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The electroencephalogram (EEG) serves as an essential tool in exploring

brain activity and holds particular importance in the field of mental health

research. This review paper examines the application of artificial intelligence

(AI), encompassing machine learning (ML) and deep learning (DL), for classifying

schizophrenia (SCZ) through EEG. It includes a thorough literature review

that addresses the difficulties, methodologies, and discoveries in this field.

ML approaches utilize conventional models like Support Vector Machines and

Decision Trees, which are interpretable and effective with smaller data sets.

In contrast, DL techniques, which use neural networks such as convolutional

neural networks (CNNs) and long short-term memory networks (LSTMs), are

more adaptable to intricate EEG patterns but require significant data and

computational power. Both ML and DL face challenges concerning data quality

and ethical issues. This paper underscores the importance of integrating various

techniques to enhance schizophrenia diagnosis and highlights AI’s potential role

in this process. It also acknowledges the necessity for collaborative and ethically

informed approaches in the automated classification of SCZ using AI.
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1 Introduction

The electroencephalogram (EEG), commonly known as brain waves, is a crucial
tool that shows the electrical activity in the brain (Rangayyan, 2015). It facilitates our
comprehension of distinct brain regions such as the cerebrum, cerebellum, brain stem,
and thalamus. The cerebrum has two hemispheres and a complex outer layer called
the cerebral cortex, composed of intricate neuron arrangements. Below the cortex,
nerve fibers project and form connections with other brain regions and the peripheral
nervous system. The EEG is generated by cortical potentials resulting from interactions
among cell bodies and dendrites of pyramidal neurons (Cooper et al., 2014). The scalp
acts as a medium for capturing signals from the brain’s intrinsic processes, cognitive
activities, and responses to external stimuli, detected by surface electrodes. Scalp EEG
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FIGURE 1

The 10–20 system guides EEG electrode placement (Cooper et al.,
2014).

provides a consolidated representation of neural activity across
various cerebral areas. In medical environments, multiple
EEG channels are concurrently recorded from diverse scalp
locations to compare activities in various regions (Hughes, 1983;
Nahm et al., 1999). The International Federation of Societies
for Electroencephalography and Clinical Neurophysiology
recommends the 10–20 system for electrode placement (Cooper
et al., 2014), ensuring equal spacing for symmetrical positioning
and method for placing electrodes during EEG recordings is
presented in Figure 1. For specific cases like monitoring sleep
or detecting seizures, a more extended recording with multiple
channels might be needed. Specialized techniques, like needle
electrodes or recording from an exposed part of the cortex,
enhance EEG capabilities (Tatum and William, 2021). Different
techniques, such as rest or exposure to stimuli like light or sound,
help record the EEG in various states (Sarma and Barma, 2009).

Electroencephalogram signals demonstrate distinct rhythmic
or periodic patterns, with frequency bands characterized by
specific terms. The terminology for EEG frequency bands includes
Delta (δ) with a frequency range of 0.5 to 4 Hz, Theta (θ)
spanning from 4 to 8 Hz, Alpha (α) ranging between 8 and
13 Hz, and Beta (β) exceeding 13 Hz (Babiloni et al., 2020).
Each band represents a different spectrum of electrical activity
in the brain, and these classifications are fundamental in EEG
analysis, providing insights into various cognitive states and
neurological conditions. EEG rhythms intricately reflect a range
of physiological and cognitive processes (Miller, 2007). The alpha
rhythm, a prevailing resting pattern in the brain, is frequently
observed in relaxed adults, particularly in the occipital area with
synchronized activity on both sides (Niedermeyer, 1997). During
tasks such as listening or mental arithmetic with closed eyes,
strong alpha waves emerge, diminishing when the eyes open
in response to visual stimuli. As individuals progress through
distinct sleep stages, the alpha wave transitions to slower rhythms.
Theta waves appear during the initial stages of sleep, while delta
waves become prominent in deeper sleep. High-frequency beta

waves characterize background activity in individuals experiencing
heightened intensity or anxiety. Any deviation from the anticipated
rhythm in a specific state may suggest abnormality (Dang-Vu et al.,
2008). For instance, the presence of abnormal slow waves like
delta or theta during wakefulness is considered atypical. Abnormal
slow waves in corresponding regions can be induced by focal
brain injuries or tumors. Additionally, a one-sided depression (left-
right asymmetry) in rhythm may indicate disruptions in cortical
pathways, while the presence of spikes and sharp waves could signal
the existence of epileptogenic regions in specific parts of the brain
(Yang et al., 2021).

Electroencephalogram can be used to detect and study various
mental health conditions, including epilepsy (Cascella et al., 2009),
schizophrenia, bipolar disorder, major depressive disorder (Yasin
et al., 2021), ADHD (Lenartowicz and Loo, 2014), anxiety disorders
(Tolin et al., 2020), sleep disorders (Peter-Derex et al., 2021),
neurodevelopmental disorders (Lau-Zhu et al., 2019), traumatic
brain injury (Rapp et al., 2015), and dementia (Custodio et al.,
2020). It provides insights into brain activity and abnormalities
associated with these conditions, assisting in diagnosis and
treatment planning. However, EEG is typically used alongside
other clinical assessments for a comprehensive evaluation. Expert
interpretation by professionals in neurology or psychiatry is crucial.
Timely medication and consultations with doctors can be crucial
for saving the lives of patients. However, schizophrenia is a
serious and chronic mental health disorder that affects a person’s
thinking, emotions, and behavior (Aggernaes, 1994). People with
schizophrenia often experience a distorted perception of reality,
which can include hallucinations (seeing or hearing things that
others don’t), delusions (false beliefs), disorganized thinking, and
impaired social functioning. The exact cause of schizophrenia is
not known, but it is likely to result from a combination of genetic,
biological, and environmental factors (Tandon et al., 2008).

The 11th revision of the International Classification of Diseases
(ICD-11), approved by the World Health Assembly, includes a
section on “Schizophrenia Spectrum and Other Primary Psychiatric
Disorders.” This part of the ICD-11 covers various mental health
conditions related to schizophrenia and other primary psychiatric
disorders. Schizophrenia is a serious mental illness affecting
about 20 million people worldwide (He et al., 2020). Diagnosis
is usually based on observed symptoms like hallucinations and
disordered speech, along with persistent disengagement from
work or social activities. Unlike some physical illnesses, there
are no clear biological markers for schizophrenia (Marder and
Galderisi, 2017). Brain activity is affected, but other mental
illnesses like bipolar disorder or ADHD also influence baseline
brain activity (Newson and Thiagarajan, 2019). It’s common for
schizophrenia to be confused with other disorders like depression
or bipolar disorder, emphasizing the challenge of accurately
identifying mental health conditions (Pearlson, 2015). However, a
comprehensive diagnosis involves combining EEG findings with
clinical assessments, interviews, and possibly other neuroimaging
techniques. Trained professionals interpret EEG results within the
broader context of an individual’s clinical presentation. Ongoing
research aims to enhance our understanding of schizophrenia and
improve diagnostic accuracy through neuroimaging methods.

Recently, artificial intelligence (AI) has been used in many
areas, including student engagement, virtual reality therapy,
text sorting, cybersecurity, detecting and managing diseases,
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FIGURE 2

Block diagram for AI-based Schizophrenia classification.

elderly care, analyzing biological data, addressing pandemics, and
improving healthcare (Shaffi et al., 2023). In healthcare, AI can
help prevent diseases and improve the quality of life. It’s especially
useful for accurately diagnosing diseases. AI, particularly machine
learning and deep learning, can analyze complex medical data more
accurately and quickly, thanks to faster GPUs (graphics processing
units) and available datasets (Madiajagan and Sridhar Raj, 2019).
A Block diagram for AI-based Schizophrenia classification is
illustrated in Figure 2.

AI research in this area involves using both traditional machine
learning (ML) and deep learning (DL) methods. The algorithm for
diagnosing Schizophrenia (SCZ) using AI includes several steps:
preprocessing, feature extraction and selection, and classification.
When it comes to diagnosing SCZ through EEG signals, feature
extraction is particularly crucial (Sadeghi et al., 2022). In traditional
ML, the features extracted from EEG signals are typically divided
into four categories: time, frequency, time-frequency, and non-
linear fields. These categories help in analyzing different aspects of
the EEG signals for a more comprehensive understanding in the
diagnosis process. Creating features manually from EEG signals has
limitations in uncovering complex characteristics within the data,
hindering optimal performance (Khosla et al., 2020). Additionally,
selecting effective feature extraction methods for different EEG data
structures is challenging, time-consuming, and may not perform
well with large datasets, reducing their effectiveness. The deep
learning (DL) model demonstrated the capability to manage large
datasets, although it required considerably more time for both
training and testing in comparison to machine learning (ML)
methods (Janiesch et al., 2021).

2 Machine learning vs. deep learning
for EEG

In the realm of EEG analysis using traditional machine
learning, a systematic two-step process is employed. Firstly,
features are manually extracted from EEG signals, encompassing
characteristics like statistical measures or power spectral density.
The quality of this feature engineering profoundly impacts the

FIGURE 3

Machine Learning model block diagram representation.

performance of subsequent machine learning models. Common
algorithms utilized for EEG classification include Support Vector
Machines (SVM), Decision Trees (DT), Random Forests (RF),
Logistic Regression (LR), k-Nearest Neighbor (kNN), Naïve Bayes
(NB), Boosted tree (BT), Adaboost and other related algorithms
(Chen et al., 2014; Rahul et al., 2021; de Miras et al., 2023;
Kumar et al., 2023). A pictorial form of machine learning
categorization is shown in Figure 3. One notable advantage
lies in the interpretability of these models, as the explicitly
defined features allow users to comprehend the factors influencing
the model’s decisions. Additionally, traditional machine learning
models may demonstrate robustness with smaller datasets, making
them suitable for scenarios where data availability is limited
(Qayyum et al., 2021; Baygin et al., 2023).

In the context of EEG analysis, deep learning adopts a
distinctive approach by training artificial neural networks to
directly glean hierarchical representations from raw EEG data. This
obviates the need for manual feature extraction, enabling the model
to autonomously discern intricate patterns. Notably, Convolutional
Neural Networks (CNNs), Deep Neural Network (DNN), Transfer
Learning Models (TLM), Deep Belief Network (DBM), Recurrent
Neural Networks (RNNs), Long Short-Term Memory (LSTM), Bi-
directional-LSTM (Bi-LSTM) and others related model within the
deep learning paradigm excel in learning spatial and temporal
dependencies from raw EEG signals, making them adept at tasks
like image classification and sequential data analysis, respectively
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FIGURE 4

A Deep Learning model consists of an input layer, hidden layers, and an output layer.

FIGURE 5

A module of LSTM network.

(Tan et al., 2017; Merlin Praveena et al., 2022; Rahul and Sharma,
2022; Chaitanya et al., 2023). However, deep learning models often
necessitate substantial datasets for effective generalization, and
data augmentation techniques may be required to address data
scarcity. While these models can achieve high performance, they
are often perceived as “black boxes” due to the complexity of the
learned representations, posing challenges in understanding their
internal workings. Furthermore, the computational demands for
training deep learning models, particularly large neural networks,
are significant, requiring powerful GPUs. Choosing between deep
learning and machine learning for EEG analysis involves careful
consideration of several factors. Deep learning is advantageous for
handling raw and complex EEG data, where automatic feature
learning is beneficial, while machine learning may suffice for
datasets with well-defined features (Li et al., 2020). Computational
resources play a crucial role, as deep learning, especially with
large neural networks, demands substantial computing power. If
interpretability is paramount, as in medical applications, machine
learning’s transparent nature may be preferred over the perceived
nature of deep learning models. The specific EEG analysis

task, whether it involves classification, segmentation, or anomaly
detection, also influences the choice of methodology. Ultimately,
practitioners weigh these factors to determine the most suitable
approach based on their data characteristics, available resources,
interpretability needs, and analysis objectives. A Deep Learning
model consists of an input layer, hidden layers, and an output
layer is demonstrated in Figure 4. Additionally, a module of LSTM
network is shown in Figure 5.

3 Literature search

We conducted a comprehensive literature search following the
PRISMA (Preferred Reporting Items for Systematic Reviews and
Meta-Analyses) (Moher et al., 2009), as illustrated in Figure 6.
This search specifically focused on the study concerning the
classification of schizophrenia using EEG. We began by carefully
articulating the study issue of schizophrenia to generate a targeted
route for our investigation. We compiled an exhaustive list of
keywords and search terms linked to schizophrenia classification
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FIGURE 6

PRISMA flowchart of literature search procedures.

using EEG, including variations to ensure inclusivity. In the
initial phase of the identification process, PubMed and Science
Direct were searched using the terms “Automatic detection of
Schizophrenia,” “Automatic classification of Schizophrenia,”
“Automatic classification of Schizophrenia using Machine
learning,” and “Automatic classification of Schizophrenia using
Deep learning,” covering the years from 2013 to November 2023,
yielding a total of 485 articles. The subsequent screening phase
involved excluding items not in English, as well as reviews,
databases, or letters. Further screening based on each article’s title
and abstract identified 57 with unrelated study objectives and
unmatched techniques, leaving 52 items for thorough inspection.
Additionally, 10 publications were excluded for not containing
schizophrenia classifications with ML and DL, and 2 studies lacked
clear representations of feature extraction methods or classification
algorithms. After identifying, reviewing, and verifying that 40
papers met the inclusion criteria, the procedure was successfully
concluded. The studies reviewed were distributed based on their
year of publication. The databases utilized in the 40 studies are
outlined in Figure 7.

4 Schizophrenia classification using
machine learning

Detecting schizophrenia using machine learning (ML) is a
promising area of research with significant potential for improving
early diagnosis and intervention. ML techniques can analyze
various data sources, including biomedical signals, to identify
patterns and markers associated with schizophrenia. In this study,
the details of papers reviewed are summarized in Table 1, where out
of 40 papers, 24 specifically addressed Schizophrenia classification
using machine learning.

The Table 1 presents a diverse array of methodologies applied
in EEG signal analysis, offering insights into various preprocessing
techniques and classification methods. Notably, reference (Agarwal
and Singhal, 2023) employs a robust strategy that integrates FFT
and statistical features with SVM, KNN, BT, and DT classifiers,
achieving an impressive accuracy of 99.25% across both the IPN
and Kaggle SCZ datasets. Conversely, reference (Devia et al.,
2019) reports a lower accuracy of 71% on private EEG dataset,
attributed to the use of a Butterworth filter and ICA in conjunction
with a small dataset. The integration of spatial filters and a
bandpass filter in reference (Luján et al., 2022), utilizing six
different classifiers where RBF stands out, results in a notable
accuracy of 93.40% on private data. The method described in
Khare and Bajaj (2022), which uses RVMD for preprocessing and
optimized extreme machine learning on the Kaggle SCZ dataset,
achieved lower accuracy but outperformed (Devia et al., 2019). The
approach proposed in Aydemir et al. (2022), employing CGP17Pat
for feature extraction and KNN for classification, obtained a
very high accuracy of 99.91%, though it did not surpass the
results achieved by Najafzadeh et al. (2021). These studies employ
diverse databases, including IPN, Kaggle SCZ, and private datasets,
showcasing the adaptability of methods across various contexts.
Various preprocessing techniques, such as wavelet transform (Du
et al., 2020), FIR filter (Aksöz et al., 2022), and adaptive neuro-
fuzzy inference system (ANFIS) (Najafzadeh et al., 2021), highlight
the richness and diversity of approaches in EEG signal analysis.
Noteworthy is the study in Najafzadeh et al. (2021), which achieves
a perfect accuracy of 100% using a Butterworth filter alongside
ANFIS, SVM, and ANN. The methods in Shim et al. (2016);
(Jeong et al., 2017; Lai et al., 2019; Kim et al., 2020, 2021;
Azizi et al., 2021; Keihani et al., 2022), and (Santos-Mayo et al.,
2016), which use a bandpass filter in combination with other
preprocessing techniques, fail to achieve the impressive accuracy
seen in Aydemir et al. (2022); (Agarwal and Singhal, 2023), and
(Najafzadeh et al., 2021). The studies in Vázquez et al. (2021)
and (Guo et al., 2022), employing Butterworth and Vietoris–Rips
filtering for preprocessing and RF classifier and Bottleneck and
Wasserstein distances, respectively, for classification of SCZ, did
not report their results in terms of accuracy. The methods in
Jahmunah et al. (2019); (Khare and Bajaj, 2021; Rajesh and Sunil
Kumar, 2021; Luján et al., 2022; Zandbagleh et al., 2022), and
(Aksöz et al., 2022) achieved moderate accuracy with different
preprocessing techniques. However, the approaches in Neuhaus
et al. (2013) and (Du et al., 2020) secure lower accuracies
but still surpass the performance of Devia et al. (2019). The
reported accuracies highlight the significant role of preprocessing
and classification choices in EEG signal processing effectiveness.
These studies underscore the need for context-specific, tailored
approaches and the importance of balancing preprocessing and
classification methods for optimal results.

5 Schizophrenia classification using
deep learning

The deployment of these sophisticated neural networks enables
the creation of a dynamic and adaptive system that can discern
subtle and complex patterns indicative of schizophrenia. This
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FIGURE 7

The total number of papers on schizophrenia classification.

process is vital in enhancing the accuracy of detection, as it
allows the model to uncover intricate relationships and features
that might be challenging for traditional methods to identify. The
amalgamation of neural network capabilities with deep learning
principles positions these models as powerful tools in the quest for
more effective and nuanced approaches to schizophrenia detection.
In this section, the details of the papers reviewed are summarized
in Table 2, where out of 40 papers, 16 specifically addressed
schizophrenia classification using deep learning.

Table 2 provides a comprehensive summary of various studies
that have used deep learning methods for the detection of
SCZ using EEG. The method presented in Bagherzadeh et al.
(2022) employ Butterworth filters and Transfer Entropy (TE) in
conjunction with various deep learning architectures, including
VGG-16, ResNet50V2, InceptionV3, EfficientNetB0, DenseNet121,
and CNN-LSTM, achieving an impressive accuracy of 99.90% on
EEG signals from the IPN database. Aslan and Akin (2022) employs
CWT and advanced CNN and VGG16, achieving a high accuracy
of 99.5% on both private and IPN EEG data. Supakar et al. (2022)
employ a dimensionality reduction algorithm in conjunction with
RNN-LSTM, achieving an accuracy of 98% on Laboratory for
Neurophysiology and Neuro-Computer Interfaces dataset. Shalbaf
et al. (2020) utilize Wavelet Transform with AlexNet, ResNet-
18, VGG-19, Inception-v3, and SVM, achieving an accuracy of
98.60% on the IPN dataset. Soria Bretones et al. (2023) introduce
digital filters and fuzzy means clustering combined with an artificial
neural network based on radial basis function (RBF), achieving an
accuracy of 93% on EEG data from the Psychiatry Department

of Virgen de la Luz Hospital in Cuenca. Siuly et al. (2023) and
(Siuly et al., 2022) apply average filtering with different deep
learning architectures, such as deep ResNets, GoogleNet, and SVM,
achieving high accuracies of 99.23% and 98.84%, respectively, on
the Kaggle SCZ dataset. Shoeibi et al. (2021) employ segmentation,
denoising, and normalization techniques with 1-D-CNN, LSTM,
and 1-D-CNN + LSTM, achieving an accuracy of 99.25% on
EEG signals from the IPN database. Phang et al. (2019) utilize
connectivity measures, specifically VAR coefficients and PDCs,
with a multi-domain CNN, achieving an accuracy of 91.69% on
EEG SCZ data. Singh et al. (2021) combine bandpass filtering,
segmentation, and FFT with CNN + LSTM, achieving an accuracy
of 98.56% on EEG data from both EEG SCZ and IPN databases.
Lastly (Khare et al., 2021) apply STFT, CWT, and SPWVD
with various CNN architectures (AlexNet, ResNet50, VGG16),
achieving an accuracy of 93.36% on the Kaggle SCZ dataset. Sun
et al. (2021) achieved 99.22% accuracy using Fourier Transform
with CNN + LSTM, while (Supakar et al., 2022) reported 98%
with Random Projection and RNN-LSTM. Hassan et al. (2023)
combined a Digital Bandpass Filter with a CNN + ML hybrid,
reaching 98.05% accuracy. Notably, (Bao et al., 2023) attained the
highest accuracy of 99.57% using Notch Filter, PCA, CNN, and
TCNs. Shen et al. (2023) employed Continuous Wavelet Transform
and a 3D-CNN, achieving 98.89%. The highest accuracy was
reported by Bagherzadeh et al. (2022), achieving an impressive
99.90% and the other hand, the lowest accuracy was noted in
the study (Phang et al., 2019), with an accuracy of 91.69%. These
varied accuracies highlight the influence of specific preprocessing
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TABLE 1 Studies employing Machine Learning methods for detection of SCZ.

Study Preprocessing Method Signal Database Accuracy

Vázquez et al., 2021 Low- and high-pass Butterworth
filters

RF Classifier EEG IPN (Olejarczyk and
Jernajczyk, 2017)

NR

Rajesh and Sunil Kumar,
2021

Symmetrically Weighted local
binary patterns (SLBP) and
correlation

Logit Boost classifier EEG Laboratory for
Neurophysiology and
Neuro-Computer Interfaces,
MHRC

91.66

Agarwal and Singhal,
2023

Fast Fourier transform (FFT) and
statistical feature

SVM, KNN, BT, and DT EEG IPN (Olejarczyk and
Jernajczyk, 2017) and Kaggle
SCZ dataset (Ford et al.,
2014)

99.25

Khare and Bajaj, 2022 Robust variational mode
decomposition (RVMD)

Optimized extreme machine
classifier

EEG Kaggle SCZ dataset (Ford
et al., 2014)

92.93

Aydemir et al., 2022 CGP17Pat and Iterative
neighborhood component
analysis (INCA)

KNN EEG IPN (Olejarczyk and
Jernajczyk, 2017)

99.91

Jahmunah et al., 2019 Butterworth filter and
Segmentation

DT, Linear-Discriminant Analysis
(LDA), KNN,
Probabilistic-Neural- Network
(PNN), and SVM

EEG IPN (Olejarczyk and
Jernajczyk, 2017)

92.91

Devia et al., 2019 Butterworth filter and
Independent component analysis
(ICA)

LDA, and Rule-based classifier EEG Private 71

Neuhaus et al., 2013 Digital filters and ICA KNN, LDA, SVM, EEG Private 72.4

Luján et al., 2022 Spatial filters and Bandpass filter SVM, Bayesian LDA, Gaussian
NB, KNN, Adaboost, and Radial
basis function (RBF)

EEG Private 93.40

Khare and Bajaj, 2021 Flexible tunable Q wavelet
transform (F-TQWT)

Flexible least square support
vector machine (F-LSSVM)
classifier and grey wolf
optimization (GWO) algorithm

EEG Kaggle SCZ dataset (Ford
et al., 2014)

91.39

Zandbagleh et al., 2022 EEGLAB and ICA KNN, LDA, and SVM EEG Private 89.21

Du et al., 2020 Wavelet Transform Non-linear dynamic and
Functional brain networks

EEG Private 76.77

Aksöz et al., 2022 Finite impulse response (FIR)
filter

KNN, ANN, and SVM EEG Kaggle SCZ dataset (Ford
et al., 2014)

93.9

Najafzadeh et al., 2021 Butterworth filter Adaptive neuro fuzzy inference
system (ANFIS), SVM, and ANN

EEG IPN (Olejarczyk and
Jernajczyk, 2017)

100

Azizi et al., 2021 Bandpass filter and ICA LR classifier EEG IPN (Olejarczyk and
Jernajczyk, 2017)

97

Shim et al., 2016 Bandpass filter SVM EEG Private 88.24

Kim et al., 2021 Bandpass filter SVN EEG IPN (Olejarczyk and
Jernajczyk, 2017)

76.85

Keihani et al., 2022 Bandpass filter SVM and Bayesian optimization EEG IPN (Olejarczyk and
Jernajczyk, 2017)

90.93

Prabhakar et al., 2020 ICA Black Hole (BH) optimization
and SVM

EEG IPN (Olejarczyk and
Jernajczyk, 2017)

92.17

Kim et al., 2020 Bandpass filter and notch filter LDA EEG Private 88.10

Jeong et al., 2017 Bandpass filter and ICA LDA EEG Private 98

Lai et al., 2019 Bandpass filter and ICA NB and SVM EEG Private 86.3

Guo et al., 2022 Vietoris–Rips filtering algorithm Bottleneck and Wasserstein
distances

EEG Private NR

Santos-Mayo et al., 2016 Bandpass filter + ICA + Grand
average + Segmentation

Multilayer Perceptron (MLP) and
SVM

EEG-ERP Private 93.42

IPN, Institute of Psychiatry and Neurology; MHRC, Mental Health Research Center; ERP, Evoked Related Potential.
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TABLE 2 Studies using Deep Learning methods for detection of SCZ.

Study Pre-processing Method Signal Database Accuracy
(%)

Bagherzadeh et al., 2022 Butterworth filters and Transfer
Entropy (TE)

VGG-16, ResNet50V2,
InceptionV3, EfficientNetB0,
DenseNet121, and CNN-LSTM

EEG IPN (Olejarczyk and
Jernajczyk, 2017)

99.90

Aslan and Akin, 2022 Continuous Wavelet Transform Visual Geometry Group-16
(VGG16), an Advanced
convolutional neural network
(CNN)

EEG 1. Private
2. IPN (Olejarczyk and
Jernajczyk, 2017)

99.5

Supakar et al., 2022 Dimensionality reduction
algorithm

RNN-LSTM EEG Laboratory for
Neurophysiology and
Neuro-Computer Interfaces
(Shishkin et al., 2011)

98

Shalbaf et al., 2020 Wavelet Transform AlexNet, ResNet-18, VGG-19,
Inception-v3, and SVM

EEG IPN (Olejarczyk and
Jernajczyk, 2017)

98.60

Soria Bretones et al., 2023 Digital filters and Fuzzy means
clustering

Artificial neural network based on
RBF

EEG Psychiatry Department of
Virgen de la Luz Hospital in
Cuenca

93

(Siuly et al., 2023) Average filtering Deep ResNets, softmax layer and
deep features with SVM

EEG Kaggle SCZ dataset (Ford
et al., 2014)

99.23

Siuly et al., 2022 Average filtering GoogleNet and deep features,
SVM

EEG Kaggle SCZ dataset (Ford
et al., 2014)

98.84

Shoeibi et al., 2021 Segmentation, Denoising,
Normalization

1-D-CNN, LSTM, and
1-D-CNN + LSTM

EEG IPN (Olejarczyk and
Jernajczyk, 2017)

99.25

Phang et al., 2019 Connectivity measures (VAR
coefficients and PDCs)

Multi domain-CNN EEG EEG SCZ (Gorbachevskaya
and Borisov, 2002)

91.69

Singh et al., 2021 Bandpass filter, segmentation,
and Fast Fourier transform (FFT)

CNN + LSTM EEG 1. EEG SCZ (Gorbachevskaya
and Borisov, 2002)
2. IPN (Olejarczyk and
Jernajczyk, 2017)

98.56

Khare et al., 2021 Short Term FFT, Continuous WT,
and SPWVD

AlexNet, ResNet50, VGG16, and
CNN

EEG Kaggle SCZ dataset (Ford
et al., 2014)

93.36

(Sun et al., 2021) Fourier transform (FT) CNN + LSTM EEG Huilongguan Hospital 99.22

Supakar et al., 2022 Random projection RNN + LSTM EEG Laboratory for
Neurophysiology and
Neuro-Computer Interfaces
(Shishkin et al., 2011)

98

Hassan et al., 2023 Digital bandpass filter Hybrid Classifier (CNN + ML) EEG IPN (Olejarczyk and
Jernajczyk, 2017)

98.05

Bao et al., 2023 Notch filter + Principal
component analysis (PCA)

CNN and temporal convolution
networks (TCNs)

EEG IPN (Olejarczyk and
Jernajczyk, 2017)

99.57

Shen et al., 2023 Continuous wavelet transform
(CWT) + Digital bandpass filter

Customized 3D-CNN EEG Laboratory for
Neurophysiology and
Neuro-Computer Interfaces
(Shishkin et al., 2011)

98.89

techniques and neural network architectures on the effectiveness of
detecting schizophrenia in EEG.

6 EEG datasets for schizophrenia
detection

Electroencephalogram signals can be readily obtained from
high-quality open datasets accessible to the public. These datasets,
which are easily obtainable, open, and shareable, significantly

aid independent researchers in developing new algorithms or
findings and conducting performance comparisons in studies
related to Schizophrenia diagnosis. There are multiple EEG datasets
specifically designed for predicting SCZ. However, ethical concerns
prevent most of this data from being shared in the public domain,
limiting the reproducibility of related works. Some private datasets,
including those used in studies (Neuhaus et al., 2013; Santos-Mayo
et al., 2016; Shim et al., 2016; Jeong et al., 2017; Devia et al.,
2019; Lai et al., 2019; Du et al., 2020; Kim et al., 2020; Aslan and
Akin, 2022; Bagherzadeh et al., 2022; Guo et al., 2022; Luján et al.,
2022; Zandbagleh et al., 2022) utilized experimental EEG datasets
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where researchers devised experimental paradigms. Participants
provided written informed consent, and approval was obtained
from the Institutional Review Board (IRB). The scarcity of publicly
available datasets poses a major challenge for researchers exploring
diseases and conducting disease prediction and medical pattern
detection tasks. Nevertheless, in recent years, several EEG datasets
for SCZ diagnosis have become accessible in an open environment,
gaining significant attention. In this research domain, there are a
few popular publicly available datasets for binary classification of
SCZ. The initial dataset is sourced from the Institute of Psychiatry
and Neurology in Warsaw, Poland, and is openly accessible
in the RepOD dataset (Olejarczyk and Jernajczyk, 2017). The
second dataset originates from the Neurophysiology and Neuro-
Computer Interfaces laboratory at the Mental Health Research
Center (MHRC), Russia, and is publicly available. The third and
less-explored SCZ EEG dataset is collected under a project of the
National Institute of Mental Health (NIMH; R01MH058262) and
is publicly available on the Kaggle platform (Ford et al., 2014).

7 Challenges in classification of
schizophrenia using ML and DL

Machine learning (ML) faces challenges in classifying
schizophrenia due to diverse and limited datasets, hindering
the development of generalized models. The complexity of
schizophrenia symptoms makes it hard to choose relevant features
and interpret model results, affecting our understanding of
clinical significance. Imbalanced datasets, ethical concerns, and
the need for collaboration between machine learning experts
and clinicians further complicate building accurate and ethical
classification models. Overcoming these challenges requires
improving data quality, fostering collaboration, and addressing
ethical considerations to integrate machine learning effectively
into clinical practices for schizophrenia diagnosis. Traditional
ML distinguishes itself through a multi-stage approach involving
pre-processing, feature selection, and extraction. In ML, the need
for predefined feature engineering is prevalent, and the models
are characterized by task-specific features (Cortes-Briones et al.,
2022). This approach may struggle with adaptability to various
data types or applications, and the learning process often lacks
autonomy. While ML provides a structured and interpretable
framework, its reliance on explicit feature engineering can limit
its ability to handle complex relationships within the data. Despite
these limitations, ML remains a valuable tool in various domains,
contributing insights and predictions based on well-defined
features and structured algorithms (Bzdok and Meyer-Lindenberg,
2018).

Several challenges are associated with deep learning (DL)
models. One significant hurdle is the substantial need for
extensive training data to construct effective DL models. Transfer
learning, a strategy leveraging data from related tasks, can
partially address this issue, improving the model’s performance.
However, it does not entirely replace the requirement for
original data (Sharma et al., 2023). Another challenge involves
dealing with unbalanced data, which is common in biological
datasets where negative samples often outnumber positive
ones. Training DL models on skewed data may lead to

unexpected outcomes, and the impact of imbalanced data on
model performance has been extensively studied (Johnson and
Khoshgoftaar, 2019). Additionally, uncertainty scaling is crucial in
healthcare applications to assess the accuracy of ML and DL-based
diagnoses, preventing overconfident predictions. Catastrophic
forgetting is another issue, occurring when new information
disrupts previously learned knowledge in simple DL models.
To mitigate this problem, training a new model from scratch
with both old and new data is a recommended solution. DL
models also face the risk of overfitting during training due
to numerous interrelated parameters, impairing their overall
effectiveness. Inadequate training data further contributes to
overfitting, causing the learned distribution to deviate from the true
distribution. Additionally, the vanishing gradient problem arises
in DL, especially during backpropagation, when weights may not
update effectively, leading to termination of the neural network
training process (Li et al., 2019).

The key highlights of this study are summarized as follows:

1. This study provides a detailed review of DL and ML
methodologies applied in the detection of SCZ.

2. This study evaluates the shortcomings of current DL and ML
methodologies, proposing possible solutions.

3. This study offers a comprehensive analysis of all relevant
parameters from existing studies that use DL and ML
techniques, specifically within the comparison and
discussion sections.

4. It also explores the future of integrating EEG and
neuroimaging data to diagnose SCZ through AI algorithms.

8 Conclusion

This paper finds into the application of artificial intelligence,
specifically machine learning (ML) and deep learning (DL), in
the classification of SCZ using EEG signals. The review highlights
that traditional ML models like Support Vector Machines and
Decision Trees are interpretable and robust with smaller datasets,
while DL methods using neural networks demand more data
and computational resources but adapt well to complex EEG
patterns. The review encompasses a thorough examination of
methodologies, challenges, and findings in this realm. Both
approaches face challenges in data quality, interpretability,
and ethics. The diverse techniques highlighted in reviewed
studies emphasize the need for a balanced, context-specific
approach. While AI holds promise for advancing SCZ diagnosis,
interdisciplinary collaboration and ethical considerations are
crucial for its effective integration into mental health.
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