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Ion channel trafficking
implications in heart failure
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1Cardiovascular Research Program, VA New York Harbor Healthcare System, New York, NY,
United States, 2Department of Cardiology, New York Presbyterian Brooklyn Methodist Hospital,
New York, NY, United States, 3Department of Medicine, Cell Biology and Pharmacology, State University
of New York Downstate Health Sciences University, New York, NY, United States, 4Department of
Medicine, New York University Grossman School of Medicine, New York, NY, United States
Heart failure (HF) is recognized as an epidemic in the contemporary world,
impacting around 1%–2% of the adult population and affecting around 6
million Americans. HF remains a major cause of mortality, morbidity, and poor
quality of life. Several therapies are used to treat HF and improve the survival
of patients; however, despite these substantial improvements in treating HF,
the incidence of HF is increasing rapidly, posing a significant burden to human
health. The total cost of care for HF is USD 69.8 billion in 2023, warranting a
better understanding of the mechanisms involved in HF. Among the most
serious manifestations associated with HF is arrhythmia due to the
electrophysiological changes within the cardiomyocyte. Among these
electrophysiological changes, disruptions in sodium and potassium currents’
function and trafficking, as well as calcium handling, all of which impact
arrhythmia in HF. The mechanisms responsible for the trafficking, anchoring,
organization, and recycling of ion channels at the plasma membrane seem to
be significant contributors to ion channels dysfunction in HF. Variants,
microtubule alterations, or disturbances of anchoring proteins lead to ion
channel trafficking defects and the alteration of the cardiomyocyte’s
electrophysiology. Understanding the mechanisms of ion channels trafficking
could provide new therapeutic approaches for the treatment of HF. This
review provides an overview of the recent advances in ion channel trafficking
in HF.
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AAV, adeno-associated virus; AP, action potential; APD, action potential duration; ATF6, activating
transcription factor 6; Ca2+, calcium; CAMKII, calmodulin-dependent kinase II; CASK, calcium/
calmodulin-dependent serine protein kinase; COP, coatomer protein; Cx43, connexin-43; DAD, delayed
afterdepolarization; EAD, early afterdepolarization; EB1, plus-end binding protein; EF, ejection fraction;
ER, endoplasmic reticulum; ERAD, ER-associated degradation system; ERES, endoplasmic reticulum exit
site; hERG, human ether-a-go-go–related gene; HF, heart failure; HFrEF, heart failure with reduced
ejection fraction; HFmrEF, heart failure with mildly reduced ejection fraction; HFpEF, heart failure with
preserved ejection fraction; hiPSC, human-induced pluripotent stem cells; HSP, heat shock protein; ICaL,
L-type calcium current; If, funny current; IK1, inwardly rectifying potassium current; IKr, rapid outward
potassium current; IKs, slow outward potassium current; INa, sodium current; INaL, late sodium current;
Ito, transient outward potassium current; IRE1, inositol-requiring enzyme 1; KCNQ1, potassium voltage-
gated subfamily Q member 1; MAGUK, membrane-associated guanylate kinase; MLP, Muscle Lim
Protein; MRA, mineralocorticoid receptor antagonist; Na+, sodium; NCX, Na+/Ca2+ exchanger; NHE,
Na+/H+ exchanger; NSF, N-ethylmaleimide sensitive fusion protein; PERK, protein kinase R-like ER
kinase; PKA, protein kinase A; PKC, protein kinase C; ROS, reactive oxygen species; RYR, ryanodine
receptor; SAP97, synapse-associated protein 97; SERCA, sarcoplasmic reticulum Ca2+-ATPase; SGLT2,
sodium-glucose cotransporter 2; SNAP, NSF attachment protein; SNARE, SNAP receptor; SR,
sarcoplasmic reticulum; UPR, unfolded protein response.
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1 Clinical presentation

Heart failure (HF) is a chronic disease depicted by the inability

of the myocardium to propel blood and oxygen effectively to comply

with the body’s needs and remains a major cause of death. It occurs

when the heart muscles weaken or stiffen, leading to a reduced

ability to pump blood. This cardiac pathology is characterized by

dyspnea, peripheral edema, elevated jugular venous pressure, and

tachycardia (1, 2). HF is a multifactorial disease mostly caused by

various factors such as valvular diseases, coronary artery disease,

endocardial or pericardial abnormalities, and high blood pressure

(3, 4). In the US, HF affects 5.7 million individuals and is

responsible for approximately 300,000 deaths per year (5). The

incidence of HF is 5–10 per 1,000 individuals and the prevalence

is 1%–2% annually (3). HF is classified based on the left

ventricular ejection fraction (EF) into three EF categories: HF with

reduced (HFrEF, ≤40%), mildly reduced (HFmrEF, 41%–49%),

and preserved EF (HFpEF, ≥50%) (6). Given the scarce literature

on ion channel trafficking in HFmrEF and HFpEF, the focus of

this review is on HFrEF.

Pharmacotherapy is used for the treatment of patients with

HFrEF and for improving their survival. This includes, β-blockers,

angiotensin-converting enzyme inhibitors, angiotensin receptor

blockers, and mineralocorticoid receptor antagonists (MRAs). Two

new classes of drugs, angiotensin receptor-neprilysin inhibitor,

sacubitril/valsartan (ENTRESTO®), and sodium-glucose

cotransporter 2 (SGLT2) inhibitors are also used (7, 8). Adding

MRAs, including spironolactone and eplerenone to the standard

therapy in HF, reduced morbidity and mortality (9). Aldosterone,

an end product of the upregulated renin-angiotensin-aldosterone

system in HF, has been implicated as playing a major role in the

progression of HF (10). In addition to the promotion of

inflammation and fibrosis, aldosterone has been responsible for

electrical remodeling (11). The chronotropic action of aldosterone

was averted by spironolactone, indicating the role of MRA in this

response (12, 13). HF is also associated with increased activity of

the sympathetic nervous system (14). This chronic elevated plasma

catecholamines lead to desensitization of the β-adrenergic

signaling pathway. This includes downregulation of the number of

receptor proteins from enhanced degradation and loss of receptor

function (15, 16). Increased sympathetic activity leads to

the upregulation of β-adrenergic receptor kinase, which

phosphorylates the β-adrenergic and uncouples it from the second

messenger triggered downstream pathway (17, 18). The result is a

modification in the signaling pathway from a mainly β1-receptor

in the healthy myocardium to a combined β1/β2 receptors in HF.

These changes lead to a reduction of 50%–60% in β-adrenergic

signaling capacity in advanced HF (19). β-blockers are efficient in

restoring the adrenergic signaling pathway. Despite substantial

advances in treating HF, the incidence of HF continues to rapidly

increase posing a significant burden on human health. The total

cost of healthcare for HF is projected to be USD 69.8 billion

in 2023 (20).

Changes in the functional activity of ion channels play an

important role in HF (21). Nevertheless, the mechanisms

responsible for these alterations remain not fully understood.
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This incomplete knowledge can be attributed to the complexity

of ion channels trafficking, which involves several proteins and

serves as a significant contributor to the arrhythmogenic process.

This review presents an update on the current understanding of

ion channels trafficking physiology and, subsequently, provides

the evidence related to trafficking defects observed in HF.
2 Electrical remodeling

2.1 Action potential

The cardiac action potential (AP) is important for the

generation and the propagation of excitation leading to

contraction and is the result of ion channels composition in each

cardiomyocyte (22–24). AP corresponds to a transient

depolarization due to the sequential activation and inactivation

of voltage-dependent ion channels, ensuring a flow of ions

between the intracellular and extracellular fluid according to the

electrochemical gradient. AP is composed of five phases in the

non-pacemaker myocytes that determine its duration and

amplitude (Figure 1). It is carried by a sequential activation and

inactivation of different currents (25, 26). The depolarization

phase (Phase 0) is generated by the inward sodium (Na+) current

(INa) encoded by the Na+ voltage-gated channel alpha subunit 5

(SCN5A). This phase is followed by a rapid repolarization

(Phase 1), carried by the transient outward potassium (K+)

current (Ito) encoded by the K+ voltage-gated channel subfamily

D 2 (KCND2). This repolarization is very fast and followed by a

plateau phase (Phase 2), which is a balance between the ion

calcium (Ca2+) inflow through L-type Ca2+ current (ICaL),

encoded by the Ca2+ voltage-gated channel subunit alpha 1C

(CACNA1C) and the outward flow of K+ ions. The rapid (IKr)

and the slow (IKs) K
+ currents, conduct this outward flow of K+,

and are encoded by human ether-a-go-go–related gene (hERG)

and by the K+ voltage-gated subfamily Q member1 (KCNQ1),

respectively. These two currents terminate the AP resulting in the

final repolarization (Phase 3). Finally, Phase 4 corresponds to the

resting state around −80 mV in non-pacemaker cells, mainly

held by the inwardly rectifying K+ currents (IK1) encoded by the

K+ inwardly rectifying channel subfamily J 12/14 and 4

(KCNJ12/14/4) (27, 28) and also to the diastolic depolarization in

the pacemaker cells carried by the funny current (If) encoded by

the hyperpolarization activated cyclic nucleotide gated K+

channel 4 (HCN4) (29, 30). Under pathological conditions such

as HF, these ion channels undergo a remodeling process

impacting the AP shape and AP duration (APD), part of which

is due to trafficking disorders (31, 32). The APD of both atrial

and ventricular cells is prolonged in HFrEF and HFpEF (33).

However, Ca2+ handling is not impaired in the same way in

HFrEF and HFpEF. In HFrEF, the systolic Ca2+ is decreased and

the diastolic Ca2+ is increased, because of a decrease of T-tubule

density and an increase of Na+/Ca2+ exchanger (NCX)

expression. In HFpEF, there is a high cytoplasmic Ca2+

concentration associated with an unchanged NCX expression and

an increased density of T-tubules (34).
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FIGURE 1

Arrhythmogenesis mechanisms in heart failure. (A) In HF condition, decrease of K+ current (Ito, IKr, IKs) and/or INaL can prolong the AP. This remodeling
triggers EADs. (B) In addition, intracellular Ca2+ overload during the diastole can trigger DADs. This is due to an increase in NCX reverse mode, Ca2+

leak from the RYR2, and a decrease of SERCA function. (C) The remodeling of Cx43 and/or decrease of INa contribute to slowing the conduction
velocity and APD heterogeneity, which creates conduction block and promotes re-entry pathways. AP, action potential; EADs, early
aftredepolarizations; DADs, delayed aftredepolarizations; NCX, Na+/Ca2+ exchanger; RYR2, ryanodine receptor 2; SERCA, Sarcoendoplasmic
Reticulum Calcium ATPase; Cx43, connexin 43; APD, action potential duration.
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2.2 Sodium current

INa alterations have been implicated in HF. A HF study

conducted on mice missing the expression of the Muscle Lim

Protein (MLP) demonstrated a decreased of INa density by post-

translational reduction (35, 36). This INa reduction decreased the

electrical conduction, favored re-entry, and contributed to

inefficient synchronized conduction. Furthermore, studies

conducted on dog and human HF led to alterations in the

inactivation of INa causing a late persistent current (37, 38). Most

of INa is rapidly inactivated, but a small fraction remains and

contributes to generate a late INa (INaL), thus contributing to

increase in the concentration of Na+ ions in the cardiomyocyte

and consequently increasing the APD (39). However, the

molecular mechanisms which explain this INaL in HF are still

unclear. One study showed that the heterologous expression of

Nav1.5 produced a late opening in gating modes (40).

Furthermore, another explanation for this late current would be

the contribution of the neuronal isoform Nav1.1. One study, on a

dog model of HF, demonstrated the participation of this neuronal

isoform in inducing the INaL (41). Targeting the neuronal type of

Na+ channel by riluzole was reported to reduce this INaL (42).

Riluzole could thus offer a therapeutic target to prevent

arrhythmia and slow the progression of HF (43). The importance
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of this INaL abnormality has been well demonstrated to contribute

to arrhythmias in HF, and medications targeting the INa could

prevent arrhythmia (44). In fact, some studies used ranolazine, an

INaL inhibitor, to reduce and prevent arrhythmias in HF (45, 46).

To this end, a medication empagliflozin, an SGLT2 inhibitor, was

described to interact directly with the Na+ channel and reduce the

INaL in a mouse model (47). Recently, another study used

empagliflozin, a SGLT2 inhibitor, to revert the INaL upregulation

and arrhythmogenic AP in an HFpEF mice model, induced by

high-fat diet and nitric oxide synthases inhibition (48). These

studies showed that inhibiting INaL may be a therapeutic target in

the prevention of arrhythmia onset in HF (49). The accumulation

of Na+ concentration can alter the Ca2+ homeostasis because the

Ca2+ efflux is via the NCX, which will compensate by extruding

excessive intracellular Na+ resulting in intracellular Ca2+ overload

and subsequent triggered arrhythmic events (50).
2.3 Potassium current

In HF, alterations in IKr, IKs, and Ito can be present. IK plays a

crucial role in the cardiac AP shape, and its remodeling is an

important contributor to repolarization abnormalities in HF

(51, 52). First, the Ito is known to be reduced in HF and to
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participate in APD prolongation (53, 54). The reduction of Ito
participates in increasing the Ca2+ influx and Ca2+ concentration

in the cells, which triggered the activation of hypertrophic

pathway in the mice model (55, 56). Hypertrophy is a

compensatory response to HF, but sustained cardiac hypertrophy

contributes to the development of HF. Remodeling in IKr and IKs
in HF have also been reported (57–59). A study conducted in

rabbits with atrioventricular block showed a reduction of both

IKr and IKs, using the patch-clamp technique (60, 61). IK1 was

also shown to be downregulated in HF (59). The small-

conductance Ca2+-activated K+ currents (SK) are upregulated in

HF (62). This current participates in the repolarization of healthy

atria but not in the ventricle (63). Other studies have shown an

upregulation in this channel in ventricular myocytes, which

prolongs the APD and promotes the arrhythmogenesis in HF

(64, 65). Finally, a downregulation of the TREK channel was

observed in patients with atrial fibrillation complicated by HF

(66). In all, the remodeling of IK in HF underlies, in part, the

electrical abnormality and associated arrhythmogenesis (67).
2.4 Calcium handling

During the development of HF, important changes in Ca2+

handling occur (68). Key players in Ca2+ homeostasis include

L-type Ca2+ channels, NCX, ryanodine receptor type 2 (RYR2),

sarcoplasmic reticulum Ca2+-ATPase (SERCA), and Na+/H+

exchangers (NHE).

2.4.1 Calcium current
Dysregulation of ICaL can impair the ability of the heart to

contract affectively, leading to a decreased contractility and

pumping function. The alteration of Ca2+ channels, which allow

Ca2+ entry in failing cardiomyocytes, is still debatable in HF. In

fact, the existing data on Ca2+ channel gene expression during HF

show either a decrease or small changes in transcript levels of

the gene CACNA1C (69–71). In addition, the increased

phosphorylation of the Ca2+ channel leads to an increase of its

open probability in human failing ventricle, suggesting a

compensatory mechanism (72, 73). Furthermore, our group has

demonstrated the re-expression of alpha1D L-type Ca2+ channels

encoded by the CACNA1D gene in failing human ventricles,

which is normally not expressed in the healthy ventricles (74).

Their unique activation at a more negative voltage allows to play a

larger role in Phase 4 depolarization and spontaneous beating.

Furthermore, the density of ICaL is influenced by the severity of

failure (75). In HF, adult ventricular myocytes reactivate the fetal

gene expression program and acquire spontaneous beating (76, 77).

In addition, some studies reported the re-expression of T-type Ca2+

channels in post-infarcted hearts, in hypertrophied adult cat hearts

and in rat models of HF (78–80). Despite these modifications, the

L-type Ca2+ channels are the main sources of extracellular Ca2+.

2.4.2 Sodium-calcium exchanger
NCX works in two modes: forward mode (Ca2+ efflux and Na+

influx) to reduce diastolic Ca2+ levels and reverse mode (Ca2+ influx/
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Na+ efflux) depends on the sarcolemma Na+ gradient (81). In HF,

with an aberrant accumulation of Na+, NCX changes from

forward to reversed mode, resulting in an increase of Ca2+

concentration in the cell (82, 83). The implication of NCX

dysregulation has been demonstrated in human HF for triggering

arrhythmias (84, 85). Studies have also demonstrated an

upregulation of both mRNA and protein expression of NCX in

human and animal models, contributing to the arrhythmogenicity

of HF (86). These changes are associated with arrhythmogenic

mechanisms, such as early (EADs) and delayed

afterdepolarizations (DADs) in HF (87, 88). Therefore, the block

of NCX may represent a potential therapy for the prevention of

arrhythmia in HF (85). The selective NCX blocker, SEA-0400, has

already demonstrated a potential benefit in pig and mice models

of HF (89, 90). This NCX blocker restores the sarcoplasmic

reticulum (SR) Ca2+ load and releases it, improving Ca2+ handling

(91). Recently, new NCX blockers were developed, ORM-11035

and SAR296968, which have significantly attenuated Ca2+

handling remodeling and diastolic dysfunction in a rat model of

HF (85, 92).

2.4.3 Ryanodine receptor
Dysregulation of Ca2+ homeostasis can impair the capacity of

the myocardium to contract efficiently, leading to a decreased

contractility and pumping function. These modifications in Ca2+

handling result in higher diastolic Ca2+ and enhanced diastolic

Ca2+ loss from the SR, together impacting the Ca2+ induced Ca2+

release mechanism and excitation–contraction coupling

culminating in reduced contractile force. The RYR2 is a Ca2

+-release channel primarily found in the SR of cardiomyocytes. Its

function is to regulate the release of Ca2+ during the cardiac

contraction. RYR2 is directly or indirectly linked to the

pathological cellular mechanisms of HF (93, 94). It interacts with

a multitude of proteins regulating its activity, such as protein

kinase A (PKA) and calmodulin-dependent kinase II (CamKII)

(95). When one of these elements is perturbed, the RYR2

undergoes a pathological remodeling, which can initiate or

amplify the cellular mechanisms contributing to HF. PKA

hyperphosphorylation of RYR2 in HF results in the depletion of

its stabilizing FK506 binding protein, FKBP12.6 (96). RYR2 are

hyperphosphorylated by PKA and/or CAMKII, causing aberrant

Ca2+ leaks from the SR (97). The diastolic releases of SR Ca2+

have been linked to DADs triggering fatal ventricular arrhythmias

(Figure 1). In a canine model of rapid pacing-induced HF,

administration of a β-adrenergic blocker, metoprolol, reverses PKA

hyperphosphorylation of RYR2, restoring the stoichiometry of

RYR2 macrocomplex, and normalizes single-channel function (98–

100). Recently it has been demonstrated that Entresto® diminished

diastolic Ca2+ spark frequency and SR leaks in mouse myocytes

subjected to catecholaminergic stress, as well as in human left

ventricular cardiomyocytes with end stage HF (101). The findings

suggest that Entresto® ameliorates cardiac function in part by

improving myocardial Ca2+ homeostasis.

The impairment of SR function has proven to be predominantly

induced by a SR Ca2+ load reduction due to decreased activity of the

SERCA and also from the RYR2 leak (102–104). It is associated with a
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Ca2+ leak from the SR through the RYR2 and a higher RYR2 activity

(105, 106). Other studies have highlighted that the SR Ca2+ leak

triggers mitochondrial dysfunction and leads to an increased

production of free radicals, which in turn leads to pathological

RYR2 remodeling (107). A further SR Ca2+ leak through RYR2 is

then observed with HF progression exacerbation (108). Further

results published show that silencing the expression of junctophilin-

2 in the mice provokes SR Ca2+ leak through RYR2, and the

development of HF (109). Conversely, a study demonstrated that

maintaining the level of junctophilin-2 protein at a high level can

prevent the progression of HF (110). This study underlies a key

role of junctophilin-2 in HF and could be an interesting therapeutic

target for HF. One of the largest gene transfer clinical studies

(CUPID2), targeting the SERCA activity, was initiated in patients

with HFrEF (111). However, the preliminary results did not show

any improvement of the heart function.

Collectively, the Ca2+ mishandling observed in HF contributes

to reduced contractility of the myocardium triggering pump failure

or arrhythmias. The Ca2+ cycling disruption is one of the central

elements initiating and progressing the cardiac function

deterioration in HF (72).

2.4.4 Sodium/proton exchanger
The NHE simultaneously transports 1Na+ ion into the cells and

extrudes 1H+ ion (112). NHE type 1 is ubiquitous in all tissue

plasma membranes, including the heart (113). In cardiac cells,

NHE is localized at intercalated disks and T-tubules, and may

influence local pH (114). NHE activity is significantly increased in

both patients with HF and animal models of HF (82, 115). The

subsequent rise in intracellular Na+ stimulates the NCX and

results in an increase in intracellular Ca2+, which promotes

myocardial damage. The mechanism of SGLT2 inhibitor-mediated

cardioprotection in HF is possibly through its effect on NHE.

Specifically, SGLT2 inhibitors (empagliflozin, dapagliflozin, and

canagliflozin) act directly on NHE, by cross reacting with the Na+-

binding site of NHE, inhibiting the activity of NHE, thereby

lowering the intracellular Na+ and thus producing cardioprotective

effects (116). It was suggested that diminished NHE activity in the

heart by SGLT2 inhibitors is due to the reduction in reactive

oxygen species (ROS), oxidative stress production, cardiac

inflammation, and fibrosis (117). Altogether, inhibition of NHE

could open a new therapeutic avenue for HF (115).
2.5 Pacemaker current

Clinical and experimental studies have demonstrated that the

sinus node function is impaired in HF (118, 119). These

observations are correlated with a downregulation of the If in the

sinus node pacemaker in a rabbit HF model (120). Another

study in dogs with HF reported a decrease of the transcript and

protein level of both HCN4 and HCN2, which explains the

decrease of If and the impairment of the sinus node function

indicating that the pacemaker current is remodeled in HF (119).

Unlike these studies, the study conducted on human HF

demonstrated an upregulation of both atrial and ventricular
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HCN2 and HCN4, accounts for the observed increase in If,
which could contribute to atrial and ventricular arrhythmias

(121). A healthy adult ventricle normally has low levels of HCN2

and HCN4. However, the expressions of these genes increases as

a result of HF (122). In support of this study, clinical trials have

demonstrated the beneficial effects of ivabradine, an If inhibitor,

in HF (123–125). Additional studies are warranted to establish

the exact role of If and its genes HCN2/HCN4 in HF.
2.6 Connexins

The electrical propagation in cardiomyocytes occurs through the

connexins and forms an electrical cell-to-cell coupling (126). The

connexin-43 (Cx43) protein is highly expressed in the ventricles

(127). In diseased hearts such as in the case of hypertrophy and

HF, Cx43 is localized at the lateral side of the ventricular

myocytes (128). While Cx43 remodeling has been associated with

spontaneous ventricular arrhythmia, the exact mechanisms for

arrhythmogenesis are just emerging. Interestingly, the expression

of Cx43 has been described to be downregulated in HF condition

(129, 130). In addition, a decreased phosphorylation of Cx43 was

detected in HF cardiomyocytes, which impairs the function and

the localization from the intercalated disc to the lateral membrane

(131, 132). Abnormalities in function and expression of Cx43

result in slow conduction in HF, which increases the propensity

for arrhythmic events. Lahnwong et al. showed that pretreatment

with dapagliflozin, a SGLT2 inhibitor, in a rat model of HF had

lower arrhythmia score (133). The anti-arrhythmic effects of

SGLT2 inhibitor are likely explained by its effect on the

phosphorylation level of Cx43.

These ion channels, exchangers, and connexins remodeling in

HF increase the propensity of arrhythmias. EADs and DADs

represent triggers of arrhythmias. EADs are due to AP

prolongation caused by a reduction of repolarizing currents, such

as Ito, IKr, and IKs, and an increase the ICaL and INaL (Figure 1A).

The DADs are caused by Ca2+ handling abnormalities during the

diastole, due to an increased activity of NCX, decreased SERCA

function, and Ca2+ leak from the RYR (Figure 1B). Furthermore,

the re-entry mechanisms are the result of the remodeling process

that leads to slower conduction velocities and the heterogeneity

of APD, which can create conduction blocks. A reduction,

observed in the HF model, of INa, If, and Cx43 favors this

phenomenon and contributes to sustained arrhythmic events

(Figure 1C). These ion channel changes are summarized in Table 1.
3 Ion channel trafficking

The newly synthesized proteins go through the process of

trafficking to reach their destination. The two major components

are the endoplasmic reticulum (ER) and the Golgi apparatus and

allow the synthesis of functional proteins. The ion channels

trafficking into microdomains of the plasma membrane is critical

for the anisotropic transmission of the electromechanical signal

at the tissue level (139).
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TABLE 1 Ion channels involvement and heart failure arrhythmogenesis.

Ion channel Status Consequence Mechanisms of arrhythmia References
Na+ channel • Reduced current

• Abnormalities of inactivation
• Slowed cardiac conduction
• Persistent INa
• Prolonged AP

• Re-entry
• EAD

(36, 134–136)

Ca2+ handling • Increase of NCX reversed mode
• Decrease of ICaL
• Increase of ICaL phosphorylation
• Decrease of SERCA function
• Ca2+ leak from RYR

• Increase of Ca2+ entrance
• Ca2+ overload
• Impaired Ca2+-induced Ca2+-release

• DAD
• Reduced contractility

(69, 74, 108, 117, 137)

K+ channel • Decrease of Ito, IKr and IKs • Slowing of the repolarization
• Prolonged AP

• EAD (51, 57, 61)

Pacemaker current • Downregulation of HCN expression • Reduced pacemaking function • Bradycardia
• Sino-atrial bloc

(120, 138)

Connexin • Downregulation of Cx43
• Decrease of phosphorylation
• Lateral localization

• Slowed conduction velocity
• Increase in APD heterogeneity

• Re-entry (130–132)

APD, action potential duration; Cx43, connexin–43; DAD, delayed afterdepolarization; EAD, early afterdepolarization; NCX, sodium/calcium exchanger; RYR, ryanodine

receptor; ICa, calcium current; Ito, transient outward potassium current; IKr, rapid outward potassium current; IKs, slow outward potassium current.
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The starting point of ion channels trafficking is in the ER, where

the ion channels are synthetized by the ribosomes. A quality control

is carried out in the ER before the protein is transported to the Golgi

(140). The newly formed proteins are supported by chaperone

proteins (calnexin, calreticulin) which will facilitate their

maturation and their oligomerization (Figure 2A) (141). However,
FIGURE 2

Schematic representation of ion channels trafficking. (A) The newly synthes
apparatus in the anterograde direction. (B) In cases where the assembly
followed by the activation of the UPR and ERAD to allow its degradation in
protein is directed to the plasma membrane by a vesicle. At the final local
between the vesicle and the plasma membrane. (D) Then the ion channel
with Rab4/5 protein and dynein to allow the retrograde direction. (E) The
degraded in the cytosol, or (F) is recycled by another vesicle with the Rab1
by the COPI vesicle for the retrograde direction to be recycled into the E
and SAP97, stabilize the ion channel at the destination.
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misassembled ion channels can exhibit the ER-retention signals.

Among these signals, dual bi-arginine (RXR) and C-terminal

Lys-Asp-Glu-Leu (KDEL) motifs are well known (142, 143). A

misfolded protein in the ER triggers the unfolded protein response

(UPR) using three pathways such as inositol-requiring enzyme 1

(IRE1), activating transcription factor 6 (ATF6), and protein kinase
ized proteins in the ER are carried by the COPII vesicles until the Golgi
of the newly synthesized protein is misfolded, it is retained in the ER
the cytosol. (C) After the final maturation process, the new ion channel
ization, the v-SNARE and t-SNARE proteins interact to allow the fusion
is recaptured into the cell by endocytosis and carried out by a vesicle
ion channel is transported by a late vesicle with Rab7/9 protein and

1 protein. (G) The final step of the ion channel trafficking is carried out
R. It is important to note that the accessory molecules, such as CASK
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R-like ER kinase (PERK) (11, 144). These pathways will activate the

genes involved in the ER-associated degradation system (ERAD) and

induce a cytosolic degradation by the proteasome (Figure 2B) (145).

In the Golgi, the ion channels undergo post-translational

modifications, such as the glycosylation before being trafficked to

the plasma membrane (146, 147). Many ion channels and their

subunits are glycosylated. N-glycosylation will regulate the stability

and the expression level of the membrane channels, their transport,

and also their biophysical properties (148, 149).

Proteins will leave the ER through a region without ribosomes

called ER Exist Site (ERES) (150, 151). In this region, the ion

channels are packaged in coatomer protein II (COPII) vesicles.

These COPII vesicles ensure anterograde transport from the ER

to the Golgi, whereas the coatomer protein I (COPI) vesicles

mediate the retrograde transport (Figure 2) (152, 153).

In cardiomyocytes, the transport of ion channels needs

molecular motors and regulators. In the cytoplasm, the ion

channel trafficking is coordinated by various Rab GTPases (154).

Rab proteins belong to the largest family of small Ras-like

GTPases. Active in the presence of GTP and inactive in the

presence of GDP, they are associated with practically all stages of

vesicular transport, including the Golgi stages. Rab8 is involved in

the anterograde direction for the delivery of newly synthetized ion

channels (155). Rab4 and Rab5 are associated with vesicles

following ion channel internalization (156, 157). Rab7 and Rab9

are associated with the late endosome and Rab11 is associated

with the recycling endosome (156, 158). In the anterograde

direction, the transportation is provided by the action of different

kinesins and thereafter along the actin cytoskeleton by the action

of myosin V. In the retrograde direction, the dynein associated

with the microtubules and actin carry out the transportation

(Figure 2) (159, 160).

Another important aspect of ion channels regulation is their

anchoring and aggregation in different areas of the sarcolemma.

Many adapter proteins capable of interacting with the channels

and regulating their membrane localizations have been identified,

such as the membrane-associated guanylate kinase (MAGUK)

protein family (161). Most MAGUKs have one or more PDZ

domains, an SH3 domain, and a GUK domain. The presence of

these many protein interaction domains allows MAGUK to

interact with multiple partners simultaneously and explains their

multiple roles such as anchoring and aggregation of ion channels

in specialized areas of cellular communication, scaffolding of

macromolecular complexes, functional interaction of channels

with signaling elements, and intracellular trafficking (162). For

example, cardiomyocytes express several MAGUK proteins,

where the most important is SAP97 (synapse-associated protein

97), which interacts with the major ion currents, IKr, IK1, and INa
(Figure 2) (163–165). Another protein of the MAGUK family

participates in the trafficking and anchoring of ion channels, the

Ca2+/calmodulin-dependent serine protein kinase (CASK)

protein. This proteins has a domain homologous to CAMKII.

The CASK protein is composed of the combination of typical

MAGUK domains plus two L27 domains and an N-terminal

CAMKII domain (166). Studies have demonstrated that the

CASK protein is involved in the Ca2+ channel trafficking and its
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stabilization at the membrane level (Figure 2) (167). In addition,

the expression and phosphorylation levels of hERG are

dependent on the presence of CASK protein (168). Furthermore,

CASK protein interacts with the Nav1.5 channel and regulates its

trafficking and its surface expression at the lateral membrane (169).

The end stage of the ion channel trafficking corresponds to the

attachment of vesicles to the membrane. This attachment is carried

out by the N-ethylmaleimide sensitive fusion protein (NSF), the

NSF attachment proteins (SNAP), and the SNAP REceptor

(SNARE) proteins (170, 171). Each transport vesicle contains one

or more v-SNAREs (v for vesicle), which interacts with a t-

SNARE (t for target) on the target membrane. The assembly of

the pair of SNARE proteins is regulated by different types of

proteins including the GTPases of the Ypt/Rab family and the

Sec1 family (170, 172). This process is catalyzed by NSF and

SNAPs. This assembly will destabilize the lipid bilayers and

permits the ion channel to be directed to the plasma membrane

(Figure 2C) (173). Another contributor to the ion channel

trafficking is ankyrin. Ankyrin constitutes a group of intracellular

proteins responsible for arranging, transporting, and securing

membrane protein complexes to the actin/spectrin cytoskeleton,

thereby establishing microdomains within membranes that

exhibit functional properties (174). The isoform G and B are

present in the heart tissue and are implicated in the stabilization

of ion channels at the membrane level (175). The ankyrin-G was

identified to stabilize the Nav1.5 channel in the heart and is

important for the localization at the intercalated discs as

described in the ankyrin-G knock-out mice (176). The ankyrin-B

interacts with the NCX, the Cav1.3 channel, and stabilizes the

SERCA, three important Ca2+ transporters (177, 178). A defect

of ankyrin-B was previously described to induce Ca2+

abnormalities, increase injury, and reduce contractility in a

mouse heart that is ankyrin-B deficient (179).

It is important to note that the level of ion channels in the

plasma membrane is also dependent on a balance between the

phenomena of exocytosis and endocytosis, recycling, and

degradation. This balance is important to allow a satisfactory

regulation of ion channel activity.
4 Ion channel trafficking defect
contributes to the development of
heart failure

Cardiomyocytes have distinct microdomains, such as t-tubules,

lateral membranes, and intercalated discs. These microdomains

have precise physiological roles in ion channels trafficking to

microdomains and hence it is crucial to maintain these specific

roles. However, in HF, a mislocalization or redistribution of ion

channels disrupts the normal electrical gradients and alters the

propagation of electrical signals. The different aspects of the ion

channel trafficking in HF are summarized in Table 2.

Since the 1990s, it was discovered that variants in ion channels

are responsible for trafficking defects, leading to the development

of HF and arrhythmias (Figure 3A) (199). Also, several abnormal

post-translational modifications, which affect many cellular
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TABLE 2 Summary of ion channel trafficking alterations and their consequences in heart failure.

Trafficking alteration Consequences Ion channel implicated References
Mutations Degradation of ion channels Na+, Ca2+, and K+ channel (180–182)

Post-translational modification Degradation of ion channels Na+, Ca2+, and K+ channel (183, 184)

ER stress Activation of ERAD
Ion channel degradation

Na+ and K+ channel (185, 186)

Upregulation of detyrosination Destabilization of microtubules Na+ channel (187, 188)

Alteration of EB1 protein
Alteration of TIP protein

Destabilization of the anchor of the vesicles in the plasma membrane
Reduction in the exocytosis

Na+ channel
Cx43

(189–192)

Disturbance of BIN1 and CASK protein Decrease in the role of scaffolding protein in the membrane
Reduction in the exocytosis

Ca2+ channel (193, 194)

Decrease of synapsin-2 Alteration in the association between the vesicle and the microtubule NCX (195)

HSP90 Alteration in the interaction between HSP and hERG hERG (196, 197)

Hypokalemia Abnormal ubiquitination of hERG hERG (198)

BIN1, Myc box-dependent-interacting protein 1; CASK, calcium/calmodulin-dependent serine protein kinase; Cx43, connexin 43; EB1, plus-end binding protein; ER,

endoplasmic reticulum; ERAD, endoplasmic reticulum associated protein degradation; HSP, heat shock protein NCX, sodium/calcium exchanger; TIP, microtubule

plus-end tracking proteins.
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pathways, have been reported in patients with HF (183).

Among these modifications, alterations in phosphorylation,

glycosylation, ubiquitin, acetylation, and succinylation were

reported (168, 200, 201). Several enzymes control these post-

translational modifications and are summarized in Table 3.

Alterations in these processes can lead to the degradation of

channel proteins by the proteasome leading to electrical

abnormalities such as the long QT syndrome or arrhythmias

associated with HF, revealing its importance in the functional

expression of ion channels (Figure 3B) (184). In recent years,
FIGURE 3

Ion channels trafficking perturbation in heart failure. (A) Ion channel variant le
channel retention in the ER and the degradation of the ion channel. (C) ER s
UPR response. (D) The detyrosination of the microtubules alters the ion c
incorporation into the membrane. (F) Hypokalemia triggers an abnormal
chaperone disturbs the K+ channel trafficking. (H) Decrease of synapsin2 vesic
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the studies conducted on post-translational modifications have

gradually increased and become a new field of medical research

for the HF (207–209).

The ER, which is the first step of the maturation and trafficking

of ion channels, is impacted by HF, which induces a stress of this

cellular compartment (210, 211). In mice injected with

tunicamycin to induce HF, a prolonged activation of UPR and

PERK is provoked, which activates the degradation pathway of

the newly formed proteins by ERAD (Figure 3C) (185). This

study showed that INa, IKr, and IK1 are downregulated by this
ads to ER retention of the ion channel. (B) PTM alteration triggers the ion
tress leads to an abnormal degradation of the ion channel protein by the
hannel trafficking. (E) Alteration of EB1 or BIN1 inhibits the ion channel
ubiquitination of hERG and its degradation. (G) Decrease of HSP90
le decreases the trafficking of NCX. PTM, post-translational modification.
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TABLE 3 Post-translational modifications in heart failure.

Modification Enzyme Modification site Function Reference
Phosphorylation PKA, PKC

CAMK
MAPK

Serine
Threonine
Tyrosine

Protein synthesis and metabolism (202)

Glycosylation Glycosyltransferase Serine
Threonine
Hydroxyproline

Protein folding and glycoprotein stability
Protein sorting and packaging

(203)

Ubiquitin E1, E2, E3 Lysine Apoptosis
Signal transduction

(204)

Acetylation P300
GNAT family
SRC family

Lysine Metabolism
signal transduction stress

(205)

Succinylation GCN5
HAT1

Lysine Inflammation (206)

E, ubiquitin ligase; GCN5, general control non-depressible 5; GNAT, GCN5 related N-acetyltransferase; HAT1, histone acetyltransferase1; MAPK, mitogen-activated protein

kinase; P300, histone acetyltransferase; SRC, proto-oncogene tyrosine-protein kinase.
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mechanism, in response to ER stress induced by HF. Each ion

channel has specific trafficking defects, detailed as follows.
4.1 Sodium current

Most trafficking defects come from a direct variant on ion

channels, which induces a misfolded protein and the retention in

ER. Variants in the Na+ channel were discovered to be linked with

a trafficking defect, leading to HF (212). A recent study

demonstrated that two different variants of Nav1.5 can interact

with each other to rescue the INa (181). Specifically, this study

showed that one variant of Na+ channel, trafficking-deficient but

gating-competent, was able to restore a fraction of the INa by

interacting with another Na+ channel variant that was trafficking-

competent but gating-deficient. This study supports the notion

that Na+ channel α-subunits interact and cooperate with each

other. The interaction between Na+ channels will allow to rescue

the trafficking and could lead to a new approach to treat patients.

The post-translational modifications are important for the

trafficking of Na+ channels (213). Specifically, the phosphorylation

of Na+ channel protein process is well known to be a key factor in

the trafficking (214, 215). The PKA, protein kinase C (PKC), and

CAMKII are among the most abundant kinases expressed in the

heart (216, 217). More recently, a study conducted on rabbit

cardiomyocyte showed that the ubiquitination of Na+ channel by

the ubiquitin ligase NEDD4 could regulate the endosomal

trafficking (218). Targeting these enzymes could lead to enhancing

the ion channel trafficking of Na+ channel and rescue the INa in

HF. Interestingly, empagliflozin was recently described to reduce

the INaL by inhibition of CAMKII activity (219). This medication

could be used to restore a normal INa in patients with HF.

Changes in microtubule dynamics are known to alter ion channel

trafficking. In fact, an upregulation of the detyrosination of

microtubules can induce HF (Figure 3D) (187). The detyrosination is

a post-translational modification of tubulin, the protein building block

of microtubules, which are essential components of the cytoskeleton.

In this process, the C-terminal tyrosine residue of tubulin is removed

enzymatically, resulting in a stable and long-lived form of the

microtubules. It was previously described that the detyrosination
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reduces the density and the peak INa in mice cardiomyocytes (220). It

will be interesting to suppress the detyrosination to restore normal ion

channel trafficking of the Na+ channel. Chen et al. showed that a

pharmacological suppression of detyrosinated microtubules restores

50% of the lost contractile function in the left ventricular myocardium

of a failing human heart (221).

Furthermore, Marchal et al. demonstrated in human-induced

pluripotent stem cells-derived cardiomyocytes (hiPSC-CM) that the

plus-end binding protein (EB1) improves the trafficking and the

function of Na+ channel trafficking (190). In mammals, the EB

protein family consists of three proteins: EB1, EB2, and EB3, which

bind directly to the end of microtubules and facilitate the anchoring

of proteins at the plasma membrane (222, 223). In addition, other

microtubule plus-end tracking proteins, also called +TIP, have been

found to be associated with the Na+ channel and potentially

involved in its trafficking. For example, alterations in EB1, EB2,

CLASP, CLIP1 CENP-F, MACF1, or iASPP are linked to a decrease

in conduction or abnormal contraction, thereby emphasizing the

impact of +TIP function on cardiac electrophysiology and function

(Figure 3E) (189, 192, 224). One of the consequences of HF is the

dysregulation of microtubule homeostasis, which is necessary for

guiding ion channels to the membrane and this process explains

the reduced INa reported in patients with HF.
4.2 Potassium current

Variants in K+ channels were the first described and represent

the most important factor in the development of HF (52, 225).

Indeed, a study described that 90% of hERG variants inhibited

the trafficking from the ER to the Golgi (226). These variants

cause hERG transport disorders by stimulating the UPR and

leading the degradation of the ion channel protein (182).

Variants on KCNQ1 were also revealed to play a role in the

abnormal KCNQ1 trafficking, leading to HF and long QT

syndrome (227, 228). Furthermore, another study described that

a variant of KCNQ1 impaired the hERG trafficking (229). Indeed,

this variant of KCNQ1 interacts in the cytosol with hERG and

impairs the trafficking. The alteration of hERG trafficking, caused

by the KCNQ1 variant, leads to HF and long QT syndrome.
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Hypokalemia or hyperkaliemia disturbs the trafficking of hERG

(198). Guo et al. were the first to reveal how the density of hERG

channels is regulated under hypokalemic conditions (230). This

situation triggered an ubiquitination of hERG, internalization,

and finally degradation (231) (Figure 3F).

The trafficking of K+ channels, especially hERG protein, involves

a chaperone protein from the family of heat shock protein (HSP)

(232, 233). HSP90 and HSP70 interact with hERG and play a

crucial role for the maturation. In HF, the role of these chaperone

proteins was not well described, but it was suggested as playing a

potential role for therapeutic modulation of HSP in HF (196).

Indeed, an inhibition of HSP90 in mice model of HF

demonstrated a preserved left ventricular pressure (234). More

recently, this team showed that simvastatin also inhibits HSP90

and reduces cardiac remodeling in HF rat model (235). For hERG

protein trafficking, a study showed that the reduced expression

level of hERG protein is linked with impaired trafficking because

of the diminished interaction between hERG and HSP90

(Figure 3G) (197). This observation could explain the decrease of

IK observed in HF, and showed the potential therapeutic role of

HSP90 in HF (236). There is limited knowledge regarding the

trafficking defects for the Ito and IK1 in HF. However, the Kv

channel-interacting protein (KChIP) is downregulated in HF and

this contributes to the inhibition of the trafficking of Ito (237).

Furthermore, one study mentioned the N-glycosylation defect of

TREK channel, which contributes to reducing the IK in HF (238).
4.3 Calcium handling

Ca2+ channel trafficking and function are regulated by auxiliary

protein subunits, including the β-subunits, which help in their

trafficking (239, 240). These β-subunits are important in facilitating

the Ca2+ channel exiting from the ER (241), and different β-subunit

variants have been involved in HF (180, 241). ER stress also induced

a repression of Ca2+ channel trafficking. Indeed, a study conducted

on hiPSC-CM showed that the activation IRE1, a pathway activated

by the UPR response, decreases the protein level of the Ca2+ channel

(Figure 3B) (186). In failing human hearts a decrease of Myc

box-dependent-interacting protein 1 (BIN1) protein has been

demonstrated. In myocytes, BIN1 facilitates microtubule-based

delivery of Cav1.2 channels directly to T-tubules for normal Ca2+

transient development (242). BIN1 acts like a membrane scaffolding

protein to anchor the Ca2+ channel at the plasma membrane and

could explain the decrease of ICaL observed in HF (193) (Figure 3E).

In case of this channel, a recent study conducted in mice knock-out

for CASK demonstrated that the loss of ICaL accelerates HF

development (194). This latest study demonstrated the importance of

the actors involved in the trafficking of ion channels and that their

destabilization can lead to aggravating the development of HF.

Furthermore, studies have shown that the post-translational

modifications could affect the other components of the Ca2+

handling like the RYR2. PKA hyperphosphorylation, CAMKII,

oxidation, and nitrosylation trigger the destabilization and

dissociation of FKBP12.6 from the channel and contribute to SR

Ca2+ leak that is thought to induce arrhythmias and decrease
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myocardium contractile strength in HF (243). These post-

translational modifications can cause defects of RYR2 trafficking

and contribute to development of HF.

Few studies attempted to understand the mechanisms of NCX

trafficking in HF. In fact, the NCX activity in HF occurs more in

response to a persistent INa that increases its reverse mode or by a

Ca2+ leak coming from the SR, thus increasing its activity and its

arrhythmic role. However, a recent study highlighted the role of

the synapsin-2 on the NCX regulation of trafficking in HF (195).

The synapsin-2 is a protein associated with the vesicle transport

during protein trafficking. First, the authors showed a decrease of

synapsin-2 expression in the left ventricle in mice model of HF

and demonstrated a co-localization of synapsin-2 and NCX. These

data suggest that reduced synapsin-2 in HF alters the NCX

trafficking and leads to ventricular arrhythmias (Figure 3H) (195).
4.4 Connexin

For the Cx43, the localization of this hemichannel is at the

intercalated discs. The trafficking of Cx43 involves a major plus-end

EB1 protein (244, 245). EB1 allows anterograde movement to the

intercalated discs by linking the microtubules to the desmosomes via

the interaction with another plus-end protein (p150) (246). In case

of HF, oxidative stress causes the microtubule plus-end EB1

dissociation from the end of the microtubules (Figure 3E).

Consequently, it impairs the microtubule attachment to adherent

junction structures and the delivery of Cx43 to the plasma

membrane at the intercalated discs (191, 247). This observation

could explain the decrease of Cx43 observed in patients with HF (248).

Collectively, ion channel trafficking disturbances lead to HF. A

better understanding of these mechanisms allows to develop new

therapeutic strategies or to better understand certain therapies

used. First, targeting HSP chaperone proteins, suppressing

microtubule detyrosination, or even targeting Rab recycling

proteins could be interesting new strategies to restore ion

channels trafficking. Therapy using an adeno-associated virus

(AAV), as in the CUPID2 study, does not seem to be the best

solution as of yet in the treatment of HF (111). However,

therapies carried by SGLT2 inhibitors seem the most promising

for trafficking restoration, specifically empagliflozin, which makes

it possible to restore normal ion channels trafficking through its

chaperone-like effect by increasing the forward trafficking of ion

channels (249). Finally, Entresto® is a new therapeutic option to

reduce the occurrence of arrhythmias in patients with HF. Its

precise role in the treatment of these arrhythmias is still being

explored, but it appears that its role affects the three pathways of

B-type natriuretic peptide, angiotensin II, and bradykinin (250).

Its role in ion channel trafficking is yet to be discovered.
5 Summary

Ion channel trafficking is a central regulator of cardiac

electrophysiology, contractility, and alterations in the cell

homeostasis in HF, thereby contributing to arrhythmias. Several
frontiersin.org

https://doi.org/10.3389/fcvm.2024.1351496
https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/


Reisqs et al. 10.3389/fcvm.2024.1351496
actors are involved in this process, from the formation of new

synthesized proteins to their assembly at the membrane. HF can

induce an intracellular stress, which also disturbs the ion

channels trafficking and accelerates the development of the

electrical activity and function of the failing heart. However, few

studies demonstrate the direct link between the HF and protein

trafficking. A better understanding of the mechanisms leading to

ion channels trafficking disorders in HF could open new

therapeutic targets.
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