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Background and objective: Numerous radiomics-based models have been

proposed to discriminate between central nervous system (CNS) gliomas and

primary central nervous system lymphomas (PCNSLs). Given the heterogeneity

of the existing models, we aimed to define their overall performance and identify

the most critical variables to pilot future algorithms.

Methods: A systematic review of the literature and a meta-analysis were

conducted, encompassing 12 studies and a total of 1779 patients, focusing on

radiomics to differentiate gliomas from PCNSLs. A comprehensive literature

search was performed through PubMed, Ovid MEDLINE, Ovid EMBASE, Web of

Science, and Scopus databases. Overall sensitivity (SEN) and specificity (SPE)

were estimated. Event rates were pooled using a random-effects meta-analysis,

and the heterogeneity was assessed using the c2 test.

Results: The overall SEN and SPE for differentiation between CNS gliomas and

PCNSLs were 88% (95% CI = 0.83 – 0.91) and 87% (95% CI = 0.83 – 0.91),

respectively. The best-performing features were the ones extracted from the

Gray Level Run Length Matrix (GLRLM; ACC 97%), followed by those obtained

from the Neighboring Gray Tone Difference Matrix (NGTDM; ACC 93%), and

shape-based features (ACC 91%). The 18F-FDG-PET/CT was the best-

performing imaging modality (ACC 97%), followed by the MRI CE-T1W (ACC

87% - 95%). Most studies applied a cross-validation analysis (92%).

Conclusion: The current SEN and SPE of radiomics to discriminate CNS gliomas

from PCNSLs are high, making radiomics a helpful method to differentiate these

tumor types. The best-performing features are the GLRLM, NGTDM, and shape-

based features. The 18F-FDG-PET/CT imaging modality is the best-performing,

while the MRI CE-T1W is the most used.
KEYWORDS

radiomics, gliomas, primary central nervous system lymphomas, systematic review,
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1 Introduction

Radiomics is a rapidly expanding field that extracts quantitative

information from medical images that is then analyzed using

artificial intelligence (AI) techniques such as machine learning

(ML) and its subcategory, deep learning (DL) to define radiomics

features, which may include tissue heterogeneity, texture, shape,

and gray intensity (1, 2). These features can help distinguish

between tumor types, thus aiding in proper diagnosis and

treatment planning.

Distinguishing between central nervous system (CNS) gliomas

and primary central nervous system lymphomas (PCNSLs) can be

difficult due to their similar radiological appearance. Both tumors

can exhibit imaging features such as heterogeneity, necrosis, and

contrast enhancement (3). Current clinical standards involve a

multifaceted approach, combining imaging studies, such MRI,

and histopathological analysis through biopsy. Despite

advancements in conventional diagnostic methods, there are

several challenges. Biopsy procedures, while informative, may not

always be feasible or carry inherent risks. Additionally, the reliance

on imaging studies may lead to overlapping features, complicating

the interpretation and contributing to misdiagnoses. Accurate

diagnosis is essential for patient care, as it drives different

treatment approaches (4, 5). Radiomics has shown promising

results in distinguishing between them, potentially improving

patient outcomes (6).

Despite the promising results, a meta-analysis of the current

literature is required to determine the effectiveness of radiomics in

distinguishing gliomas from PCNSLs. We conducted a systematic

review and meta-analysis of studies that used radiomics to

differentiate between these tumors. We aimed to evaluate the

overall diagnostic performance of radiomics in differentiating

these two tumor types and identify the most effective radiomics

variables to pilot future models.
Abbreviations: AI, artificial intelligence; ML, machine learning; DL, deep

learning; CNS, central nervous system; PCNSL, primary central nervous system

lymphoma; PRISMA, preferred reporting items for systematic reviews and meta-

analysis; MeSH; MeSH, Medical Subject Heading; MRI, magnetic resonance

imaging; LR, logistic regression; SVM, support vector machine; NB, naïve bayes;

kNN, k-nearest neighbour; MLP, multilayer perceptron; RF, random forest;

AdaBoost, adaptive boosting; ENR, elastic net regression; LDA, linear

discriminant analysis; CNN, convolutional neural network; LASSO regression,

least absolute shrinkage and selection operator regression; T1W, T1-weighted;

CE-T1W, contrast-enhanced T1 weighted image; T2W, T2-weighted; T2-FLAIR,

T2 weighted fluid-attenuated inversion recovery; DWI, diffusion-weighted

imaging; DSC, dynamic susceptibility contrast; PWI, perfusion-weighted

imaging; T1-FFE, T1-weighted fast field echo; 18F-FDG-PET/CT; fluorine-18

fluorodeoxyglucose positron emission tomography/computed tomography; CT,

computed tomography; SEN, sensitivity; SPE, specificity; ACC, accuracy; PPV,

positive predictive value; NPV, negative predictive value; SROC, summary

receiver operating characteristics; NOS, newcastle-ottawa scale; TP, true

positive; FP, false positive; FN, false negative; TN, true negative; CI, confidence

interval; FPR, false positive rate; GLRLM, gray level run length matrix; NGTDM,

neighboring gray tone difference matrix.
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The findings of this study may be employed in clinical practice

and can potentially improve patient outcomes allowing accurate

diagnosis and treatment planning.
2 Materials and methods

2.1 Literature search

The systematic review was performed according to the Preferred

Reporting Items for Systematic Reviews and Meta-Analysis

(PRISMA) guidelines (7). A comprehensive literature search of the

databases PubMed, OvidMEDLINE, Ovid EMBASE,Web of Science,

and Scopus was designed and conducted by an experienced librarian

with input from the authors. These databases were selected for their

extensive coverage of relevant medical literature, ensuring a thorough

retrieval of studies related to radiomics in the context of CNS gliomas

and PCNSLs. The following research string was used: “radiomics

AND glioma AND lymphoma”. The studies were found using the

Medical Subject Heading (MeSH) terms and Boolean operators. A

search filter was set to show only publications over the designated

period. The search was limited to articles published between 2012 and

2022. The first literature search was performed on June 2, 2023, and

the search was updated on July 20, 2023.

Two Authors (L.D.M. and F.P.) determined the inclusion

criteria for the studies in the literature search process. The

following inclusion criteria were used: 1) case series including at

least 10 patients, 2) studies reporting on radiomics for the

differential diagnosis of CNS gliomas and PCNSLs, 3) availability

of performance data for differentiation of these tumors, 4) studies

reporting exclusively histologically proven CNS gliomas and

PCNSLs, and 5) inclusion of both multi-center and single-center

studies. Exclusion criteria were: 1) case reports or review studies, 2)

studies reporting on AI-based models other than radiomics,

3) studies on radiomics differentiation of other tumor types, and

4) studies not reporting performance data of the radiomics model.

The list of identified studies was imported into Endnote X9, and

duplicates were removed. The search results were checked by two

independent researchers (F.P. and W.B.) with experience according

to the inclusion and exclusion criteria. A third blinded reviewer

(L.D.M.) resolved all disagreements. Then, eligible articles were

subject to full-text screening. Reference lists of selected studies were

also reviewed to identify additional relevant studies.
2.2 Data extraction

For each study, we abstracted the following baseline information:

year of publication, total number of patients, distribution of patients

per tumor type, and magnetic resonance imaging (MRI) protocol. As

for the radiomics models, we collected information about the AI sub-

category [i.e. ML or DL], classification algorithms [i.e. logistic

regression (LR), support vector machine (SVM), naïve bayes (NB),

k-nearest neighbor (kNN), multilayer perceptron (MLP), random

forest (RF), adaptive boosting (AdaBoost), elastic net regression

(ENR), linear discriminant analysis (LDA), convolutional neural
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network (CNN), least absolute shrinkage and selection operator

regression (LASSO regression), others], best-performing classifiers,

best-performing features [i.e. textural, geometrical or morphological,

voxel intensities-based, others], best-performing MRI sequences [i.e.

T1-weighted (T1W), contrast-enhanced T1 weighted image (CE-

T1W), T2-weighted (T2W), T2 weighted fluid-attenuated inversion

recovery (T2-FLAIR), diffusion-weighted imaging (DWI), dynamic

susceptibility contrast (DSC), perfusion-weighted imaging (PWI), T1-

weighted fast field echo (T1-FFE), fluorine-18 fluorodeoxyglucose

positron emission tomography/computed tomography (18F-FDG-

PET/CT), computed tomography (CT) scans], and application of

cross-validation analysis [i.e. yes or no]. Regarding the performance of

the models, we extracted data on the resultant sensitivity (SEN) and

specificity (SPE), accuracy (ACC), positive predictive value (PPV), and

negative predictive value (NPV).

In studies with overlapping patient populations written by the

same Authors or Institution, we only included the largest or most

complete dataset. In cases where outcomes were separated by study

cohorts, we abstracted performance outcomes of validation or test

cohorts to perform our meta-analysis.
2.3 Outcomes

Our primary outcomes were the overall SEN, SPE, and

summary receiver operating characteristics (SROC) curve of

radiomics for the differentiation of CNS gliomas from PCNSLs.

Bivariate analyses by discrimination task between CNS gliomas and

PCNSLs were conducted. In terms of the performance of the

models, we also looked at the ACC, PPV, and NPV.

As secondary outcomes, we performed a moderator analysis to

provide a thorough explanation of the possible sources of

heterogeneity in observed effect sizes. In this regard, we analyzed

the impact of the following variables on the performance of the

proposed radiomics models: year of development, cohort size, AI

sub-category, best-performing classifiers, features, MRI sequences,

the presence or absence of external test sets in the studies, and

application of cross-validation. These variables were also studied

quantitatively to picture the current trends of radiomics models for

differentiating these tumor types.
2.4 Study risk of bias assessment

We modified the Newcastle-Ottawa Scale (NOS) to assess the

methodologic quality of the studies included in our meta-analysis

(8). This tool, originally designed for use in comparative studies

with a control group, was adapted to our study. As there was no

control group in our studies, we assessed their methodologic

quality based on selected items from the scale, focusing on the

following questions: 1) Was the study retrospective or

prospective? 2) Were there clearly defined inclusion and

exclusion criteria? 3) Did the study include all patients or

consecutive patients vs. a selected sample? 4) Were outcomes

reported? 5) Was clinical follow-up satisfactory, thus allowing

ascertainment of all outcomes? (9).
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2.5 Statistical analysis

For the purpose of the meta-analysis, we considered the total

number of patients included in each study’s test or validation

dataset. Data from primary studies were reported in a 2×2

contingency table consisting of true positive (TP), false positive

(FP), false negative (FN), and true negative (TN) based on the

concordance between biopsy results and the radiomics tool

predictions. Such a table served as input for the R-package mada

(10), used for modeling the joint estimates of SEN and SPE and

their 95% confidence intervals (CIs). Event rates were pooled across

studies using a random-effects meta-analysis, and the c2 test was

performed to assess the heterogeneity of SEN and SPE, considering

the null hypothesis as equality in each case.

SEN and SPE depend on each other via a cut-off value: as the

cut-off is varied to, say, increase the sensitivity, the specificity often

decreases. Hence, the two quantities are negatively correlated. Thus,

we opted for the bivariate meta-analytic strategy via mada routines,

which leverage a linear mixed model derived from the approach

described by Ardens et al. (11).

To better show the diagnostic performance of AI-based

radiomics tools, we made the following further figures of merit: 1)

univariate graphics in the form of forest plots for both SEN and SPE;

2) endpoints of interest with individual confidence regions; 3)

SROC curve seeking to combine ROC curves of primary studies.

In these last two graphical outcomes, the coordinates of the

endpoints of interest are in the form of [SEN] and [1 – SPE], the

latter better known as the false positive rate (FPR).
3 Results

3.1 Literature review

A total of 37 papers were identified after duplicate removal.

After title and abstract analysis, 21 articles were identified for full-

text analysis. Eligibility was ascertained for 12 articles (12–23) The

remaining 9 articles were excluded for the following reasons: 1)

studies not reporting data on radiomics performance for

differentiation of gliomas from PCNSLs (4 articles), 2) studies

reporting on AI-based models other than radiomics (3 articles),

3) improper study design (2 articles). All studies included in the

analysis had at least one or more outcome measures available for

one or more of the patient groups analyzed. Figure 1 shows the flow

chart according to the PRISMA statement (7).
3.2 Baseline and radiomics data

A total of 1779 patients were included in the meta-analysis.

Most studies were published in 2018 (4), followed by 2021 (3), 2022

(2), 2019 (2), and 2020 (1). The smallest study included 77 patients

(16), while the largest included 289 patients (22). Differentiation

between CNS gliomas and PCNSLs was reported for 1779 patients,

of which 1063 had gliomas (59,75%), and 716 had PCNSLs

(40,25%). A number of 10 studies included different MRI
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sequences and the most common was the CE-T1W (24,24%),

followed by DWI (21,21%), T2-FLAIR (18,18%), and T2W

(15,15%). Other MRI modalities were T1W (12,12%), PWI

(3,03%), DSC (3,03%), and T1-FFE (3,03%). In addition to the

MRI studies, there was also one study conducted using 18F-FDG-

PET/CT, and one study using CT.

A number of 8 studies reported on ML (66,67%), three articles

reported on DL (25%), and there was 1 hybrid study (8,33%).

When it comes to studies utilizing DL, one employed a well-

defined CNN model, specifically DenseNet-121 (22), while the

remaining studies utilized custom-designed CNN architectures that

were described within their respective articles (13, 20). Notably, one

of these studies did not specify the architecture used (23).

As for the classifiers, SVM was the most adopted (13,20%),

followed by RF (9,43%), LR (9,43%), AdaBoost (7,54%), and others.

A summary of the included studies is provided in Table 1.
3.3 Primary outcomes

The performance of radiomics to discriminate between CNS

gliomas and PCNSLs was reported for a total of 993 patients
Frontiers in Oncology 04
composing the validation or test datasets of the studies included

in our meta-analysis. The Overall SEN and SPE were 88% (95% CI =

0.83 – 0.91) and 87% (95% CI = 0.83 – 0.91). Figure 2 shows the

SEN and SPE forest plots of the bivariate analyses for

discrimination between CNS gliomas and PCNSLs. Figure 3

provides the individual confidence regions and Figure 4 the

corresponding SROC curve for the differentiation task.

Specifically, the summary estimate coordinates of the SROC curve

for CNS gliomas vs. PCNSLs were [0.87; 0.14]. The ACC of the

included studies ranged from 83% (14) to 97% (16), the PPV from

85% (15) to 100% (16), and the NPV from 74% (14) to 100% (15).

Table 2 summarizes the performance data of the radiomics

models analyzed.
3.4 Secondary outcomes

Our subgroup analysis could not evidence variables that

significantly impact the performance of the models. Nonetheless,

the best-performing features were those extracted from the Gray

Level Run Length Matrix (GLRLM; ACC 97%) (16), followed by the

ones provided by the Neighboring Gray Tone Difference Matrix
FIGURE 1

PRISMA flow diagram depicting the literature search process. PRISMA, preferred reporting items for systematic reviews and meta-analysis.
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(NGTDM; ACC 93%) (12) and then shape-based features (ACC

91%). As for the imaging modalities, the best-performing was the

18F-FDG-PET/CT (ACC 97%) (16), followed by the MRI CE-T1W

reported in another 7 studies (ACC 87% (22) - 95% (20)). It’s worth

mentioning that half of the included studies incorporated external

test sets for evaluation (13–15, 18, 21, 23), while the remaining half

solely relied on their internal datasets (12, 16, 17, 19, 20, 22).

Additionally, most studies applied a cross-validation analysis (92%).

Table 3 summarizes the secondary outcomes.

We furthermore investigated the presence of potential

publication bias, as well as small study effect, conducting the

generalized Egger’s test, which can incorporate the correlation

information intrinsic in the diagnostic test accuracy meta-analysis
Frontiers in Oncology 05
(24). The outcome of the test was not significant (p=0.052),

indicating no asymmetry into the funnel plot. This aspect can

be also gathered from Figure 5 providing the Funnel plots for the

bivariate outcomes of our diagnostic meta-analysis, namely the

logit of the SEN and of the FPR (see Figure 5 left and

right respectively).
3.5 Study heterogeneity

The c2 test suggested substantial heterogeneity of SEN

(c2 = 20.5, df=11, P=0.04) and SPE (c2 = 21.3, df=11, P=0.03) for

the CNS gliomas vs. PNCSLs differentiation task.
TABLE 1 Summary of studies.

Author,
Journal, Year

Dataset
(No.)

Gliomas
(No.)

PCNSLs
(No.)

Imaging
protocol

Method Classifiers

Bathla, European
Radiology, 2021 (12)

94 60 34 T1W, CE-T1W,
T2W, T2-
FLAIR, DWI

ML Linear Regression, LR, RR, ENR, LASSO, NN, SVM with a
polynomial kernel, SVM with a radial kernel, MLP, RF,
GBRM, AdaBoost

Chen, The
International Journal
of Neuroscience,
2018 (13)

96 66 30 CE-T1W DL SVM

Kang, Neuro-
Oncology 2018 (14)

196 119 77 T1W, CE-T1W,
T2W, T2-FLAIR,
DWI, PWI

ML K-NN, NB, DT, LDA, RF, AdaBoost, Linear SVM, RBF
kernel SVM

Kim, Neuroradiology,
2018 (15)

143 78 65 T1-FFE, T2W,
DWI, T2-FLAIR

ML LR, SVM, RF

Kong, Neuroimage
Clinical, 2019 (16)

77 53 24 18F-FDG-
PET/CT

ML DT

Lu, Frontiers in
neurology, 2022 (17)

101 51 50 CT scans ML LR, RF, DT, K-NN, SVM, NB

Lv, Journal of
Neurosurgery,
2022 (18)

103 68 35 CE-T1W ML k-NN, GNB, RF, LR, SVM, MLP, AdaBoost

Priya, Neuroradiol J.,
2021 (19)

143 97 46 T1W, CE-T1W,
T2W, T2-FLAIR,
DWI, PWI

ML Linear regression, multinomial logistic, RR, elastic net,
LASSO, NN, SVM with a polynomial kernel, SVM with a
radial kernel, MLP, RF, GBRM, AdaBoost

Wu, IEEE
Transanctions On
Medical Imaging,
2018 (20)

102 70 32 CE-T1W, T2W ML, DL Sparse Representation, CNN

Xia, Journal of
Magnetic Resonance
Imaging, 2020 (21)

240 129 111 CE-T1W, T2-
FLAIR, DWI

ML LASSO, Multi-variable LR

Xia, Journal of
Magnetic Resonance
Imaging, 2021 (22)

289 153 136 T1W, T2-
FLAIR, DWI

DL CNN

Yun, scientific reports,
2019 (23)

195 195 119 CE-T1W, DWI DL MLP
PCNSL, primary central nervous system lymphoma; T1W, T1-weighted; CE-T1W, contrast-enhanced T1 weighted image; T2W, T2-weighted; T2-FLAIR, T2 weighted fluid-attenuated inversion
recovery; DWI, diffusion-weighted imaging; PWI, perfusion-weighted imaging; T1-FFE, T1-weighted fast field echo; CT, computed tomography; 18F-FDG-PET/CT, fluorine-18
fluorodeoxyglucose positron emission tomography/computed tomography; ML, machine learning; DL, deep learning; LR, logistic regression; RR, ridge regression; ENR, elastic net
regression; LASSO, least absolute shrinkage and selection operator; NN, neural network; SVM, support vector machine; MLP, multilayer perceptron; RF, random forest; GBRM, generalized
boosted regression model; AdaBoost, adaptive boosting; k-NN, k-nearest neighbor; NB, naïve bayes; DT, decision tree; LDA, linear discriminant analysis; RBF, radial basis function; GNB,
gaussian naïve bayes; CNN, convolutional neural network.
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4 Discussion

In this study, we conducted a comprehensive meta-analysis to

assess the performance of radiomics in discriminating between CNS

gliomas and PCNSLs. A total of 12 eligible articles were included in

the analysis, encompassing a dataset of 1779 patients. Most studies

employed ML techniques, with SVM being the most used classifier.
Frontiers in Oncology 06
Overall, radiomics demonstrated promising performance in

discriminating between these two tumor types, with certain

texture matrices, such as GLRLM and NGTDM, providing

valuable information for the extraction of diverse radiomic

features and showing higher accuracy in this discrimination

process. Additionally, the utilization of 18F-FDG-PET/CT and

CE-T1W MRI modalities yielded the most promising results.
4.1 Radiomics models

The studies included in the meta-analysis used two different AI

techniques in the context of radiomics, namely ML and its

subcategory, DL. These advanced computational techniques

allowed researchers to extract high-dimensional imaging features

from different modalities, including MRI and PET/CT scans,

enabling a more comprehensive characterization of these tumors.

Among the AI models employed, ML was the most used

approach, reflecting its well-established presence in medical

imaging research. SVM emerged as the most adopted classifier,

equipped with radial basis function or polynomial kernel in most of

the cases. RF and LR were also frequently employed.

Furthermore, a noteworthy percentage of studies (25%)

incorporated DL techniques, which indicates the growing interest

and exploration of neural networks for radiomics analysis. DL

models have demonstrated their potential to automatically learn

and identify intricate patterns in medical images, potentially leading

to more accurate and efficient tumor classification (25).

Interestingly, a hybrid study combined both ML and DL

techniques, leveraging the complementary strengths of these

approaches (20). Such integration of diverse AI methodologies

may offer synergistic advantages in capturing complex imaging
FIGURE 2

Forest plots with overall SEN and SPE for discrimination between CNS gliomas and PCNSLs. SEN, sensitivity; SPE, specificity; CNS, central nervous
system; PCNSL, primary central nervous system lymphoma.
FIGURE 3

Endpoints of interest with individual confidence regions for
differentiation between CNS gliomas and PCNSLs. CNS, central
nervous system; PCNSL, primary central nervous system lymphoma.
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patterns and enhancing the overall predictive power of radiomics

models (26).

The imaging modalities used in the included studies were

primarily MRI-based, with the CE-T1W being the most common

sequence. This preference can be attributed to the valuable

contrast enhancement information provided by CE-T1W, which

aids in identifying regions of abnormal vascularity and enhancing

tumor boundaries. The DWI, T2-FLAIR, and T2W sequences

were also frequently employed, each contributing unique

information about the tumor’s cellular density, edema, and

structural characteristics.

Additionally, two studies utilized alternative imaging

techniques, namely 18F-FDG-PET/CT (16) and CT (17). These

studies represent a broader exploration of radiomics beyond

traditional MRI-based approaches, and they may offer unique

insights into tumor metabolism and density, respectively.
Frontiers in Oncology 07
The radiomics models developed in these studies showed

promising results in differentiating CNS gliomas from PCNSLs

and have the potential to contribute significantly to improved

patient outcomes, aiding in accurate and timely diagnoses, as well

as personalized treatment strategies.
4.2 Radiomics performance

In this meta-analysis, we evaluated the performance of

radiomics in discriminating between CNS gliomas and PCNSLs

using data from a total of 993 patients from various validation or

test datasets included in the selected studies. The bivariate analyses

yielded an overall SEN and SPE of 88% and 87%, respectively. The

SROC curve further illustrated the differentiation task with

summary estimate coordinates of [0.87; 0.14].
FIGURE 4

Corresponding SROC curve for differentiation between CNS gliomas and PCNSLs. SROC, summary receiver operating characteristic; CNS, central
nervous system; PCNSL, primary central nervous system lymphoma.
TABLE 2 Summary of performance data of the radiomics models.

Author, Journal, Year SEN SPE ACC PPV NPV

Bathla, European Radiology, 2021 (12) 0,97 0,85 0,93 0,93 0,94

Chen, The International Journal of Neuroscience, 2018 (13) 0,77 0,90 0,91 0,98 0,68

Kang, Neuro-Oncology 2018 (14) 0,85 0,79 0,83 0,91 0,74

Kim, Neuroradiology, 2018 (15) 0,98 0,80 0,91 0,85 1,00

Kong, Neuroimage Clinical, 2019 (16) 0,95 0,98 0,97 1,00 0,92

Lu, Frontiers in neurology, 2022 (17) 0,87 0,93 0,90 0,94 0,87

Lv, Journal of Neurosurgery, 2022 (18) 0,85 0,90 0,90 0,95 0,79

Priya, Neuroradiol J., 2021 (19) 0,80 0,91 0,88 0,96 0,69

Wu, IEE Transanctions On Medical Imaging, 2018 (20) 0,88 0,90 0,95 0,98 0,79

Xia, Journal of Magnetic Resonance Imaging, 2020 (21) 0,91 0,88 0,92 0,90 0,93

Xia, Journal of Magnetic Resonance Imaging, 2021 (22) 0,84 0,89 0,87 0,90 0,83
frontie
SEN, sensitivity; SPE, specificity; ACC, accuracy; PPV, positive predictive value; NPV, negative predictive value.
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When comparing our radiomics-based results to other non-

radiomic studies mentioned in the literature, we observed

competitive performance. While it is essential to note that the

studies included in our meta-analysis varied in terms of population

size, methodology, and the specific radiomics features used, our

overall SEN and SPE surpassed the reported diagnostic accuracy of

some non-radiomic approaches.

For instance, a study used DWI in association with ADC to

differentiate between CNS gliomas and PCNSLs, but the findings

indicated a slightly lower diagnostic performance, with a SEN of

82% (95% CI 0.75-0.88) and a SPE of 87% (95% CI 0.84-0.90) (27).

Similarly, in another study, the diagnostic efficacy of DWI was
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investigated for the same discrimination task, but it also exhibited

lower performance, with SEN at 82% (95% CI 0.70-0.90) and SPE at

84% (95% CI 0.75-0.90) (28). DWI provides valuable insights into

tissue microstructure by measuring the random motion of water

molecules, offering a direct examination of cellular density and

tissue organization. This information can be particularly useful for

distinguishing between different tissue types and detecting subtle

alterations in cellularity. However, DWI has its limitations,

primarily related to its sensitivity to motion artifacts and

challenges in accurately quantifying certain tissue characteristics.

Additionally, DWI may be influenced by factors such as perfusion

and inflammation, potentially affecting the reliability of the

obtained images (29). Radiomic-based models, on the other hand,

leverage a comprehensive set of quantitative features extracted from

medical images, including texture, shape, and intensity patterns.

The advantages of radiomics include its ability to capture complex

spatial relationships within the tumor, potentially revealing subtle

patterns that are not easily discernible through visual inspection.

Radiomic features can provide a more holistic characterization of

the tumor’s heterogeneity, offering a broader perspective for

discrimination tasks. However, radiomic analysis requires careful

standardization of imaging protocols and segmentation methods to

ensure reproducibility and generalizability of results (30). Our

radiomics analysis showed promising results, demonstrating a

diagnostic differentiation performance that surpassed these non-

radiomic approaches.
4.3 Determinants of performance

The identification of the most influential texture matrices,

namely GLRLM and NGTDM, provides valuable insights for

future radiomics model development. Both these entities provide

features based on texture analysis, quantifying the spatial

distribution of voxel intensities in medical images and providing

information about image coarseness and homogeneity. More

specifically, GLRLM focuses on the lengths of homogeneous runs

of pixels with the same gray-level value (31), while, NGTDM

focuses more on the local intensity differences without

considering specific patterns (32). By incorporating these features

into radiomics models, researchers can potentially identify specific

imaging patterns associated with disease characteristics, leading to

more accurate diagnoses and personalized treatment approaches.

The choice of imaging modality also plays a critical role in the

performance of radiomics models. While 18F-FDG-PET/CT

demonstrated the highest accuracy of 97%, its practicality and

accessibility may be limited in some clinical settings (16). The

18F-FDG-PET/CT provides valuable metabolic information,

making it highly effective in identifying active tumor regions.

However, the need for specific on-site equipment and specialized

facilities to produce the radiotracer and ensure radiation safety

could restrict its accessibility in certain medical centers or regions.

In contrast, MRI is more widely available and does not involve

ionizing radiation, making it a safer and more convenient option for

many patients.
TABLE 3 Cross-validation analysis, best-performing features, and best-
performing imaging modalities per each study.

Author,
Journal, Year

Cross-
validation
analysis

Best-
performing
features

Best-
performing
imaging
modalities

Bathla, European
Radiology,
2021 (12)

Yes NGTDM CE-T1W

Chen, The
International
Journal of
Neuroscience,
2018 (13)

Yes NA CE-T1W

Kang, Neuro-
Oncology 2018 (14)

Yes NA DWI

Kim,
Neuroradiology,
2018 (15)

Yes Shape-based NA

Kong, Neuroimage
Clinical, 2019 (16)

Yes GLRLM 18F-FDG-PET

Lu, Frontiers in
neurology,
2022 (17)

Yes NA CT scans

Lv, Journal of
Neurosurgery,
2022 (18)

No NA CE-T1W

Priya, Neuroradiol
J., 2021 (19)

Yes First order CE-T1W

Wu, IEE
Transanctions On
Medical Imaging,
2018 (20)

Yes NA CE-T1W

Xia, Journal of
Magnetic
Resonance Imaging,
2020 (21)

Yes NA CE-T1W

Xia, Journal of
Magnetic
Resonance Imaging,
2021 (22)

Yes NA CE-T1W
NGTDM, neighboring gray tone difference matrix; GLRLM, gray level run length matrix; CE-
T1W, contrast-enhanced T1-weighted image; DWI, diffusion-weighted imaging; 18F-FDG-
PET/CT, fluorine-18 fluorodeoxyglucose positron emission tomography/computed
tomography; CT, computed tomography; NA, Not Available.
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Within the MRI techniques, the CE-T1W sequence stands out

as the best-performing modality, with reported accuracies ranging

from 87% to 95%. This enhanced contrast imaging modality allows

for better visualization and characterization of lesions and tumor

boundaries. Furthermore, the CE-T1W sequence is commonly used

in clinical practice for the diagnosis and monitoring of most tumors,

making it a familiar and easily interpretable imaging modality.

Cross-validation analyses were widely used in the majority (92%) of

the included studies, demonstrating a rigorous approach to validating

radiomics models. By dividing the dataset into multiple subsets (folds)

and training the model on one subset while testing it on the remaining,

cross-validation helps to simulate the model’s performance on new

data. This process helps in estimating the generalization capabilities of

the model and provides insights into potential overfitting issues. Its

widespread use indicates a commitment to producing reliable and

reproducible radiomics results, which is crucial for successful

implementation in clinical settings (33). Furthermore, 33% of the

studies employed also an external validation fold, pursuing further

the generalization capabilities of the model.
4.4 Limitations

Despite the number of patients included in our study, this meta-

analysis was based on retrospective cohort studies, and thus, it has

limitations inherent to retrospective studies. Given the bivariate

model of the meta-analysis, we did not calculate the overall ACC for

the differentiation task. Moreover, our subgroup analysis was

limited by the number of studies identified. It is important to

acknowledge the inherent risk of selection bias, information bias,

and potential confounding variables that are typical in such studies.

While retrospective analyses provide valuable insights, the inability

to control certain variables poses challenges in establishing

causal relationships.
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Nonetheless, to the best of our knowledge, this meta-analysis

represents the first comprehensive synthesis of the current

performance of radiomics for discriminating between CNS

gliomas and PCNSLs. The findings provide cutting-edge insights

to guide the development of future models.

Additionally, it is essential to recognize that remains a

limitation regarding the assessment of 18F-FDG-PET/CT. We

acknowledge that only one study contributed to the evaluation of

this modality. Therefore, while our results suggest a high

performance for 18F-FDG-PET/CT, it is crucial to interpret this

with caution due to the limited data available for this modality. The

systematic review also included a risk of bias assessment using

the NOS. The NOS allowed for the evaluation of the quality of the

included studies based on selection criteria, comparability of

the study, and outcome assessment. This assessment ensured that

the included studies were reliable.
5 Conclusions

The current SEN and SPE of radiomics to discriminate CNS

gliomas from PCNSLs are high, making radiomics a helpful method

to differentiate these tumor types. The best-performing texture

matrices are the GLRLM, NGTDM, and the best performing

features are shape-based. The 18F-FDG-PET/CT imaging

modality was the best-performing, while the MRI CE-T1W was

the most used and the second best-performing. There is significant

heterogeneity among the current models that underscores the need

for a focused developmental phase. Radiomics laboratories should

be oriented towards more defined and shared algorithms that will

possibly be implemented in clinical practice. Our findings suggest

that integrating radiomics into diagnostic workflows may

contribute to improved accuracy in distinguishing between CNS

gliomas and PCNSLs.
A B

FIGURE 5

Funnel plots for the bivariate outcomes. (A) Se, sensitivity; (B) FPR, false positive rate.
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