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Zooplankton size is a crucial indicator in marine ecosystems, reflecting

demographic structure, species diversity and trophic status. Traditional

methods for measuring zooplankton size, which involve direct sampling and

microscopic analysis, are laborious and time-consuming. In situ imaging systems

are useful sampling tools; however, the variation in angles, orientations, and

image qualities presented considerable challenges to early machine learning

models tasked with measuring sizes.. Our study introduces a novel, efficient, and

precise deep learning-based method for zooplankton size measurement. This

method employs a deep residual network with an adaptation: replacing the fully

connected layer with a convolutional layer. This modification allows for the

generation of an accurate predictive heat map for size determination. We

validated this automated approach against manual sizing using ImageJ,

employing in-situ images from the PlanktonScope. The focus was on three

zooplankton groups: copepods, appendicularians, and shrimps. An analysis was

conducted on 200 individuals from each of the three groups. Our automated

method's performance was closely aligned with the manual process,

demonstrating a minimal average discrepancy of just 1.84%. This significant

advancement presents a rapid and reliable tool for zooplankton size

measurement. By enhancing the capacity for immediate and informed

ecosystem-based management decisions, our deep learning-based method

addresses previous challenges and opens new avenues for research and

monitoring in zooplankton.
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1 Introduction

Zooplankton, encompassing a diverse array of organisms, are

integral to the functioning of marine ecosystems. They serve as the

foundational elements of aquatic food chains, a role underscored by

numerous studies (e.g., Frederiksen et al., 2006; Sun et al., 2021). As

primary consumers, zooplankton play a pivotal role in transferring

energy from the lowest trophic level, the phytoplankton, up the food

web. This process is critical for the survival and growth of a

multitude of marine species, including commercially important

fish and larger marine mammals (Moustaka-Gouni and Sommer,

2020). Zooplankton are often characterized with short lifespans and

rapid reproductive cycles which make them highly responsive to

environmental changes. Consequently, they are living indicators for

ecosystems structure and function. Variations in the abundance,

distribution, and species composition of zooplankton populations

can signal shifts in environmental conditions, such as changes in

water temperature, salinity, and nutrient availability (Richardson,

2008; Bi et al., 2011; Dam and Baumann, 2017).

The size of zooplankton is a fundamental attribute and plays a

crucial role in understanding and managing marine ecosystems

(Brandão et al., 2021). The size of zooplankton is indicative of their

energy and nutrient content, which is vital for the growth and

survival of their predators (Ikeda, 1985; Hunt et al., 2011) and fish

often selectively feed on large zooplankton (De Robertis et al., 2000).

Larger zooplankton typically contain more energy and nutrients,

making them a more valuable food source for higher trophic levels.

This aspect is particularly important in fisheries science, as the

growth and health of commercially important fish species are often

directly linked to the availability and size of zooplankton in their diet

(Castonguay et al., 2008; Perretti et al., 2017). Furthermore, the size

distribution of zooplankton populations can provide insights into

environmental conditions and the corresponding changes in

demographic structure and growth rates (Caswell and Twombly,

1989; Shaw et al., 2021). Within the broader community context, the

size distribution of plankton contributes significantly to the overall

community dynamics and the structure of the ecosystem (Hooff and

Peterson, 2006; Pitois et al., 2021).

Although plankton size is a critical parameter, automated

measurement methods are underdeveloped. Traditionally, size is

gauged under a microscope (Alvarez et al., 2014), a method praised

for its precision but hampered by its time-intensive nature and

reliance on skilled taxonomists. This can lead to errors due to

human fatigue (Culverhouse et al., 2003). Moreover, conventional

collection techniques like pumps and nets often harm these delicate

organisms, complicating the process of obtaining intact samples

(Remsen et al., 2004).

To improve efficiency and address existing challenges in

plankton size measurement, innovative imaging systems have

been developed. Technologies like the optical plankton counter

and flow cam, coupled with machine learning approaches, are now

utilized both in laboratory and field settings (Mullin and Ang, 1974;

Edvardsen et al., 2002). These instruments, while expediting the

measurement process, typically operate on the assumption that

particles are spherical. They employ basic measurements such as

cross-sectional length or major axis to estimate length. However,
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these methods have limitations, including strict requirements on

particle size and the necessity for certain sample pretreatments.

Such prerequisites can cause damage to the samples (Hernandez-

Leon and Montero, 2006). Additionally, results from these

instruments can be skewed by factors such as the assumption of

particle sphericity and interference from bubbles (Herman, 1992).

In recent decades, the evolution of plankton imaging systems

(Benfield et al., 2007) has further advanced the application of

image-based machine learning for plankton size measurement.

For instance, the ZooScan system utilizes semi-automated

procedures for size measurement, analyzing variables like the

target’s area, major, and minor axes (Gorsky et al., 2010;

Vandromme et al., 2012). A notable development is the use of

machine learning algorithms for measuring specific features, such

as the length of copepods from head to tail, showcasing the potential

of machine learning in automating plankton size measurement

(Pitois et al., 2021). However, the accuracy of these measurements

can be influenced by the organism’s orientation and complex

morphology (Kydd et al., 2018). Organisms like appendicularians,

chaetognaths, and small shrimps, which often exhibit curved

shapes, present challenges as their lengths cannot be accurately

measured with a straight line. This necessitates a more robust

approach to size measurement . Moreover , the rapid

advancements in deep learning-based recognition systems have

enabled faster identification, instance segmentation, and

enumeration of plankton species (e.g., Cheng et al., 2019;

Campbell et al., 2020). Traditional image processing tools, such as

ImageJ, are inadequate for managing large digital collections of

plankton samples, underscoring the need for methods that can

swiftly process extensive image datasets and accurately gather size

information (Schneider et al., 2012).

Recent advancements in deep learning technologies have

ushered in new methodologies for rapid measurement of

plankton size. One notable example is MMDetection (Kai et al.,

2019), an open-source platform for target detection built on the

PyTorch framework (Paszke et al., 2019). This platform is capable

of performing a variety of tasks, including instance segmentation,

target detection, human key point detection, and semantic

segmentation. Central to its functionality is the key point

detection technology, which employs convolutional neural

networks to model and predict specific node information within

an image (Schmidhuber, 2015; Eltanany et al., 2019). This

technology has seen widespread application in various fields,

ranging from human posture estimation (Jalal et al., 2020) and

behavior recognition (Bai and Han, 2020) to expression detection

(An et al., 2015), human-computer interaction (Ju et al., 2014), and

autonomous driving (Behera et al., 2018).

In the present study, we explore the use of key point detection

technology for measuring the size of plankton. This approach

involves identifying critical points on the plankton, such as the

head and tail, and extracting their coordinate information. With

this data, we can determine the length of the plankton directly from

images. This technique is particularly useful for organisms with

complex or curved shapes. By placing multiple key points along the

organism’s body – for example, at the head, mid-point of the curve,

and tail – we can approximate the length of each curved segment
frontiersin.org
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with a straight line. By summing the lengths of these segments, we

can accurately estimate the total length of the organism. This

innovative application of key point detection offers a promising

solution for efficiently measuring plankton sizes, even in cases of

irregularly shaped specimens.
2 Data and methods

2.1 Data collection and description

In this study, plankton images were captured using PlanktonScope1,

a shadowgraph imaging system, from the coastal waters of Guangdong,

P.R. China (Song et al., 2020; Liu et al., 2021; Bi et al., 2022).

PlanktonScope effectively preserves the original shape and size of

specimens without distortion (Bi et al., 2012; Song et al., 2020). The

images, presented as full frames (Figure 1), were sourced from a

collection of 200,000 images acquired from Daya Bay, Shenzhen, in

August 2021 (Liu et al., 2021). These images underwent initial

processing using an end-to-end approach (Bi et al., 2024), involving

segmentation, classification, and storage of target organisms into

different classes (Figure 2). Ten representative classes are shown in

Figure 2. A subset of 400 suitable images for each of the three classes:

copepods, shrimps, and appendicularians, were selected for key point

detection as the experimental dataset (Figure 3). Note that while we

demonstrated the procedure using images captured by PlanktonScope,

this method is versatile and can be applied to plankton images obtained

from other imaging systems as well.
2.2 Pre-classification and training

During the pre-training phase of our study, we utilized

ShuffleNet, an efficient pre-classification network (Zhang et al.,

2018), to sort through segmented images, identifying those

appropriate for body length measurement in the test set. An

example of unsuitability for measurement is the bird’s-eye view of

an organism (Figure 4), which cannot provide accurate length

information. It is important to note that as long as the organism

is captured fully and from the correct perspective, varying

orientations do not affect the measurement process.

For the training of the ShuffleNet classificationmodel, we selected

a total of 2,000 copepod images, half of which were deemed suitable

for body length measurement and the other half unsuitable, based on

their imaging criteria. The selected images were divided into a

training set (70%) and a validation set (30%). Additionally, we

randomly selected an independent set of 300 individuals, distinct

from those used in training and validation, to serve as a testing

dataset. The performance of the model, as evidenced by the confusion

matrix and test results, was robust and reliable. Detailed results of this
1 PlanktonScope, a registered trademark, is an in situ underwater imaging

system, differentiating it from PlanktoScope. Designed for laboratory use,

PlanktoScope was originally named PlanktonScope and had its name

changed to PlanktoScope after our communication.
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evaluation can be found in the results section of this paper. Images

that met the criteria for suitability were then processed through the

key point detection model for precise body length measurement. This

step involved predicting key points on each individual image and

calculating their lengths accordingly. The model’s ability to accurately

differentiate between suitable and unsuitable images for length

measurement was confirmed through the test results and is

elaborated upon in the results section.
2.3 Image annotation and preparation

From the pool of segmented images deemed suitable for size

measurement, we selected 400 images for each of the three classes -

copepods, shrimps, and appendicularians - to use in key point

detection, forming our experimental dataset. These selected images

were then subdivided into two categories: 300 images from each class,

encompassing a variety of imaging conditions and viewing angles, were

allocated for creating the training dataset. The remaining 100 images

per class were reserved for testing purposes. The training set was

manually labeled using Labelme, an image annotation tool (Wada,

2018), generating training data. The model underwent training using a

heat map matching method to calculate loss and optimize

backpropagation parameters (Yang et al., 2020).

Labelme is an image annotation tool developed by MIT’s

Computer Science and Artificial Intelligence Laboratory (Schneider

et al., 2012). In the present study, the labeling process began with

marking each target organism within a rectangular bounding box (as

shown in Figures 5a1-c4 training data) and assigning an appropriate

class name. Subsequently, key points were identified and marked on

the organism, with the number of key points varying based on the

organism’s structural characteristics and its appearance in the image. It

should be noted that the target box in the image annotations primarily

served to facilitate future research focused on key point detection in

scenarios involving multiple targets. However, the information from

the target box itself was not utilized in the analysis conducted in

this study.

For the copepod class, we implemented a 2-point detection

system, tagging only the head and tail end (examples in Figure 3 and

Figures 5C1-C4). This method is effective as the length of copepods

in our samples can generally be measured with a straight line, except

in cases of bird’s-eye view or rare occurrences of curvy shapes. Each

copepod was initially encased in a rectangular box, labeled as

“Copepoda,” and then the head and tail ends were marked with

“0” and “1,” respectively. It’s noteworthy that an additional key

point can be added between the prosome and urosome if necessary.

For mysid-like shrimps, we first located each target with a

rectangular bounding box and labeled it “Shrimp.” The length of

these shrimps can be approximated by two straight-line segments, one

from the head to the mid-point of the curve and another from this

mid-point to the tail end. The key points—head, abdomen, and tail—

were marked with “0,” “1,” and “2,” respectively. The abdomen’s

position, being the principal inflection point of the curve, was chosen

as a key point, thus capturing both straight and curved body shapes.

In the case of appendicularians, after examining numerous

images, we observed that their bodies often exhibit two curves.
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FIGURE 1

Examples of full frame images captured using PlanktonScope.
FIGURE 2

Example images of 10 dominant groups: a. mysid shrimp, b. medusa, c. chaetognath, d. copepod, e. Noctiluca, f. line-shaped algae, g. Echinoderm
larva, h. Phaeocystis colony, i. Appendicularia, and j. spiral-shaped diatom.
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Consequently, we selected four key points for this class: head, the

first inflection point, the second inflection point, and the tail end,

marked as “0,” “1,” “2,” and “3,” respectively. Each appendicularian

was first enclosed in a rectangular bounding box and

labeled “Appendicularia.”
2.4 Heatmaps for key point detection

In our study, we adopted a method developed by Microsoft

Research Asia for transforming key points into heat maps (Qiu et al.,

2019). This involves converting key points into Gaussian heat maps

using two-dimensional Gaussian functions. For instance, with an

input image resolution of 192x192 pixels, and key point coordinates

at (96,96), the heat map size is typically set to a quarter of the input

image’s size, resulting in a 48x48 heat map (Yuen and Trivedi, 2017).

The corresponding coordinates on the heat map for the key points

from the original image are (24,24). At this position in the heat map,

we assign the highest probability value of 1, with surrounding values

decreasing according to the Gaussian function (Zhang et al., 2020).

The mathematical expression is as follows Equation 1:

G(x, y) = e−½(x−x0)
2+(y−y0)

2�=2s2

(1)

where s represents the standard deviation, x0 represents the

abscissa of the key point, and y0 represents the ordinate of the key

point. x and y are the horizontal and vertical coordinates of a point

P in the heat map.
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Given that G(x, y) values decrease rapidly beyond the critical

point of 3s, approaching zero, we simplify calculations by only

computing G(x, y) within a 3s range around the key points, setting

other coordinates in the heat map to zero. For instance, if s is set to

2, the calculated region is a 13� 13 area (169 coordinate points)

centered on the key point. The key point itself holds the maximum

value of 1, while the values for the remaining 168 coordinate points

are determined using the formula stated above.
2.5 Model training and prediction

For our study, we chose ResNet50 as the primary network for

feature extraction from images, modifying it by replacing its final fully

connected layer with a convolution layer. This alteration enables the

model to generate predictive heat maps. ResNet, a type of residual

network (He et al., 2016), is an advancement over the VGG19

network (Simonyan and Zisserman, 2014). It incorporates residual

units through a short-circuit mechanism to address the degradation

problem often encountered in deep networks.

Given that our images predominantly feature a single target

without the symmetry seen in human faces or bones, our focus was

on key nodes on the backbone of the target. Consequently, the

process of target boundary frame positioning was deemed

unnecessary. We utilized the Adam optimization algorithm for

model optimization (Kingma and Ba, 2015). The initial learning

rate was set at 5e-4, with a total of 666 training rounds. The loss was

computed using the mean square error function. To adjust the
FIGURE 3

Schematic flowchart of key point detection model development for plankton size measurement, with copepod as an example. green dots represent
the head of the copepod, while yellow dots mark the tail end.
FIGURE 4

Description of the pre-classification process. The images highlighted within red boxes represent copepods deemed unsuitable for
size measurement.
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learning rate, a linear warm-up method at a rate of 0.001 was

implemented. The learning rate reached its maximum after 500

iterations and was subsequently reduced by a factor of 10 at epochs

120 and 180. This approach ensures that the model starts with a small

learning rate to stabilize initial learning, then shifts to a larger pre-set

rate for faster convergence. Towards the end of the training, the

learning rate was reduced twice, each time to 10% of its current value,

allowing for a more precise approximation of the optimal solution.

Further details on this approach, see He et al. (2016).

We implemented the integration of key point heatmaps with

ResNet50 using MMPose (MMPose Contributor, 2020), an open-

source toolbox designed for pose estimation, based on the PyTorch

framework (Paszke et al., 2019). For better visualization, we

replaced the original grayscale images with pseudo-color images

as described in Figure 6. Initially, the 300 copepod individuals

labeled using Labelme, along with their respective annotation files,

were divided into a training set and a validation set at a ratio of 19:1.

These sets were then formatted into the COCO format, a standard

data type supported by MMPose.

The coordinates of the key points were encoded into a Gaussian

heat map of 48x48 resolution using a two-dimensional Gaussian
Frontiers in Marine Science 06
function, as described in Qiu et al. (2019). This heat map served as

the ground truth data for calculating losses in the predicted heat

map output from the ResNet50 backbone network. After inputting

the images into the ResNet50 network, it sequentially extracted both

shallow and deep feature information from the images. We

modified the ResNet50 network by replacing its last fully

connected layer with a full convolutional layer, enabling it to

output a forecast heat map with a resolution of 48x48. The initial

parameters of the model were based on the pre-trained ImageNet

parameters (Deng et al., 2009), and adjustments were made as

needed. The difference between the ground truth values and the

predicted values was quantified using the mean square error (MSE).

Once the model generates the predictive heat map, we use the

argmax function to decode this map and pinpoint the coordinates

of the key points. Essentially, the argmax function identifies the

point with the maximum value in the predictive heat map, which

we designate as the key point. These coordinates are then

translated back to the original image’s scale, allowing us to

accurately determine the final positions of the key points. Using

these coordinates, we can calculate the length of the

observed organism.
FIGURE 5

Illustration of three classes and their labeling: a. mysid-like shrimps, b. appendicularian, c. copepods. First row (a1 – c1) rare mode for the three
targeted classes; second row (a2 – c2) the corresponding labeling map; third row (a3 – c3) common mode for the three targeted classes; and
fourth row (a4 – c4) the corresponding labeling map.
frontiersin.org
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2.6 Automated measurement and
manual validation

We conducted manual measurements of body lengths on

selected images using ImageJ (Schneider et al., 2012), an image

processing software developed by the National Institutes of Health.

This Java-based software is capable of various image manipulations,

including scaling, rotating, distorting, and blurring. It also calculates

a range of geometric features within a selected area, such as length,

angle, circumference, area, and the dimensions of the longest and

shortest axes.

The images used in our study are relatively small, each containing a

single organism extracted from high-resolution plankton images with a

resolution of 2180x1635 pixels (corresponding to an actual size of 5.7

cm x 4.28 cm). Given that copepods are quite small, occupying only a

few pixels (approximately 30x50 pixels in size), there is a potential for

observational errors when using ImageJ to visually determine the

points on the head and tail of copepods. To mitigate this, we

performed three separate measurements for each individual

organism and calculated the average value. This mean value was

then used as the manual measurement benchmark and was

compared with the results obtained from the automated

measurement procedure.
3 Results

The pre-classification model, employing ShuffleNet, achieved

remarkable accuracy, nearing 100% after training, with the model’s

loss value rapidly decreasing to below 0.20 (as illustrated in

Figure 7). The confusion matrix further reinforced the model’s

high accuracy. In a test comprising 300 copepod images, the model
Frontiers in Marine Science 07
classified 41 individuals as unsuitable and 259 as suitable for size

measurement (refer to Figure 8). Upon visual inspection, it was

observed that 6 individuals within the unsuitable group were

suitable for size measurement, and conversely, 3 in the suitable

group were unsuitable. The model demonstrated a true positive rate

of 98.84%, a true negative rate of 1.16%, a false positive rate of

85.37%, and a false negative rate of 14.63%. Overall, the accuracy of

the model stood at 97%.

The accuracy of the key point detection models for copepods,

mysid-like shrimps, and appendicularians was 97.37%, 97.36%, and

95.63%, respectively, as depicted in Figure 9. For all three classes,

the loss values were less than 0.001. A comparison of the body size

measurements for 300 testing individuals in each class, obtained

through the automated procedure and manual measurements using

ImageJ, showed high consistency across all three classes (see

Figure 10). The discrepancies between the automated and manual

measurements were 1.11% for copepods, 1.78% for mysid-like

shrimps, and 2.64% for appendicularians. The average difference

across the three classes was 1.84%.
4 Discussion and conclusions

Key point detection is a powerful computer vision technique for

identifying key object parts on a 2-D or 3-D surface with high

repeatability in different range images (Mian et al., 2008). It defines

spatial locations or points that stand out in an image, like distinctive

parts or key points of an object. The proposed automated procedure

is robust key point detection-based approach. Our results

demonstrated that it could measure individual plankton size

rapidly and accurately for three plankton groups from a single

straight-line approximation to multi-segments of straight-line
FIGURE 6

Description of the key point detection model training process. This figure illustrates the steps involved in training the model specifically for copepod
size measurement.
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FIGURE 7

Pre-classification model using ShuffleNet: upper panel for training accuracy and loss, and lower panel for confusion matrix.
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approximation. The method is readily applicable for other groups

like jellyfish, chaetognaths, pteropods, etc.

Key point detection, much like other deep learning processes,

significantly benefits from having a substantial library of accurately

labeled images, which serve as a foundation for training and improving

the accuracy of the model. However, the current study implemented a

unique approach by incorporating a pre-classification procedure,

specifically tailored to select copepods that are suitable for size

measurement. This selective approach effectively narrowed down the

model’s domain, focusing solely on the most relevant data set for our

specific measurement needs. As a result, even with a comparatively

modest-sized library of images, the model was able to achieve

commendable results. This strategy underscores the importance of

targeted data selection in deep learning, demonstrating that the quality

and relevance of the training data can be as crucial as its quantity in

achieving high levels of accuracy and efficiency in specific applications

like size measurement in marine biology.

The proposed approach in our study could see significant

advancements with the integration of more sophisticated network

architectures and heat map decoding techniques, such as the

Differentiable Spatial to Numerical Transform (DSNT) network

(Nibali et al., 2018). The current full-join method employed has a

limited capacity for spatial generalization and is prone to overfitting.

Additionally, the heat map approach, while effective, often

underperforms with low-resolution images, as noted by Chi et al.

(2023). Unlike the heat map method, which is not fully differentiable,
Frontiers in Marine Science 09
the DSNT network directly supervises the heatmap and can generate

a heatmap probability distribution using the softmax function, which

allows for the backpropagation of optimization parameters,

enhancing the accuracy and efficiency of the model. Such an

upgrade to the DSNT network would address the current

limitations, particularly in spatial generalization and low-resolution

image processing, thereby improving the overall effectiveness of the

model in key point detection and size measurement.

The benefits of the automated procedure developed in our study

are clear and significant. Firstly, it boasts remarkable speed, capable of
FIGURE 8

Testing Results of the Pre-Classification Model for the Copepod
Class. The accuracy of the model was calculated using the formula:
(True positives 256 + True negatives 35)/Total predictions (300).
Images categorized as “True Positives” were further utilized for size
measurement analysis.
FIGURE 9

Training Accuracy and Loss Over Time. The top panel displays the
training accuracy and loss for copepods, the middle panel for
mysid-like shrimp, and the bottom panel for appendicularians.
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processing over 60 individuals per second, vastly outpacing manual

methods. Secondly, the accuracy of this automated technique is

impressively high, with discrepancies from manual measurements

averaging at approximately 1.84%. This level of precision is crucial for

reliable data analysis. Thirdly, our method demonstrates robustness,

delivering consistent and accurate measurements across a diverse

array of plankton, captured under varying imaging conditions.

Coupled with advancements in plankton imaging technology and

deep learning systems, this automated approach paves the way for

rapid, large-scale measurements of plankton size. Such efficiency and

precision are instrumental in enhancing our understanding of the

population dynamics of key marine species, as well as the broader

structure and functioning of marine ecosystems. Overall, the

integration of these technological advancements represents a

significant leap forward in marine biology research.
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FIGURE 10

Comparative analysis of size measurements. This figure compares the results from the automated procedure with manual measurements conducted
in ImageJ for three classes: copepods, mysid-like shrimps, and appendicularians.
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