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Autism Spectrum Disorder (ASD) is a complex neurodevelopmental condition

characterized by elusive underlying mechanisms. Recent attention has focused

on the involvement of astrocytes and microglia in ASD pathology. These

glial cells play pivotal roles in maintaining neuronal homeostasis, including

the regulation of metabolism. Emerging evidence suggests a potential

association between ASD and inborn errors of metabolism. Therefore, gaining

a comprehensive understanding of the functions of microglia and astrocytes

in ASD is crucial for the development of effective therapeutic interventions.

This review aims to provide a summary of the metabolism of astrocytes

and microglia during post-natal development and the evidence of disrupted

metabolic pathways in ASD, with particular emphasis on those potentially

important for the regulation of neuronal post-natal maturation by astrocytes

and microglia.
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1 Introduction

Autism spectrum disorders (ASDs) constitute a complex spectrum of conditions
characterized by disruptions in brain development during childhood. The manifestation of
neural dysfunction in early life, coupled with the potential for enduring care needs, imposes
a substantial burden on society, encompassing social, economic, and medical dimensions.
ASDs present a spectrum of conditions stemming from diverse genetic mutations, sharing
common phenotypic neuronal alterations that encompass stunted axonal and dendritic
arbor growth, deficits in synapse formation, and immature dendritic spines (Ebrahimi-
Fakhari and Sahin, 2015). This phenotypic convergence across various ASDs hints at
shared molecular mechanisms driving these alterations. While much neurodevelopmental
disorders and ASDs research traditionally focused on intrinsic neuronal changes,
emerging insights emphasize the pivotal role of alterations in glial cells as well
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(Petrelli and Bezzi, 2016; Allen and Eroglu, 2017; Cresto et al., 2019;
de Oliveira Figueiredo et al., 2022a,b; Ferrucci et al., 2023; Xiong
et al., 2023). Indeed, an increasing amount of evidence suggests that
disruptions in the intricately balanced interactions among neurons,
astrocytes, and microglia can contribute to the onset of ASDs.
Astrocytes and microglia play a pivotal role in the regulation of
neuronal circuit formation and maturation (Baldwin and Eroglu,
2017; Salter and Stevens, 2017; Stogsdill and Eroglu, 2017; Allen and
Lyons, 2018; Thion et al., 2018; Wilton et al., 2019; Thion and Garel,
2020; Cossart and Garel, 2022) and conditions like ASDs have
been associated with irregularities in the post-natal maturation
of both astrocyte and microglial functions. Maturation delays
in glial cells, which encompass mechanisms regulating synapse
formation and synaptic homeostasis, are often observed in the
context of metabolic dysfunctions occurring since the early phase
of post-natal development. While the energy function in the aging
brain and related neurodegenerative disorders has been extensively
explored (Hou et al., 2019; Bernier et al., 2020; Xiong et al., 2022),
there is still limited attention to the metabolic changes occurring
in the post-natal period and their implications for ASDs. This is
largely due to our limited understanding of the metabolic program
unfolding during brain development and the specific nutrient
dependencies integral to this process. In this review, we aim to delve
into emerging evidence regarding the metabolic insights of glial
cells during post-natal development and their potential importance
in regulating the maturation of both glial cells and neuronal circuits
in the brain.

2 Post-natal energy needs of the
brain

During post-natal development, the brain undergoes
remarkable structural and functional changes, accompanied
by significantly heightened energy demands that surpass those of
other organs in the body. The newborn human brain, comprising
about 13% of body weight, contributes to approximately 60% of
the body’s daily energy requirement (Dobbing and Sands, 1973;
Bauernfeind et al., 2014; Goyal et al., 2014, 2015; Magistretti
and Allaman, 2015; Camandola and Mattson, 2017; Hou et al.,
2019; Scheiblich et al., 2020; Bonvento and Bolanos, 2021).
Understanding the reasons behind these remarkable energy costs
associated with brain function, especially during development,
necessitates an exploration of the various components and
processes within the brain that incur energy expenditure.

From an evolutionary standpoint, analyzing the glucose and
oxygen metabolic rates of the awake adult brain, suggests a linear
correlation between the energy consumption and the number of
neurons present (Herculano-Houzel, 2011). Recent estimations
indicate that neurons alone consume 75–80% of the energy
produced in adult brains, with the remaining energy allocated to
glial-based processes (Harris et al., 2012; Magistretti and Allaman,
2015; Hyder et al., 2016). The energy demands of neurons arise
most from the generation of action potentials and the intricate
processes involved in synaptic transmission, including ion fluxes,
neurotransmitter release and reuptake, and vesicle cycling (Harris
et al., 2012; Magistretti and Allaman, 2015; Hyder et al., 2016).

In the developing brain, it is important to note that the energy
requirement during the rapid post-natal growth is due to a swift
developmental progression, predominantly driven by the intricate
maturation and refinement of existing neurons, as neurogenesis
primarily occurs before birth. Indeed, the brain’s adaptability
during the post-natal period relies on constant architectural
remodeling, involving the addition or elimination of synapses to
strengthen or weaken neuronal network activities. This ongoing
restructuring necessitates the continuous synthesis and turnover
of proteins, lipids, and amino acids, essential for supporting the
molecular modifications underlying brain plasticity (Magistretti,
2011; Harris et al., 2012; Bauernfeind et al., 2014; Magistretti and
Allaman, 2015; Wilton et al., 2019). Crucially, during rapid post-
natal growth, the maturation, and refinement of existing glial
cells, including astrocytes and microglia, contribute significantly
to energy demands. Astrocytes, originating from neural stem cells,
reach their final destinations by migrating along radial glia during
early post-natal development (Kriegstein and Alvarez-Buylla, 2009;
Ge et al., 2012). Their numbers robustly increase between birth
and the third post-natal week (Bandeira et al., 2009; Kriegstein and
Alvarez-Buylla, 2009), coinciding with the surge in dendritic and
synaptic growth and the maturation of neuronal communication
and network properties (Wang and Bordey, 2008; Freeman, 2010;
Semple et al., 2013). During post-natal maturation, astrocytes
morphogenesis by extending processes to contact blood vessels
and synapses and forming the “tripartite synapse” (Araque et al.,
1999; Perea et al., 2009; Santello et al., 2012), regulate synaptic
connectivity and function and participate in neurotransmitter
uptake and release, crucial for fine-tuning synaptic activity (Vesce
et al., 1999; Bezzi and Volterra, 2001; Angulo et al., 2008; Araque
et al., 2014; Cali et al., 2014; Gómez-Gonzalo et al., 2018; Petrelli
et al., 2023). Recent research emphasizes the association between
proper astrocyte maturation and the formation, maturation, and
pruning of synapses (Stogsdill et al., 2017; Baldwin et al., 2021;
Zehnder et al., 2021). For example, astrocytes play a vital role
in providing trophic and metabolic factors that support synaptic
growth and refinement, including thrombospondins, glypicans and
cholesterol (Petrelli and Bezzi, 2016; Baldwin and Eroglu, 2017;
Stogsdill and Eroglu, 2017; Allen and Lyons, 2018).

Microglia, the immune cells resident in the central
nervous system, begin colonizing the brain from E8.5. They
undergo parenchymal proliferation and experience a dieback
phase, eventually reaching adult levels of these brain-resident
macrophages during the second post-natal week in rodents
(Lenz and Nelson, 2018). The principal maturation phase of
microglia occurs during post-natal development (Wurm et al.,
2021; Zengeler and Lukens, 2021). Initially, they exhibit immature
metabolic and molecular features and display an amoeboid
morphology. As development progresses, microglia gradually
adopt a mature phenotype, characterized by distinct morphological
and functional differences compared to their immature form,
including a transition to a ramified morphology. This maturation
of microglia is crucial for their involvement in a range of
neurodevelopmental processes, such as population control,
supporting the differentiation and maturation of developing cells,
synaptogenesis, neurite outgrowth, axon tract fasciculation, and
synaptic pruning (Paolicelli et al., 2011; Thion et al., 2018; Prinz
et al., 2019; Thion and Garel, 2020; Cossart and Garel, 2022;
Guedes et al., 2023).

Frontiers in Cellular Neuroscience 02 frontiersin.org

https://doi.org/10.3389/fncel.2024.1354259
https://www.frontiersin.org/journals/cellular-neuroscience
https://www.frontiersin.org/


fncel-18-1354259 February 9, 2024 Time: 17:22 # 3

Cantando et al. 10.3389/fncel.2024.1354259

3 Post-natal brain metabolism and
the metabolic flexibility of
astrocytes and microglial cells

To satisfy its substantial energy requirements, the mature
brain primarily depends on glucose as its main energy source
(Dienel, 2019). Astrocytes play a significant role in glucose uptake,
a function attributed to their abundant expression of glucose
transporters, gap junction channels, and glucose-metabolizing
enzymes within their perivascular domains (Rouach et al., 2008;
Allaman et al., 2011; Escartin and Rouach, 2013; Magistretti
and Allaman, 2015). It is now understood that astrocytes,
rather than neurons, are the primary generators of energy
through the glycolytic pathway (Bélanger et al., 2011; Magistretti
and Allaman, 2015). They express specific glycolytic enzymes,
enabling them to obtain 80% of their glucose supply through
glycolysis. In contrast, neurons, with inhibited enzymes such as
6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (PFKFB3)
and pyruvate dehydrogenase kinase 4 (PDK4), are more reliant
on phosphorylation (Magistretti and Allaman, 2018). Notably,
astrocytes predominantly express lactate dehydrogenase 5 (LDH5),
which facilitates the conversion of pyruvate to lactate, while
neurons exclusively express LDH1, favoring the reverse reaction
(Bittar et al., 1996). Additionally, the higher NADH to NAD + ratio
in astrocytes further promotes the reduction of pyruvate to lactate
(Mongeon et al., 2016). Astrocytes respond to neuronal activity by
taking up glutamate, which can be recycled through the glutamate-
glutamine cycle (Bak et al., 2006; McKenna, 2007). Recent
studies, such as that by Cheung et al. (2022), have highlighted
the indispensability of this cycle for synaptic transmission and
memory. The uptake of glutamate triggers aerobic glycolysis,
leading to the secretion of lactate. In accordance with the astrocyte-
neuron lactate shuttle (ANLS) model (Pellerin and Magistretti,
1994; Bélanger et al., 2011; Magistretti and Allaman, 2018), neurons
utilize these extracellular monocarboxylates, channeling them into
the mitochondrial respiratory chain and oxidative phosphorylation
(OXPHOS) processes to ultimately produce energy.

Mature microglial cells, like astrocytes, are capable of glucose
uptake. However, unlike astrocytes, microglia primarily depend
on oxidative glycolysis. This understanding stems from various
cell type-specific transcriptomic studies, which have shown that
microglia express transporters and enzymes necessary for glucose
metabolism (Zhang et al., 2014; Bennett et al., 2016; Zeisel
et al., 2018). Among the multiple glucose transporter (GLUT)
isoforms transcribed in microglia, GLUT3 is notable for being
highly expressed, similar to its expression in neurons. The
reliance of microglia on oxidative glycolysis has been suggested
by comprehensive functional studies, particularly those examining
the metabolic pathways that support their continuous and dynamic
motility during the resting surveillance phase. Initial studies
involving microglial cell lines or primary microglia in meticulously
controlled cell cultures have provided valuable insights into the
specific nutritional needs of microglia. However, it’s important to
recognize that cultured microglia display distinct transcriptional
signatures and phenotypes, markedly different from those in their
natural in vivo environment (Kettenmann et al., 2011; Butovsky
et al., 2014; Bohlen et al., 2017). The utilization of oxidative
pathways by adult microglial cells has been recently corroborated

by transcriptomic studies. These studies indicate that mouse
microglia transcribe most of the genes necessary for OXPHOS,
thereby confirming their primary reliance on oxidative metabolism
of glucose (Zhang et al., 2014; Bennett et al., 2016; Orihuela et al.,
2016; Ghosh et al., 2018).

The metabolism of the developing brain in suckling mammals
significantly differs from that of mature individuals (Figure 1).
During lactation, and with the post-natal consumption of high-fat
milk, ketone bodies (KBs), derived from fatty acids and produced
by the liver, provide much of the energy required by the neonatal
brain (Cremer, 1982; Dombrowski et al., 1989; Vannucci and
Vannucci, 2000; Nehlig, 2004; Oyarzábal et al., 2021). Therefore,
the key factors in energy metabolism during neurodevelopment
include glucose, lactate, and KBs (Oyarzábal et al., 2021).

Although glucose is the primary energy source in the adult
brain, its role in the neonatal brain is relatively subdued despite
similar bloodstream levels to adults (Vannucci and Vannucci,
2000; Brekke et al., 2015). This is partly due to the limited
number of GLUTs present during this developmental stage, which
restricts glucose use in early post-natal development (Vannucci
et al., 1994; Vannucci and Simpson, 2003). GLUT1, responsible
for transporting glucose across the blood-brain barrier (BBB),
is mainly expressed by endothelial cells and astrocytes, while
GLUT3 is primarily expressed by neurons (Vannucci et al., 1994;
Zhang et al., 2016; Caldwell et al., 2022). After weaning, when
mammals switch to carbohydrate-based nutrition, the expression
of both GLUT1 and GLUT3 increases significantly (Figure 2),
coinciding with glucose replacing lactate and KBs as the main
energy substrate (Zhang et al., 2014, 2016; Caldwell et al., 2022;
Düking et al., 2022). Little is known about the glucose metabolism
of microglial cells during post-natal development, but recent meta-
analyses of transcriptomic and proteomic studies suggest that
developing mouse microglia transcribe most of the genes necessary
for glycolysis, implying a predominant reliance on glycolytic
glucose metabolism (Zhang et al., 2014; Bennett et al., 2016;
Ghosh et al., 2018). The post-natal expression of various GLUT
isoforms, including GLUT3 and GLUT5, suggests an ability to
utilize different sugars. Notably, in the central nervous system,
microglia appear to be the only cells expressing the GLUT5 hexose
transporter, predominantly specific for fructose. However, given
the limited availability of fructose in the brain under physiological
conditions, the functional role of GLUT5 remains unclear (Payne
et al., 1997; Douard and Ferraris, 2008; Hwang et al., 2017).
Under inflammatory conditions, GLUT1 expression is upregulated
in microglia (Wang et al., 2019), increasing glucose uptake
and promoting glycolysis, which underscores how metabolic
changes contribute to modulating microglial homeostasis (Lauro
and Limatola, 2020). The primary rate-limiting enzymes in
glucose metabolism are hexokinases (HKs), which catalyze the
phosphorylation of glucose to glucose-6-phosphate (Wilson, 2003,
2006). Of the four main HK isozymes (HK1-4), each has distinct
biochemical features and catalytic activities (Wilson, 2003, 2006).
HK1 and HK2, historically recognized as primarily expressed in
the brain and muscle/adipose tissues, respectively, (Wilson, 2006),
are associated with the outer mitochondrial membrane, facilitating
access to mitochondrial ATP to promote glycolysis (Wilson, 2006;
Pastorino and Hoek, 2008). Recent research has identified selective
HK2 expression in microglia, predominantly in neurons and
astrocytes (Hu et al., 2022). A transcriptome meta-analysis revealed
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FIGURE 1

Alterations in arterial concentrations, cerebral enzyme activities, and cerebral transporters for (A) glucose and (B) ketone metabolism throughout
postnatal development are depicted in the graphs. The shaded area in each graph corresponds to the suckling period. Changes in arterial
concentrations (solid lines) are represented by the mmol/L values on the y-axis (right). Enzymatic activities (broken lines) and changes in transporter
density (bars) are presented as a percentage of the adult levels. Figure modified from Vannucci et al., 1994 and Vannucci and Simpson, 2003.

that microglial HK2 levels peak in the early phase of post-natal
development (P7-P14) (Zhang et al., 2016; Clarke et al., 2018;
Düking et al., 2022; Figure 2). A study in rodents demonstrated
that genetic ablation of HK2 leads to decreased microglial glycolytic
flux and energy production, inhibiting microglial repopulation,
attenuating surveillance, and impairing migration triggered by
damage (Hu et al., 2022). These findings suggest a crucial role for
microglial glycolysis in the post-natal brain.

It is believed that the perinatal brain is greatly reliant on
the metabolism of lactate and KBs, but this reliance seems to
diminish gradually as the use of glucose increases (Vannucci and
Vannucci, 2000) and the precise rate, timing, and triggers of
the shift to glucose metabolism has been extensively investigated
(Medina and Tabernero, 2005). Rodent brain actively uses lactate
during the fetal stage, early neonatal period, and suckling
phase (Medina and Tabernero, 2005) but, throughout the perinatal

period, various other nutrients such as glucose, amino acids, and
fatty acids are transplacentally transferred from the mother and
can easily enter the brain through the still incompletely formed
BBB (Burd et al., 1975). The role of lactate seems to be particularly
crucial in the post-natal period, when the brain continues its
developmental trajectory by forming and refining the synapses
(Medina and Tabernero, 2005). The post-natal synthesis of KBs
(i.e., ketogenesis) primarily occurs in hepatocytes (Puchalska and
Crawford, 2017), but the use of KBs as metabolic substrates (i.e.,
ketolysis) predominantly involves peripheral tissues including the
brain (Puchalska and Crawford, 2017; Figure 3). The KBs in
developing brain cells enter the mitochondria for ketolysis and
supply aceto- and acetoacetyl-CoA for the tricarboxylic acid (TCA)
cycle, ATP production, and the synthesis of lipids, fatty acids,
and cholesterol (Yeh and Sheehan, 1985). Brain entry and the
intercellular transfer of lactate and KBs is a highly regulated process
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FIGURE 2

(A) The heatmap shows the gene expression levels of glycolytic enzymes in astrocytes, neurons, microglia, endothelial cells, and oligodendrocytes.
Data obtained from published data by Zhang et al. (2014, 2016); Bennett et al. (2016); Clarke et al. (2018); Düking et al. (2022); (B) The graph shows
normalized enrichment score of the “metabolic pathways” gene sets by gene set enrichment analysis, comparing z-scores of astrocyte and
microglia proteomes from P42 vs. P14. The figure is a modified version of Figure 1D in Düking et al. (2022).

that is mediated by monocarboxylate transporters (MCTs), which
are particularly abundant in the BBB and endothelial cells (Leino
et al., 1999; Rafiki et al., 2003; Kishimoto et al., 2016). MCT1,
MCT2, and MCT4 are the most abundant in the developing brain
and can all shuttle lactate and KBs, albeit with different affinities
(Halestrap, 2013). The different MCTs are differently expressed in
producing and receiving cells: lactate-receiving neurons express the
high-affinity MCT2, whereas quasi-producing astrocytes express
the lower-affinity MCT1 and MCT4 (Pellerin et al., 1998a,b; Rafiki
et al., 2003; Kasischke, 2011; Kishimoto et al., 2016; Zhang et al.,
2016; Roosterman and Cottrell, 2020; Caldwell et al., 2022; Düking
et al., 2022). Furthermore, although not extensively studied, it has
been recently reported that pathologically affected microglia also
express MCTs (Moreira et al., 2009; Ding et al., 2013; Nijland et al.,
2014). It is also interesting to note that some MCTs are highly
expressed during post-natal development: for example, MCT1
levels peak between P4 and P14 (Hanamsagar et al., 2017) thus
further suggesting that such cells may depend on lactate and KBs
metabolism during their post-natal maturation. Transcriptomic
analysis has also revealed that MCT4 levels are higher in microglia
than in other brain cell types (Zhang et al., 2014; Bennett et al.,
2016; Clarke et al., 2018; Düking et al., 2022). In order to determine
whether astrocytes and microglia preferentially use MCTs for
lactate or KBs, it is necessary to consider the expression of

enzymes such as lactate dehydrogenase (LDH), which facilitates
the reversible conversion of pyruvate and NADH to lactate and
NAD + in a dynamic equilibrium (Rogatzki et al., 2015). LDH exists
in the form of homotetramers or heterotetramers consisting of two
distinct subunits: LDHA and LDHB (the former being primarily
responsible for catabolizing pyruvate into lactate and the latter for
catabolizing lactate into pyruvate) (Rogatzki et al., 2015; Urbańska
and Orzechowski, 2019). Consequently, in conjunction with other
factors, the varied composition of LDH tetramers can influence the
direction of the reaction toward lactate catabolism or production.
Intriguingly, transcriptomic analysis has shown that mRNA levels
of LDHB are particularly high in microglial cells and reach their
zenith in the early post-natal period (P14), a phase marked by
substantial microglia-dependent synaptic remodelling, whereas
LDHA expression is minimal (Bennett et al., 2016; Figure 2),
thus indicating that microglia predominantly engage in lactate
oxidation rather than lactate production during this developmental
window. It has been discovered that microglia efficiently uptake
lactate, leading to lysosomal acidification (Monsorno et al.,
2023). Among key lactate transporters in the brain, microglial
MCT4 is dynamically regulated in response to exogenous lactate.
MCT4 is crucial for lactate-dependent lysosomal modulation in
microglia, and cells lacking MCT4 show deficits in cargo uptake
and degradation. In early post-natal development, conditional
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knockout mice (cKO) with selective microglial MCT4 depletion
exhibit impaired synaptic pruning and elevated synaptic marker
levels in the CA1 hippocampal region. Functionally, hippocampal
pyramidal neurons in cKO mice demonstrate greater excitatory
drive, evidenced by larger excitatory post-synaptic currents
and an increased excitatory/inhibitory (AMPA/GABA) ratio.
Furthermore, juvenile mice lacking microglial MCT4 are prone to
kainic acid-induced seizures, suggesting circuit hyperexcitability.
In adulthood, MCT4 cKO mice display an anxiety-like psychiatric
phenotype. These findings collectively indicate that disrupting
microglial MCT4 disrupts the refinement of microglia-mediated
synapses, leading to defective brain development and altered adult
behavior (Monsorno et al., 2023).

In contrast to microglial cells, astrocytes express high levels
of LDHB and other glycolytic enzymes in the later stages of
post-natal development when their maturation is nearly complete
(Zhang et al., 2016; Caldwell et al., 2022; Düking et al., 2022;
Figure 2). Increasing evidence suggests that the metabolism of
developing astrocytes is more aligned with mitochondrial function
than glycolysis (Zhang et al., 2016; Zehnder et al., 2021; Caldwell
et al., 2022; Düking et al., 2022). Although the importance
of mitochondrial activity in developing astrocytes is not fully
understood, recent studies have shown that mitochondria in
mature astrocytes are vital for maintaining homeostatic functions
of associated synapses (Motori et al., 2013; Ignatenko et al.,
2018; Göbel et al., 2020). Notably, there is a significant increase
in mitochondrial occupancy throughout post-natal astrocyte
development (Zehnder et al., 2021). Similar to cells with high
oxidative capacity, developing astrocytes are enriched in PGC-1α

and PGC-1β (Puigserver and Spiegelman, 2003). Consistent with
the role of PGC-1α in regulating mitochondrial biogenesis and
respiratory function (Wu et al., 1999), its removal from astrocytes
reduces mitochondrial content and decreases the expression
of genes essential for the electron transport chain (ETC) and
OXPHOS, affecting mitochondrial respiration (Zehnder et al.,
2021). These findings support a transient need for mitochondrial
biogenesis in developing astrocytes, especially during the period
marking the end of proliferation and the start of functional and
morphological maturation. Complementing this, transcriptome
and proteome analyses reveal high levels of mRNA and proteins
involved in mitochondrial ketolysis (SCOT1, SCOT2, ACAT1) and
ketogenesis (CPT1A, HMGCS2, BDH1) during the suckling period,
which decrease after weaning (Auestad et al., 1991; Blázquez et al.,
1998; Guzmán and Blázquez, 2001; Zhang et al., 2016; Eraso-
Pichot et al., 2018; Fecher et al., 2019; Caldwell et al., 2022;
Düking et al., 2022; Silva et al., 2022; Figure 2). This metabolic
shift stems from astrocytes’ ability to store and oxidize fatty acids
(FAs), suggesting a system for local production and delivery of
KBs within neighboring cells, including neurons. The contribution
of astrocyte-derived KBs to neuronal oxidation, particularly in
supporting memory formation, has been demonstrated in vivo in
Drosophila melanogaster undergoing starvation (Silva et al., 2022).
This highlights the adaptive mechanisms used by neurons under
challenging metabolic conditions and underscores the significance
of KBs as an essential energy substrate, even in the absence of
glucoses (Chowdhury et al., 2014; Silva et al., 2022). Further,
studies have revealed that developing astrocytes are not only
capable of mitochondrial FAs oxidation but also play a role
in detoxifying excess neuron-derived FAs (Civenni et al., 1999;

Ioannou et al., 2019; Qi et al., 2021). Neuronal cells, particularly
those that are highly active, generate excessive FAs but struggle
to utilize them for oxidative ATP synthesis, leading to the
accumulation of toxic FAs. To mitigate neuronal damage, these
excess FAs are stored in astrocytes’ intracellular lipid droplets (LDs)
as triglycerides. Apolipoproteins assist in transporting excess FAs
into astrocytes, which, with their abundant LDs, are less vulnerable
to the harmful activity of reactive oxygen species (ROS) compared
to neurons. LDs in astrocytes serve as energy storage depots,
transferring FAs to mitochondria during nutrient depletion and
acting as an alternative energy source when consumed. Therefore,
the processes of FAs storage and oxidation depend on a close
metabolic interconnection between neurons and astrocytes (Ebert
et al., 2003; Ioannou et al., 2019). It appears that genes related to
FAs synthesis, β-oxidation, and lipid metabolism are more highly
expressed in astrocytes during the suckling period than during
weaning (Zhang et al., 2016; Clarke et al., 2018; Caldwell et al.,
2022; Düking et al., 2022; Figure 2), indicating that astrocytic lipid
metabolism may be critical during this neonatal stage. Given the
similarity of the diet of suckling mammals to a ketogenic diet,
characterized by high FAs and low carbohydrate levels (García-
Rodríguez and Giménez-Cassina, 2021), FAs may be the primary
energy source for astrocytes. A recent study demonstrated that
astrocyte-specific deletion of carnitine-palmitoyl transferase-1A
(CPT1A), a key enzyme in mitochondrial FAs oxidation, leads
to cognitive impairment in mice (Morant-Ferrando et al., 2023).
The underlying mechanism involves a shift in astrocytic pyruvate
metabolism that ultimately promotes a reduction in ROS, which
have been shown to provide a crucial signal in astrocytes capable
of modulating brain metabolism and sustaining murine behavioral
performance (Vicente-Gutierrez et al., 2019).

Unlike fatty acids, which maintain equilibrium with the rest of
the body, almost all brain cholesterol is synthesized by astrocytes
(Pfrieger and Ungerer, 2011). This is because cholesterol-carrying
lipoproteins, except for some very dense high-density lipoproteins
(HDLs), cannot readily cross the BBB (Balazs et al., 2004).
Astrocytes play a crucial role in brain cholesterol metabolism. For
instance, when neuronal-like retinal ganglion cells are cultured
in glia-conditioned media, an increase in synapse formation is
observed, with cholesterol identified as a key mediator of this
effect (Mauch et al., 2001). This suggests that astrocytes synthesize
and transport cholesterol to neurons via lipoprotein particles. The
importance of this mechanism is further highlighted by the fact that
deleting LRP1, the primary receptor for Apolipoprotein E (ApoE)
on neurons, results in impaired dendritic spine development and
neurodegeneration with aging (Liu et al., 2010). Cholesterol levels
are tightly regulated by sterol regulatory element-binding protein
2 (SREBP2), the major transcription factor for genes involved
in cholesterol synthesis (Brown and Goldstein, 2009). RNA
profiling of mouse and human brain astrocytes, both through bulk
sequencing (Zhang et al., 2014, 2016; Chai et al., 2017) and single-
cell sequencing (Batiuk et al., 2020; Endo et al., 2022), has revealed
high expression levels of SREBP2 and 12 other genes involved
in cholesterol biosynthesis in developing astrocytes (Pfrieger and
Ungerer, 2011; Valenza et al., 2023). This suggests a significant role
for astrocytes in cholesterol production and metabolism. Studies
involving astrocyte-specific inactivation of SREBP-mediated lipid
biogenesis in mice demonstrate that reduced SREBP activity in
astrocytes hinders presynaptic terminal development and impairs
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FIGURE 3

The mitochondria play a key role in both ketogenesis and ketolysis pathways. Ketogenesis primarily takes place in hepatic mitochondria, utilizing
acetyl-CoA generated through the β-oxidation of fatty acyl-CoA. Subsequently, extrahepatic tissues absorb these ketone bodies, such as
β-hydroxybutyrate (BHB) and acetoacetate (AcAc), via the monocarboxylic acid transporter (MCT). BHB can fuel the brain as alternative energy
substrates under non-physiological conditions such as starvation, insulin-resistance and during post-natal development. In the mitochondria of the
brain cells, ketolysis occurs, converting BHB and AcAc back into Acetyl-CoA. This process generates ATP through the tricarboxylic acid (TCA) cycle
and the electron transport chain (ETC). Figure modified from Hwang et al. (2022).

hippocampal function, likely due to decreased levels of the
presynaptic protein SNAP-25 and fewer synaptic vesicles (van Deijk
et al., 2017). Furthermore, inactivating SREBP2, the key regulator of
cholesterol synthesis genes in astrocytes, leads to reduced brain size
in mice, particularly in astrocyte-rich regions (Ferris et al., 2017).
Excess cholesterol is converted into cholesterol esters through the
biosynthetic activity of two distinct genes: acyl-CoA:cholesterol
acyltransferase 1 (Acat1) and 2 (Acat2), also known as sterol
O-acyltransferase 1 and 2 (Soat 1,2). Transcriptome and proteomic
analyses indicate that both ACAT1 and ACAT2 enzymes, encoded
by these genes, are highly expressed in astrocytes during post-natal
development (Zhang et al., 2016; Caldwell et al., 2022; Düking
et al., 2022; Figure 2). These enzymes, located in the endoplasmic
reticulum (ER) and enriched at the mitochondria-associated ER
membrane, use long-chain fatty acyl-CoAs and sterols with 3-beta-
OH, including cholesterol and various oxysterols, as substrates
(Liu et al., 2005). They are allosterically activated by cholesterol
or oxysterols. Notably, activation of ACAT1/SOAT1 in astrocytes
occurs under conditions with excessive cholesterol content or a
lack of ApoE, leading to augmented lipid storage and inflammatory
processes (Karten et al., 2006).

In conclusion, the metabolic landscape of the developing brain
is marked by dynamic shifts in its preference for energy substrates,
with astrocytes and microglia playing pivotal yet distinct roles at

various developmental stages. While glucose serves as the primary
energy source in the mature brain, the neonatal brain initially
relies on lactate and ketone bodies (KBs), gradually transitioning
to a greater dependence on glucose. Astrocytes, during post-natal
development, show a predilection for mitochondrial metabolism,
including FAs oxidation and ketolysis. In contrast, microglial cells
depend on glycolysis, facilitated by the expression of a variety of
glucose transporters and enzymes (Figure 4). Understanding the
intricate interactions between astrocytes and microglia in meeting
the energy requirements of developing brain neurons is essential
for advancing our comprehension of the mechanisms that drive the
functional and structural maturation of neuronal circuits.

4 Dysregulation of metabolic
pathways in ASDs: exploring
implications for glial cell metabolism

Although the cause of ASDs is identified in only <10% of
cases (Lord et al., 2020), it’s believed that their etiology involves a
complex interplay of multigenic interactions and environmental,
infectious, metabolic, and nutritional factors (Niemi et al., 2018;
Tãrlungeanu and Novarino, 2018; Lord et al., 2020). However,
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FIGURE 4

The alteration in metabolism of astrocytes and microglia observed during the perinatal critical period aligns with the onset of dendritogenesis,
synaptogenesis and pruning in mice. Figure modified from Oury and Pierani (2023).

the underlying biological mechanisms remain largely unclear.
A growing body of evidence suggests that dysregulated glial cells
can contribute to many of the neurological symptoms observed
in various neurodevelopmental disorders (Petrelli et al., 2016,
2023; Neniskyte and Gross, 2017; Petrelli and Bezzi, 2018; Cresto
et al., 2019; de Oliveira Figueiredo et al., 2022a,b; Ferrucci
et al., 2023; Matuleviciute et al., 2023; Xiong et al., 2023). For
instance, while genes implicated in ASDs were initially thought
to be exclusively expressed in neurons, recent findings show their
expression in astrocytes and microglial cells as well, suggesting
a potential role for these cells in the development of these
disorders (McGann et al., 2012; Petrelli et al., 2016; Petrelli and
Bezzi, 2018; de Oliveira Figueiredo et al., 2022b; Ferrucci et al.,
2023). Moreover, as discussed earlier, energy metabolism is crucial
in normal brain development, and it has been demonstrated
that metabolic irregularities contribute significantly to various
neurodevelopmental and psychiatric disorders (Cheng et al., 2017;
Graham et al., 2020; Oyarzábal et al., 2021; Žigman et al., 2021;
Kotchetkov et al., 2023). The metabolic pathways of astrocytes
and microglial cells undergo significant adaptations during post-
natal development due to their reliance on a milk-based, high-fat
diet. These cells over-express many key pathways responsible for
maintaining energy in developing post-natal brain cells, suggesting
a pivotal role in ensuring the energy required for the development
of brain circuits. The following section will delve into brain energy
dysfunctions associated with ASDs, with a particular focus on
those that, even if not directly documented, could affect astrocytes
and microglial cells, and consequently, the maturation of neuronal
circuits.

ASDs are heterogeneous, highly heritable neurodevelopmental
conditions, characterized by deficits in sociability and
communication, as well as the presence of restrictive and
repetitive behavioral patterns (Lord et al., 2020). The diversity of
molecular pathways associated with ASDs reflects the complexity
of their etiology (Lord et al., 2020), and deciphering their genetic-
environmental interactions provides valuable insights into their
biological underpinnings. Metabolic disruption and mitochondrial
dysfunctions are notably more prevalent in ASD patients compared
to the general population, suggesting a potential involvement of
mitochondrial metabolism in ASD development, although its

specific role remains elusive (Rossignol and Frye, 2012; Hollis et al.,
2017).

The hypothesis that mitochondrial dysfunctions may
contribute to ASDs has been evolving since 1985 when lactic
acidosis was observed in 5% of autistic patients (Coleman and
Blass, 1985). Subsequent studies have indicated that altered ETC
activity in ASD patients could lead to decreased ATP production
and increased oxidative stress, variably impacting different brain
regions or cell types (Hollis et al., 2017). This aligns with findings
that nearly one-third of autistic children exhibit high plasma
lactate levels and/or a high lactate-to-pyruvate ratio (Haas,
2010; Rossignol and Frye, 2012; Oh et al., 2020), though it’s
yet to be determined whether these elevated lactate levels are a
cause or a result of autism. The heightened brain lactate levels
in ASDs may arise from increased glycolysis, diminished TCA
cycle activity, and restricted OXPHOS. Recent research further
refines this perspective by highlighting the role of astrocytes in
mitochondrial dynamics during development. Studies have found
increased mitochondrial biogenesis and occupancy in developing
astrocytes compared to their mature counterparts (Zehnder et al.,
2021), attributed to higher levels of PGC-1α, a key regulator of
mitochondrial biogenesis and function, particularly during the
second week of post-natal development (Zhang et al., 2014, 2016;
Clarke et al., 2018; Zehnder et al., 2021; Düking et al., 2022).
The removal of PGC-1α leads to reduced mitochondrial content,
elevated extracellular lactate levels, and a decrease in the number
of excitatory synapses, resembling the conditions observed in
many neurodevelopmental disorders and ASDs. This suggests a
critical need for robust mitochondrial biogenesis in developing
astrocytes, particularly for synaptic formation. While the exact
mechanism by which astrocytic mitochondria regulate excitatory
synapse formation remains to be elucidated, the data indicating
high mRNA levels of genes controlling mitochondrial biogenesis
and functions (including oxidative phosphorylation, ketolysis,
and ketogenesis/FA oxidation) in developing astrocytes, suggest
a crucial role in supporting neuronal energy metabolism. Any
impairment in astrocytic mitochondrial functions, as indicated by
altered PGC-1α activity, could contribute to the mitochondrial
dysfunctions observed in neurodevelopmental disorders and
ASDs. Therefore, a deeper understanding of the role of PGC-1α
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in astrocyte mitochondrial function could provide significant
insights into the mitochondrial aspects of ASD pathophysiology,
particularly in terms of the metabolic support that astrocytes
offer to neurons. The understanding of lactate’s role in ASDs is
further expanded by recent insights into the function of microglial
MCT4. Transcriptomic analysis has revealed that during early
post-natal development, a critical period for microglia-dependent
synaptic remodeling, microglial cells express high levels of
LDHB, suggesting a predilection for lactate oxidation rather than
production (Bennett et al., 2016; Monsorno et al., 2023). Microglia
efficiently uptake lactate, which is crucial for lactate-dependent
lysosomal modulation, as evidenced by MCT4’s role in these
cells. MCT4’s dynamic regulation in response to exogenous
lactate and its significance in synaptic pruning and neuronal
excitability further underscore its importance. For instance,
microglial MCT4 depletion in conditional knockout mice results in
impaired synaptic pruning, elevated synaptic marker levels in the
CA1 hippocampal region leading to circuit hyperexcitability and
anxiety-like behavior in adulthood (Monsorno et al., 2023). These
findings collectively suggest the dysregulation of lactate oxidation
in microglia could disrupt synaptic development and neuronal
function, contributing to the neurodevelopmental and behavioral
manifestations associated with ASDs. Therefore, understanding
the interplay between lactate metabolism and microglial function
could provide valuable insights into the metabolic underpinnings
of ASDs and potentially reveal novel therapeutic targets.

Our understanding of the mitochondria-ASD relationship has
expanded in the last years through numerous studies (Rossignol
and Frye, 2012; Hollis et al., 2017; Frye, 2020) identifying several
genes encoding mitochondrial proteins as ASD risk genes as well
as impaired mitochondrial function in the brains of ASD patients.
These studies, including animal models, suggest that systemic
mitochondrial mutations might cause tissue-specific brain defects
and regional neurophysiological alterations, leading to autistic
endophenotypes (Kanellopoulos et al., 2020; Yardeni et al., 2021).
A comprehensive meta-analysis has revealed that the prevalence
of abnormal mitochondrial function biomarkers often exceeds the
overall 5% prevalence of classical mitochondrial disease (Rossignol
and Frye, 2012), with significant findings such as high levels
of lactate in 31% of cases, pyruvate (14%), alanine (8%), and
others. Moreover, a striking 80% of children with ASD exhibit
low carnitine levels (Mostafa et al., 2005; Frye, 2020). Carnitine,
crucial for mitochondrial FA oxidation and energy production,
is primarily processed by astrocytes during post-natal brain
development. Evidence points to abnormalities in mitochondrial
FA oxidation in a subset of children with ASDs. This includes
extensive documentation of free L-carnitine depletion, essential
for transporting FAs into the mitochondria (Mostafa et al., 2005),
a reduction in mitochondrial FA β-oxidation (Mitochondrial
Medicine Society’s Committee on Diagnosis, 2008), elevated levels
of long- and very-long-chain FAs in serum, and increased levels of
acyl-carnitine, a biomarker of deficient mitochondrial FA oxidation
(Frye, 2012; Frye et al., 2013). A deficiency in L-carnitine may
be linked to reduced expression of the TMLHE gene, encoding
a mitochondrial protein crucial for carnitine biosynthesis and
expressed by astrocytes during post-natal development (Zhang
et al., 2014). The involvement of TMLHE in the onset of ASDs
is supported by findings such as exon 2 deletion in males with
ASD (Ziats et al., 2015) and the association of TMLHE deficiency

with high ε-N-trimethyl lysine levels, a recognized risk factor for
ASDs (Celestino-Soper et al., 2012). While its specific role in
immature astrocytes has not been directly investigated, one can
infer its potential impact based on the gene’s known functions
and the critical role of astrocytes in brain development. In
immature astrocytes, TMLHE may be crucial for maintaining
adequate levels of L-carnitine, which is essential for the transport
of long-chain FAs into the mitochondria for β-oxidation. Given
the high energy demands of the developing brain, particularly for
processes like synaptic formation and myelination, any impairment
in TMLHE function could lead to insufficient carnitine levels,
thereby hindering mitochondrial FAs metabolism in astrocytes.
This could result in energy deficits and the accumulation of
unmetabolized FAs, potentially contributing to the disrupted
neural development observed in ASDs. Furthermore, the role of
TMLHE in regulating ε-N-trimethyl lysine levels, a risk factor
for ASDs, suggests that abnormalities in TMLHE expression or
function could disrupt metabolic homeostasis in astrocytes. This
disruption might impact astrocyte-neuron interactions and the
overall neurodevelopmental environment, possibly exacerbating or
contributing to the pathophysiology of ASDs. Therefore, exploring
the role of the TMLHE gene in the metabolism of immature
astrocytes could provide valuable insights into its contributions
to the complex etiology of ASDs, particularly in the context of
mitochondrial function and metabolic regulation.

The potential involvement of glial cells in the development
of ASD-related deficits extends to lipid metabolism. Lipids play a
critical role in various aspects of neuronal development, including
migration, differentiation, morphogenesis, myelination, memory
formation, and synaptic plasticity, all of which are crucial for
proper neurodevelopment (Salvati et al., 2000; Wang and Eckel,
2014). These processes are especially pertinent to ASDs, as
they significantly influence neurodevelopmental trajectories (de la
Torre-Ubieta et al., 2016; Usui et al., 2017; Heavner and Smith,
2020). Numerous studies have highlighted the importance of lipid
metabolism in the pathophysiology of ASDs. For example, Smith–
Lemli–Opitz syndrome (SLOS), an inborn error in cholesterol
synthesis resulting from mutations in the 7-dehydrocholesterol
reductase (DHCR7) gene, manifests as developmental delays,
abnormal neural development, and atypical peripheral lipid
metabolism (Bukelis et al., 2007; Porter, 2008). Notably, the
DHCR7 gene, linked to SLOS, is highly expressed in astrocytes
during early post-natal development (Zhang et al., 2014, 2016),
underscoring the potential impact of this gene on astrocyte
function. Recent research has delved into the effects of DHCR7
mutations on astrocytes (Freel, 2022). Studies involving DHCR7
mutant mice have revealed that astrocytes in these animals exhibit
hallmark signs of reactivity, such as increased expression of
glial fibrillary acidic protein (GFAP) and cellular hypertrophy.
Transcript analysis has shown extensive immune activation in these
astrocytes, characterized by hyper-responsiveness to glutamate
stimulation and altered calcium flux. Interestingly, the effects
of DHCR7 mutations appear to be the result of non-cell-
autonomous influences from microglia, rather than being intrinsic
to astrocytes themselves. This finding suggests that the interplay
between astrocytes and microglia could be a contributing factor
to the neurological symptoms observed in cholesterol biosynthesis
disorders. Furthermore, these insights underscore a significant role
for cholesterol metabolism within the astrocyte-microglia immune
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axis, potentially shedding light on mechanisms relevant to other
neurological diseases.

The role of lipids, particularly the involvement of
glyceronephosphate O-acyltransferase (GNPAT), is pivotal in
understanding the onset of ASDs. GNPAT, which is crucial
for ether phospholipid synthesis, is prominently expressed in
astrocytes and microglia during post-natal development (Zhang
et al., 2014, 2016; Bennett et al., 2016; Clarke et al., 2018; Düking
et al., 2022). Its expression and function in these glial cells are
significant due to their crucial roles in neurodevelopment and
neural signaling. For instance, compromised GNPAT function in
immature astrocytes could disrupt the lipid composition of the
developing brain, potentially affecting neuronal development and
signaling. Similarly, alterations in GNPAT function in immature
microglia might impact their responsiveness to neuronal signals or
their involvement in neuroinflammatory processes, both of which
are implicated in the development of ASDs. Studies involving
GNPAT knockout mice, which lack the ability to biosynthesize
essential ether lipids including plasmalogens, have highlighted
the enzyme’s critical role in manifesting symptoms typical of
ASDs, such as impaired social interaction, repetitive behavior, and
hyperactivity (Dorninger et al., 2019a,b). These observed behaviors
in knockout mice are reflective of ASD-like symptoms, suggesting
that plasmalogens – and by extension, GNPAT’s role in their
synthesis – may be integral to the development of ASDs.

Mitochondrial dysfunctions are increasingly recognized as
crucial contributors to the onset of inflammatory processes
(Marchi et al., 2023). Mitochondria, beyond being the energy
powerhouses of cells, play a pivotal role in regulating immune
responses. When their function is compromised, it can lead to
an accumulation of ROS and the release of mitochondrial DNA
(mtDNA) into the cytoplasm. Both ROS and mtDNA act as
potent triggers for inflammatory signaling pathways. Elevated
ROS levels, for instance, can activate the NF-κB pathway, a central
regulator of inflammation, resulting in the production of pro-
inflammatory cytokines. Moreover, mitochondrial dysfunctions
can disrupt cellular energy balance, affecting metabolic pathways
such as glycolysis and the TCA cycle, and thereby exacerbating
inflammatory responses. A shift toward glycolysis, often observed
in immune cells during inflammation, is linked to mitochondrial
impairments. This metabolic reprogramming, known as the
Warburg effect, involves increased glucose uptake and lactate
production, a phenomenon commonly seen in activated
immune cells like macrophages and microglia. The altered
metabolic state not only meets the energy demands of these
cells but also contributes to the production of inflammatory
mediators. Furthermore, there is a clear interrelationship between
inflammation and glycolysis. Inflammatory responses necessitate
the coordination of multiple players, including innate immune
cells such as neutrophils and macrophages, as well as brain cell
types like microglia. When activated, microglial cells undergo
metabolic reprogramming, initially using glycolysis as an energy
source during peak inflammation and later relying on OXPHOS
metabolism during the resolution phase to adopt a pro-resolving
phenotype (Gimeno-Bayón et al., 2014; Wang et al., 2019;
Bernier et al., 2020). This indicates that different metabolic routes
determine the fate of microglial cells and influence inflammatory
responses.

Significantly, many studies have found that early-life
inflammation is a risk factor for various neurodevelopmental
disorders, including ASDs (Jiang et al., 2018). Animal models
of maternal immune activation have provided insights into
the cellular mechanisms of metabolic dysregulation (Estes and
McAllister, 2016), highlighting the importance of prenatal
inflammatory insults. However, recent research suggests that
adverse experiences in early childhood, including inflammation,
can also affect the risk of developing neurodevelopmental
disorders. A recent study analyzed single-cell transcriptomic
profiles of postmortem cerebella from children aged 1–5 years, both
with and without inflammation (Ament et al., 2023). The findings
revealed an increase in putative proinflammatory microglial cells
expressing the IL1B and CD83 + genes in children experiencing
inflammation. This suggests that brain tissue inflammation may
be associated with a shift toward microglial subpopulations that
express classical markers indicative of reactive proinflammatory
states. Moreover, these inflammatory states were found to lead to
a premature down-regulation of developmental gene expression
programs. This included a significant decrease in the expression of
genes previously implicated, through loss-of-function mutations,
in increasing the risk for neurodevelopmental disorders. The
decreased expression of these critical genes underscores the
profound impact of early inflammatory states, providing a deeper
understanding of how inflammation might predispose individuals
to neurodevelopmental disorders. These insights emphasize the
importance of targeting inflammatory pathways as a potential
therapeutic strategy to mitigate the risk of such disorders. Other
studies have identified mechanisms by which glycolysis influences
pro-inflammatory gene transcription in microglia (Bernier et al.,
2020). During inflammatory microglial activation, there are
changes in substrate transport into cells, enzymatic regulation,
and the transcription of metabolic genes. For example, increased
glucose uptake by activated microglia may result from the up-
regulation of GLUT1 (Bennett et al., 2016; Wang et al., 2019),
HK1/2 (Bennett et al., 2016; Li et al., 2018), or PFKFB3, a key
driver of aerobic glycolysis (Bennett et al., 2016; Nair et al., 2019).
As PFKFB3 regulates glycolytic activity, transcriptional control
of glycolytic machinery expression may depend on mTOR, a
master regulator of metabolism implicated in both syndromic
and idiopathic ASDs (Auerbach et al., 2011; Yecies and Manning,
2011; Saxton and Sabatini, 2017; Winden et al., 2018; Gazestani
et al., 2019; Rosina et al., 2019). Activation of mTOR correlates
with microglial reprogramming upon lipopolysaccharide (LPS)
treatment, and its inhibition can block the LPS-induced increase in
glycolysis (Hu et al., 2020). Additionally, LPS treatment increases
the expression of hypoxia-inducible factor-1α (HIF-1α), a key
gene coordinating the Warburg effect (York et al., 2021), inducing
various glucose transporters and glycolytic enzymes such as
aldolase A, suggesting that HIF-1α may regulate metabolic control
during inflammatory conditions (Coleman and Blass, 1985).

5 Conclusions

The intricate interplay between astrocytes, microglia, and
metabolic dysregulation in the context of ASDs reveals a
complex landscape of potential contributors to the etiology of
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these neurodevelopmental conditions. The evidence presented
underscores the importance of astrocytes and microglia, in the
manifestation of ASDs-related deficits. The observed dysregulation
in metabolic pathways, ranging from mitochondrial dysfunction
to alterations in lipid metabolism and glycolytic shifts, adds
a layer of complexity to our understanding of the biological
mechanisms underlying ASDs. Future research endeavors
should focus on unraveling the specific molecular pathways
that link glial cell dysfunction and metabolic irregularities
to ASDs pathophysiology. Targeting these pathways could
provide novel therapeutic avenues for ASDs interventions.
Additionally, investigating the impact of environmental factors,
such as nutrition and inflammation, on glial cell function
and metabolism during critical developmental periods may
offer insights into preventive strategies. In the realm of future
perspectives, leveraging evolving model systems, particularly those
derived from human-induced pluripotent stem cells (hiPSC),
holds tremendous promise in advancing our comprehension
of the intricate relationship between astrocytes, microglia
(Bezzi, 2022; Cordella et al., 2022; D’Antoni et al., 2023), and
metabolic pathways in the context of ASDs. The development
and integration of hiPSC-derived microglia and astrocytes into
experimental frameworks offers an unprecedented opportunity
to investigate the dynamic interplay of these glial cells in a
human-specific context. This approach enables the recreation
of patient-specific cellular environments, allowing researchers to
dissect the specific contributions of astrocytes and microglia to
metabolic dysregulation in ASDs. Furthermore, the adoption of
cutting-edge methodologies, including single-cell analyses, spatial
transcriptomics, and multi-omics approaches, can provide a more
granular and comprehensive understanding of the cellular and
molecular mechanisms orchestrating ASD pathology. Advanced
imaging techniques, such as high-resolution microscopy and
live-cell imaging, contribute to capturing the dynamic nature of
glial cell interactions and metabolic processes. Integrating these
sophisticated tools not only refines our current understanding
but also opens new avenues for the identification of potential
therapeutic targets and personalized treatment strategies tailored
to the specific metabolic signatures associated with ASDs
subtypes.
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