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Non-Traditional Machining (NTM) outperforms traditional processes by offering
superior geometric and dimensional accuracy, along with a better surface finish.
Photo Chemical Machining (PCM) represents one such NTM process, using
chemical etching for material removal. PCM finds substantial application in the
creation of microchannels in pharmaceutical, chemical and energy industries.
Several input parameters—such as etchant concentration, etching time and
etchant temperature—profoundly influence the machining’s quality and
efficiency. Therefore, the optimization of these parameters is crucial. This
study presents a comparative analysis of five Multiple Criteria Decision Making
(MCDM) techniques—Technique for Order of Preference by Similarity to Ideal
Solution (TOPSIS), Multi-Objective Optimization on the basis of Ratio Analysis
(MOORA), Additive Ratio Assessment (ARAS), Weighted aggregated sum product
assessment method (WASPAS) and Multi-Attributive Border Approximation Area
Comparison Method (MABAC)—for the optimization of the PCM process. Key
performance metrics considered are Material Removal Rate (MRR), Surface
Roughness (SR), Undercut (Uc) and etch factor (EF). The weights of these
criteria were calculated using the Criterion-Induced Aggregation Technique
(CRITIC) and was compared with other popular methods like MEREC, Entropy
and equal weights.MRR and EF are seen as beneficial criteria, while SR and Uc are
perceived as cost criteria. Optimum process parameters were identified as 850 g/
L etchant concentration, 40 min etching time and 70°C etchant temperature.
Two of the three employed MCDM techniques agreed on these optimal
parameters, reinforcing the findings. Furthermore, a strong correlation was
observed amongst the employed MCDM techniques, further validating
the results.
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1 Introduction

As the demand for superior dimensional and geometric accuracy
rises, various non-traditional machining processes are gaining
industrial prominence. The manufacturing of microfluidic devices

in pharmaceutical and biotechnological industries necessitates
exceptional dimensional accuracies, achievable only through a
select few non-traditional machining processes (Wangikar et al.,
2019). One such process is Photo-Chemical Machining (PCM),
which employs photochemical etching for material removal,
enabling the machining of intricate shapes with high dimensional
accuracy. PCM leverages highly accelerated yet controlled corrosion
to remove material from the bulk (Wangikar et al., 2017).

Recently, PCM has garnered significant interest from the
scientific community due to its advantages, such as high
dimensional accuracy, negligible residual stress and improved
surface finish. Agrawal et al. (Agrawal et al., 2021) utilized PCM
to machine SS-430 and conducted parametric optimization using
Taguchi-Grey Relation Analysis to identify optimum process
parameters. Their findings indicated that a lower concentration

TABLE 1 Weights allocated under different methods.

Weight allocation
method

EF MRR SR Uc

MEREC 0.1132 0.3095 0.4173 0.1600

CRITIC 0.2243 0.2650 0.2200 0.2907

Entropy 0.0743 0.1172 0.6376 0.1708

Equal 0.2500 0.2500 0.2500 0.2500

FIGURE 1
Plot of Euclidean distance versus alternatives for weights calculated by (A) MEREC, (B) CRITIC, (C) Entropy and (D) Equal weights.
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of etchant combined with high temperature and etching time yielded
optimum results. Misal et al. (Misal et al., 2017) employed ferric
chloride as an etchant to machine Inconel 718 using the PCM
process, observing that the etchant’s temperature and etching time
significantly influenced surface roughness.

Given PCM’s diverse applications, it is crucial to select optimum
process parameters directly impacting machining quality. Multi-
Criteria Decision Making (MCDM) techniques are widely used in
various fields of study for process parameter optimization. Das and
Chakraborty (Das and Chakraborty, 2022) applied a Grey
Correlation-based EDAS technique for PCM, Laser-Assisted Jet
Electro-Chemical Machining and Abrasive Water Jet Drilling
process optimization. They accurately predicted optimum process
parameters and confirmed these using regression equations.

Chakraborty et al. (Chakraborty et al., 2020) used the Multi-
Attributive Border Approximation Area Comparison Method
(MABAC) approach to select the best non-traditional machining
process. They successfully tested the method’s validity through two
different scenarios, concluding that rough numbers could be
effectively used with the MABAC technique for MCDM
problems. Deosant et al. (Deosant et al., 2021) integrated the
AHP with the Technique for Order of Preference by Similarity to
Ideal Solution (TOPSIS) method to select suitable non-traditional
micro-machining processes. Their study highlighted electrical
discharge machining as the most effective technique among the
various techniques considered.

Kalita et al. (Kalita et al., 2022) conducted a comparative study of
various MCDM techniques for milling process optimization. They

TABLE 2 TOPSIS rank under various weight.

Sr. No. MEREC CRITIC Entropy Equal

CCi Rank CCi Rank CCi Rank CCi Rank

1 0.2996 25 0.4487 24 0.2970 25 0.4105 25

2 0.6808 7 0.6635 5 0.7044 7 0.6703 5

3 0.6892 6 0.6181 7 0.7148 6 0.6400 7

4 0.5182 20 0.5478 9 0.5601 19 0.5377 13

5 0.1453 27 0.3373 26 0.0990 26 0.2890 26

6 0.7781 5 0.7509 1 0.7800 5 0.7647 2

7 0.6671 8 0.5045 16 0.6840 8 0.5382 12

8 0.5840 16 0.4609 22 0.5849 16 0.4867 21

9 0.4502 23 0.5248 13 0.4108 23 0.5071 20

10 0.6009 12 0.5026 17 0.6360 11 0.5204 15

11 0.4536 22 0.4500 23 0.4266 22 0.4473 24

12 0.6002 13 0.4860 21 0.5897 14 0.5107 18

13 0.5073 21 0.4363 25 0.5122 21 0.4491 23

14 0.5923 14 0.4997 18 0.5876 15 0.5182 17

15 0.8820 1 0.7233 2 0.9067 2 0.7649 1

16 0.5843 15 0.4896 20 0.5950 13 0.5090 19

17 0.5556 19 0.5096 15 0.5473 20 0.5190 16

18 0.1962 26 0.2598 27 0.0621 27 0.2348 27

19 0.6379 10 0.5304 11 0.6403 10 0.5545 10

20 0.5596 18 0.5099 14 0.5807 17 0.5271 14

21 0.6383 9 0.5399 10 0.6318 12 0.5630 9

22 0.6158 11 0.5265 12 0.6452 9 0.5432 11

23 0.5699 17 0.6088 8 0.5714 18 0.6007 8

24 0.3616 24 0.4956 19 0.3207 24 0.4662 22

25 0.8709 2 0.7044 3 0.9199 1 0.7410 3

26 0.8683 3 0.6751 4 0.9025 3 0.7181 4

27 0.8324 4 0.6184 6 0.8688 4 0.6664 6
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used entropy weight calculation with six MCDM techniques and
compared the ranks obtained, suggesting that objective weight
calculation performs better with robust data. Shanmugasundar
et al. (Shanmugasundar et al., 2022) utilized Method Based on
the Removal Effects of Criteria (MEREC) weight calculation with
various MCDM techniques for industrial robot selection, presenting
a comparative study among various MCDM techniques to identify
the drawbacks and advantages of the techniques used. Kumari and
Acherjee (Kumari and Acherjee, 2022) applied a Criterion-Induced
Aggregation Technique (CRITIC)—COmbinative Distance-based
ASsessment (CODAS)-based technique to select the best non-
conventional machining process among eight processes based on
six different criteria. Their method’s comparison with established
methods demonstrated good performance. Pathapalli et al.

(Pathapalli et al., 2020) developed an aluminium composite using
the stir casting process and optimized turning process parameters
using Multi-Objective Optimization on the basis of Ratio Analysis
(MOORA) and weighted aggregated sum product assessment
method (WASPAS) techniques. A comparative study revealed
that both techniques work well for turning parameter
optimization. Goswami et al. (Goswami et al., 2021) used an
Additive Ratio Assessment (ARAS)-TOPSIS hybrid MCDM
technique for robot selection among twelve industrial robots
based on five contrasting criteria, suggesting that objective weight
determination techniques are free from decision-maker biases and,
thus, superior to subjective methods.

From the aforementioned literature, it is clear that MCDM
techniques are widely used for selecting optimum process

TABLE 3 Ranking using MOORA.

Sr. No. MEREC CRITIC Entropy Equal

yi Rank yi Rank yi Rank yi Rank

1 0.1131 3 0.0596 3 0.1728 3 0.0678 3

2 0.0459 24 0.0242 27 0.0701 21 0.0275 26

3 0.0435 25 0.0279 26 0.0664 22 0.0260 27

4 0.0691 9 0.0364 19 0.1055 9 0.0414 13

5 0.1562 1 0.0824 1 0.2387 1 0.0936 1

6 0.0399 26 0.0342 22 0.0518 23 0.0322 24

7 0.0463 23 0.0522 8 0.0708 20 0.0449 11

8 0.0629 13 0.0533 6 0.0962 13 0.0458 8

9 0.0931 5 0.0491 9 0.1422 5 0.0557 5

10 0.0556 17 0.0322 24 0.0849 17 0.0333 22

11 0.0896 6 0.0473 10 0.1369 6 0.0537 6

12 0.0622 14 0.0549 5 0.0951 14 0.0472 7

13 0.0754 7 0.0398 16 0.1152 7 0.0452 10

14 0.0632 12 0.0436 12 0.0966 12 0.0379 18

15 0.0481 22 0.0412 15 0.0204 26 0.0388 16

16 0.0621 15 0.0395 17 0.0949 15 0.0372 20

17 0.0702 8 0.0370 18 0.1073 8 0.0421 12

18 0.1541 2 0.0813 2 0.2355 2 0.0923 2

19 0.0547 18 0.0428 14 0.0835 18 0.0368 21

20 0.0648 11 0.0342 21 0.0990 11 0.0388 17

21 0.0561 16 0.0440 11 0.0857 16 0.0379 19

22 0.0543 19 0.0309 25 0.0830 19 0.0325 23

23 0.0674 10 0.0355 20 0.1029 10 0.0404 15

24 0.1083 4 0.0571 4 0.1654 4 0.0649 4

25 0.0379 27 0.0333 23 0.0196 27 0.0306 25

26 0.0504 21 0.0431 13 0.0251 25 0.0407 14

27 0.0510 20 0.0530 7 0.0311 24 0.0456 9
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parameters in multi-objective problems. Although these
techniques have been extensively applied across various
domains, the optimization of PCM process parameters using
MCDM techniques remains underexplored. Moreover, a
comparative study of various MCDM techniques in the PCM
process using objective weight determination methods has yet to
be conducted. The current study attempts to bridge this gap by
comparing five MCDM techniques—TOPSIS, MOORA, ARAS,
WASPAS, and MABAC—using four different objective weight
determination techniques namely, CRITIC, MEREC, Entropy
along with equal weights to optimize PCM process
parameters. Additionally, a correlation analysis is presented to
elucidate the similarities and differences between the
techniques employed.

2 Materials and methods

2.1 Experimental procedure

The experimental data for this study were derived from Agarwal
and Kamble (Agrawal and Kamble, 2019). Stainless Steel-304 (SS-
304) was selected as the substrate material for the PCM process. The
etchant was prepared by dissolving ferric chloride in water, with
precise weighing of ferric chloride to ensure the desired
concentration. Prior to the application of the photoresist coating,
the specimen was thoroughly cleaned with acetone and water. The
coated material and phototool were then exposed to UV light. The
portions not covered by the phototool and exposed to UV light
remained unetched post-machining.

TABLE 4 Rank Calculation using ARAS.

Sl. No. MEREC CRITIC Entropy Equal

Ki Rank Ki Rank Ki Rank Ki Rank

1 3.1932 12 2.0379 24 5.4508 4 2.1792 21

2 2.5375 23 2.0565 23 3.3205 22 2.0907 23

3 2.6082 21 2.1742 21 3.3797 21 2.1791 22

4 2.4145 25 1.7280 27 3.7915 18 1.8141 27

5 4.2585 2 2.6062 6 7.3384 2 2.7626 4

6 2.6877 18 2.3081 16 3.1157 23 2.3277 16

7 2.9408 16 2.4411 13 3.7971 17 2.3772 13

8 3.2796 8 2.5989 7 4.4636 10 2.5503 8

9 3.7655 4 2.7394 3 5.4017 5 2.8067 2

10 2.6113 20 2.0343 25 3.7189 19 2.0253 25

11 3.6807 5 2.6926 4 5.3287 6 2.7149 5

12 3.4629 6 2.7640 2 4.5642 8 2.7125 6

13 3.1993 11 2.3937 14 4.6656 7 2.3890 12

14 3.2359 9 2.5239 9 4.3750 11 2.4968 10

15 2.4158 24 2.3038 17 2.3163 25 2.2544 19

16 3.0039 14 2.3380 15 4.1831 13 2.3210 17

17 3.2799 7 2.5059 10 4.5507 9 2.5095 9

18 4.9003 1 3.2256 1 7.8854 1 3.2919 1

19 3.0770 13 2.4702 11 4.0460 16 2.4397 11

20 2.9117 17 2.2909 18 4.1807 14 2.3134 18

21 3.2309 10 2.5925 8 4.1856 12 2.5615 7

22 2.6505 19 2.0798 22 3.7008 20 2.0745 24

23 2.9815 15 2.2690 20 4.1729 15 2.3317 15

24 3.8471 3 2.6910 5 5.8198 3 2.8011 3

25 2.0255 27 2.0020 26 1.8579 27 1.9397 26

26 2.3465 26 2.2808 19 2.1475 26 2.1974 20

27 2.5730 22 2.4596 12 2.5579 24 2.3633 14
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Agarwal and Kamble (Agrawal and Kamble, 2019) identified
three input variables that were of prime significance following an
extensive literature survey. These three input parameters:
concentration of etchant, etching time and temperature of the
etchant were varied between three levels to conduct
27 experimental runs based on Taguchi orthogonal array
experimental design. Concentration of etchant was measured in
gm/ltrs and denotes the strength of etchant, etching time was
measured in minutes and denotes the time for which the
material was exposed to the etchant. Etchant was also used in an
elevated temperature to expedite the process of chemical etching and
the temperature was measured in °C. Three levels of all these factors
are presented in Table A1. The Material Removal Rate (MRR),

Surface Roughness (SR), Etch Factor (EF) and Undercut (Uc) were
measured and documented (Table A2).

2.2 Multi criteria decision making

Five MCDM techniques namely, TOPSIS, MOORA, ARAS,
WASPAS, and MABAC methods were used to identify the
compromise optimum values of responses variables. Weight of
the response variables were calculated using CRITIC, MEREC
and Entropy methods and a comparison was made with the case
when equal weights are assigned to all criteria. All the MCDM
techniques used in the current work are discussed in detail in the

TABLE 5 Rank calculation using WASPAS.

Sl. No. MEREC CRITIC Entropy Equal

QWASPAS Rank QWASPAS Rank QWASPAS Rank QWASPAS Rank

1 1.1487 25 1.3471 10 1.4392 23 1.2842 10

2 1.7259 6 1.4929 6 2.3152 6 1.5082 6

3 1.7035 7 1.3873 8 2.3015 7 1.4203 7

4 1.3775 16 1.4123 7 1.8604 13 1.3770 9

5 0.9557 26 1.0889 24 1.0931 26 1.0464 26

6 2.1055 5 1.7097 5 2.8347 5 1.7533 5

7 1.5822 8 1.1891 15 2.0904 8 1.2248 15

8 1.3599 18 1.0804 25 1.7064 19 1.1010 23

9 1.2876 21 1.2485 12 1.4759 22 1.2401 13

10 1.3943 15 1.1384 20 1.8798 12 1.1538 21

11 1.2128 24 1.0950 23 1.4208 24 1.0952 24

12 1.4212 13 1.1331 21 1.7440 16 1.1560 20

13 1.2239 22 1.0409 26 1.5329 21 1.0474 25

14 1.3976 14 1.1422 19 1.7434 17 1.1585 19

15 4.0787 3 2.5674 3 6.2574 3 2.7672 3

16 1.3658 17 1.1224 22 1.7532 15 1.1380 22

17 1.3504 19 1.1629 18 1.6612 20 1.1725 18

18 0.9210 27 0.8940 27 0.9755 27 0.8808 27

19 1.5068 10 1.2069 14 1.9252 10 1.2316 14

20 1.3394 20 1.1680 17 1.7384 18 1.1841 17

21 1.5217 9 1.2269 13 1.9074 11 1.2515 12

22 1.4450 12 1.1867 16 1.9328 9 1.2034 16

23 1.4655 11 1.3852 9 1.8394 14 1.3796 8

24 1.2223 23 1.2803 11 1.3911 25 1.2567 11

25 6.9396 1 3.9391 1 11.4063 1 4.3407 1

26 6.0844 2 3.4833 2 9.7714 2 3.8277 2

27 3.7577 4 2.3030 4 5.7128 4 2.4909 4
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following sections. It should be noted here that for all the methods
discussed, in an MCDM problem having m alternatives and n
criteria, the decision matrix is a matrix X � [xij]mxn; where xij is
the performance value associated with the i th alternative under j
th criterion.

2.2.1 CRITIC weight calculation
CRITIC was proposed by Diakoulaki et al. (Diakoulaki et al., 1995)

in 1995 as an objective weight determination method. The primary
advantage of objective weightingmethod is that it omits any preferences
that the decision maker might have with respect to any criteria. The
internal contrasts within a criterion and conflict intensity between
criteria are assessed to assign weights to them using CRITIC method.
Steps involved in CRITIC method are as follows:

Step 1: Formulation of the decision matrix.

Step 2: Decision matrix is normalized using Eq. 1,

rij �
xij-xworst

j

xbest
j -xworst

j

(1)

Step 3: Pearson Correlation Coefficient is used to determine the
degree of correlation. It is calculated using Eq. 2

CFjk �
∑m

i�1 rij-�rj( ) rik-�rk( )���������������������∑m
i�1 rij-�rj( )2 ∑m

i�1 rik-�rk( )2
√ (2)

TABLE 6 Rank calculation using MABAC.

Sl. No. MEREC CRITIC Entropy Equal

Si Rank Si Rank Si Rank Si Rank

1 −0.1945 25 −0.0127 14 −0.1428 25 −0.0341 17

2 0.1021 6 0.1564 7 0.1484 6 0.1565 8

3 0.0737 8 0.0830 10 0.1179 7 0.0891 10

4 −0.0853 23 0.0249 11 0.0260 11 0.0117 12

5 −0.2810 27 −0.0915 22 −0.3333 26 −0.1184 23

6 0.2555 3 0.3086 1 0.2459 4 0.3180 1

7 0.0031 16 −0.1100 23 0.0171 13 −0.1033 22

8 −0.0354 18 −0.1301 25 −0.0504 21 −0.1258 24

9 0.0653 10 0.1633 6 −0.0215 20 0.1596 7

10 −0.0820 22 −0.1229 24 −0.0045 15 −0.1280 25

11 −0.0274 17 −0.0140 16 −0.0865 24 −0.0189 16

12 0.0333 12 −0.0586 19 −0.0210 19 −0.0521 19

13 −0.0979 24 −0.1345 26 −0.0851 23 −0.1394 26

14 0.0098 15 −0.0502 18 −0.0113 17 −0.0507 18

15 0.3060 1 0.2570 2 0.3091 1 0.2739 2

16 −0.0412 20 −0.0891 21 −0.0203 18 −0.0905 21

17 0.0127 13 0.0029 13 −0.0107 16 0.0012 13

18 −0.2479 26 −0.1960 27 −0.3923 27 −0.2115 27

19 0.0393 11 −0.0193 17 0.0305 10 −0.0163 15

20 −0.0407 19 −0.0134 15 −0.0001 14 −0.0081 14

21 0.0773 7 0.0219 12 0.0406 9 0.0260 11

22 −0.0444 21 −0.0746 20 0.0196 12 −0.0785 20

23 0.0730 9 0.1683 5 0.0772 8 0.1660 4

24 0.0105 14 0.1722 3 −0.0669 22 0.1653 5

25 0.2322 4 0.1504 8 0.2968 2 0.1623 6

26 0.2801 2 0.1704 4 0.2930 3 0.1862 3

27 0.2300 5 0.0996 9 0.2299 5 0.1203 9
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Step 4: Weights of the criteria is calculated using Eqs 3, 4,

cj � σj∑n

k�11-CFjk (3)
wj � cj∑n

j�1cj
(4)

wj is the weight of the j th criteria.

2.2.2 MEREC weight calculation
MEREC is a weight evaluation method developed in 2019 by

Ghorabaee et al. (Keshavarz-Ghorabaee et al., 2021) to assess
weights based on deviation of performance ratings on removal
of a criteria. The weights reflect the effect it has on performance
rating if the criteria were omitted from the decision-making

process. The procedural steps involved in this method are
as follows.

Step 1: A normalized decision matrix P is formulated from the
matrixX wherein each element of the matrix P is defined as in Eq. 5

pij �
min xkj( )

xij
if jϵB

pij � xij

max xkj( ) if jϵC
(5)

Step 2: An index Si is calculated which signifies the overall
performance of the alternatives in a logarithmic scale using Eq. 6

FIGURE 2
Ranks Comparison among various weights.
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Si � ln 1 + 1
m
∑

j
ln px

ij( )∣∣∣∣∣ ∣∣∣∣∣( )( ) (6)

Step 3: Similarly, an index Sij′ is calculated which signifies the overall
performance of the alternatives by excluding the criteria in a
logarithmic scale using Eq. 7,

Sij
′ � ln 1 + 1

m
∑

k,k≠j
ln px

ik( )∣∣∣∣ ∣∣∣∣( )( ) (7)

Step 4: Absolute deviation D is calculated by subtracting one
performance rating with other. Absolute value of the difference is
taken as the deviation. It can be mathematically represented as in
Eq. 8,

Dj � ∑ Sij
′ − Si

∣∣∣∣ ∣∣∣∣ (8)

Step 5: Weights of each alternative is calculated using Eq. 9,

wj � dj∑n
j�1dj

(9)

2.2.3 Entropy weight calculation
Entropy weights was adopted into MCDM problems from the

concept of Shannon entropy developed by Shannon in 1948 as a
concept in probabilities. This method works on the premise that the
higher weight should be assigned to the criteria that carries the
maximum information in a decision-making process. The
procedural steps involved in this method are as follows:

Step 1: The decision matrix is normalized using Eq. 10,

nij � aij

∑n
i�1
aij

(10)

Step 2: Entropy is then calculated as in Eq. 11,

ej � −∑m
i�1 pij logpij

logm
(11)

Step 3: The weight from the Entropy value is calculated using
Eq. 12,

wj � 1 − ej∑n
i�1 1 − ej( ) (12)

where 1 − ej is called divergence value.

2.2.4 Technique for order of preference by
similarity to ideal solution (TOPSIS)

TOPSIS was initially presented by Yoon and Hwang (Yoon and
Hwang, 1981) in 1981 and is among the most popular MCDM
technique that has been applied in various areas of study. Distance
from the ideal best and ideal worst solution in the Euclidean scale is
used to identify the best alternative in this method. Steps involved in
TOPSIS method are presented below:

Step 1: Decision matrix is normalized using Eq. 13,

nij � xij������∑m
i�1x

2
ij

√ (13)

Step 2: Weighted normalized matrix is calculated by multiplying
the normalized decision matrix by their corresponding criteria
weights using Eq. 14.

rij � nij × wj (14)

Step 3: Euclidean distances from the ideal best and ideal worst
solutions are calculated using Eqs 15, 16,

S+i

�������������∑n

j�1 rij − A+
j( )2√

′;A+
j

max rij( ) for benefit criteria
min rij( ) for cost criteria⎧⎨⎩ (15)

S−i �
�������������∑n

j�1 rij − A−
j( )2√

;A−
j

max rij( ) for cost criteria
min rij( )for benefit criteria⎧⎨⎩ (16)

Step 4: Closeness coefficient is calculated using Eq. 17 and the
alternatives are ranked based on CCi in descending order.

CCi � S−i
S+i + S−i

(17)

2.2.5 Multi-objective optimization on the basis of
ratio analysis method (MOORA)

MOORA was used by Chakraborty (Chakraborty, 2011) to solve
decision making problem for various applications in different
manufacturing environments. Brauers et al. (Brauers et al., 2008)
compared various ratios and suggested that the best choice as
denominator is the square root of sum of squares which is
considered in MOORA. The steps involved in MOORA is same
as TOPSIS until the weighted normalized decision matrix is
obtained. The steps after that are as follows

Step 1: After obtaining the weighted normalized decision matrix
following Step 1 and Step 2 of TOPSIS, performance score is
calculated as

yi � ∑g

j�1rij −∑n

j�g+1rij (18)

where criteria 1 to criteria “g” are the beneficial criteria

Step 2: Rank the criteria based on performance score in descending
order. The highest performance score will be ranked first.

2.2.6 Additive ratio assessment (ARAS)
ARAS method was presented by Zavadskas and Turskis

(Zavadskas and Turskis, 2010) in the year 2010 as an MCDM
technique that is simple and effective. ARAS method
assumes that the effectiveness of an alternative is directly
proportional to performance value under a criteria and
weight of the criteria. This is the underlying principle behind
the working of this technique. The steps in the ARAS method are
as follows-
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Step 1: Normalization of the decision matrix is done using one of
the two equations depending on whether the criteria is beneficial
or cost

nij � xij∑m
i�1xij

; for beneficial criteria (19)

nij �
1
xij∑m
i�1

1
xij

; for cost criteria (20)

Step 2: Weighted normalized decision matrix is calculated using
Eq. 21,

rij � nij × wj (21)

Step 3: Optimality function is calculated as follows

Si � ∑n

j�1rij (22)

Step 4: Degree of utility is computed using Eq. 23 and alternatives
are ranked in the descending order of the obtained value.

Ki � Si
S0

(23)

2.2.7 Weighted aggregated sum product
assessment method

WASPAS method was suggested by Zavadskas et al.
(Zavadskas et al., 2012) in 2012 as a hybrid MCDM technique
that combined two pre-existing techniques. The accuracy of
WASPAS was seen to be better than its parent techniques
(Zavadskas and Turskis, 2010). Combined effect of weighted
sum and product is calculated and the final index is used to
rank the alternatives in this method. The steps involved in this
method are discussed below:

Step 1: Normalization of the decision matrix is done using Eqs 24, 25,

nij � xij

max
i

xij( ) for benificial criteria (24)

nij �
min

i
xij( )

xij
for cost criteria (25)

FIGURE 3
Correlation heatmap of all methods.
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Step 2: Relative importance of alternative using the sum approach
is calculated as follows

QWAS � ∑n

i�1xij × wj (26)

Step 3: Relative importance of alternative using the product
approach is also calculated using the following equation

QWAP � ∏n

i�1x
wj

ij (27)

Step 4: Combined importance of alternatives is calculated using the
following Eq. 28,

QWASPAS � α × QWAS + 1 − α( ) × QWAP (28)
α is the factor that decides the weightage of each index. It is chosen as
0.5 commonly.

2.2.8 Multi-attributive border approximation area
comparison method

MABAC method was proposed by Pamucar and Cirovic
(Pamučar and Ćirović, 2015) in 2015 to solve MCDM problems
and the comparison with few other MCDM techniques was also
presented to validate the accuracy and consistency of the method. It
works by calculating the distance of normalized performance values
from the border approximation area (BAA). The alternatives with
greater value of BAA is the better alternative using this method. The
steps involved in ranking of alternatives using MABAC method are
presented as under

Step 1: Elements of normalized decision matrix is computed from
the decision matrix using the following Eq. 29,

nij � xij − xworst
i

xbest
i − xworst

i

(29)

Step 2:Weighted normalizedmatrix is calculated from the normalized
decision matrix using the formula presented below in Eq. 30

V � vij[ ]
m×n

;where vij � wj nij + 1( ) (30)

Step 3: BAA matrix G � [gj]1×n is defined where gi is calculated as
in Eq. 31

gj � ∏m

i�1vij( ) 1
m (31)

Step 4: Distance from this BAA is calculated for all the alternatives
using Eq. 32,

Q � V − G (32)

Step 5: Ranking of the alternatives is done using the overall score
computed as

Si � ∑n

j�1qij (33)

Ranking is done in the descending order of Si.

3 Results and discussion

The response values for MRR, SR, EF and Uc are recorded as
shown in Table A1. TOPSIS, MOORA, ARAS, WASPAS and
MABAC methods are used to select the best alternatives
among the 27 experiments. MRR and EF are treated as
beneficial criteria because greater value of these criteria is
desirable while Uc and SR are considered as cost criteria.
Results obtained by various MCDM techniques are individually
presented in Section 3.1. A comparative analysis and correlation
coefficients are also presented in Section 3.2.

3.1 MCDM results

3.1.1 Weight determination
In the current work, criteria weight determination for all the

MCDM techniques considered is done using four objective weight
allocationmethods. The steps involved in all the weight determination
strategies is elucidated in earlier section. The discussed process has
been religiously followed to calculate weights of various criteria in the
selected MCDM problem. Weights of all the criteria obtained is
presented in Table 1. It is worth noting here that while MEREC is
heavily skewed in favor of surface roughness, other methods allocate
weights to all criteria in close proximity with each other.

3.1.2 TOPSIS
Weights of all criterion obtained using the four weight allocation

methods was used to obtain weighted normalized matrix using Eq.
14 after the normalized matrix is obtained using Eq. 13 discussed in
Section 2.2.2. The distances from positive ideal and negative ideal
solutions are calculated using Eqs 15, 16 respectively. Figure 1 shows
the Euclidean distance from the best and the worst ideal solution.
Selection of best alternative is based on the fact that the best
alternative is the one that is the closest to the positive ideal but
the farthest from the negative ideal point. Closeness coefficient
measures how far the solution is from the ideal worst and how
near a solution is to the ideal best. Ranks obtained using TOPSIS is
presented in Table 2. It can be observed from Table 2 that alternative
15 can reliable be considered to be the optimal solution to the
current MCDMproblem which is ranked best by two of the methods
and second best by the remaining two. Similarly, experiment 18 and
experiment 5 are among the worst performing alternatives by
TOPSIS among the 27 experiments considered.

3.1.3 MOORA
Decisionmatrix was normalized using Eq. 13 andweight obtained

using all the methods considered were multiplied according to Eq. 14
to obtain weighted normalized decision matrix for MOORA method.
Following Eq. 18, weighted normalized performance values under
MRR and EF are added together and the sum of weighted normalized
performance values for SR andUc is subtracted from it to calculate the
performance score. This score is used to rank the alternatives as shown
in Table 3. Experiment 25 is ranked as the best alternative in two of the
four weights considered. Experiment 3 and 4 and also among the
better performing alternatives that are ranked first by the other two
methods. Experiment 1 is again suggested to be the worst alternative
among the 27 experiments.
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3.1.4 ARAS
For ARAS method, a different normalization procedure is

followed using Eq. 19 for MRR and EF and Eq. 20 for SR and
Uc. Normalized decisionmatrix is multiplied with the weight of each
criteria following Eqs 21, 22 based on the nature of criteria to obtain
weighted normalized decision matrix. Sum of performance values
under all the criteria is calculated following Eq. 23 to calculate the
optimality function for an alternative. Degree of utility is calculated
using Eq. 24 and the alternatives are ranked in the descending order
of degree of utility as shown in Table 4. ARAS suggests that the
experiment 25 is the best alternative followed by experiment 26. The
worst alternative suggested by ARAS is experiment number 13.

3.1.5 WASPAS
WASPAS method is also used to identify the best alternative

among the 27 experimental runs. Normalization of the decision
matrix is done using Eqs 24, 25 depending on the type of criteria.
Performance index for weighted aggregate sum and weighted
aggregate product are calculated using Eqs 26, 27 respectively.
The value of α is taken as 0.5 for the present work. The
aggregate performance score is calculated using Eq. 28 and
alternatives are ranked based on the score. Stepwise rank
calculation is shown in Table 5 below. Experiments 25 and
26 are selected as the best and the second-best alternatives using
WASPAS method. Experiment 18 is suggested to be the worst
experiment by WASPAS method.

3.1.6 MABAC
In MABAC method, initial decision matrix is normalized

using Eq. 21. It should be noted here that the best performance
value for beneficial criteria is the maximum value while for the
cost criteria it is the minimum value. Vice versa is true for worst
value. For the weighted normalized matrix, Eq. 22 is used as
mentioned in Section 2.2.6. BAA matrix G is then calculated
using Eq. 23. Distance from this BAA matrix is calculated for all
the alternatives under each criteria using Eq. 24. Eq. 25 is used to
convert the Q matrix to a single performance score for each
alternative. Ranks obtained using this score is tabulated in
Table 6 below. It can be observed that MABAC chooses 6th
experiment as the best alternative using CRITIC and equal
weights are used while the 15th experiment is chosen as the
best alternative when other two weights are used. 18th
Experiment is chosen as the worst alternative by MABAC for
most weights.

3.2 Comparative study

Figure 2 shows the plot of ranks obtained by different MCDM
techniques. It can be clearly observed that the experiments no.
15 and 26 are ranked among the best four alternatives. Similarly
experiment 10 and 13 are also ranked among the worst performing
alternatives by all the techniques considered. It can be seen that
ARAS andMOORA have significant overlap and TOPSIS, WASPAS
and MABAC have significant overlap among each other for all the
weights that were considered. Weights seem to play very little role as
the overlap among the weights considered is significantly high for
TOPSIS, WASPAS andMABAC. However, for ARAS andMOORA,

the overlap among the weights considered and with other MCDM
techniques considered seems very low.

Correlation analysis was also done to check the overlap between
the ranks obtained by the MCDM techniques considered. Spearman
rank correlation coefficient is selected as the measure for correlation
between ranks in the current work (Figure 3). The most significant
observation is that selection of appropriate weights is crucial to
enhance the reliability of MCDM results as the correlation can be
seen changing among MCDM techniques when weight allocation
methods are different. While TOPSIS, WASPAS, and MABAC are
quite similar, the differences in the approaches towards decision
making might be the reason behind low correlation coefficient
between ARAS and TOPSIS or ARAS and MOORA. Correlation
coefficients also reflect that ARAS and MOORA are very closely
related with each other.

4 Conclusion

This work compares TOPSIS, MOORA, ARAS, WASPAS,
and MABAC using four different objectiive weight determination
process, focusing on the widely used machining technique for
crafting intricate shapes in microfluidic devices, specifically, the
PCM process. A 27-alternative 4-criteria MCDM problem was
constructed using an L27 Taguchi experimental design array and
four response parameters: MRR, SR, Uc, and EF. The 15th, 25th,
26th, and 27th experimental runs emerged as better performing
alternatives across all the MCDM techniques utilized in
this study.

Correlation analysis between the techniques reveals that the
ranks obtained using ARAS and MOORA closely correlate, while
those obtained using TOPSIS, WASPAS and MABAC show close
correlation among each other. There is a division between these two
groups of MCDM techniques, which may be due to the
normalization procedure followed in the processes. While
TOPSIS, WASPAS and MABAC use the same approach to select
the best alternative irrespective of the criteria’s nature post-
normalization, ARAS and MOORA distinguish between the
benefit and cost criteria in the process of selecting the best
alternative. This study’s primary contribution is to elucidate this
difference clearly using the example of PCM process parameters
optimization.

The impact of the weight determination technique has also been
studied. The most significant result in the comparison of weights is
that the correlation among MCDM techniques is hugely dependent
on the weight determination technique used. Therefore, weights play
a significant role in reliability of MCDM tools and a careful selection
of weight allocation technique is paramount in interpreting MCDM
results. This work, however does not implement new age
mathematical tools like fuzzy sets, soft sets and rough sets which
can be integrated with the existing MCDM techniques to enhance
their robustness in application.

Data availability statement

The raw data supporting the conclusion of this article will be
made available by the authors, without undue reservation.

Frontiers in Mechanical Engineering frontiersin.org12

Sapkota et al. 10.3389/fmech.2024.1325018

https://www.frontiersin.org/journals/mechanical-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fmech.2024.1325018


Author contributions

GS: Data curation, Formal Analysis, Investigation,
Validation, Writing–original draft. RG: Writing–original draft,
Writing–review and editing, Methodology. RČ:
Conceptualization, Funding acquisition, Methodology,
Supervision, Writing–review and editing. GS:
Conceptualization, Formal Analysis, Methodology, Validation,
Writing–review and editing. JSC: Formal Analysis, Investigation,
Methodology, Writing–review and editing. KK:
Conceptualization, Methodology, Software, Visualization,
Writing–review and editing.

Funding

The author(s) declare that no financial support was received for
the research, authorship, and/or publication of this article.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

The author(s) declared that they were an editorial board
member of Frontiers, at the time of submission. This had no
impact on the peer review process and the final decision.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

References

Agrawal, D., and Kamble, D. (2019). Optimization of photochemical machining
process parameters for manufacturing microfluidic channel.Mater. Manuf. process. 34,
1–7. doi:10.1080/10426914.2018.1512115

Agrawal, D., Kamble, D., and Ambhore, N. (2021). Parametric investigation of
photochemical machining of SS- 430 for manufacturing of micromesh. Adv. Eng.
Forum 43, 1–16. doi:10.4028/www.scientific.net/AEF.43.1

Brauers, W. K. M., Zavadskas, E. K., Peldschus, F., and Turskis, Z. (2008). “Multi-
objective optimization of road design alternatives with an application of the MOORA
method,” in The 25th International Symposium on Automation and Robotics in
Construction ISARC-2008 , Vilnius, Lithuania, June 26–29, 2008. Editor
E. K. Zavadskas, A. Kaklauskas, and M. J. Skibniewski (Vilnius: Technika Selected
papers), 541–548 . doi:10.3846/isarc.20080626.541

Chakraborty, S. (2011). Applications of the MOORA method for decision making in
manufacturing environment. Int. J. Adv. Manuf. Technol. 54, 1155–1166. doi:10.1007/
s00170-010-2972-0

Chakraborty, S., Dandge, S. S., and Agarwal, S. (2020). Non-traditional machining
processes selection and evaluation: a roughmulti-attributive border approximation area
comparison approach. Comput. Ind. Eng. 139, 106201. doi:10.1016/j.cie.2019.106201

Das, P. P., and Chakraborty, S. (2022). Application of Grey correlation-based EDAS
method for parametric optimization of non-traditional machining processes. Sci. Iran.
29, 0–882. doi:10.24200/sci.2020.53943.3499

Deosant, P. V., Lande, A. R., Vishwakarma, A. G., and Jawale, H. P. (2021). “AHP
integrated TOPSIS methodology for selection of non-conventional machining process
for micro-drilling,” in Advances in industrial machines and mechanisms (Singapore:
Springer), 489–499. doi:10.1007/978-981-16-1769-0_44

Diakoulaki, D., Mavrotas, G., and Papayannakis, L. (1995). Determining objective
weights in Multiple criteria problems: the critic method. Comput. Oper. Res. 22,
763–770. doi:10.1016/0305-0548(94)00059-H

Goswami, S. S., Behera, D. K., Afzal, A., Razak Kaladgi, A., Khan, S. A., Rajendran, P.,
et al. (2021). Analysis of a robot selection problem using two newly developed hybrid
MCDM models of TOPSIS-ARAS and COPRAS-ARAS. Symmetry 13, 1331. doi:10.
3390/sym13081331

Kalita, K., Madhu, S., Ramachandran, M., Chakraborty, S., and Ghadai, R. K. (2022).
Experimental investigation and parametric optimization of a milling process using
multi-criteria decision making methods: a comparative analysis. Int. J. Interact. Des.
Manuf. (IJIDeM) 17, 453–467. doi:10.1007/s12008-022-00973-3

Keshavarz-Ghorabaee, M., Amiri, M., Zavadskas, E. K., Turskis, Z., and
Antucheviciene, J. (2021). Determination of objective weights using a new method

based on the removal effects of criteria (MEREC). Symmetry 13 (4), 525. doi:10.3390/
sym13040525

Kumari, A., and Acherjee, B. (2022). Selection of non-conventional machining
process using CRITIC-CODAS method. Mater. Today Proc. 56, 66–71. doi:10.1016/
j.matpr.2021.12.152

Misal, N. D., Saraf, A. R., and Sadaiah, M. (2017). Experimental investigation of
surface topography in photochemical machining of Inconel 718.Mater. Manuf. process.
32, 1756–1763. doi:10.1080/10426914.2017.1317786

Pamučar, D., and Ćirović, G. (2015). The selection of transport and handling
resources in logistics centers using multi-attributive border approximation area
comparison (MABAC). Expert Syst. Appl. 42, 3016–3028. doi:10.1016/j.eswa.2014.
11.057

Pathapalli, V. R., Basam, V. R., Gudimetta, S. K., and Koppula, M. R. (2020).
Optimization of machining parameters using WASPAS and MOORA. World J. Eng.
17, 237–246. doi:10.1108/WJE-07-2019-0202

Shanmugasundar, G., Sapkota, G., Čep, R., and Kalita, K. (2022). Application of
MEREC in multi-criteria selection of optimal spray-painting robot. Processes 10, 1172.
doi:10.3390/pr10061172

Wangikar, S. S., Patowari, P. K., and Misra, R. D. (2017). Effect of process parameters
and optimization for photochemical machining of brass and German silver. Mater.
Manuf. process. 32, 1747–1755. doi:10.1080/10426914.2016.1244848

Wangikar, S. S., Patowari, P. K., Misra, R. D., andMisal, N. D. (2019). “Photochemical
Machining: A Less Explored Non-conventional Machining Process,” in In Non-
Conventional Machining in Modern Manufacturing Systems, Editor K. Kumar,
N. Kumari, and J. Paulo Davim (Hershey, PA: IGI Global), 188–201. doi:10.4018/
978-1-5225-6161-3.ch009

Yoon, K., and Hwang, C. L. (1981). “TOPSIS (technique for order preference by
similarity to ideal solution)-a Multiple attribute decision making,” inMultiple attribute
decision making-methods and applications, a state-of-the-at survey (Berlin: Springer),
128–140.

Zavadskas, E. K., and Turskis, Z. (2010). A NEW ADDITIVE RATIO ASSESSMENT
(ARAS) METHOD IN MULTICRITERIA DECISION-MAKING/NAUJAS ADITYVINIS
KRITERIJŲ SANTYKIŲ ĮVERTINIMO METODAS (ARAS) DAUGIAKRITERINIAMS
UŽDAVINIAMS SPRĘSTI. Ukio Technol. Ir. Ekon. Vystym. 16, 159–172. doi:10.3846/tede.
2010.10

Zavadskas, E. K., Turskis, Z., Antucheviciene, J., and Zakarevicius, A. (2012).
Optimization of weighted aggregated sum product assessment. Elektron. Ir.
Elektrotechnika 122, 3–6. doi:10.5755/j01.eee.122.6.1810

Frontiers in Mechanical Engineering frontiersin.org13

Sapkota et al. 10.3389/fmech.2024.1325018

https://doi.org/10.1080/10426914.2018.1512115
https://doi.org/10.4028/www.scientific.net/AEF.43.1
https://doi.org/10.3846/isarc.20080626.541
https://doi.org/10.1007/s00170-010-2972-0
https://doi.org/10.1007/s00170-010-2972-0
https://doi.org/10.1016/j.cie.2019.106201
https://doi.org/10.24200/sci.2020.53943.3499
https://doi.org/10.1007/978-981-16-1769-0_44
https://doi.org/10.1016/0305-0548(94)00059-H
https://doi.org/10.3390/sym13081331
https://doi.org/10.3390/sym13081331
https://doi.org/10.1007/s12008-022-00973-3
https://doi.org/10.3390/sym13040525
https://doi.org/10.3390/sym13040525
https://doi.org/10.1016/j.matpr.2021.12.152
https://doi.org/10.1016/j.matpr.2021.12.152
https://doi.org/10.1080/10426914.2017.1317786
https://doi.org/10.1016/j.eswa.2014.11.057
https://doi.org/10.1016/j.eswa.2014.11.057
https://doi.org/10.1108/WJE-07-2019-0202
https://doi.org/10.3390/pr10061172
https://doi.org/10.1080/10426914.2016.1244848
https://doi.org/10.4018/978-1-5225-6161-3.ch009
https://doi.org/10.4018/978-1-5225-6161-3.ch009
https://doi.org/10.3846/tede.2010.10
https://doi.org/10.3846/tede.2010.10
https://doi.org/10.5755/j01.eee.122.6.1810
https://www.frontiersin.org/journals/mechanical-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fmech.2024.1325018


Appendix

TABLE A1 Input variables of experiment (Agrawal and Kamble, 2019).

Factors Level 1 Level 2 Level 3

Concentration of Etchant (gm/lit) 650 750 850

Time of Etching (min) 30 40 50

Temperature of Etchant (oC) 50 60 70

TABLE A2 Experimental data (Agrawal and Kamble, 2019).

Sl. no. Ra (μm) Uc (mm) MRR (mm3/min) EF Sl. no. Ra (μm) Uc (mm) MRR (mm3/min) EF

1 1.683 0.0270 3.140 1.48 15 0.202 0.0710 8.910 1.71

2 0.741 0.0473 6.044 1.62 16 0.968 0.0770 6.672 1.10

3 0.707 0.0623 6.280 1.52 17 1.082 0.0725 7.457 1.31

4 1.066 0.0304 3.297 1.41 18 2.258 0.0850 7.693 1.15

5 2.287 0.0413 4.553 1.40 19 0.864 0.0811 7.771 1.22

6 0.573 0.0523 7.928 1.93 20 1.006 0.0670 5.479 1.47

7 0.747 0.0930 7.614 1.03 21 0.884 0.0827 8.478 1.30

8 0.980 0.0944 7.771 1.04 22 0.859 0.0661 5.700 1.10

9 1.402 0.0573 7.928 1.76 23 1.042 0.0460 6.280 1.73

10 0.877 0.0677 5.338 1.00 24 1.615 0.0462 6.829 1.89

11 1.354 0.0736 7.693 1.33 25 0.098 0.0691 7.693 1.41

12 0.970 0.0964 8.870 1.17 26 0.117 0.081 9.184 1.44

13 1.155 0.0772 6.410 1.04 27 0.218 0.094 9.263 1.40

14 0.984 0.0821 7.879 1.14
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