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Intelligent maneuver strategy for 
hypersonic vehicles in 
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Aiming at the rapid development of anti-hypersonic collaborative interception 
technology, this paper designs an intelligent maneuver strategy of hypersonic 
vehicles (HV) based on deep reinforcement learning (DRL) to evade the 
collaborative interception by two interceptors. Under the meticulously designed 
collaborative interception strategy, the uncertainty and difficulty of evasion are 
significantly increased and the opportunity for maneuvers is further compressed. 
This paper, accordingly, selects the twin delayed deep deterministic gradient 
(TD3) strategy acting on the continuous action space and makes targeted 
improvements combining deep neural networks to grasp the maneuver strategy 
and achieve successful evasion. Focusing on the time-coordinated interception 
strategy of two interceptors, the three-player pursuit and evasion (PE) problem 
is modeled as the Markov decision process, and the double training strategy 
is proposed to juggle both interceptors. In reward functions of the training 
process, the energy saving factor is set to achieve the trade-off between miss 
distance and energy consumption. In addition, the regression neural network is 
introduced into the deep neural network of TD3 to enhance intelligent maneuver 
strategies’ generalization. Finally, numerical simulations are conducted to 
verify that the improved TD3 algorithm can effectively evade the collaborative 
interception of two interceptors under tough situations, and the improvements 
of the algorithm in terms of convergence speed, generalization, and energy-
saving effect are verified.
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1 Introduction

With the development of anti-near-space technology, especially the progress of cooperative 
interception technology against the hypersonic vehicle (HV) (Ding et al., 2022), the survival 
space of HV encountering two interceptors has been greatly compressed. Its high-speed 
advantage will not lead the HV to achieve successful evasion once again (Liu et al., 2023). 
Accordingly, it is essential to investigate the problem that one HV faces with two interceptors 
and design the relevant game maneuver strategy to achieve successful evasion.

The HV’s evasion for two interceptors is essentially a special three-player pursuit-evasion 
game problem and the three-player pursuit-evasion game problem, nowadays, has been widely 
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studied. Weintraub et al. (2020) described the pursuit-evasion game 
with the application in aerospace in detail and Pachter and Wasz 
(2019) focused on the field of vessels. Zhang et al. (2022), Casini and 
Garulli (2022), and Fang et al. (2020) studied the three-player game in 
which the speeds of the two pursuers are greater than, equal to, and 
less than that of one evader, respectively. Nath and Ghose (2022) and 
Zhang and Zha (2018) conducted pursuit-evasion game research 
under certain objectives or constraints in the two-dimensional plane. 
The differential game strategy in optimal control (Fuchs et al., 2018; 
Szots et al., 2021; Yan et al., 2021; Zhang et al., 2023) was utilized to 
solve the three-player pursuit-evasion game. Wang et al. (2020), Wan 
et al. (2021), and Hamidoglu (2023) each applied different intelligent 
algorithms to achieve evasion, respectively. Unlike the above 
references, the particularity of the hypersonic three-player pursuit-
evasion problem is the vehicle characteristics of both sides as well as 
the special pursuit-evasion confrontation scenarios (Liu et al., 2022). 
The pursuer (interceptor) can offset the speed difference of a few Mach 
and magnify the overload disadvantage of the evader (HV) by 
constructing the head-on situation where the pursuer and the evader 
fly toward each other in opposite directions. In addition, when 
multiple pursuers form cooperative interception under the sensible 
interception strategy, the maneuvering space of the evader will 
be further compressed and the difficulty of HV’s successful evasion 
will be greatly increased, unlike the two-evader/one-pursuer problem 
(Liang et al., 2022) or the target-defense-attack problem (Sinha et al., 
2022). In conclusion, the hypersonic three-player pursuit-evasion 
game is a highly dynamic and strongly adversarial pursuit-evasion 
game problem in complex situations, which is extremely difficult for 
the evader under reasonable confrontation scenarios and 
interception strategy.

Therefore, the examination of the hypersonic three-player pursuit-
evasion game is based on creating logical pursuit-evasion game 
situations as well as creating cooperative interception techniques for 
pursuers. The two most notable studies of HV evasion versus two 
interceptors in recent years (Yan et al., 2020; Shen et al., 2022) both 
noted that the hypersonic pursuit-evasion problem must be considered 
in head-on situations. To guarantee the difficulty of HV evasion, Yan 
et al. (2020) further designed the confrontation scenarios belonging 
to head-on situations that several Successive Pursuers came from the 
Same Direction (SPSD) and proposed the hierarchical cooperative 
interception strategy to form the coordinated interception with 
layered interferences in time and space. By carefully designing the 
spacing ” X  between two interceptors, efforts were made to ensure 
that at least one interceptor intercepted the pursuer. Therefore, when 
investigating the hypersonic pursuit-evasion game, this paper chooses 
to apply the hierarchical cooperative interception strategy (Yan et al., 
2020), and further expands and constructs the attack and defense 
confrontation model based on the SPSD scenario.

Furthermore, the optimum control approach was employed by 
Yan et  al. (2020) and Shen et  al. (2022) to create HV maneuver 
overload orders. Shen et  al. (2022) chose to transform the HV’s 
trajectory optimization problem of evading two interceptors into a 
nonconvex optimal control problem and solved it by the interior point 
method, while Yan et al. (2020) derived an analytical expression for 
the evasion command satisfying certain constraints. These two 
strategies had high requirements on the onboard computer resources, 
computation time, and real-time access to the information of 
interceptors, which are difficult to achieve in practical applications. 

Therefore, it is imperative to use more potent intelligent algorithms to 
capture maneuver time and resolve the hypersonic three-player 
pursuit-evasion puzzle.

Deep reinforcement learning (DRL), an emerging intelligence 
algorithm, has found widespread use in hypersonic vehicles. The 
algorithm obtains the optimal policy by continuous trial-and-error 
and feedback learning through constant interaction with the 
environment, and it has the perceptual capability of deep learning 
(DL) and the decision-making capability of reinforcement learning 
(RL), allowing end-to-end perception and decision in high-
dimensional state-action space (Matsuo et al., 2022). A large body of 
literature utilized DRL in the HV pursuit-evasion problem. Gaudet 
et al. (2020) and Gaudet et al. (2021) developed a guidance law for an 
outer atmospheric interception based on proximal policy optimization 
(PPO) and meta-learning. The trust region policy optimization 
(TRPO) algorithm was proposed to generate an interception guidance 
law (Chen et al., 2023). With an emphasis on the terminal evasion 
scenario, Qiu et al. (2022), based on DRL, developed a maneuver 
evasion guidance method that took into account both guidance 
accuracy and evasion capabilities. In a different study (Jiang et al., 
2022), the problem was reformulated as a Markov decision process 
(MDP), and an Actor-Critic (AC) framework-based DRL algorithm 
was used to solve it to suggest the anti-interception guiding law. To 
intercept the moving target, Li et al. (2022) somewhat enhanced the 
reinforcement learning algorithm. The ideal attitude-tracking problem 
for HVs during the reentry phase (Zhao et al., 2022) was solved using 
the RL algorithm. Bao C. et al. (2023) produced the three-dimensional 
(3D) trajectory of the HV during the glide phase using the RL 
algorithm and deep neural network (DNN). The autonomous 
optimum trajectory planning technique for the HV was designed 
using the deep deterministic policy gradient (DDPG) algorithm (Bao 
C. Y. et al., 2023) minimizing the trajectory terminal position errors. 
Gao et al. (2023) and Guo et al. (2023) both applied the two delay deep 
deterministic (TD3) policy gradient algorithm to solve the HV’s 
one-to-one pursuit-evasion game problem in the head-on situation 
and a series of improvements were made (Guo et al., 2023) to expand 
the application scenarios and enhance the performance of the 
algorithm. It is worth mentioning that, while DRL algorithms have 
been widely used to solve HV pursuit-evasion problems, they are all 
confined to how one HV evades one interceptor and how several 
interceptors block the HV. As far as the authors know, no literature has 
employed the DRL algorithm to address how the HV evades two 
interceptors in challenging scenarios, which is due to the HV’s 
inability to elude two interceptors easily. Cooperative interception 
methods in unfavorable scenarios increase the randomness and 
uncertainty in the highly dynamic game process, making it challenging 
to successfully train the agent. Furthermore, various key performance 
factors in HV pursuit-evasion, such as generalizability and energy 
consumption, should be prioritized.

As a result, this study picks the TD3 algorithm applied to 
continuous action space and performs targeted changes to develop the 
intelligent maneuver strategy to handle the hypersonic three-player 
pursuit-evasion problem. Firstly, the three-player attack and defense 
confrontation model of a hypersonic vehicle encountering two 
interceptors is established. Secondly, the three-player pursuit-evasion 
problem is modeled as a Markov decision process and the double 
training strategy is proposed to take into account both interceptors 
and guarantee the whole training success. At the same time, the 
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reward functions are carefully designed to compromise the terminal 
miss distance and the energy consumption during the evasion process 
by an adjustable energy-saving factor. In addition, the structure of the 
deep neural network of the TD3 algorithm is improved and the 
regression network is introduced to enhance the generalization of the 
intelligent maneuver strategy.

The advantages of the proposed intelligent maneuvering approach 
over classical methods (Yan et  al., 2020; Shen et  al., 2022) are as 
follows. Compared to the ballistic optimization approach (Shen et al., 
2022), the proposed strategy based on the DRL algorithm is created 
by continuous interactions between both sides throughout the 
adversarial game rather than unilateral design. Furthermore, in this 
article, the beginning conditions are constructed as more difficult 
close-range frontal situations in which unilateral ballistic planning 
based on mass maneuvering fails to achieve successful evasion. 
Meanwhile, the proposed method continually investigates each 
maneuver strategy through interaction and eventually converges on 
the superior solution rather than the conservative solution, which is 
superior to the traditional maneuver strategy (Yan et  al., 2020). 
Furthermore, the proposed strategy does not take up too many 
resources of the ballistic computer and does not need to capture the 
information of the pursuers at any time during the pursuit-
evasion process.

The main innovations of this paper are as follows.

 (1) To the best of the authors’ knowledge, the proposed strategy is 
the first intelligent maneuver strategy based on the DRL 
algorithm for solving the hypersonic three-player pursuit-
evasion problem under tough situations.

 (2) In this paper, the relationship between the off-target amount 
and energy consumption of HV is fully considered, and the 
energy-saving factor is set in reward functions to quantitatively 
regulate the above two important indexes.

 (3) This paper improves the generalization of the algorithm, and 
the regression network is designed in the deep neural network 
of the TD3 algorithm to improve network structure to apply to 
complex confrontation situations.

The remaining research is organized as follows. Section 2 describes 
the confrontation scenarios and the model of the pursuit-evasion 
game problem for HV evading two interceptors. In Section 3, the TD3 
algorithm is introduced and targeted improvement strategies are 
proposed. The proposed strategy is verified by numerical simulation 
in Section 4. Conclusions are presented in Section 5.

2 Model and problem

In this section, the attack and defense confrontation scenarios in 
which the HV encounters two interceptors are designed. Then, the 
hypersonic three-player pursuit-evasion problem is modeled under 
these scenarios and the corresponding detailed formulations are given.

2.1 Pursuit-evasion confrontation scenarios

When designing pursuit-evasion confrontation scenarios between 
HV and interceptors, interceptors must constitute head-on situations 

against the HV regardless of the number of interceptors. Only in these 
situations can the interceptor successfully engage the HV (Remark 1). 
For the three-player pursuit-evasion game with two pursuers, the 
pursuers’ interception strategy is crucial. From the perspective of 
anticipating the enemy, this paper chooses the hierarchical cooperative 
interception strategy (Remark 2), which constitutes the SPSD pursuit-
evasion confrontation situations for HV. In addition, considering the 
HV maneuvering characteristics, the attack and defense confrontation 
scenarios are simplified to a two-dimensional plane (Assumption 1).

The relative motion diagram is shown as Figure 1 and the relative 
geometric kinematics equations for the HV encountering two 
interceptors are given as follows:
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where E P ii, =( )1 2,  represent the evader (HV) and two pursuers 
(interceptors) respectively, which are regarded as mass points. 
r iEPi =( )1 2,  indicate the relative distances between the evader and two 
pursuers, respectively. λEPi i =( )1 2,  are the line-of-sight angles 
between the evader and the two pursuers, respectively. u v ii, =( )1 2,  
are the overloads of the HV and interceptors, respectively. 
V j E Pj i=( ),  denote the velocities of three aircraft respectively, which 
are considered to be constant during the game process (Assumption 
2), and ψVj ij E P=( ),  are the ballistic declination angles of the three 
aircraft. As shown in Figure  1, the magnitudes of the velocity 
intersection angle φEPi i =( )1 2,  are set within a range of smaller values 
to ensure the head-on situation, and the spacing of the pursuers X∆  
is established to guarantee that interceptors can form the 
cooperative interception.

FIGURE 1

X-Z plane adversarial geometry of three-player.
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Considering the vehicle characteristics, the respective dynamics 
and kinematics equations for HV and interceptors can be  
given by:
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where the subscripts j E P ii= =( ), 1 2,  denote the engaged aircraft 
of the pursuit-evasion in both parts. θ j ij E P=( ),  indicate the ballistic 
inclination angles of aircraft, respectively. x y z, ,  are the coordinates of 
vehicles in three directions, and n  is the vehicle 
overload, n u n v izE zP ii

= = =( ), 1 2, .
Considering the small-angle hypothesis, the linear differential 

equation for the hypersonic three-player pursuit-evasion game can 
be expressed as:
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where u u VE
⊥ = cosψ , v v ii i VPi

⊥ = =( )cosψ 1 2, . u v ic c i, , =( )1 2,  
are the overload commands for HV and two interceptors, u v ii, =( )1 2,  
denote the corresponding overload responses as well. The state 

variable can be selected as x x x x=
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them, z is the bias of both pursuit-evasion parties in the longitudinal 
direction. z z zE P1 1= − , z z zE P2 2= − . x x xE P P, ,1 2  are the state 
variable of evader and pursuers.
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The coefficients in the above equations are shown as:
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where τ j ij E P=( ),  are the time constants of the first-order 
control system of both pursuit-evasion vehicles, and ψVj ij E P0 =( ),  
are the initial ballistic declination angles of the three vehicles. In the 
article, Eqs.  1–3 are applied for the subsequent verification in 
numerical simulations, while Eqs. 4–7 are used to derive and describe 
the physical quantities used.

And Longitudinal deviations are given as scalar, that is:

 z c x z c x1 1 2 2
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,  (8)

where 
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The guidance command vc i,  for the ith  pursuer, i i =( )1 2, , is 
denoted as:

 
v F x t N V u
c i i i r EPi i, = ( ) = +, λ

2  
(9)

where the augment proportional guidance (APN) law is chosen to 
be the intercept guidance law. N ii =( )1 2,  are the guidance coefficients 
of interceptors, and V iri =( )1 2,  are the respective approach velocity.

In addition, based on the classic SPSD scenario in Figure 1, this 
paper further expands the initial adversarial situations by shifting the 
initial parameters under a certain magnitude, which are categorized 
into scenarios of three types according to the changes in the line-of-
sight angle λ λ λ λ λ λEP EP EP EP EP EP1 2 1 2 1 2

0 0 0> < = =; ; , as shown in 
Figure 2.

The above initial situations in Figure 2, which are highly likely to 
occur in practical engineering applications, form the extended SPSD 
adversarial scenarios. Since the hypersonic three-player pursuit-
evasion game is a highly dynamic and strongly stochastic problem, the 
above three adversarial scenarios should be considered simultaneously 
when designing the HV’s maneuver strategy. The extended SPSD 
confrontation scenarios proposed above have certain 
research significance.
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2.2 Hypersonic three-player 
pursuit-evasion game problem

In the hypersonic three-player pursuit-evasion problem, the HV’s 
evasion is considered successful if the minimum relative distances 
between the HV and both interceptors are greater than the critical 
miss distance, that is:

 r t r tEP f EP f1 1 2 21 2( ) > ∩ ( ) >δ δ  (10)

where t ifi =( )1 2,  denote the terminal time when HV meets two 
interceptors. δi i =( )1 2,  indicate the critical miss distance of the ith  
interceptor.

In addition, considering the characteristics of HV itself, it is 
necessary to set process constraints for HV overload, namely:

 ( ) max| | Hu t u≤
 (11)

Moreover, considering the requirement for subsequent flights or 
striking targets after HV evasion, it is essential to consider maneuver 
energy consumption during the evasion process and optimize HV 
evasion energy consumption under the premise of success evasion, 
that is:

 t

t f
u t t

0

2∫ ( )d
 

(12)

In summary, the hypersonic three-player pursuit-evasion problem 
can be formulated as Problem 1:

Problem 1: Based on the hypersonic three-player pursuit-evasion 
game model (Eq. 4) and the guidance laws of interceptors (Eq. 9), the 
maneuver strategy is generated based on the intelligent algorithm, 
which can achieve the regulation of maneuver energy consumption 
(Eq. 12) while satisfying the terminal off-target quantity constraint 
(Eq. 10) and the process control constraint (Eq. 11).

Remark 1: The head-on situation is a prerequisite for the 
investigation of the hypersonic pursuit-evasion game. Since under 
non-head-on situations, the HV can easily escape utilizing its speed 
advantage. On the contrary, under the head-on situation, HV’s speed 
advantage is canceled out and interceptors utilize larger overloads 
than HV’s to achieve successful interception.

Remark 2: The hierarchical cooperative interception strategy is to 
construct the interception scenario in which multiple consecutive 
interceptors, coming from the same direction with appropriate 
intervals (Yan et al., 2020), create hierarchical interference in time and 
space. The core of the cooperative interception lies in the design of 

interceptor spacing X∆ . If the spacing X∆  is set appropriately, when 
evading the first interceptor, HV must consider how to evade the 
second interceptor, so as to achieve the interception effect of 1 + 1 > 2.

Assumption 1: The hypersonic three-player pursuit-evasion game 
is investigated under a two-dimensional plane.

Remark 3: Influenced by the inherent characteristics of HV 
engines, HV tends to evade interceptors by lateral maneuvers on the 
horizontal plane. Therefore, assuming that interceptors and HV are 
engaged in a pursuit-evasion game at the same altitude, the 
confrontation scenarios can be  simplified to the X-Z 
two-dimensional plane.

Assumption 2: Both the interceptors and the HV keep 
maneuvering at a constant velocity.

Remark 4: The speed newly produced by longitudinal overload nx 
is negligible compared with the far supersonic speed of flight. 
Compared to longitudinal overload nx, lateral overload nz  is the main 
factor in achieving maneuver evasion, which is perpendicular to the 
direction of velocity and does not change the magnitude of the velocity.

3 Method

The problem of hypersonic pursuit-evasion is a hot spot in the 
current research on hypersonic vehicles, whose difficulty lies in how 
to seize the maneuver timing to achieve successful evasion in the 
highly dynamic game confrontation. When facing the cooperative 
interception of two interceptors, the space and timing of the HV 
maneuver are further compressed. It is one effective solution to obtain 
reasonable maneuver strategies in complex game confrontation 
scenarios through deep reinforcement learning, which can solve the 
sequential decision-making problem by gradually improving the 
maneuver strategies based on the reward feedback in the interaction 
with the environment (Bai et al., 2023).

In this paper, based on the two delay deep determined policy 
gradient (TD3) algorithm in deep reinforcement learning, the 
intelligent maneuver strategy is targeted to be designed with three 
improvement strategies to solve the hypersonic three-player pursuit-
evasion game in Figure 3. The double training strategy is proposed to 
reduce the training difficulty and improve the convergence of the 
algorithm for cooperative interception strategies in unfavorable 
situations. The regression network is newly added to the deep neural 
network structure of the TD3 algorithm to improve the generalization. 
The reward functions are carefully designed and the energy-saving 

FIGURE 2

Expanded SPSD adversarial scenarios.
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factor is set to quantitatively regulate the amount of off-target and 
energy consumption.

3.1 The TD3 algorithm

The hypersonic three-player pursuit-evasion game can be modeled 
as a Markov decision process (MDP) before solving it using the 
DRL algorithm.

The MDP can be  represented by the quintuple S A P R, , , ,γ{ } 
consisting of state S, action A, reward R, transfer function P, and 
discount factor γ . The specific MDP update formulas are given 
as follows:

 ′ ′= ( ) = = = =( )− −s p s s a P S s S s A ar t t t|, |, |, |,1 1  (13)

 r R S s A at t t= = =[ ],  (14)

 P P S s S s A ass
a

t t t'
= = = =[ ]′+1 |, |,  (15)

In the DRL algorithm, the agent’s goal is to learn the optimal 
policy function π a s|( ), to maximize the cumulative mathematical 
expectation of the agent’s reward, namely the Q function of the state-
action function.

 π a s P A a S sr t t| |( ) = = =( )−1  (16)
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where γ ∈[ ]0 1,  is the discount factor, which measures the size of 
the future reward in the cumulative reward in the current state, and κ  
is the future state trajectory obtained by sampling according to the 
strategy π . Since the future state trajectory is unknown, only an 
estimate of the Q function Q

∧
 can be computed.

As shown in Eq.  17, whether the Q value can be  accurately 
estimated or not has a great impact on the performance of the strategy 
π . Regardless of too large or too small Q s a,( ), the policy π  will not 

be able to output the optimal action. The TD3 algorithm can evaluate 
the value accurately, based on the Actor-Critic (AC) framework, 
which mainly provides a parallel structure for actions and evaluations 
at the same time to deal with high-dimensional state space and 
continuous action space.

Figure 4 shows the structural framework of the TD3 algorithm. 
The Actor network Cφ  outputs the current action at  according to the 
current state st , and the Actor target network Cφ ' outputs the target 
action at according to the next state st+1. The Critic network Q

iθ  
calculates the Q s a

i t tθ ,( ) value in the state st  and the action at , and the 
Critic target network Q

iθ '  calculates the target Q value according to the 
next state st+1 and the target action at. φ  and θi are the parameters of 
the Actor network and Critic network, respectively, as well as ′φ  and 
θi

' are the parameters of the Actor target network and Critic target 
network respectively, i =1 2, . To improve the over-estimation problem 
of the DDPG algorithm, the smaller Q value of the two Critic target 
networks is selected as the target value yt, when updating the 
parameters of the Critic network.

 ( )( )2,
i ii t t ty Q s aθ θθ∆ = ∇ −

 (18)

 
' ˜1,2 1min ,
i tt t i ty r Q sθγ = +
 

= + α 
   

(19)

 ( )˜ 1t tC sφ ε′ +α = + ′
 (20)

where ε  is the random noise obeying a truncated normal 
distribution clip N c c c0 0, , ,σ( ) −( ) >, . The parameters of the Actor 
network and the Actor target network are updated as follows:

 ( )( )1
,t tQ s C sφ θ φφ∆ = ∇

 (21)

 θ τθ τ θi i i
′ ′← + −( )1  (22)

 ′ ′← + −( )φ τφ τ φ1  (23)

where τ1.
The TD3 algorithm, as a DRL algorithm applied to high-

dimensional state space and continuous action space, effectively 

FIGURE 3

Block diagram of intelligent maneuver strategy.
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alleviates the over-estimation problem of DDPG, and its convergence 
speed and stability are better than the same type of DRL algorithms, 
which can be utilized for solving the hypersonic three-player pursuit-
evasion problem. But considering the difficulty of the hypersonic 
three-player pursuit-evasion game, it is needed to make targeted 
improvements on its basis.

3.2 The double training strategy

For the hypersonic three-player pursuit-evasion problem, 
considering its characteristics of high dynamics and strong 
confrontation under a multi-body game, if the TD3 algorithm is 
applied directly, it is difficult to ensure the stability of the algorithm 
and converge to the optimal strategy during training. To solve the 
above problem, consulting relevant literature (Xu et al., 2019; Zhong 
et al., 2022), this paper proposes the joint planning idea of “expert 
guidance + intelligent algorithm optimization.”

The expert guidance refers to the double training strategy 
leading to successful agent training that the intelligent maneuver 
strategy can be successfully generated through two training with 
sequential order. The reason for the success of training based on the 
double training strategy is that the HV evading hierarchical 
cooperative interception strategy of two interceptors has been 
modeled as a Markov decision process in Section 3.1, whose essence 

is that the current state is only related to the state of the previous 
moment, but not related to the state of the state before the 
previous moment.

 ( ) ( )1 1 0 0|, , , , , ,|i i i i i ip s s a p s s a s a+ += 

 (24)

Considering the time sequence between the respective meeting 
between two interceptors and HV under the specific interception 
strategy, HV’s successful evasion of the second interceptor must 
be based on the successful evasion of the first interceptor. In other 
words, HV’s whole maneuver strategy to evade the cooperative 
interception of the two interceptors πwhole a s|( ) is included in the 
maneuver strategy to evade the first interceptor π1 a s|( ). And the 
strategy πwhole a s|( ) is the same as the maneuver strategy to evade the 
second interceptor π2 a s|( ) which is a subset of the maneuver strategy 
to evade the first interceptor π1 a s|( ).

 π π πwhole a s a s a s| | |( ) = ( ) ⊂ ( )2 1  (25)

Therefore, the intelligent maneuver strategy can be trained firstly 
aimed at the first interceptor nearby and retrained on its basis for the 
second interceptor at a later time. The complex and highly dynamic 
multi-player pursuit-evasion problem is transformed into several 
one-on-one pursuit-evasion problems depending on the character of 
the problem itself, which effectively reduces the blindness of the 
algorithm in the early stage of exploration.

FIGURE 4

TD3 algorithm framework.
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The intelligent algorithm optimization means that the TD3 
algorithm is used in both training to train and converge to the optimal 
solution under the current game confrontation. The schematic 
diagram of the proposed double training strategy based on “expert 
guidance + intelligent algorithm optimization” is shown in Figure 5.

As shown in Figure 5, based on the double training strategy, the 
successful maneuver strategy against the first interceptor can 
be obtained through the first training, and the intelligent evasion 
strategy against cooperative interception can be generated by further 
optimization based on the first training.

In addition, the traditional one-shot training method is not 
discarded, and the specific sampling allocation is as follows:

 N w N w Nbatch double single= +1 2  (26)

where the samples Ndouble  generated by the double training 
strategy and the samples Nsingle obtained from single training are 
assigned by weights w1 and w2, which are both input into the 
experience pool to ensure the stability of the algorithm.

3.3 The energy-saving factor strategy

In this section, this paper focuses on analyzing the relationship 
between the off-target amount of terminal evasion and the energy 
consumption of the evasion process in the hypersonic three-player 
pursuit-evasion game. To realize the quantitative regulation of the two 
parts, the reward functions are carefully designed and the concept of 
energy saving factor is newly introduced.

Evasion off-target amount and maneuver energy consumption are 
the two most important indicators in the HV pursuit-evasion game, in 
which the off-target amount reflects the terminal performance and the 
energy consumption is the indicator in the process. By comparing the 
size of the off-target amount and critical miss distance, it can directly 
reflect whether HV evasion is successful or not, while the energy 
consumption in the process will affect HV’s subsequent flights and 
striking targets. In addition, off-target amount and energy consumption 
are contradictory in the whole pursuit-evasion flight of HV that the 
expectation of increasing off-target amount often requires larger 
maneuvering overload consuming more energy while saving energy 
consumption will inevitably lead to the decrease of off-target amount. 
Shen et al. (2022) and Yan et al. (2020) both modeled the overload 
energy consumption in the performance index and minimized the 
energy consumption under the premise of successful evasion. Gao et al. 
(2023) pursued a larger off-target amount, and the overload only 
needed to satisfy the constraints. Guo et al. (2023) realized the adaptive 
adjustment between off-target amount and energy consumption 
through the design of reward functions. However, considering the 
complex environment of HV in the flight process and the unknown 
situation it may have to face in the future, the overload energy 
consumption and terminal off-target amount in the HV evasion should 
be quantitatively adjusted. For this reason, this paper sets an energy-
saving factor in reward functions, and changing the size of the energy-
saving factor can quantitatively regulate the above two major indexes.

Reward function design is the focus and difficulty in reinforcement 
learning, which directly determines whether the training can 
be successful and whether the final strategy can be obtained or not. 
The reward functions can also be divided into the process reward 
function and the terminal reward function. Among them, the terminal 
reward directly determines whether the training is successful or not, 

while the process reward will guide the agent to obtain the key actions 
in different states through interaction with the environment leading 
to the success of the training. In addition, considering the intelligent 
maneuver strategy generated through the double training strategy in 
Section 3.2, there should be two sets of reward functions for the two 
incoming interceptors in front of and behind each other.

The reward functions for the first interceptor are as follows:

 R r r r r1 11 12 13 14= + + +  (27)
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where r r11 12,  belong to the process rewards, while r r13 14,  belong 
to the terminal rewards. The process reward focuses on the line-of-
sight angle and relative distance during the pursuit-evasion game to 
guide HV to deviate from the first interceptor, and the terminal 
reward is set up about the terminal off-target amount in addition to 
the rewards or penalties brought by evasion success or failure.

The reward functions for the second interceptor are as follows:

 R r r r r2 21 22 23 24= + + +  (29)
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The reward functions for the second interceptor are also divided 
into process and terminal rewards, and an energy-saving factor is 
introduced in the reward functions for the second interceptor as well. 
The energy-saving factor E is used to set the training tendency to aim 
for a larger amount of off-target or lower energy consumption. The 
essence of the energy-saving factor strategy is to assign weights (1− E 
and E) to two performance indicators (off-target amount and energy 
consumption) to influence the training tendency of the TD3 
algorithm. Considering the characteristics of the terminal off-target 
amount and energy consumption, the sum of the weighting factors is 
set to 1. In addition, the energy-saving factor strategy is only 
meaningful under successful HV evasion, therefore, the terminal 
reward functions are also designed for the second interceptor to 
ensure successful evasion.

3.4 The regress network strategy

In this section, the deep neural network structure of the TD3 
algorithm is analyzed and improved, and the generalization of the 
algorithm is enhanced by introducing the regression network.
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Insufficient generalization is a common problem in DRL 
algorithms, the training scenario and parameters are relatively fixed, 
which makes the agent obtained from training perform well under the 
feature points, however, when the application scenario changes, it is 
difficult for the agent to generate the optimal strategy. And the 
algorithm suffers from the defects of reduced effectiveness and 
insufficient generalization.

The TD3 agent trained based on the above improvement strategies 
can indeed generate intelligent maneuvering strategies to successfully 
circumvent the cooperative interception under the feature points. 
However, this paper expands the scenarios based on the classic SPSD 
situation. Considering the randomness of the problem, although the 
initial postures of the two sides are biased to a certain extent during 
the TD3 training, the agent will still fail to evade in individual initial 
situations. Therefore, to improve the generalization of the algorithm, 
this paper improves the network structure of the TD3 algorithm by 
introducing the regression network into the original deep 
neural network.

The deep neural network of the classical TD3 algorithm contains 
an Actor network and a Critic network, as shown in Figure 6A.

The types and numbers of layers in the algorithm are shown in 
Figure 6A. The numbers below the layers are the specific number 
of neurons.

The improved network structure with the regression network is 
shown in the Figure 6B.

As shown in Figure 6B, based on the original Actor network and 
Critic network, the regression network is newly added containing a 
discriminator and a fitter. During the agent training, the sample data, 
including the initial situations and maneuver instructions, generated 
from the interaction with the environment are inputted into the 
regression network as training samples. Those samples successfully 
evaded are filtered by the discriminator as x . And x  are subsequently 
inputted into the fitter to train the neural network of the fitter. The 
trained fitter outputs the appropriate maneuvering commands y  
according to different situations instead of the original Actor network. 
The discriminator is based on the terminal equation (Eq.  10) to 
determine the evasion samples the successful evasion samples are set 
to 1 and the relevant information is inputted into the fitter, while the 
samples that fail to evade are set to 0 to be excluded. The fitter consists 
of multi-layer neural networks, which utilizes gradient descent to train 
the model and continuously adjust the weights and thresholds among 
the networks through backpropagation of errors.

Therefore, the regression network first screens the samples 
from the discriminator, and then, the selected samples are fitted 
based on the fitter. The overload of the regression network output 
is used as the whole output of the TD3 algorithm, which effectively 

FIGURE 5

Double training strategy.
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improves the generalization of generating intelligent 
maneuvering strategies.

There are two reasons why the structure of the TD3 algorithm can 
be improved by introducing the regression network to enhance the 
generalizability. Firstly, it is susceptible to determine the HV’s success 
or failure in the hypersonic three-player pursuit-evasion game 

resulting in the easy design of the discriminator in the regression 
network. Secondly, the inputs and outputs of the hypersonic maneuver 
strategies are simple vectors, which do not require complex 
computation in follow-up processing. Because the hypersonic pursuit-
evasion game itself is a highly dynamic process, the difference between 
different maneuver strategies is not significant and it is entirely 

FIGURE 6

Deep neural network structure. (A) Network structure without regress network. (B) Network structure with regress network.
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TABLE 1 Simulation, ITD3 algorithm training conditions.

Item Value Item Value

March number V a V aE Pi/ , /  (Mach)
6.0, 3.0, 3.0 Learning rate of Actor network and Critic 

network

0.005, 0.005

Maximum lateral overload u v imax max,  (g) 3.0, 6.0, 6.0 Discount factor 0.9

Initial value of ballistic deviation angle ψ ψvE vPi0 0,  (deg)
0, pi, pi Inertial factor 0.99

Initial relative distance r rEP EP
1 2

,  (km)
8.0, 10.0 Soft update rate 0.001

The lowest boundary value of miss distance δ δ1 2,  (m) 5, 5 The size of the experience pool 4000

The initial coordinate value of the typical situation 1 x z x zE E P Pi i
, ,( ) ( ),  (km)

(0, 0), (8, 0), (10, 0) Sampling time 0.1

The initial coordinate value of the typical situation 2 x z x zE E P Pi i
, ,( ) ( ),  (km)

(0, 0), (8, 0.2), (10, −0.1) Small batch sample size 128

The initial coordinate value of the typical situation 3 x z x zE E P Pi i
, ,( ) ( ),  (km)

(0, 0), (8, 0.05), (10, 0.03) Evaluation round 5

Navigation coefficient N N1 2, 4, 4 Optimizer Adam

Time constants of autopilot τ τE Pi,
0.5, 0.5, 0.5 Learning rate of regress network 0.01

Weight values of double training w w1 2, 0.99, 0.01 Target minimum error of regress network 0.001

Energy saving factor E 0.7 Minimum performance gradient of 

regress network

1*10−6

FIGURE 7

Evasion schematic diagram for situations 1, 2 of non-cooperative interception. (A) Space too little. (B) Space too big.
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possible to replace individual failure samples with successful evasion 
samples by fitting after screening, which in turn could improve the 
generalization of the algorithm.

In summary, the intelligent maneuver strategy proposed in this 
paper is based on the ITD3 algorithm, which utilizes the double 
training strategy to reduce the randomness of the initial training and 
improve the convergence of the TD3 algorithm, carefully designs the 
reward functions and sets the energy-saving factor to quantitatively 
regulate the off-target amount of terminals and energy consumption 
of process, and improves the network structure of the algorithm by 
introducing the regression network to improve the algorithm’s 
generalizability. The targeted improved strategy for the hypersonic 
three-player pursuit-evasion game can not only successful evade the 
cooperative interception under extended SPSD scenarios but also 
regulate energy consumption and have strong generalization.

4 Simulation

In this section, the effectiveness, generalization, and energy-
saving of the intelligent maneuver strategy proposed in this paper are 
verified through numerical simulations. The relevant information 
used for the simulation validation is given in Section 4.1. The 

effectiveness of the proposed strategy under the expanded SPSD 
confrontation scenarios is verified by numerical simulation and 
comparison in Section 4.2, and the improvements at the level of 
generalization and energy saving are verified in Section 4.3.

4.1 Simulation information

The software selected for the simulation of this paper is MATLAB 
2021a, and the hardware information is Intel (R) Core(TM) i5-10300H 
CPU @ 2.50 GHz, RTX 2060 14 GB, DDR4 16 GB, and 512 GB 
SSG. The parameter indexes used for the numerical simulation are 
shown in Table 1.

As shown in Table 1, the core performance indexes such as speed 
and overload of both pursuit-evasion sides all satisfy the 
characteristics of their respective vehicles. In the design of the 
critical off-target amount, which is the most important 
discriminating index for HV evasion, this paper sets it to 5 m based 
on the actual research anticipating the enemy strictly. And in the 
strict head-on situation, the relative distances between HV and the 
two interceptors are designed to be 8 km and 10 km, respectively, and 
2 km for X∆ . The initial conditions of the two interceptors are 
carefully chosen, especially the spacing X∆ , which is too large or 
too small to achieve cooperative interception, as shown in Figure 7. 
Only when the interval is suitable, the HV must take into account 
the second interceptor when dodging the first one, and the 
complexity of a successful evasion will rise proportionately. The 
corresponding interception effectiveness is demonstrated when 
resisting against the classical maneuver strategy (Yan et al., 2020). In 
the subsequent simulations, the proposed intelligent maneuver 
strategy and the classical evasion strategy of the literature (Yan et al., 
2020) are utilized to numerically simulate under the same three 
initial conditions in Table  1 to verify the improvement of the 
effectiveness of the proposed strategy. Generalization and energy 
saving effect are proved in comparison as well.

4.2 The validation of effectiveness

The intelligent maneuver strategy proposed in this paper is 
generated based on the improved TD3 algorithm obtained by a variety 
of improved strategies. The maximum number of training rounds for 
the deep reinforcement learning algorithm is set to 2000 rounds, and 
the training process of the ITD3 algorithm and its comparison with 
the TD3 algorithm are shown in Figures 8A,B.

As shown in Figure 8A, the ITD3 algorithm can converge to the 
optimal solution in less than 500 rounds, while the TD3 algorithm 
starts to show the convergent tendency only in 2000 rounds in 
Figure 8B. The comparison shows that the double training strategy 
proposed for the algorithm training process is effective, and can well 
solve the problem of excessive randomness and high difficulty in agent 
training. The training stability and convergence of the algorithm in the 
hypersonic three-player pursuit-evasion problem are enhanced 
as well.

After completing the agent training, the generated intelligent 
maneuvering strategy and the classical evasion strategy (Yan et al., 
2020) are used to perform the simulation verification of the hypersonic 

FIGURE 8

Agent training. (A) Improved TD3 training. (B) Comparison of training 
between improved TD3 and TD3.
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three-player pursuit-evasion game under the above three typical 
confrontation situations, respectively. The simulation results are 
shown in Figures 9–11.

The HV encountering two interceptors in the typical confrontation 
situation 1 is shown in Figures 9A–D.

In the typical confrontation scenario 1, Figures 9A,B show the 
motion trajectories of the attacking and defending sides in a horizontal 
two-dimensional plane under the classic maneuver strategy and the 
proposed strategy, respectively. And Figures 9C,D demonstrate the 
relative distances and the overloads over time of aircraft under the 
proposed strategy. In other two subsequent confrontation scenarios, 
the meanings of the simulation diagrams are the same and will not 
be repeated.

As shown in Figure 9A, the terminal off-target amount of the 
classical evasion strategy facing the first interceptor is 2.2135 m, which 
is smaller than the critical miss distance, representing the evasion 
failure. On the contrary, the two off-target amounts of the proposed 
strategy are both larger than the critical miss distance, as shown in 
Figures 9B,C, representing that the strategy is successful under the 
strict head-on situation. It is easy to evade the first interceptor, and 

when facing the second interceptor, the strategy changes in the 2.8 s, 
instead of full overload maneuvering, leading to the relevant change 
in the interception guidance law of the second interceptor in 
Figure 9D.

The HV encountering two interceptors in the typical confrontation 
situation 2 is shown in Figures 10A–D.

In typical confrontation scenario 2, the classical maneuver 
strategy successfully evades the first interceptor but is intercepted by 
the second interceptor in Figure  10A. Meanwhile, the evasive 
commands generated by the intelligent maneuvering strategy are well-
timed to achieve successful evasion of cooperative interception in 
Figure  10B. And both terminal off-target amounts met the 
requirements as shown in Figure 10C. It is worth mentioning that, 
unlike the classical maneuvering strategy, the intelligent maneuver 
strategy does not generate a downward overload command under the 
X-Z two-dimensional plane when facing the first interceptor above the 
X-axis, but rather, it drills through the two interceptors through the 
variation of overloading commands based on the upward maneuvering 
at the outset as shown in Figure 10D. It is different from the human’s 
expected maneuver instructions representing the intelligent 

FIGURE 9

The HV pursuit-evasion game in the typical confrontation scenario 1. (A) Trajectory map under classical maneuver strategy. (B) Trajectory map under 
proposed strategy. (C) Relative distance under proposed strategy. (D) Overload change under proposed strategy.
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algorithm’s abilities to explore and generate unexpected evasion 
strategies, which cannot be  achieved by classic evasion strategies 
relying on the human’s subjective design.

The HV encountering two interceptors in the typical confrontation 
situation 3 is shown in Figures 11A–D.

In the typical confrontation scenario 3, the classical maneuver 
strategy is also intercepted by the second interceptor with the 
off-target amount of 3.5702 m smaller than the critical miss distance 
as shown in Figure 11A. When both interceptors are on one side to 
intercept HV, the intelligent maneuver strategy generates maneuver 
commands in the opposite direction in Figure 11B. In addition, when 
both interceptors are on one side, it is not easier to evade than the 
other two typical initial situations. The off-target amount of the first 
interceptor is only 5.545 m as shown in Figure 11C. In contrast, it is 
easier to avoid the second interceptor, and the overload can 
be appropriately lowered to save energy consumption in Figure 11D.

After numerical simulation and comparative analysis under three 
typical attack and defense situations, the effectiveness of the intelligent 
maneuver strategy in solving the hypersonic three-player pursuit-
evasion problem is verified. Compared with the classical maneuver 
strategy, the proposed strategy performs better under difficult initial 

situations, which is more intelligent and effective in individual 
confrontation scenarios.

4.3 The validation of generalization and 
energy savings

To further test the generalization performance of the proposed 
strategy, i.e., whether the regression network strategy is effective or 
not, Monte Carlo simulations are performed for the proposed strategy 
and the strategy without regression network, respectively. In Monte 
Carlo simulations, the initial parameters of two interceptors are, 
respectively, carried out the combined deflection, such as coordinates 
of x and z, ballistic deflection angles, and line of sight angles, based on 
the typical confrontation scenario 1. The simulation results are shown 
in Figures 12A–C.

The horizontal coordinate is the line-of-sight angle between the 
HV and the interceptor, and the vertical coordinate is the minimum 
relative distance during the evasion process. As shown in Figure 12A, 
there exist evasion failure samples where the terminal off-target 
amount is less than 5 m under the strategy without regression network. 

FIGURE 10

The HV pursuit-evasion game in the typical confrontation scenario 2. (A) Trajectory map under classical maneuver strategy. (B) Trajectory map under 
proposed strategy. (C) Relative distance under proposed strategy. (D) Overload change under proposed strategy.

https://doi.org/10.3389/fnins.2024.1362303
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Yan et al. 10.3389/fnins.2024.1362303

Frontiers in Neuroscience 15 frontiersin.org

Figure  12B shows that the proposed strategy with the regression 
network can not only successfully evade in all cases but also show the 
linearity as a whole. Figure  12C demonstrates that the proposed 
strategy has excellent generalization regardless of which interceptor is 
pulled off and the evasion off-target amount for the first interceptor is 
larger than that for the second interceptor at the same deflection of the 
line-of-sight angle. It is proved through simulations that the 
generalizability of the algorithm can be effectively improved by the 
design of the regression network strategy.

In addition to the line-of-sight angle, the initial transverse 
coordinates of the two interceptors are also individually polarized, and 
22 game confrontation scenarios are generated. The terminal off-target 
amounts all satisfy the conditions of successful evasion, and their 
relative distances over time are shown in Figures 13A,B.

In summary, Monte Carlo simulations of various single and 
combined deflections demonstrate that the proposed strategy can 
achieve successful evasion in the face of different initial situations. The 
effectiveness of the regression network strategy is verified by 
numerical simulations.

To further verify the improvement of the proposed strategy in 
quantitatively adjusting the HV energy consumption, ensuring that 

other factors remain unchanged and only the size of the energy-saving 
factor is adjusted, simulations are carried out under the typical 
confrontation scenario 1, as shown in Figure 14.

In Figure 14, the maneuver overload of HV changes as the 
energy-saving factor is adjusted. When E = 0 , HV chooses to 
maneuver with full overload without considering energy saving. 
And when E value increases, the integral of maneuvering overload 
in time is getting smaller under the premise of guaranteeing 
successful evasion. In addition, when E > 0 7. , there is no 
guarantee that the HV can successfully evade two interceptors. 
Therefore, the energy consumption of HV maneuvering with and 
without the energy-saving factor strategy is calculated separately 
by varying its size when E∈[0,0.7]. The specific values of HV 
energy consumption at different E  values are shown in Table 2, 
and the comparison simulations are schematically shown in 
Figures 15A–H.

As shown in Figures 15A–H, the HV energy consumptions with 
different E values are normalized for plotting convenience, and the 
red connecting lines represent the energy saved, i.e., the difference 
in evasion energy consumption with and without the energy saving 
factor strategy. The energy saved during the evasion process 

FIGURE 11

The HV pursuit-evasion game in the typical confrontation scenario 3. (A) Trajectory map under classical maneuver strategy. (B) Trajectory map under 
proposed strategy. (C) Relative distance under proposed strategy. (D) Overload change under proposed strategy.
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likewise shows an overall increasing trend by continuously 
increasing the size of the E value from 0 to 0.7. From a separate 
figure, the energy saved at different initial relative distances 
fluctuates up and down around the E value. The above numerical 
simulations verify that the energy-saving factor strategy is effective, 
and the proposed strategy can quantitatively regulate energy 
consumption in the evasion process by adjusting the energy-saving 
factor E value.

5 Conclusion

In this paper, the intelligent maneuver strategy is designed to solve 
the three-player pursuit-evasion game problem, that a HV evades the 
cooperative interception of two interceptors. The expended SPSD 

FIGURE 12

Monte Carlo simulations under the combined deflection. 
(A) Combined deflection without regress network. (B) Combined 
deflection with regress network. (C) Comparison between deflecting 
interceptor 1 and deflecting interceptor 2.

FIGURE 14

Variation of overload at different E values.

FIGURE 13

Monte Carlo simulations under the single deflection. (A) Single 
deflection of relative distance with interceptor 1. (B) Single deflection 
of relative distance with interceptor 2.
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scenarios are meticulously constructed to ensure the difficulty of HV 
evasion, and the proposed evasion strategy is generated from the 
improved TD3 algorithm, which is based on the TD3 algorithm and 
improved by double training strategy, energy-saving factor strategy 
and regression network strategy. The double training strategy 
considering two interceptors reduces the exploration blindness of the 
algorithm. By enhancing the deep neural network structure, the 
generalizability is improved by the regression network strategy. 
Starting from the reward functions, the energy-saving factor strategy 
achieves quantitative regulation of motorized energy consumption. 
Finally, numerical simulations are carried out to verify that the 
proposed strategy can achieve successful evasion in three typical 
confrontation situations of the extended SPSD scenarios where the 
classical maneuver strategy cannot achieve. Furthermore, the 
comparison analysis demonstrates the enhanced generalizability and 
quantitative energy saving capabilities of the suggested approach.
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FIGURE 15

Energy consumption and energy savings with different E values. (A) E  =  0.7; (B) E  =  0.6; (C) E  =  0.5; (D) E  =  0.4; (E) E  =  0.3; (F) E  =  0.2; (G) E  =  0.1; 
(H) E  =  0.

TABLE 2 Energy consumption under different E value.

E  =  0 E  =  0.1 E  =  0.2 E  =  0.3 E  =  0.4 E  =  0.5 E  =  0.6 E  =  0.7

85017.34 84121.90 8346.65 82796.48 81026.42 79831.94 78049.78 76938.68
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