the breadth of

chemotypes accommodated. Whether the pockets of TRPMPZQ and

TRPMMCLZ are completely exclusive of ligands capable of engaging

their sibling’s binding pocket will require investigation. We note

that high concentrations of MCLZ inhibited PZQ activation of
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TRPMPZQ, suggesting some overlap (Park et al., 2024). This

possibility is intriguing, as identification of an agonist able to

engage both channel binding pockets would minimize the

likelihood of drug resistance, as the chances of dual resistance

mutations emerging simultaneously at both targets to block drug

action would be low.

Whereas PZQ shows a broad spectrum activity against parasitic

flatworms (with the exception of Fasciola spp.), MCLZ possesses a

more restricted scope of action. For example, it is not effective against

all species of schistosomes, being poorly effective against S. japonicum

(Pax et al., 1978; Stohler, 1979; Pica-Mattoccia et al., 2008). The likely

explanation is again a target polymorphism—the lower sensitivity of

S. japonicum TRPMMCLZ toMCLZ is explained by a naturally variant

binding pocket residue that sterically impedes MCLZ occupancy in

Sj.TRPMMCLZ (Park et al., 2024). This residue (a tyrosine at the base

of the S4 helix, Y944 in Sj.TRPMMCLZ) appears conserved throughout

the clade of ‘Asian’ [the S. japonicum clade (Lawton et al., 2011)]

versus ‘African’ schistosomes (the S. mansoni and S. haematobium

clades), suggesting thatMCLZwould show poor efficacy against other

schistosome species (Park et al., 2024).
3.3 Activity against juvenile worms

Drug efficacy against juvenile worms (typically assessed ≤5 weeks

after infection) is a very appealing characteristic for an anti-

schistosomal therapy. Activity against immature worms maximizes

the likelihood of a curative outcome from a single dose treatment.

This property is a feature ofMCLZ, but not PZQ (Pica-Mattoccia and

Cioli, 2004), even though PZQ [EC50 of ~300 nM for (R)-PZQ (Rohr

et al., 2023)] shows a higher sensitivity at TRPMPZQ than MCLZ at

TRPMMCLZ [EC50 of ~1 µM for (S)-MCLZ (Park et al., 2024)]. Could

a critical difference between TRPMMCLZ and TRPMPZQ be the ability

of TRPMMCLZ activators, but not TRPMPZQ activators, to confer

activity against juvenile worms? The different channels could engage

different downstream signaling pathways, be expressed at different

levels, or be present within cell subpopulations with different

essentiality to the viability of young versus adult schistosomes.

Whatever the explanation, these possibilities should be investigated.

If TRPMMCLZ engagement proves to be intrinsically schistosomicidal,

there would be a compelling case to discover new chemotypes active

at TRPMMCLZ, or improve versions of currently realized activators

that are not feasible therapeutics (Park et al., 2024).

However, jumping to such a conclusion would be premature, as

this suggestion is based on the properties of only a single activator of

each channel (PZQ versus MCLZ). It is also possible that activity

against juvenile worms may relate to ligand pharmacokinetic and

pharmacodynamic (PK/PD) considerations that define the time

course of worm exposure to the different drugs (Abla et al., 2017).

PZQ is metabolized much more rapidly than MCLZ [half-life of

PZQ ≤5 h compared with ~40–80 h for MCLZ, respectively

(Vikingsson et al., 2017; Kovac et al., 2018)]. So, while nurturing

the idea that a key difference between these new targets is that

TRPMMCLZ activators uniquely confer lethality toward juvenile

worms, further investigation of other chemotypes and their PK/

PD properties is warranted.
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4 Discussion

The recent identification of different parasitic flatworm TRPM

channels activated by PZQ (Park et al., 2019) and MCLZ (Park

et al., 2024) underscores the relevance of the TRPM subfamily of ion

channels as druggable targets. This provides several opportunities

moving forward.

First, both TRPMPZQ and TRPMMCLZ are conserved within the

genomes of other parasitic flatworms (Park et al., 2019; Park et al.,

2024). This provides an opportunity to design TRPM activators

with broad-spectrum anthelmintic activity, as well as ligands

tailored for specific infections. With both these TRPM targets in

hand, this presents a wealth of target-based screening opportunities.

For PZQ, progress has recently been made through the

identification of other TRPMPZQ ligands (Chulkov et al., 2021),

and the discovery of a broad-spectrum activator of fluke TRPMPZQ

(Sprague et al., 2023), which, unlike PZQ, is active against Fasciola

hepatica TRPMPZQ (Fh.TRPMPZQ). PZQ has long been known to

lack efficacy for treating fascioliasis, and TRPMPZQ from Fasciola

species is not activated by PZQ (Park et al., 2021; Rohr et al., 2023).

Target-based design advanced a benzamidoquinazolinone ligand,

BZQ, which displayed efficacy against both the Fh.TRPMPZQ ion

channel and Fasciola hepatica worms ex vivo (Sprague et al., 2023).

This provides a clear example of how novel anthelmintic

chemotypes can be realized by target-based screening,

underscoring the importance of deorphanizing anthelmintics to

identify their targets. For MCLZ, its efficacy against other

trematodes and cestodes is unclear, and the properties of

TRPMMCLZ orthologs in other parasites have yet to be examined.

This may provide an opportunity to identify new active molecules

following the precedent established for BZQ at TRPMPZQ.

Second, there is an opportunity to study the other TRPM

paralogs. Here, it is important to acknowledge that TRPM channels

exhibit a deep evolutionary phylogeny. Their ancient evolutionary

pedigree and the retention of a transmembrane VSLD pocket in

parasitic flatworms may prove an intrinsic vulnerability to

chemotherapeutic attack. The schistosome TRPM family has five

additional members that have been annotated but are yet to be

deorphanized (Figure 1B). Two of these TRPM channels contain a

COOH-terminal nudix homology domain like TRPMPZQ (the ‘nudix’

subclade), and the other paralogs (apart from TRPMMCLZ) contain

the NH2-termnial ‘TRPM/SLOG’ plus ‘ion channel’ architecture

defined in the ancestral TRPM channel (Burroughs et al., 2015).

What ligands do these TRPM channels engage? How is each

endogenously activated? Human TRPM channels display

considerable diversity in their properties compared to the other

TRP subfamilies—is the functional repertoire of parasitic flatworm

TRPMs just as broad? Understanding the properties of TRPMPZQ

and TRPMMCLZ, as well as the remaining parasitic flatworm TRPM

paralogs, now becomes a priority. Future studies to ablate TRPMPZQ

and TRPMMCLZ activities through genetic and pharmacological loss-

of-function manipulations would also be informative.

Finally, these data also provide the impetus for scrutiny of other

schistosome TRP channel subfamilies [TRPC (four representatives),

TRPP (two representatives), and TRPA and TRPML (one

representative each) (Bais and Greenberg, 2020)]. From this
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portfolio, it has already been shown that the schistosome TRPA

channel regulates motor activity [Sm.TRPA (Bais et al., 2015; Bais

et al., 2018)] while the schistosome TRPML channel regulates

neuromuscular activity and is required for tegumental integrity

[Sm.TRPML (Bais et al., 2022)]. However, there is clearly an

opportunity to profile the remaining TRPC, TRPP, and TRPM

targets, and accumulate a more detailed understanding of their

pharmacological specificities through target-based screening.

Similarly, TRP channels will likely also prove to be productive

targets in parasitic nematodes (Choudhary et al., 2022) and other

eukaryotic pathogens (Wolstenholme et al., 2011). We note that the

anti-filarial drug diethylcarbamazine (DEC) has been revealed as a

TRPC-like channel activator in Brugia malayi [Bm.TRP-2, (Verma

et al., 2020; Williams et al., 2023)]. Activation of Bm.TRP-2 in

muscles causes a rapid paralysis of microfilariae as well as adult

worms. RNA interference targeting a different Brugia TRP channel,

the TRPV-like channel osm-9, revealed a chemosensory role for this

TRP channel [Bp.OSM-9, (Wheeler et al., 2020)], supporting the

directional migration of infective L3 larvae toward serum.

Inhibition of a TRP channel in Toxoplasma gondii impaired

parasite invasion and egress [Tg.TRPPL-2 (Marquez-Nogueras

et al., 2021)]. An intracellular TRP channel regulates subcellular

iron transport in Trypanosoma brucei [Tb.MLP (Taylor et al.,

2013)]. Knowledge of the functional roles of specific TRP

channels in different parasites therefore continues to accrue,

complementing additional insight derived from studies of TRP

channel function in free-living flatworms and free-living

nematodes. Understanding the contributions of each TRP channel

to parasite sensory physiology, growth, and homeostasis will help

guide the prioritization of targets within the TRP channel

superfamily for future drug development. Hopefully, there is

much promise yet to be realized.
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