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Introduction: Coronary artery disease (CAD) is a highly heritable and
multifactorial disease. Numerous genome-wide association studies (GWAS)
facilitated the construction of polygenic risk scores (PRS) for predicting future
incidence of CAD, however, exclusively in European populations. Furthermore,
identifying CAD patients with elevated risks of all-cause death presents a
critical challenge in secondary prevention, which will contribute largely to
reducing the burden for public healthcare.
Methods: We recruited a cohort of 1,776 Chinese CAD patients and performed
medical follow-up for up to 11 years. A pruning and thresholding method was
used to calculate PRS of CAD and its 14 risk factors. Their correlations with
all-cause death were computed via Cox regression.
Results and discussion: We found that the PRS for CAD and its seven risk
factors, namely myocardial infarction, ischemic stroke, angina, heart failure,
low-density lipoprotein cholesterol, total cholesterol and C-reaction protein,
were significantly associated with death (P≤ 0.05), whereas the PRS of body
mass index displayed moderate association (P < 0.1). Elastic-net Cox regression
with 5-fold cross-validation was used to integrate these nine PRS models into
a meta score, metaPRS, which performed well in stratifying patients at
different risks for death (P < 0.0001). Combining metaPRS with clinical risk
factors further increased the discerning power and a 4% increase in sensitivity.
The metaPRS generated from the genetic susceptibility to CAD and its risk
factors can well stratify CAD patients by their risks of death. Integrating
metaPRS and clinical risk factors may contribute to identifying patients at
higher risk of poor prognosis.
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Introduction

Coronary artery disease (CAD) is the leading cause of death

worldwide and associated with 17.8 million deaths annually (1–4).

The number of people suffering from CAD has increased

substantially over the past three decades. There are more than 197

million people living with CAD globally (5), resulting in huge

expenditures on medical treatment, as well as secondary and

tertiary preventions. Therefore, early identification of CAD

patients at elevated risk of death permits precise delivery of more

intense medical interventions and effective lifestyle changes, which

are essential to decreasing mortality and reducing healthcare burden.

CAD is highly heritable with heritability estimated at 40%–60%

(6). As such, genetic susceptibility profiles may confer the potential

for early risk screening. During the last two decades, numerous

genome-wide association studies (GWAS) were devoted to

identifying single nucleotide variants (SNVs) associated with CAD

and its risk factors by aggregating millions of samples (7–10). As

germline DNA variation is quantifiable at the time of birth, which

is before the onset of the disease or symptoms, and is therefore

attractive for predicting the incidence of various cardiovascular

diseases, including CAD (11), type 2 diabetes (12), atrial fibrillation

(13), and myocardial infarction (14). Polygenic risk score (PRS),

which integrates inherited risk inferred by GWAS into a single

quantitative metric, has displayed its potential in various

cardiovascular diseases to classify patients by risks of future

incidence (15–17). Due to the broad availability of the GWAS data,

PRS is readily applicable to many diseases. However, most studies
FIGURE 1

The overall design of this study. GWAS, genome-wide association study; CAD
BMI, body mass index; SBP, systolic blood pressure; DBP, diastolic blood pr
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thus far mainly focused on future incidence, i.e., primary

prevention, in individuals of European ancestry without pre-

existing CAD (15, 16, 18),. Only a few studies explored whether

the genetic susceptibility to CAD and its risk factors could predict

risks of adverse outcomes in patients with pre-existing CAD (19,

20). Few examined that in patients of East Asian ancestry.

To address these needs, we recruited a prospective cohort

consisting of 1,776 Chinese patients with pre-existing CAD and

carried out medical follow-ups for up to 11 years. We aimed to

leverage GWAS summary statistics derived from large cohorts of

East Asians, such as Biobank Japan (9, 10), and develop the PRS

models in our cohort for learning and adaptation. Our goal was

to derive a meta PRS model for CAD patients of East Asian

ancestry, which combined genetic profiles of CAD and its risk

factors and was capable to predict the risk of poor prognosis.
Methods

Study population enrollment and baseline
characteristics collection

This study was approved by the Medical Research Ethics

Committee of Guangdong Provincial People’s Hospital and

complied with the Declaration of Helsinki. All patients provided

written informed content.

The overall design of this study was depicted in Figure 1. We

recruited 1,776 patients diagnosed with CAD from Guangdong
, coronary artery disease; MI, myocardial infarction; T2D, type 2 diabetes;
essure.
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Provincial People’s Hospital between January 2010 and December

2013 to form a prospective cohort. All individuals had stenosis of

≥50% in at least 1 major coronary artery by coronary angiography

and/or a diagnosis of CAD based on the World Health

Organization Criteria (21). Meanwhile, we obtained baseline

characteristics, including demographics, medical history,

biochemical measurements, and medication, from the hospital

information database. In this study, subjects who met any of

the following criteria were excluded: (1) renal dysfunction

(defined as serum creatinine concentration >2 times the upper

limit of normal (ULN) (230 µmol/L), or with history of renal

transplantation or dialysis); (2) hepatic dysfunction [defined as

serum transaminase concentration >2 times the ULN (80 U/L),

or a diagnosis of cirrhosis]; (3) being pregnant or lactating; (4)

diagnosed with advanced cancer or receiving hemodialysis; (5)

history of thyroid disease and related medication; (6) blood

sample and coronary angiography image unavailable; (7)

missing follow-up information.

The endpoint of this study was an all-cause death event

occurred during the follow-up period. All participants were

followed prospectively and continuously by telephone contact

with patients or their families every six months to collect the

study’s endpoint. The average follow-up time was 5 years and the

maximum follow-up time was approximately 11 years.
Single nucleotide variants genotyping and
imputation

DNA was extracted on the hemocytes samples by TGuideM16

automatic nucleic acid extractor (Cat.NO. OSE-M16) with a

matching extraction kit (Cat.NO. OSR-M102) of TIANGEN.

Each individual was genotyped by the Global Screening Array

(GSA) bead chip of Illumina, according to the standard protocol

for Illumina Infinium HTS Assay. GenomeStudio software and

the calling algorithm of Illumina were used to normalize the

signal intensity. Finally, 700,078 SNVs were genotyped for each

individual. Before genotype imputation, a series of strict quality

controls were used to derive high-quality SNVs, with the

following exclusion criteria: (1) samples with SNV genotyping

rate less than 95%; (2) SNVs genotyped in less than 95%

samples; (3) SNVs with a P-value of Hardy-Weinberg smaller

than 1E-06; (4) SNVs with minor allele frequency (MAF) less

than 5%.

Genotype imputation was performed against the China

Metabolic Analytics Project (ChinaMAP, http://www.

mbiobank.com), a large-scale and high-depth whole-genome

sequencing dataset based on the Chinese population. This

reference panel was constructed based on the ChinaMAP

phase1 dataset, which includes 136,745,826 SNVs in 10,588

individuals. Our clean genotyped data were imputed by the

ChinaMAP Imputation Server. After imputation, SNVs with

the R2 smaller than 0.3 and/or SNVs with the P-value of

Hardy–Weinberg smaller than 1 × 10−06 were excluded. At

last, 4,933,061 high-quality SNVs of 1,776 CAD patients

passed the quality assessment.
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Generation of polygenic risk score for
all-cause death

GWAS summary statistics for 15 traits, including CAD,

myocardial infarction, ischemic stroke, heart failure, angina,

type 2 diabetes (T2D), body mass index (BMI), high-density

lipoprotein cholesterol (HDLC), low-density lipoprotein

cholesterol (LDLC), total cholesterol (CHOL), triglycerides

(TG), systolic blood pressure (SBP), diastolic blood pressure

(DBP), C-reaction protein (CRP), and platelet levels, were

downloaded from Biobank Japan (Supplementary Table S1).

The GWAS effect size were transferred to our data to construct

PRS scores for our patients via a pruning and thresholding

approach implemented in PRSice2 (22). Briefly, clumping was

performed on our patients’ genotypes to remove SNVs in

linkage disequilibrium with the most significant SNVs (r2 > 0.1)

within a 250 kb window. Subsequently, under each trait,

different PRS models were constructed based on different SNVs,

which were selected by incrementing P-value threshold from

5 × 10−8 to 0.5 in a few hundred steps. Thus, hundreds of PRS

models were generated under each trait. Next, to identify the

optimal PRS model per trait for predicting death, under each

model, all PRS scores were used as independent variables for

fitting a logistic regression with all-cause death. Among

hundreds of regression results, the model with the maximum

fitted R-square was defined as the optimal PRS model for that

trait for predicting death.
Construction of metaPRS

To construct the metaPRS, the optimal PRS models having

significant association (P < 0.1) with all-cause death were

identified by Cox regression, adjusting for age, sex, medication

including proton pump inhibitors (PPI), angiotensin-converting

enzyme inhibitors (ACEI), β-blockers (BB), and calcium channel

blockers (CCB), and the first 10 principal components (PCs) of

the genotypes. Next, Elastic-net Cox regression with 5-fold cross-

validation was used to construct the metaPRS by combining all

significant PRS models using the R package “glmnet”, which was

proven effective in the presence of correlation between each PRS

(23). A series of different metaPRS models were generated by

tuning the parameter λ with different penalties, conferring

different weights to each independent variable – in this case, the

selected optimal PRS models. The performance of each metaPRS

model was evaluated by the area under the operator curves

(AUC), and the effect size of each optimal PRS model was

determined when the AUC reached its maximum value among

all penalties. At last, the metaPRS for death was determined from

the model with the largest AUC value.
Statistical analysis

In this study, the baseline characteristics of patients were

presented as mean ± standard deviation (SD) for continuous
frontiersin.org
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TABLE 1 Baseline characteristics of the participants in the CAD prognostic
cohorts.

Characteristics Death
(N = 171)

Survival
(N = 1,605)

P-value

N (%) or
mean ± SD

N(%) or
mean ± SD

Demographic data
Age (year) 69 ± 9 62 ± 10 <0.0001

Male 142 (83.04) 1,271 (79.09) 0.28

Medical history
Diabetes mellitus 72 (42.11) 420 (26.22) <0.0001

Hypertension 108 (63.16) 934 (58.27) 0.25

Heart failure 45 (26.32) 194 (12.10) <0.0001

Arrhythmia 28 (16.37) 48 (7.08) 0.0002

Biomedical measurements
ALT, U/L 29 ± 17 27 ± 14 0.13

AST, U/L 35 ± 66 26 ± 11 <0.0001

LDLC, mmol/L 2.61 ± 0.97 2.67 ± 0.99 0.45

Qin et al. 10.3389/fcvm.2024.1296415
variables and count (percent) for categorical variables. A two-tailed

Students’ t-test was used to identify the difference of continuous

variables between patients with or without death, χ2 test was

used to detect the difference between two groups with normally

distributed data, and the Mann–Whitney U-test was used to

identify the difference between two groups with non-normally

distributed data. A P-value less than 0.05 was considered

statistically significant. Pearson correlation analysis was used to

identify the relationship between each optimal PRS. These

patients were divided into three groups with low [≤quartile (Q)

1], intermediate (>Q1 and <Q3), and high risk of death (≥Q3)
based on the quartiles of the calculated metaPRS for all

individuals. The AUC values of all predictive models were

calculated using the R package “timeROC”. Sensitivity and

specificity of the prediction models were calculated based on the

function of confusionMatrix implemented in the R package

“InformationValue”.
HDLC, mmol/L 0.97 ± 0.24 0.99 ± 0.24 0.31

Triglycerides, mmol/L 1.60 ± 1.20 1.64 ± 1.12 0.69

ApoA, g/L 1.02 ± 0.28 1.07 ± 0.26 0.01

TC, mmol/L 4.25 ± 1.14 4.34 ± 1.25 0.38

LPA, mg/dl 333.51 ± 350.81 290.69 ± 315.30 0.13

CK, U/L 150.10 ± 591.76 111.16 ± 106.83 0.02

CKMB, U/L 8.5 ± 8.1 8.0 ± 6.1 0.39

Creatinine, µmol/L 102 ± 38 86 ± 39 <.0001

Glucose, mmol/L 7.11 ± 2.68 6.54 ± 2.61 0.007

Medication
PPI 104 (60.82) 863 (53.77) 0.09

ACEI 105 (61.40) 949 (59.13) 0.62

BB 151 (88.30) 1,416 (88.22) 0.99

CCB 70 (40.94) 429 (26.73) 0.0001

ALT, alanine aminotransferase; AST, aspartate aminotransferase; LDLC, low-density

lipoprotein cholesterol; HDLC, high-density lipoprotein cholesterol; ApoA,

apolipoprotein A; TC, total cholesterol; LPA, Lipoprotein (a); CK, creatine kinase;

CKMB, creatine kinase MB; PPI, proton pump inhibitors; ACEI, angiotensin-

converting enzyme inhibitors; BB, β-blockers; CCB, calcium channel blockers.
Results

Baseline characteristics of the study
population

The overall study design was illustrated in Figure 1. We

utilized a prospective cohort design and recruited 1,776 patients

with CAD. During a follow-up period of up to 11 years, 171

patients experienced all-cause death, and the death rate of

patients in this study was illustrated in Supplementary

Figure S1. Characteristics of the patients at enrollment, i.e.,

baseline, were displayed in Table 1. The patients were

predominantly male (79.56%), both in the death group and the

survival group. The mean age of patients at enrollment was

significantly older in the death group than in the survival group

(P = 5.37 × 10−18). In addition, patients in the death group were

inclined for diabetes mellitus, heart failure, and arrhythmia, and

their blood levels of aspartate aminotransferase, creatine kinase,

creatine, and glucose were higher (P < 0.05, Table 1). Overall,

baseline characteristics of these patients were consistent with

the epidemiologic findings.
Association between death and polygenic
risk scores of CAD and its risk factors

We evaluated whether genetic susceptibility to CAD and its

risk factors could predict all-cause death in patients with prior

CAD. As such, we chose to study CAD and its 14 risk factors,

namely myocardial infarction, ischemic stroke, heart failure,

angina, T2D, BMI, HDLC, LDLC, CHOL, TG, SBP, DBP, CRP,

and platelet levels. For each trait, we transferred the GWAS effect

sizes, i.e., the beta values, learned in the East Asians in Biobank

Japan, to compute PRS scores for our patients. For each trait, we

used different significance thresholds (P-values ranged from 5 ×

10−08 to 0.5) to select different risk alleles and computed the

PRS, thus deriving a series of PRS scores. We then performed
Frontiers in Cardiovascular Medicine 04
logistic regression, treating each PRS score as an independent

variable and adjusting for covariates including sex, age,

medications, and the first 10 principal components (PC) of the

genotypes, for identifying which PRS model of that particular

trait was best associated with all-cause death in our cohort. The

optimal PRS was defined as having the biggest effect size in the

association tests. As such, we derived 15 optimal PRS models

and their scores for each patient in our cohort (Supplementary

Table S1). We discovered that the PRS scores of seven traits, i.e.,

CAD, IS, MI, HF, Angina, TC, and LDLC, showed significant

association with all-cause death (P < 0.05, Figure 2), and CRP

and BMI showed weak significance with death (P < 0.1, Figure 2).

In total, nine PRS models displayed significant association with

all-cause death with the direction of effect consistent with the

epidemiologic findings.

Next, we explored the overlap of variants used to compose

the nine PRS models and their pairwise correlations. The

number of variants in each model ranged from 1,026 to 51,982

(Figure 3A), exhibiting varying degrees of overlap. PRS of

CAD overlapped the most with myocardial infarction,
frontiersin.org
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FIGURE 2

The associations between all-cause death and genetic susceptability of CAD and its 14 risk factors, presented in PRS scores. The diamonds represent
the coefficients and the error bars represent the 95% confidential interval. HF, heart failure; Ang, angina; MI, myocardial infarction; IS, ischemic stroke;
CRP, C-reaction protein; CAD, coronary artery disease; BMI, body mass index; DBP, diastolic blood pressure; SBP, systolic blood pressure; PLT,
platelet; T2D, type 2 diabetes; LDLC, low-density lipoprotein cholesterol; HDLC, high-density lipoprotein cholesterol; TC, total cholesterol; TG,
triglycerides; CI, confidence interval.

FIGURE 3

The intersection of SNVs for constructing each PRS model (A) and the correlation between the PRS models (B). Correlation coefficients and P-values
were estimated from the Pearson correlation test for each pair of PRSs. *Indicates P < 0.05, ** indicates P < 0.01, *** indicates P < 0.001. Abbreviations
refer to Figure 2.

Qin et al. 10.3389/fcvm.2024.1296415
resulting in the strongest positive correlation between the two

models (r = 0.58, Pearson correlation P < 0.001). Furthermore,

the PRS of CAD significantly correlated with angina, LDLC,
Frontiers in Cardiovascular Medicine 05
and TC (Figure 3B), and PRS of LDLC significantly correlated

with all ascertained cardiovascular diseases, namely angina,

CAD, MI, and HF.
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Predicting death risk by a meta polygenic
risk score

Given that the nine PRS models correlated with each other to

different degrees, we adopted the elastic-net Cox regression

approach with 5-fold cross-validation to integrate them all into a

metaPRS model, which consisted of 193,312 unique SNVs. As

expected, the metaPRS had the strongest association with all-

cause death (HR: 1.85; 95% CI: 1.50–2.28) compared to the

single PRS models (Figure 2).

For assessing its ability in risk stratification, we divided our

patients into three groups by the quartiles of metaPRS scores,

with the scores less than the first quartile (≤Q1) and greater

than the third quartile (≥Q3) as the low and the high risk

groups, respectively, and the scores between first and third

quartiles (>Q1 and <Q3) as the intermediate risk group. We

found that the cumulative incidence of all-cause death was

significantly greater in CAD patients in the third quartile than

in the first quartile, with the HR of 3.99 (95% CI: 2.40–6.64)

per SD increment (P = 9.10 × 10−8), and the cumulative

incidence of all-cause death in CAD patients with intermediate

metaPRS was also significantly greater than in the first quartile,

with the HR of 2.18 (95% CI: 1.33–3.59) per SD increment

(P = 2.10 × 10−3) (Figure 4).
Predicting death risk by polygenic and
clinical risk scores

Other than genetic susceptibility, environmental factors and

lifestyles also contribute to the incidence and progression of

cardiovascular diseases. For example, age is a known strong

predictor. Therefore, we explored whether combining metaPRS
FIGURE 4

Cumulative incidence of all-cause death across three metaPRS
categories. Cox proportional hazards model was used to estimate
the hazard ratios (95% confidence intervals). Polygenic risk
categories: low (≤Q1), intermediate (>Q1 and <Q3), and high risk
(≥Q3) according to the quantiles of metaPRS. HR, hazard ratios;
CI, confidence interval.
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and clinical risk factors could improve the prediction power for

all-cause death in CAD. First, we evaluated single risk factors

and found that age had a good predictability with an AUC of

0.69 (Supplementary Table S2), followed by smoking (AUC =

0.58) and sex (AUC = 0.54). As a reference, the metaPRS model

achieved an AUC of 0.63. Next, we combined the three clinical

factors and achieved an AUC of 0.74. Combining metaPRS with

the three clinical risk factors resulted in a further increase of

AUC to 0.76.

Close examination of the prediction scores revealed that

combining metaPRS with the clinical risk factors, which we

termed as the combined model, significantly improved prediction

than using the clinical risk factors alone (Figure 5). While no

difference was observed for the survival group between the

combined model and the clinical risk model, an increase in

prediction scores was observed in the death group using the

combined model. Furthermore, we observed a 4% increase in

sensitivity after adding metaPRS to the clinical risk model, while

the specificity remained unchanged (Table 2). Taken together,

these results indicate that combining genetic and clinical risk

factors is most advantageous in identifying patients at elevated

risk of death, which is critical to enhancing secondary

preventions in CAD patients.
Discussion

In this study, we evaluated whether genetic susceptibility to

CAD and its risk factors could predict future death in CAD

patients. Our results showed that the PRSs for CAD and its eight

risk factors were significantly associated with death. Meanwhile,

we developed a metaPRS model for predicting death, which

could well stratify CAD patients of low, intermediate, and high

risks of death. In addition, we found that combining metaPRS

with clinical risk factors moderately increased the prediction

power compared with using clinical risk factors alone.

Previous large-scale GWAS studies were predominantly

conducted in European ancestry populations and focused on the

incidence of CAD (15, 16), leading to an insufficient discovery

both in East Asian ancestry and adverse outcomes of CAD. The

large-scale meta-GWAS analysis of CAD and its risk factors

conducted by Biobank Japan (9, 10) allowed us to apply their

learning in the East Asian population to study the impact of

genetics on CAD progression in our Chinese patients. The good

stratification of patients at low, intermediate, and high risk of

death by our proposed metaPRS model supports the notion that

genetics not only contributes to the incidence but also

progression of CAD. Our metaPRS model provides a valid

quantification for such genetic contribution.

The prognosis of CAD is a complex conversation driven by

both genetic and nongenetic factors, such as environmental

exposure and lifestyles (24), presenting a challenge in predicting

future adverse outcomes. In this study, we found that PRS of

CAD had a positive association with all-cause death in CAD

patients, after adjusting for traditional risk factors and

medication usage. This was consistent with previous studies, such
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FIGURE 5

Predictive risk of all-cause death. Two models, the clinical risk model comprising of age, sex and smoking status, and the combined model comprising
of the three clinical risk score and metaPRS, are compared.

TABLE 2 Sensitivity analysis for metaPRS, clinical model and the combination of clinical and metaPRS model.

Reference metaPRS Clinical model Clinical + metaPRS model

Predictive Survival Death Survival Death Survival Death
Survival 954 70 1,146 66 1,136 60

(TN) (FN) (TN) (FN) (TN) (FN)

Death 651 101 459 105 469 111

(FP) (TP) (FP) (TP) (FP) (TP)

Totals 1,605 171 1,605 171 1,605 171

Sensitivity 59% 61% 65%

Specificity 59% 71% 71%

Cutoff value 1.095 2.4

TN, true negative; TP, true positive; FN, false negative; FP, false positive.

Qin et al. 10.3389/fcvm.2024.1296415
as Odyssey Outcome Trial and Fourier Trial that CAD patients of

higher PRS would benefit better from the medical treatments from

death and major adverse cardiovascular events (25–28).

Meanwhile, we noticed that all PRS scores for severe and even

fatal events such as myocardial infarction, heart failure, and

ischemic stroke harbored greater associations with death in the

CAD patients than the PRS of CAD itself, suggesting that genetic

susceptibility to CAD reflected broader spectrum of disease

conditions but was less effective in predicting adverse outcomes,

whereas genetic susceptibility to more extreme conditions confer

greater risk to the patients. Thus, our study highlights the

importance of considering overall genetic profiles, particularly

those associated with fatal conditions, when developing tools for

the secondary prevention of CAD.
Frontiers in Cardiovascular Medicine 07
In addition to predicting the incidence of CAD (18), our study

revealed that age was also the biggest contributor to predicting

future death in CAD patients. Although the addition of metaPRS

to the clinical risk factors achieved only a modest improvement

in the AUC value, the median of the predictive risk scores had

an obvious elevation in the death group, which in turn resulted

in a 4% increase in sensitivity. Studies suggest that restoring a

healthy lifestyle and increasing physical activity may reduce the

risk of cardiovascular death and all-cause death, even in patients

with the highest genetic risks (24, 29, 30). Thus, predicting a

long-term risk solely based on age may lead to an inaccurate

estimation. Genetic risk supplements the picture by providing an

independent component, which can be detected early in life and

has demonstrated promises in predicting future outcomes (31,
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32). Our results showed that combining genetic risk with clinical

risk factors achieved the best prediction power. Indeed, the

combined model increased the risk scores for patients in the

death group while maintaining the scores at similar levels for

patients in the survival group, suggesting the genetic risk

harbored specificity and did not broadly inflate the risk scores.

Such specificity confers the combined model the capability to

identify patients at higher risk for adverse outcomes.

We highlight the strengths and limitations of this study. For the

strengths, first, we recruited a prospective CAD cohort with

detailed baseline information and up to 11 years of follow-up on

all-cause death, which allowed us to explore comprehensively the

genetic profile of CAD and its risk factors and their ability to

predict a 10-year death risk in the CAD patients. Second, this

study filled a gap in utilizing PRS for secondary prevention of

CAD in East Asian populations. However, our study also has

limitations. First, the cohort enrolled in this study has a small

sample size relative to biobank studies such as UK Biobank.

Second, this study did not include an external validation cohort

to verify the performance of metaPRS, due to the lack of CAD

patient cohorts with long-term follow-up. Future studies are

warranted for validation.
Conclusions

In summary, our study developed a polygenic risk score with good

promising in facilitating the identification of patients at higher risk of

developing adverse outcomes. Incorporating polygenic risk scores

into clinical care may provide a valuable guidance on risk

stratification for early identification of patients who would benefit

from intensive lifestyle changes and drug treatment.
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