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Introduction: The intertwined relationship between reinforcement learning 
and working memory in the brain is a complex subject, widely studied across 
various domains in neuroscience. Research efforts have focused on identifying 
the specific brain areas responsible for these functions, understanding their 
contributions in accomplishing the related tasks, and exploring their adaptability 
under conditions such as cognitive impairment or aging.

Methods: Numerous models have been introduced to formulate either these 
two subsystems of reinforcement learning and working memory separately 
or their combination and relationship in executing cognitive tasks. This 
study adopts the RLWM model as a computational framework to analyze the 
behavioral parameters of subjects with varying cognitive abilities due to age or 
cognitive status. A related RLWM task is employed to assess a group of subjects 
across different age groups and cognitive abilities, as measured by the Montreal 
Cognitive Assessment tool (MoCA).

Results: Analysis reveals a decline in overall performance accuracy and speed with 
differing age groups (young vs. middle-aged). Significant differences are observed in 
model parameters such as learning rate, WM decay, and decision noise. Furthermore, 
among the middle-aged group, distinctions emerge between subjects categorized 
as normal vs. MCI based on MoCA scores, notably in speed, performance accuracy, 
and decision noise.
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1 Introduction

What exactly is memory and is it connected to the learning or are they distinct concepts? 
In some languages such as Farsi, they share a common linguistic root which suggesting a 
familial connection between the two. However, in terms of their functions within the brain, 
we find two distinct yet complementary systems at play: the dopaminergic corticostriatal 
circuitry associated with reinforcement learning (RL) and the circuitry responsible for 
working memory (WM), which is a part of the prefrontal cortical executive function system. 
The concept of associative or instrumental learning has always been tied to the concept of 
memory. The learning happens as soon as the agent is able to remember or recall the stimulus-
action pair. The pair which is being reinforced in some steps before by means of reward 
signals such as dopamine. Here, delay is a key factor. If there are some steps or a time interval 
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between the stimulus and the desired response, the mechanism 
through which learning is happening is called reinforcement 
learning. If the interval is very short to be called immediate, the 
associative learning lies in the category of working memory. This is 
the case because WM is capable of the immediate and exact storage 
and manipulation of data with decay in time (Collins and Frank, 
2012; Collins et al., 2014; Gold et al., 2017; van de Vijver and Ligneul, 
2019), while RL works slowly and robust in long term and is 
representative of sequential problems in machine learning (Yoo and 
Collins, 2021). The latter shapes the associations between stimulus-
action by the help of a signal representing reward prediction error 
(RPE), while WM is affected by the delay and load in the related tasks 
(Collins and Frank, 2012). Studies have shown that brain’s 
implementation of RL involves interacting with other processes in 
prefrontal and parietal cortices.

Recent research supports the hippocampus’s critical role in high-
precision bindings over brief delays, challenging traditional views and 
contributing to the ongoing discourse on the hippocampus’s 
involvement in working memory processes (Yonelinas, 2013; Rubin 
et al., 2014; Moscovitch et al., 2016; Borders et al., 2022). However, the 
Reinforcement Learning Working Memory (RLWM) model (Collins 
and Frank, 2012) guides our investigation, treating the working 
memory subsystem as an immediate learner with a learning rate 
(alpha) of 1. This approach enables a focused exploration of the 
interplay between reinforcement learning and working memory.

Working memory, vital for flexible behaviors, involves the 
temporary maintenance and manipulation of information. The 
prefrontal cortex plays a key role in WM processes, with changes in 
PFC neural activity correlating with deficits observed in various 
conditions. While traditional models localized WM to specific brain 
regions, new perspectives propose a distributed process, with the PFC 
as a central hub coordinating WM activities. Ongoing research 
explores how increased delay activity in the PFC contributes to 
maintaining or controlling information within WM, with reference 
into processes such as NMDA receptor activation and synaptic 
dynamics as potential mechanisms (Wong and Wang, 2006; Li et al., 
2023). Studies beyond the prefrontal cortex have explored the neural 
correlates of working memory. Investigations utilizing a simultaneous 
EEG-fMRI approach have examined the role of the thalamus during 
the WM delay period, providing insights into subcortical involvement 
in WM processes. These studies emphasize the importance of 
considering the broader neural network in understanding WM 
dynamics (Gomes et al., 2023). The concept of memory retrieval is 
studied in the context of guiding present and future behaviors. The 
value of a memory is dependent on its scanning limited segments of 
stored information and applying them. Terms such as level of 
awareness, internal attention, working memory, and transient buffer 
are introduced to characterize this process. An exploration of memory, 
focusing on hippocampal physiology and its role in supporting 
various memory operations, is conducted in Buzsáki et al. (2022).

The nature of WM and its interaction with or contribution to RL 
has been viewed somehow differently in some studies in which the 
critical role of dopamine in WM is reviewed. In a model called 
prefrontal basal ganglia or PBWM model, the DA signaling 
dynamically helps PFC in manipulating the relevant maintained 
information through a gating process in a somewhat complicated 
learning task such as 1-2-AX which is a working memory task as well 
(O’Reilly and Frank, 2006; O’Reilly et al., 2007). So, it seems the whole 

path is responsible for WM despite that striatum was attributed to RL 
process. Also in a new study (Li et al., 2022), WM is related to white 
matter in internal capsule and therefore to structural connections in 
basal ganglia.

The relationship between reinforcement learning and working 
memory is shown to be  evident in the exploration of arbitrary 
visuomotor learning, using a dual-system computational model, a 
habitual system with a Q-Learning algorithm and a goal-directed 
system employed by a Bayesian Working Memory (BWM) model 
(Viejo et al., 2015). The model, grounded in Bayesian formalism and 
Shannon entropy, measures uncertainty in working memory 
processes. An arbitration process controls the dynamics between 
Q-Learning and BWM, suggesting an interactive mechanism where 
memory manipulation is related to the habitual learning. Behavioral 
results from an instrumental learning task indicates the need for 
model combinations to thoroughly explain human behavior.

The mechanism involved in associative learning, be it working 
memory or interaction of reinforcement learning and working 
memory has been modeled in various fields (Yoo and Collins, 2021) 
from behavior-focused cognitive sciences to neuroscience focusing on 
brain networks and to AI and neural networks viewpoints (Baddeley, 
1992; Brunel and Wang, 2001; Ashby et al., 2005; Gluck and Pew, 2005; 
Dash et al., 2007; Cowan, 2012; Bouchacourt and Buschman, 2019; 
McDougle and Collins, 2020; Kruijne et al., 2021). Some of them are 
applied in machine learning and some are used in psychiatry and 
pharmacology to model and predict the effects of drugs or deficiencies 
on the brain and hence on the behavior. An important source of 
cognitive impairment that affects learning and working memory is age 
(Blasiman and Was, 2018). The effect of age on cognitive functions 
(Van De Vijver et  al., 2015), specifically the ones related to 
frontostriatal brain networks (Eppinger et al., 2013; van de Vijver 
et al., 2016) and WM related brain networks in the prefrontal cortex 
(Barbey et al., 2013; Braver and West, 2015; Funahashi, 2017) has been 
the focus of several studies. The change in the contribution of RL and 
WM with learning timescale in older adults was explored in van de 
Vijver and Ligneul (2019).

In Edde et al. (2021), the middle-age around age 40 is considered 
significant as it involves restructuring of connections between 
different brain networks that are widespread and eventually contribute 
to cognitive impairment as individuals age. Most researchers 
investigated the comparison between younger adults below 30 and 
older adults above 60, while there is a limited number of studies that 
focus on contrasting young and middle-aged individuals 
(Dyussenbayev, 2017). One of them (Siman-Tov et al., 2017) found 
differences in network interactions between young (21–40) and 
middle-aged adults (41–61). Similarly, Varangis et  al. (2019) 
investigated brain network dynamics across age in 4 groups including 
young adults (20–34), younger middle-aged adults (35–49), older 
middle-aged adults (50–64) and older adults (65+). The study Cao 
et al. (2014) shows changes in the overall pattern in brain connectivity 
across almost the whole human lifespan. They observed U-shaped 
trend in brain connections, with peaks around the age of 40 and 45. 
Also, the “old age” is recommended as above 65 years by the 
International Organization for Standardization (ISO) (ISO 
Standardization Foresight Framework Trend Report, 2022).

By drawing insights from previous studies, we arrived at an age 
categorization as: 18 to 40 as young adults, 41 to 65 as middle-aged 
adults, and 65 and above as older adults. This approach enables us to 
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thoroughly explore the influence of age on the phenomena 
under examination.

This cognitive decline might occur even in healthy aging. A tool 
that is used to assess cognitive abilities is Montreal Cognitive 
Assessment test (Nasreddine et al., 2005). The score range from 0 to 
30 and normal score is 26 and above. Scores between 18 and 26 are 
considered Mild Cognitive Impairment and below them could 
be  Alzheimer’s. Since MCI is a stage between normal aging and 
dementia, the investigation of cognitive state could be helpful since it 
may lead to dementia. In this study, we seek to find out the changing 
contribution of RL and WM in older adult with normal cognitive 
score and MCI.

The first goal of this study was to investigate whether the 
performance and speed of learning differs significantly in young and 
middle-aged groups overall and if it is consistent with some previous 
studies (Salthouse, 1994; van de Vijver and Ligneul, 2019). Next 
question that we wanted to address was if the middle-aged people in 
different category of normal and MCI based on MoCA test, differed 
significantly in performance and speed of learning or the reaction 
time. Finally, RLWM computational model was fitted to subjects’ 
performance data in order to further dig into the model parameters 
which were separately indicative of RL and WM subsystem of 
associative learning. We will do all these analyzes across age as well to 
see whether in the whole life span or in specific group, the 
aforementioned variables have relation with age.

Additionally, we explored the connection between reaction time 
and the speed of learning and the effort invested in making choices in 
order to get a comprehensive understanding of the interplay between 
cognitive systems and learning dynamics.

2 Materials and methods

2.1 Participants

Subjects were selected from residents in Ashtian province, Iran 
and Tehran with a total of sixty people aged 25 to 65 participating in 
this study. Twelve people were excluded from the analysis because 
they either were unable to complete the task or did not learn and apply 
the rules of the task. To determine participants’ performance, the 
examiner used a set of criteria that included evaluating accuracy, 
response times, and other relevant metrics. Specifically, responses 
below 33% were considered indicative of a random or chance-level 
learning process. This threshold was chosen to distinguish participants 
who demonstrated a genuine effort to learn and apply the rules of the 
task from those whose responses suggested a lack of engagement or 
understanding. All subjects were free of neuropsychological problems 
and did not take psychotherapeutic drugs and had no history of head 
trauma. They were also given a gift card at the end to compensate for 
participating in the experiment.

All participants had informed consent to perform a standard 
computerized task (RLWM task) and a test on paper (MoCA test). The 
procedure was approved by Research Ethics Committees of Allameh 
Tabatabaei University with the Approval ID IR.ATU.REC.1400.059. 
Our study consists a total of 48 individuals, with an age range of 
25–65 years (mean 45 ± 12.78 years). The participants were categorized 
into two groups based on age: the young group, consisting of 22 
individuals, and the middle-aged group, comprising 26 individuals. 

Within the middle-aged group, 11 individuals were healthy, and 15 
individuals were identified as having MCI.

In order to categorize age groups, as well as looking into literature 
mentioned above, we also used logistic regression model to predict 
the age group based on performance metrics, including reaction time 
and performance for different sizes. The logistic regression model, 
formulated as Logit [P(Aged)] = β0 + βRT2 × RT2 + βRT3 × RT3 + 
βRT4 × RT4 + βRT5 × RT5 + βCorrect2 × Correct2 + βCorrect3 × 
Correct3 + βCorrect4 × Correct4 + βCorrect5 × Correct5, was 
trained and tested using the train_test_split method. Applying cut-off 
values from 35 to 44 to create the ‘aged’ target variable, we found the 
highest accuracy (85.7%) at an age cut-off of 40, aligning with 
established milestones for middle age in the literature. Here, RT2, 
RT3, RT4, and RT5 represent reaction times for different set sizes, 
and Correct2, Correct3, Correct4, and Correct5 represent accuracy 
for those respective set sizes. To address the concern about potential 
double-dipping, the logistic regression analysis was conducted 
independently of subsequent analyzes examining age-performance 
metric relationships. Distinct datasets were employed for logistic 
regression. This reinforces the robustness of our approach.

The logistic regression model predicted age categories with an 
“aged” label indicating whether a subject exceeded the specific cut-off. 
Interestingly, the highest accuracy (85.7%) was achieved with age 
cut-off at 40. This is in alignment with previous studies suggesting 40 
as a milestone and starting point of middle age. Another categorization 
considered in the data analysis is derived from subjects’ cognitive 
scores in the MoCA test. Specifically, the “Young” group consists of 
individuals with normal MoCA scores. Middle-aged group subjects 
are categorized in normal and MCI groups. So, in the remainder of 
this study, we will include young, middle-aged, normal middle-aged 
and MCI middle-aged grouping for examining and interpreting 
our findings.

2.2 Procedure

We applied the RLWM task which is designed to address the 
entanglement of RL and WM processes. It is capable of extracting 
effects of delay and set size on a WM system and hence the related 
RLWM computational model will formally account for these effects 
and the dynamic interaction between these two systems. The short 
version of RLWM task (Master et al., 2020) was selected for this study 
due to its suitability for a wide age range. It follows an instrumental 
learning paradigm and originally was designed in the study of Collins 
and Frank (2012). The task comprised one training block and ten 
independent learning blocks each containing different categories of 
visual images, lasting less than 25 min with a total of 468 trials. In 
each block, subjects encounter a new set of visual stimuli of varying 
set sizes (ns) from 2 to 5. These stimuli, presented 12–14 times in a 
pseudo-randomly interleaved manner, are drawn from a single 
category of familiar and easily identifiable images (e.g., colors, fruits, 
animals) across 10 different categories. Participants have 7 s to 
respond by pressing one of three buttons on the keyboard (“J,” “K,” 
“L”). Feedback, displayed for 0.75 s, includes “Correct” for the 
accurate key press and “Incorrect!” for an incorrect key press, 
followed by a fixation period of 0.5 s before the next trial. Failure to 
answer within 7 s was indicated by a “No valid answer” message. An 
example trial is shown in Figure 1. The task was implemented in the 
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Psychopy environment (Peirce and MacAskill, 2018), a software 
package used by neuroscience researchers for designing 
behavioral experiments.

3 Computational modeling

The RLWM computational model first introduced by Collins and 
Frank (2012) and used in later studies (Collins et  al., 2014, 2017; 
Collins, 2017; Gold et al., 2017; Collins and Frank, 2018; Haile et al., 
2020; McDougle and Collins, 2020; Master et al., 2020), formalizes the 
interaction between two RL and WM systems and put the contribution 
of each in one model. It assumes each RL and WM has a probability 
to take over the whole system which shown by PWM and PRL. Also, each 
of them has a policy of choosing an action given their values 
(Q-values) and is shown by πWM and πRL (Gold et al., 2017). Hence, the 
overall policy is given in Equation 1:

 p p p= * + -( ) *P PWM WM WM RL1  (1)

Assuming that WM has a limited capacity K, it can hold up to K 
stimulus. So, the probability of WM be chosen is given in Equation 2:

 
P K

nWM
S

= *
æ

è
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ö

ø
÷r min .1

 
(2)

Where ρ is prior parameter. The higher its value, the more 
contribution WM has in the first place.

Both policies are softmax functions with parameter β as the 
inverse temperature function as given in Equation 3.
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Q-values in RL system will update according to delta rule 
(McDougle and Collins, 2020) which are given in Equations 4, 5:

 
Q s .a Q s .a + ×t t t t RL t( ) ( )¬ aa dd

 (4)

 
dd t t t t= r Q s .a- ( )  (5)

In WM, the Q-values have a learning rate equal to 1 since the 
learning in WM is immediate. The point is they will face decay and so 
will update according to Equation 6:

 
Q Q Q QWM WM WM¬ + * -( )jj 0  (6)

Parameter φ is the decay or forgetting parameter in WM system. 
Initial value Q0 is equal to 1/nA, nA is the number of possible actions 
and equals 3(j, k, l). There is also a noise parameter ε called undirected 
noise and affects the policy and is given in Equation 7:

 ¢ = -( ) +p e p e1 U  (7)

FIGURE 1

Example of a trial in a block in RLWM task.
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and U = 1/nA, the uniform random policy.
This model employs 6 free parameters for characterizing behavior 

from which 4 are considered in this study and include RL learning rate 
(α), WM decay (φ), WM prior weight and undirected noise (ε). The 
last one, parameter “epsilon” is chosen to capture decision noise which 
is independent of learning process.

4 Results

4.1 Behavioral analysis

The first behavior is related to the overall correct answers or the 
performance accuracy denoted as percent correct. In Figure 2 it is 
shown for all set sizes across participants of different ages and for 
different groups. The overall performance decreases significantly with 
increasing age and set size in all groups. We employed the linear 
regression analysis and it is revealed that there is a significant 
correlation among all subjects’ performance as they age (r-squared = 

0.41, p-value < 0.01). Also, analyzing performance across age for all 
young and normal middle-aged (excluding MCI subjects) gives a 
correlation coefficient r-squared = 0.18 with p-value < 0.01. However, 
among middle-aged participants no significant correlation across age 
observed (r-squared = 0.05, p-value = 0.3). This lack of age-related 
correlation was true among young subjects (r-squared = 0.002, 
p-value = 0.84), normal middle-aged subjects (r-squared = 0, p-value 
= 0.98) and normal middle-aged subjects (r-squared = 0, p-value 
= 0.96).

To assess performance across groups, first the normality 
assumptions were examined by Shapiro–Wilk test. It was revealed that 
young group data deviated from normality (p-value = 0.004) while 
middle-aged group showed no deviation (p-value = 0.613). 
Subsequently, non-parametric Mann–Whitney U test was used for 
comparison and the results showed a statistically significant difference 
between young and normal middle-aged groups (p-value = 0.00196) 
as well as young and all middle-aged group. Furthermore, contrasting 
performance between normal and MCI middle-aged group, showed a 
significant difference too (p-value = 0.0375).

FIGURE 2

Top panel: overall performance across age and the correlation within subjects (left) and for different set sizes across age (right). Statistical significance 
shows that age has a substantial effect on overall performance as well as performance in various set sizes. Bottom panel: overall performance for 
different set sizes and across different cognitive status (left) reaction time for different set sizes and across different cognitive status (right).
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Another behavioral indicator, reaction time or the time taken to 
respond to stimuli is depicted in Figure 3. The scatter plot shows 
within subject’s correlation between reaction time and age, with 
separate regression lines related to young and middle-aged groups. 
For all participants, there was a noteworthy increase in reaction time 
as their age increased (r-squared = 0.54 with p-value < 0.01). this holds 
true among all normal (young and middle aged excluding MCI) 
participants (r-squared = 0.48 with p-value < 0.01). For young group, 
there is no significant correlation (p-value = 0.72) and within subjects’ 
correlation is weak. Within all subjects in the middle-aged group, 
there is a moderate degree of correlation (r-squared = 0.32, p-value = 
0.0039) as they age. Analyzing reaction time across age for normal 
middle-aged (excluding MCI subjects) gives a correlation coefficient 
r-squared = 0.51 with p-value = 0.0198. However, among MCI middle-
aged participants, no significant correlation across age observed 
(r-squared = 0.08, p-value = 0.32).

The violin plot in Figure 3 provides distribution information and 
after normality test, Welch’s t-test shows the statistical significance of 
disparity in reaction time between young and all middle-aged subjects 
(value of p<0.01). After excluding MCI scores out of middle-age 
subjects, there is still a significant difference between young group and 
normal middle-aged group (p-value = 0.0037). Subsequently, 
comparing reaction times between middle-aged subjects with MCI 
and normal ones, there was a significant distinction (p-value = 
0.00016). In the overall analysis across all ages, the calculated power 
was 0.79. However, when analyzing middle-aged group separately, the 
estimated power was approximately 0.45.

A third behavioral metric is the learning curve, as illustrated in 
Figure 4. Learning curves depict the correct percentage of trials as a 
function of trials or iterations completed. Consistent with previous 
studies (Collins and Frank, 2012; van de Vijver and Ligneul, 2019; 
Master et al., 2020), participants reached asymptotic performance 
more rapidly in small set sizes than in larger ones. This pattern is 
evident across all groups with a slight deviation for the middle-aged 
group. Also, the young group, showed faster learning, indicating a 
difference in the speed with which the learning curve reaches its 
asymptote, or the curve’s time constant. To assess these observations 
quantitatively, a mathematical model is applied and key parameters 

are extracted. Specifically, a logistic growth model described by the 
equation P(t) = A/(1 + B*exp. (−k*t)) is assumed. The parameters are 
A(asymptote), B (scaling) and k (growth rate or time constant). This 
growth model is fitted to the learning curves.

For model fitting, the RLWM model was fit to the subjects’ data 
using maximum likelihood method with Python scipy.optimize 
package. The correlation matrix of parameters in different groups is 
given in Table 1. It is evident that no strong significant correlation 
exists between parameters.

4.2 The effect of age and MoCA status on 
model parameters

Analyzing the relationship between age and the parameters shows 
different effect sizes. The parameters “alpha” and “prior” show weak 
effect sizes with lower Spearman’s coefficients (0.17 and 0.05) and 
small r-squared (0.09 and 0.001). The parameters “epsilon” and “phi” 
exhibit stronger effect sizes indicated by Spearman’s coefficients (0.39 
and 0.34) and larger r-squared (0.22 and 0.29) which can suggest more 
highlighted relationship with age. This analysis was done across all 
subjects and is shown in Figure 5. For other cases such as all normal 
subjects (MCI excluded), all young, all middle-aged, normal middle-
aged and MCI middle-aged, this correlation and regression analysis is 
implemented and summarized in Table 2.

Overall, we  see that in some cases the correlation between a 
parameter and age is statistically significant based on Spearman value 
of p but the linear regression model’s ability to predict that parameter 
from age might not be statistically significant. In case of all normal 
subjects (excluding MCI), there is a robust and significant decline in 
“alpha” and growth in “phi” with age for both correlation and 
regression analysis. In other situations, age is not a significant 
predictor of parameters regarding linear regression model but is 
correlated in some cases as shown in Table 2.

In examining the relationship between age and epsilon, a 
significant difference emerged between the young and middle-aged 
groups (t-statistic = −3.64, value of p = 6.9e-04). After applying the 
Bonferroni correction to account for multiple comparisons, the 

FIGURE 3

Left: reaction time across age. Right: violin plot showing the distribution of reaction time in 3 groups.
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corrected value of p remained remarkably low (6.9e-04). In relating 
between age and phi using linear regression, a significant difference 
existed between the young and middle-aged groups (t-statistic = 
−3.61, value of p = 7.5e-04). After applying the Bonferroni correction 
to account for multiple comparisons, the corrected p-value remained 
remarkably low (7.5e-04). This indicates a robust statistical significance.

Thereafter, we compared the parameters for different groups, first 
young and normal middle-aged, as their difference is due to their age 
group, and then normal and MCI middle-aged group that their 
difference is their MoCA score. As shown in Figure 6, according to the 
Mann–Whitney U tests, there is significant difference between young 
and normal middle-aged group in parameters “alpha” (p = 0.0129, 
Cohen’s d = 0.56), “epsilon” (p = 0.0479, Cohen’s d = −0.44) and “phi” 
(p = 0.016, Cohen’s d = −0.54). A practical significance exists too as 
indicated by moderate effect size. On the other hand, no statistical 

significance as well as small effect size (p = 0.74, Cohen’s d = 0.08) for 
parameter ‘prior’ between young and normal middle-aged group is 
observed. Then, considering differences between normal and MCI 
groups in middle-aged subjects, the only statistical significant 
difference is in parameter “epsilon” (p = 0.028, Cohen’s d = −0.53). 
Other parameters do not differ between normal and MCI groups 
(‘alpha’: p = 0.11, Cohen’s d = −0.4, “prior: p = 0.33, Cohen’s d = −0.24, 
‘phi: p = 0.33, Cohen’s d = −0.24).

4.3 The relationship between learning 
curves and model parameters

As the observation revealed in the previous part, alpha and phi 
exhibit distinctions between young and normal middle-aged group, 

FIGURE 4

Learning curves for different set sizes and two groups. The logistic growth model fitted to learning curve data for all set sizes in various groups, 
depicted in yellow. The equations and related parameters are displayed. Top panel compares young group and all middle-aged subjects including 
normal and MCI. Middle panel compares young and normal middle-aged. Their ultimate performance differs slightly but the speed to reach that 
performance is nearly 3 times larger for the young adults (0.6048 vs. 0.241). Bottom panel compare normal and MCI within middle-aged group. Their 
speed is similar but the final performance differs (0.83 vs. 0.71).
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yet remain consistent across normal and MCI middle-aged groups. 
This pattern is similar to the analysis of learning curves among the 
aforementioned groups. Interestingly, learning curves’ time 
constant parameter k (the learning curve’s time constant or rate of 
growth shown in Figure 4) is comparable among normal and MCI 
middle-aged groups, while notably greater in the young group 
compared to normal middle-aged group. Since these two parameters 
(alpha as RL learning rate and phi as WM decay rate) are rate-based 

factors, they can be linked to other variables governed by speed or 
rate-based metrics, such as time constant or reaction time. Notably, 
the ratio of mean alpha for young per normal groups divided by 
mean phi of young per normal group is equal to the product of tau 
ratio of young per normal middle-aged and the RT ratio. In other 
form, we have:

 

a
a

j
j

t
t

young

normal middle aged

young

normal middle aged

young 

 

-

-

=
nnormal middle aged

young

normal middle aged

RT
RT  - -

*

This equivalence suggests that the balance between learning and 
memory processes is proportional to the combined relevance of 
learning speed differences and reaction speed differences.

Utilizing an analysis of variance (ANOVA) approach, we examined 
the growth rate parameter (k) and the asymptote parameter (A) 
obtained from the logistic growth model fitted to individual learning 
curves. The results revealed statistically significant differences between 
the two age groups for both k (F-statistic = 11.65, p-value = 0.00135) 
and A (F-statistic = 16.89, p-value = 0.00016). Post hoc Tukey Honestly 
Significant Difference (HSD) tests were conducted to further explore 
pairwise group differences. For the growth rate parameter (k), the 
mean difference between the middle-aged and young groups was 
0.1377 (p-adj = 0.0014), and for the asymptote parameter (A), the 
mean difference was 0.1536 (p-adj = 0.0002). These outcomes show 

TABLE 1 Parameters’ correlation matrix.

Alpha Prior Epsilon Phi

Young 

group

Alpha 1 0.03* 0.77 0.01**

Prior 1 0.013 0.01*

Epsilon 1 0.03*

Phi 1

Normal 

middle-

aged 

group

Alpha 1 0.01* 0.01* 0.01*

Prior 1 0.02* 0.23

Epsilon 1 0.02*

Phi 1

MCI 

middle-

aged 

group

Alpha 1 0.04* 0.03* 0.56

Prior 1 0.09 0.36

Epsilon 1 0.02*

Phi 1

FIGURE 5

The trends observed in the fitted parameters with respect to age across all subjects.
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the statistical significance of group differences and enhance the 
robustness of our findings.

4.4 Speed vs. accuracy

It is shown that in reaction time analysis, incorrect responses are 
faster than correct ones. In a study (Statsenko et al., 2020), another 
trend was observed for individuals under 20 and above 60, where 
longer reaction times were associated with more errors, while the 
traditional speed-accuracy was held true for subjects between ages of 
20 and 60. In this study, when we  focused on young and normal 
middle-aged group, no speed-accuracy tradeoff was observed. 
However, among MCI group, with increasing reaction time, 

performance increased (r-squared = 0.36, p = 0.02). Also, the mean RT 
for correct and error responses were computed for each group and in 
all of the error responses took longer than correct responses on average. 
Even after a specific iteration where the learning curve’s logistic growth 
model with group-specific parameters reached a threshold of 10% it’s 
max value (which can be called the initiation of learning and was 
iteration 4 for young group and iteration 9 for normal and MCI 
middle-aged groups), the error RT was still more than correct RT in all 
young, normal middle-aged and MCI middle-aged groups on average.

Then, we computed the inverse efficiency score (IES) measure for 
the groups under study. It combines speed and accuracy in tasks by 
dividing reaction time to percent correct responses (Bruyer and 
Brysbaert, 2011). Here, there was no relationship between age and IES 
in neither young, normal and MCI groups. On the other hand, there 

TABLE 2 Parameters’ correlation/regression analysis across age.

Subjects Alpha Prior Epsilon Phi

Young and normal 

Middle-aged

Spearman ρ (p-value) −0.22 (<0.001) −0.15 (<0.001) 0.19 (<0.001) 0.24 (<0.001)

r-squared (p-value) 0.21 (0.008) 0.042(0.26) 0.02 (0.43) 0.175 (0.015)

Young
Spearman ρ (p-value) −0.05 (0.13) −0.18 (<0.001) 0.1 (0.002) 0.014 (0.66)

r-squared (p-value) 0.01 (0.6) 0.04(0.36) 0 (0.98) 0 (0.98)

All middle-aged
Spearman ρ (p-value) −0.02 (0.6) −0.15 (<0.001) 0.03 (0.32) 0.11 (<0.001)

r-squared (p-value) 0 (0.95) 0.04 (0.37) 0 (0.76) 0.03 (0.4)

Normal middle-aged
Spearman ρ (p-value) −0.22 (<0.001) −0.4 (<0.001) −0.24 (<0.001) −0.03 (0.6)

r-squared (p-value) 0.28 (0.12) 0.27 (0.12) 0.11 (0.35) 0.01 (0.76)

MCI middle-aged
Spearman ρ (p-valuep) −0.06 (0.14) −0.09 (0.04) 0.006 (0.9) 0.15 (<0.001)

r-squared (p-value) 0.05 (0.4) 0.02 (0.6) 0 (0.8) 0.01 (0.7)

FIGURE 6

Violin plot showing the distribution and significance of difference in parameter values between groups. The asterisk indicates statistical significance.
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was a significant difference in IES between young and normal group 
(Mann–Whitney p < 0.01) and normal and MCI group (Mann–
Whitney p < 0.01).

5 Discussion

Within the broad field of aging research, our study contributes to 
the understanding of the dynamic interplay between Learning and 
Working Memory systems across a range of age groups. We investigate 
age-related changes in RLWM parameters using computational 
modeling. The foundational insights from years of research on 
cognitive aging (Anderson and Craik, 2017; Ebaid and Crewther, 
2020; McDonough et al., 2022) provide a comprehensive framework, 
incorporating factors such as processing speed and compensatory 
mechanisms. Notable declines in various cognitive domains such as 
working memory capacity, processing speed, learning and reasoning 
by aging are revealed in multiple modeling studies (Li and Sikström, 
2002; Goh and Park, 2009). Our observed changes in RLWM 
parameters, phi and alpha, agree with the notion of processing speed 
(Salthouse, 1996; Eckert, 2011; Albinet et al., 2012). According to this 
theoretical paradigm, changes in processing speed are closely related 
to age-related changes in cognitive function and is also aligned with 
an observational study that showed aging-related decreases in working 
memory and processing speed (Park et al., 2002).

Another recent study (van de Vijver and Ligneul, 2019) that 
explored the effects of aging on cognitive systems, including 
updating and maintaining stimulus–response associations, found 
that age has no direct impact on decision-release parameters. The 
stability of the inverse temperature controlling value-driven choice 
and random noise controlling value-independent exploration across 
age groups emphasizes the resilience of certain decision-making 
components in both young and older adults. Our analysis shows that 
RL and WM parameters (alpha, phi, and decision noise) change with 
age. We find higher WM decay rates in higher ages that suggests a 
deterioration in the maintenance of stimulus–response association. 
In line with some studies, the use of prefrontal executive system is 
less frequent as people age. In addition, our research takes into 
account the effect of lower level processes such as dopamine 
signaling, known to control learning rates. With aging, a 
dysregulation of dopamine receptors in the frontal regions is 
proposed to cause frontal neural noise (Kaasinen et al., 2000; Goh 
and Park, 2009; van de Vijver and Ligneul, 2019). In the context of 
attention and choice, it is demonstrated that older adults have 
difficulty in ignoring irrelevant information during target selection 
(Rabbitt, 1965). Also, it is proposed that older adults are less able to 
inhibit unwanted material, which may occupy working memory 
space, reducing temporary storage and further processing abilities 
(Hasher and Zacks, 1988). The nature of inhibition is acknowledged 
as multifaceted and can be related to decision noise.

The primary objective of this research was to examine how 
reinforcement learning (RL) and working memory (WM) systems 
interact across the lifespan, focusing on the often overlooked middle-
aged subjects. While previous studies have explored this interaction 
in subjects aged 8–17 and 25–30 (Master et al., 2020) or for young 
individuals aged 18–35 and older adults above 65 (van de Vijver and 
Ligneul, 2019), a gap existed for the middle-aged individuals. So, 
we  aimed to bridge this gap. Additionally, we  extended our 
investigation to include subjects with cognitive impairment.

Since all individuals in the young group have normal MoCA status, 
a one-way ANOVA is conducted. In the analysis of two dependent 
variables, response time and performance, the impact of categorical 
independent variables, age-group and MOCA status, was investigated. 
Significant findings include the influence of age-group on RT 
(F-statistic = 5.21, p < 0.05), indicating differences in response times 
among age groups. Similarly, MOCA status significantly affected RT 
(F-statistic = 31.82, p < 0.05). Regarding performance, age-group 
(F-statistic = 9.39, p < 0.05) and MOCA status (F-statistic = 7.55, p < 
0.05) both exhibited significant effects, highlighting performance 
variations across age groups and the influence of cognitive status. 
However, after implementing Bonferroni correction to mitigate the risk 
of Type I errors associated with multiple comparisons, the significance 
levels were adjusted to 0.0125. The findings revealed that the influence 
of age group on both response time and performance remained 
statistically significant at the adjusted significance level, emphasizing 
consistent differences across age groups. Conversely, while the initial 
analysis indicated a significant impact of MOCA status on both 
response time and performance, these effects were no longer deemed 
statistically significant after Bonferroni correction. In the analysis of 
response time, Tukey’s Honestly Significant Difference (HSD) test 
revealed a significant difference between the middle-aged and young 
groups (mean difference = −666.57, p < 0.05). This result suggests that, 
on average, the young group exhibits lower response times compared 
to the middle-aged group, indicating a statistically significant variation 
in response time between these age groups. Similarly, in the assessment 
of performance, a significant difference emerged between the middle-
aged and young groups (mean difference = 0.1887, p < 0.05). The 
positive mean difference signifies that, on average, the young group 
demonstrates higher performance compared to the middle-aged group.

Our behavioral results from the regression analysis indicate that 
there is no significant change in accuracy or speed across age for 
individuals in their youth. In other words, there was no notable 
difference in performance and speed between a 39-year-old and a 
25-year-old. This is true for the overall performance among the 
middle-age group as they age. However, in terms of speed, represented 
by reaction time, a decline was observed across age for middle-aged 
individuals. This observed decline in reaction time could be attributed 
to a reduced reliance on working memory (as indicated by prior 
parameter trends) and an increase in phi (working memory decay 
rate). Since the prior parameter trends indicate a decline across the 
young group as they age, it is likely that the responsible factor for this 
decline is phi.

To investigate this, we  examined how phi and prior predict 
reaction time in two age groups. We performed regression analyzes 
for each group. For the young group R-squared value was 0.62, 
indicating that approximately 62% of the variance in reaction time 
within this group can be explained by the working memory decay rate 
and the parameter prior. Positive coefficients for phi (722.22) and 
prior (137.07) suggest that higher values of these variables are 
associated with longer reaction times in this group. For the middle-
aged group we have R-squared value was 0.45 and coefficients for phi 
(2355.98) and prior (156.34). It shows that the impact of changes in 
the working memory decay rate on predicted reaction time appears to 
be  more pronounced in the middle-aged group compared to the 
young group. Higher coefficients suggest a stronger influence of the 
phi variable on reaction time in the middle-aged group.

The observed variations in reaction time across age groups in our 
study are in line with previous research investigating the relationship 
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between working memory and reaction time. Existing literature has 
consistently reported correlations between working memory capacity 
and reaction time, its association with fluid intelligence (Unsworth 
and Engle, 2005; Meiran and Shahar, 2018) and the link between RT 
distribution parameters and constructs of higher cognition such as 
working memory, reasoning and psychometric speed (Schmiedek 
et al., 2007). Moreover, the connection between task switching and 
working memory capacity has been well-established, particularly 
when considering combined measures of reaction time and accuracy 
(Draheim et al., 2016).

Analyzing RLWM model parameters across age groups, can shed 
light on the interaction between cognitive processes and aging. The 
observed consistency in WM prior weight in all 3 groups, suggests that 
initial utilization of working memory is independent of age or 
cognitive status and may remain stable despite middle aging or early 
cognitive decline. Notably, epsilon (undirected noise) differs 
significantly between young and normal middle-aged participants, as 
well as between normal middle-aged and those with MCI. The 
increased decision noise in normal middle-aged subjects compared to 
young group can indicate a decline in the individual’s effort or their 
decreased degree of confidence (Jerjian et al., 2023) that could yield to 
a decrease in both speed and accuracy of choice. Furthermore, the 
variations in alpha and phi as rates related to RL and WM separately 
and their alignment with learning curves’ specifications, shows a 
potential connection between cognitive processing and learning 
efficiency that needs a more mechanistic analysis. Additionally, age 
can be a determinant of processing speed while cognitive status is not. 
Overall, comparing learning trajectories in 3 groups show a rapid 
initial learning in young group, along with more prolonged learning 
in middle-aged groups. But since the ultimate performance in MCI is 
lower than normal group, while epsilon is significantly higher in MCI 
group, a role of decision noise can be suggested.

To investigate whether the variation in epsilon is attributed to 
poor fit, we compared the model fit between the normal middle-aged 
group and those with MCI (t-statistic = −1.67, p-value = 0.126) and it 
indicates no significant difference. However, an analysis of the 
relationship between epsilon and negative log-likelihood across all 
subjects revealed a robust correlation (r = −0.86, p-value < 0.01). 
Specifically, this difference in model fit between young and middle-
aged group was significant (t-statistic = 4.66, p-value < 0.01). This 
finding implies an age-related variation in how well the model 
captures the data, which could be  consistent with a shift of, or 
variability in, choice strategies employed by older adults, or simply 
that the task did not sufficiently engage this group.

The paper makes several recommendations for further 
investigation. Research that follows RL and WM parameters over time 
across age, may identify patterns of development and provide detailed 
information on how these cognitive processes change over time. 
Furthermore, the effectiveness of reducing age-related changes may 
be assessed by adopting cognitive intervention programs that focus on 
specific cognitive systems. The study’s implications may be further 

expanded by examining the possible role of genetic factors, taking 
lifestyle and environmental factors into account, and performing 
comparative research across cognitive domains. These methods 
provide a thorough approach to understanding age-related 
cognitive changes.
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