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Crack detection is a crucial task for the structural health diagnosis of buildings.
The current widely used manual inspection methods have inherent limitations
and safety hazards, while traditional digital image processing methods require
manual feature extraction and also have substantial limitations. In this paper, we
propose a crack recognition method based on pyramid features and memory
mechanisms that leverages a U-shaped network, long short-term memory
mechanisms, and a pyramid feature design to address the recognition accuracy,
robustness, and universality issues with deep learning-based crack detection
methods in recent years. Experiments were conducted on four publicly available
datasets and one private dataset. Compared with the commonly used FCN8s,
SegNet, UNet, and DeepLabv3+ models and other related studies using the
same evaluation criteria and datasets, our proposed model shows better overall
performance in terms of all metrics evaluated.
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1 Introduction

With the development of the economy and the extensive and lasting use of concrete in
construction facilities, the possible harmfulness of building structures are becoming more
and more serious, so it is increasingly important and urgent to diagnose and maintain the
health of structures. Crack detection is an important part of structural health diagnosis and
has become a research focus (Deng et al., 2023).

Over the past two decades, a variety of image-based detection methods have provided a
safe, efficient, and cost-effective approach to crack detection techniques.

With the emergence of fully convolutional neural networks, deep learning has been
applied to image semantic segmentation. The goal of building crack image recognition is
to detect whether there are cracks on the surface of the building structure and the location
of the cracks. Image semantic segmentation technology divides the image into different
blocks according to the content. Compared with image classification and detection, image
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FIGURE 1
FCN8s, FCN16s, and FCN32s models.

segmentation is a more delicate work, including image semantics
and location issues. Image segmentation can be divided into
semantic segmentation and instance segmentation. Semantic
segmentation simply classifies each pixel in an image, but instance
segmentation needs to distinguish different objects. This paper
considers semantic segmentation. The semantic problem is
the “what” problem in the image classification task, while the
location problem is the “where” problem in the image target
detection task (Long et al., 2015), which is very suitable for
crack detection.

Aiming at the problems of the low accuracy and poor robustness
of current semantic segmentation methods for building crack
images, this paper proposes a new crack recognition model based
on memory mechanisms and pyramid features which adopts multi-
scale feature fusion and cross-layer feature fusion methods to
improve segmentation accuracy. In addition, long and short-term
memory mechanisms are used to learn the correlation between
feature maps to remove disturbing features. Finally, comparative
experiments are designed onmultiple datasets to test the effect of the
proposed model.

The structure of this paper is as follows: the Section 2
is the research status analysis, the Section 3 is the
model design, the Section 4 is the experimental design
and experimental results analysis, and the Section 5 is
the conclusion.

2 Research status analysis

At present, there is a lot of research in the field of crack
identification (Jieh-Haur et al., 2017; Li et al., 2017; Liu et al., 2021;
Asadi Shamsabadi et al., 2022; Liu et al., 2023).

Among them, literature Jieh-Haur et al. (2017) adopted self-
organizing map optimization (SOMO) integrated with image
processing techniques to develop a crack recognition model for
bridge inspection. Bridge crack data from 216 images were collected
from the database of the Taiwan Bridge Management System,
which provides detailed information on the condition of bridges.
Its methods and datasets are different from those in this paper.
Literature Li et al. (2017) developed a machine learning-based
algorithm for extracting cracks from concrete bridge images which
combines a modified region-based active contour model for image
segmentation and the linear support vector machine using a greedy
search strategy for noise elimination. Literature Liu et al. (2021)
proposed an approach to recognize concrete crack patterns from
images. By analyzing the characteristics of structural and non-
structural cracks, a binary classification of crack patterns into
isolated patterns and map patterns was proposed. The recognition
of crack patterns was performed through similarity comparisons
using the Differentiable-Image-Saliency-Transform-for-Improved-
Scalability-and-Portability-of-Image-Quality-Assessment (DISTS)
index. Various parameters that may affect the performance
were investigated through several experiments conducted using
real-world images. The methods and purposes in literatures
Li et al. (2017), Liu et al. (2021) are different from those of this
paper. Literature Asadi Shamsabadi et al. (2022) proposed a vision
transformer (ViT)-based framework for crack detection on asphalt
and concrete surfaces. With transfer learning and the differentiable
intersection over union (IoU) loss function, the encoder-decoder
network equipped with ViT could achieve an enhanced real-world
crack segmentation performance. Compared to the Convolutional-
Neural-Networks (CNN) based models (DeepLabv3+ and U-
Net), TransUNet with a CNN-ViT backbone achieved up to
∼61% and ∼3.8% better mean IoU on the original images of
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FIGURE 2
UNet model.

FIGURE 3
SegNet model.

the respective datasets with very small and multi-scale crack
semantics. The model principle and mechanism of literature
Asadi Shamsabadi et al. (2022) is different from that of this paper.
Literature Liu et al. (2023) described a You-Only-Look-Once-
version-three (YOLOv3) model with four-scale detection layers
(FDL) to detect combined B-scan and C-scan ground-penetrating-
radar (GPR) images subject to poor detection effects and a high
missed detection rate of small crack feature sizes. Multiscale
fusion structures, efficient intersection over union (EIoU) loss
function, K-means++ clustering, and hyperparameter optimization
were used in this proposed model to further improve detection
performance.

We focus on the models in literature Cao et al. (2020),
Xiang et al. (2020), Berman et al. (2018), Zhu et al. (2022), Qu et al.
(2022) using the same evaluation index and datasets in the
application of research into building crack identification.

Literature (Cao et al., 2020), the attention mechanism was
joined to the encoder and decoder of the nerual network
structure for road surface crack detection. Compared with other
advanced detection methods, this method achieved the highest
F1 score of 0.69.

Literature Xiang et al. (2020) proposed an end-to-end
convolutional neural network based on pyramid features and
attention mechanisms for pavement crack detection. The spatial
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FIGURE 4
DeepLabv3+ model.

channel combination attention module is introduced in the Fully-
Convolutional-Networks (FCN) network to refine the fracture
characteristics. Extended convolution is used to reduce the loss
of crack detail due to pooling operation in encoder networks. In
addition, the hinge loss function (Berman et al., 2018) is introduced
to apply to small objects. Experimental results showed that it has a
better effect.

In 2022, the study of the literature (Zhu et al., 2022) in the UNet
model based on intensive connection and supervisionmechanism to
detect road surface crack, and obtained F1 score of 0.684 and 0.654
on two datasets respectively.

Literature Qu et al. (2022) proposed a convolutional neural
network with the method of the transformer to capture the image
with more long-term dependence and global context information
to detect cracks; the experimental results showed that the method
on the three datasets achieved 𝐹1 𝑠𝑐𝑜𝑟𝑒s of 0.86, 0.71, and 0.64,
respectively.

In summary, the mainframes of image segmentation in
deep learning include the FCN (Long et al., 2015), UNet

(Ronneberger et al., 2015), SegNet (Badrinarayanan et al., 2017),
and DeepLabv3+ (Chen et al., 2018), as shown in Figures 1–4,
respectively. Among them, the FCN (fully convolutional network)
classifies the images at the pixel level (Long et al., 2015) to solve
the image segmentation problem at the semantic level. Different
from classic CNNs (convolutional neural networks), which use the
full connection layer after the convolutional layer to obtain the
feature vector of fixed length for classification, FCNs accept an input
image of any size. The deconvolution layer is used to upsample the
feature map of the last convolutional layer to restore it to the same
size as the input image so that a prediction can be generated for
each pixel while retaining the spatial information in the original
input image. Finally, pixel-by-pixel classification is carried out on
the upsampled feature map. According to the granularity of its
segmentation, FCN8s, FCN16s, and FCN32s can be used, in which
FCN32s restore the size of the original input graph from the feature
graph sampled 32 times down, and FCN16s and FCN8s recover the
size of the original input graph from the feature graph sampled 16
times down and 8 times down, respectively.The smaller the number
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FIGURE 5
PFILSTM model structure.

FIGURE 6
ILSTM unit structure.

of the model, the more operations are used in the upsampling and
the more complex the corresponding model structure.

The UNet model (Ronneberger et al., 2015) was first released
in 2015, and its network topology is shaped like “U.” It consists
of a contraction path (downsampling) and an expansion path
(upsampling).The contraction path is used to capture context Fully-
Convolutional-Networks (FCN) information in the image, while the
opposite extension path is used to accurately locate the parts that
need to be segmented in the image. A total of four times upsampling

were performed, and a skip connection was used at the same stage.
Compared with FCNs, the UNet model has two differences. First,
the FCNmodel only uses one upsampling operation to restore image
resolution, while the UNet model uses four upsampling operations
to restore image solution, forming a symmetrical structure with left
and right subnetworks. Second, the jump connection of the UNet
model uses a vector splicing operation, while the multi-scale fusion
of the FCN model uses a vector addition operation.

There is a problem in that the perception field and positioning
accuracy cannot be achieved simultaneously in the UNet. When the
perception field is large, the dimension reduction multiple of the
pooling layer will be increased, which will lead to the reduction of
positioning accuracy. However, if the perception field is small, the
classification accuracy will be reduced.

The key component of the SegNet model is the decoder
network (Badrinarayanan et al., 2017); each decoder corresponds
to an encoder. Its main feature is to save the source information
of all feature points after the maximum pooling operation in the
process of encoding subsampling and achieve the upper sampling by
using the index ofmaximumpooling (anti-pooling) in the process of
encoding.The objective is to accurately restore the correct positions
of the feature points within the output feature map region. SegNet
maximum pooling and noise removal are not considered; the use of
two consecutive 4x upsamples to restore resolution also results in
less detailed predictions.

The DeepLab model series is a semantic segmentation
algorithm proposed by Google. DeepLabv3+ was published in 2018
(Chen et al., 2018). Deeplabv3 + uses atrous convolution to reduce
the downsampling rate while maintaining the sensitivity field. The
semantics of the final featuremap are rich and relatively fine, and the
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FIGURE 7
Pyramid feature fusion.

TABLE 1 Experimental environment.

Attribute Value

OS Ubuntu18.04 kernel 5.4.0-137

CPU Intel(R) Xeon(R) Platinum 8269CY CPU @ 2.50 GHz

GPU NVIDIA GeForce RTX 3080 Ti

VRAM 12G

RAM 64G

Python 3.7.10

PyTorch 1.9

original resolution can be restored directly by interpolation. Atrous
convolution is one of the keys to the DeepLab model. It controls the
receptive fields without changing the size of the feature map, which
is advantageous for extracting multi-scale information. The space
pyramid module is another key technology in DeepLab’s model to
further extract multi-scale information.

There is a limit on the size of the input image, which is one of the
drawbacks of this architecture.

In summary, the recognition accuracy of the above method is
still not ideal, and the evaluation index is low, which is reflected in
the difficulty to identify the invisible fine cracks in the image and the
sensitivity to the noise in the image. Secondly, the universality of the
model is poor, which is reflected in that the model only has a good
effect on a certain dataset and cannot achieve good performance on
all datasets. Finally, some studies did not use public datasets, making
it difficult to compare.

3 The PFILSTM method

As can be seen from the above analysis, the semantic
segmentation model is based on the classification model (like the
detection model), that is, the CNN is used to extract features for
classification.

When the FCN is used to classify each pixel, the relationship
between pixels is not fully considered. It also ignores the spatial

normalization step used in the segmentationmethods based on pixel
classification, which lacks spatial consistency. In addition, the way of
reusing the encoder feature map in the decoder makes it consume a
lot of video memory during testing.

There is a problem with the UNet, that is, it cannot realize both
the sensing field and positioning accuracy. When the perception
field is large, the dimension reduction multiple of the pooling layer
is increased, which leads to the reduction of positioning accuracy.
However, if the perception field is small, the classification accuracy
is reduced.

SegNet’s maximum pooling approach does not
consider denoising.

In DeepLabv3+, the size of the input image is a restriction
in addition to the calculation requirements, which must have a
specific size.

3.1 Overall structure of the model

In order to address the aforementioned problems, this paper
introduces a Feature Pyramid Image-based Long Short-Term
Memory (LSTM) (PFILSTM). This is a semantic segmentation
model for architectural crack images, which leverages memory
mechanisms and pyramid features. The main design concept is that
the UNet model is adopted, and to retain the dependence between
crack pixels during the downsampling process, each layer of long
short-term memory is introduced to extract features, aiming to
prevent the loss of crack features and interference features. To meet
the requirements of multi-scale receptive fields, pyramid feature
layers are introduced for fusion. Finally, the two are fused in the last
layer of upsampling, so that the lost shallow features can be retrieved
from the deep layer of the network, and the recognition ability of the
model for fine cracks is further improved.

The overall structure of the PFILSTM model is shown in
Figure 5, where the blue box area is the encoder part and the green
box area is the decoder part. The PFILSTM adds a long short-term
memory layer and a pyramid feature layer based on the UNetmodel.
The difference between the PFILSTMmodel and the UNet model is
that each layer of the PFILSTM model decoder uses the long and
short-term memory layer as the input of the pyramid feature layer
rather than the output after continuous downsampling. Second, the
decoder of the PFILSTM model also integrates the feature map of
the pyramid feature layer in the last layer.
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FIGURE 8
Samples from publicly available road crack datasets.

FIGURE 9
Samples of crack images (private dataset) of an abandoned
residential building.

The ILSTM (Image-based LSTM) layer and pyramid layer of the
PFILSTMmodel is analyzed in detail.

3.2 ILSTM unit

The network composed of long- and short-term memory
units can remember information from different parts of the input
sequence and learn the relationship between each element in the

input sequence as well as the long-term dependence among them,
so that the neural network does not lose the previously learned
information and updates the saved information according to the
existing information. The LSTM layer possesses the capability to
dynamically modify its internal state in response to the input data.
This unique feature enables it to adapt to a variety of input data,
learning distinct features at various time steps. Given that different
images may necessitate unique features for effective segmentation,
this adaptability is crucial for the task of segmenting crack images. At
present, there have been studies using its memory retention ability
to successfully apply it to computer vision tasks, such as image
semantic segmentation (Stollenga et al., 2015; Xu et al., 2019) and
target tracking (Gao et al., 2019; Liu et al., 2020).

Inspired by the above research, the PFLSTM incorporates an
image long-short memory ILSTM unit using convolution operation
based on the standard LSTM layer, as shown in Figure 6. A series
of ILSTM units are used to model multi-level feature maps at
different levels of the same image, learn the correlation between
different levels of features, extract important features related to
cracks from the image according to the correlation, and filter out
the interference information. Similar to standard LSTMcells, ILSTM
cells also contain forget gates, input gates, output gates, candidate
states, hidden states, and cell states, and the update mechanism
is the same; the difference is that ILSTM units do not model the
subregions of the same image but the featuremaps of the same image
at different levels of the convolutional neural network.Duringmodel
training, each memory unit saves the historical feature information
extracted from the samepicture so that the subsequent network layer
can capture useful historical features from these memory units to
help understand the current state and semantics. The memory unit
can also filter the interference feature information in the historical
feature information according to the current input so that the neural
network can make more accurate semantic annotations for the
input image.
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FIGURE 10
Process of experiment.

3.3 Pyramid unit

The current semantic segmentation model either directly adds
(FC model) or stitches together (UNET model) the same feature
maps from each layer of the encoder and decoder. However, there
is a deficiency in passing the feature map from the shallow network
to mitigate the impact of reducing feature maps in the deeper
network on the edge detail information of the target in the image.
However, because the important features of different sizes in the
image may appear on the feature diagrams of different scales, it
is difficult to identify and divide objects of different scales in the
image (Yu and Koltun, 2016; Chen et al., 2017; Zhao et al., 2017).
In addition, when detecting the targets with different scales in the
image, different degrees of context information also are required
(Qu et al., 2022).

The feature maps of targets at different scales extracted from
images by the pyramid layer can be used to detect targets in
images because each feature map contains different information
(Lin et al., 2017). These feature maps with different scales have
different receptive fields and contain different levels of context
information (Liu et al., 2016). The fusion of these features extracted
at different scales can improve the recognition and segmentation
ability of the model for objects of different scales.The fusion process
is shown in Figure 7. Through the above analysis, it can be seen that
when generating the final feature map of the PFILSTM, the feature
map information of each layer of the network is fully utilized, which
is conducive to eliminating the local features with ambiguity in the
low-level feature map, making the edge details of the segmentation

results more abundant and less noisy. It also helps to improve the
scale robustness and accuracy of the model.

4 Experimental design and
experimental results analysis

To test the crack identification effectiveness of the proposed
PFILSTM model, two experiments were designed. One was to
compare the PFILSTM with the popular FCN8s model, SegNet
model, UNet model, and DeepLabv3+ model on multiple datasets.
Secondly, the PFILSTM was compared with other studies using the
same evaluation indicators and datasets.

4.1 Experimental environment

All experimental models were developed and trained utilizing
Python version 3.7.10 within the Pytorch framework. The
computational resources employed included an Intel® Xeon®
Platinum 8269CY CPU, 64GB of RAM, and an NVIDIA Geforce
RTX 3080 Ti graphics card equipped with 12GB of memory.
Comprehensive specifications are tabulated in Table 1.

4.2 Datasets and their preprocessing

Concrete buildings can be mainly divided into bridges,
roads, and buildings. Limited by space, this paper starts with the
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TABLE 2 The dataset preprocessing segmentation results.

Dataset name Total number of
the images

Cut size Cut step size Partition type Partition quantity

BUILDINGS 200 360 × 360 360

Train 1,032

Validation 318

Test 341

CRACK675 675 360 × 360 120

Train 2,977

Validation 2,207

Test 2,194

CRACK500 500 360 × 360 360

Train 3,044

Validation 542

Test 2,623

CFD 118 160 × 160 160

Train 492

Validation 72

Test 144

TABLE 3 Confusion matrix.

Predicted
values

Actual values

Positive (1) Negative (0)

Positive (1) TP FP

Negative (0) FN TN

concrete public crack dataset and combines private residential
buildings and roads crack datasets to conduct experiments
and analysis.

4.2.1 Public and private dataset
For concrete road cracks, several open datasets of the

CRKWH100 (Zou et al., 2019; Lau et al., 2020), CrackTree260
(Lau et al., 2020), CrackLS315 (Zou et al., 2019), CRACK500
(Yang et al., 2019), and CrackForestDataset (CFD) (Cuilimeng,
2023) were adopted. Finally, these datasets were integrated
according to their characteristics. Some images of each dataset are
shown in Figure 8.

Among them, the CRACK500 dataset comes from the crack
images of concrete roads in literature (Yang et al., 2019), and the
total number of crack pixels in each image is more than 1,000. The
dataset was divided into a training set, verification set, and test set,
which contain 3,792, 696, and 2,248 images, respectively, totaling
6,736 images.

The CFD dataset, which is open source on Github, is small and
contains only 118 images of cracks in urban concrete roads with a
resolution of about 480 × 320.

The images in CRKWH100 and CrackLS315 were taken
using linear array cameras and contain 100 and 315 images
of road cracks, respectively. CrackTree260 contains 260 images
of road cracks taken using a front array camera. In this
paper, these three datasets were combined and named the
CRACK675 dataset.

After the above integration, the final datasets used in the
experiment are BUILDINGS, CRACK675, CRACK500, and
CFD. Among them, the BUILDINGS dataset is the private
dataset manually marked in this paper and the CRACK675
dataset contains many pictures of fine cracks. The CRACK500
dataset contains more wide-crack images, while the CFD
dataset contains the least number of images and has the lowest
resolution. The four datasets have different styles that allow for
a more comprehensive assessment of the model’s performance in
different scenarios.

Our private Residential Building Crack Dataset comprises 200
high-resolution images of fissures in deserted residential structures.
These images, captured by our research team using state-of-the-art
industrial cameras, are of 1,000 × 1,000 pixel resolution. Each image
has been meticulously annotated with relevant labels by a team of
researchers. To ensure the utmost accuracy of these annotations,
we have implemented a rigorous cross-validation process on this
proprietary dataset.

4.2.2 Dataset preprocessing
Preprocessing included two steps: first was the annotation of the

private dataset; the second was image size cutting.
The images in the private dataset were manually

marked by LabelMe software (Labelme, 2023) to obtain
the crack image dataset of residential BUILDINGS
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FIGURE 11
The loss of training processes (A) and verification process (B) on the BUILDINGS dataset.

FIGURE 12
Training (A) and verification (B) loss on the CRACK675 dataset for each model.

used in the experiment, hereinafter referred to as the
Buildings dataset.

However, the images in Figures 9, 10 have different sizes
and resolutions, which will affect the subsequent deep learning
algorithm, so they need to be converted into a standard format
with uniform size and resolution. The pre-processing process
is as follows:

(1) Divide the dataset into the training set, verification set, and
test set.

(2) Cut the dataset according to the fixed size.
(3) Eliminate the images without cracks.

Since the CRACK500 dataset is pre-divided into training,
verification, and test sets, the process for the CRACK500 dataset
does not include step (1). At the same time, to maintain the original
characteristics of the CRACK500 dataset, images with less than

1,000 crack pixels are removed in step (3). Table 2 shows the final
partitioning results after data set preprocessing.

4.3 Process of experiment

The experimental process is shown in Figure 10. The first step is
to build the dataset for the experiment, as described in Section 4.2.
The second step is the training of the model so that each model
is trained on the same dataset. The third step is to use trained
models to make predictions. The final step is to calculate the
score of the predicted results of each model according to the
evaluation index.

To compare the performance of various models, the FCN8s,
UNet, SegNet, and DeepLabv3+, the PFILSTM model proposed
in this paper is used to conduct experiments on the dataset
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FIGURE 13
Training (A) and verification (B) on the training of each model on the CRACK500 dataset.

FIGURE 14
Training (A) and verification (B) loss of each model on CFD datasets.

in Section 4.2, and the hyperparameters of each model in the
experiment are adjusted from various aspects.The hyperparameters
of each model in the experiment are adjusted from various
perspectives to ensure that all models are ultimately obtained
under relatively optimal conditions in all aspects. Finally, batch_
size was determined to be 8, the learning rate was 0.00075, and the
learning rate attenuation coefficient was 0.875. In the experiment,
each model was trained on all datasets for a maximum of 200
rounds, and the learning rate was attenuated when the loss on the
verification set did not decrease for five consecutive rounds. Because
the data in the training set, verification set, and test set do not
have exactly the same distribution, a model that performs well on
the verification set in a certain round does not necessarily mean
that it performs well on the test set, so the experiment uses the
optimal results in the last 10 training rounds in themodel prediction
evaluation stage.

4.4 Loss functions and optimizers

It is not difficult to see that the number of background pixels
in the crack image far exceeds the number of crack pixels. For this
imbalance distribution, the loss function Dice loss (Milletari et al.,
2016) has been shown to handle this type of dataset well. It is a
loss function for image segmentation tasks, and the basic idea is
to calculate the overlapping part of the predicted result and the
real result and optimize the model by minimizing the difference
between the two.

The optimizer uses Adam (Kingma and Ba, 2015). It is a
momentum-based algorithm which uses the historical gradient
information of each parameter to ensure a smooth iteration.
Compared to other optimizers, the Adam optimizer is less sensitive
to the initial learning rate and the selection of hyperparameters, so
it is easier to use. In addition, the Adam optimizer can converge
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FIGURE 15
Part of the prediction results of each model on the Buildings dataset.

quickly to the optimal solution, especially when dealing with large-
scale data and high-dimensional parameters, and it can better adapt
to different datasets and models.

4.5 Evaluation index of quantitative analysis

The 𝐹1𝑠𝑐𝑜𝑟𝑒, the mean intersection over union
(mIoU), and the confusion matrix as shown in Table 3
are commonly used as indicators of the image semantic
segmentation model. Next, we will separately delve into the
interconnectedness and computational methodologies of three
distinct evaluation metrics.

The confusion matrix serves as the foundation for computing
the F1 score and mIoU, effectively highlighting the discrepancies

between the pixel blocks of the model’s forecasted image and
the labeled image, where T/F means that the prediction result is
correct/wrong and P/N means that the sample is predicted to be
correct/wrong. The combination of the two results produces four
kinds of results: TP, TN, FP, and FN.The accuracy rate of prediction
is defined as the proportion of samples with correct prediction
results in the total number of samples, and its calculation method
is shown in Formula 1. The Precision is defined as the proportion of
true positive samples among the samples predicted as positive. And
the calculation method as shown in Formula 2:

Accuracy = (TP+TN)/(TP+TN+ FP+ FN) (1)

Precision = TP/(TP+ FP) (2)
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FIGURE 16
Part of the prediction results of each model on the Crack675 dataset.

The predicted recall rate is defined as the proportion of the
samples that are positive samples that are predicted to be positive
the calculation method as shown in Formula 3:

Recall = TP/(TP+ FN) (3)

Typically, precision and recall are considered contradictory
measures bound by a certain degree of mutual constraint. To
encapsulate the learner’s performance in terms of precision and
recall more effectively, we introduce the 𝐹1𝑠𝑐𝑜𝑟𝑒, which is the
harmonic mean of precision and recall. This score amalgamates
the two evaluation indicators. The calculation method as shown in
Formula 4, its calculation precision rate and recall rate of harmonic
mean, Only when both precision rate and recall rate are high, the
harmonic mean F1score will be higher.

F1score = 2× Precision×Recall/(Precision+Recall) (4)

Unlike F1, MIoU measures the performance of the model
from another perspective, using the calculation of the intersection
and union of two sets as the evaluation metric. In the semantic
segmentation problem, the two sets are the sample set that is truly
positive and the sample set that is predicted to be positive.ThemIoU
is calculated by the confusion matrix, as shown in Formula 5.

mIoU = (1/k)(∑k
i=1
(TPi/(TPi + FPi+ FNi))) (5)

When the semantic segmentation of the cracks of the building,
there is a highly unbalanced distribution of the number of pixels
between cracks and background likely, more than 90% of the
pixels in the crack image belong to the background, and the
calculation result of Eq. 5 is usually high, so using the 𝐹1𝑠𝑐𝑜𝑟𝑒
to measure the prediction is somewhat more convincing than
using the mIoU.

Frontiers in Materials 13 frontiersin.org

https://doi.org/10.3389/fmats.2023.1347176
https://www.frontiersin.org/journals/materials
https://www.frontiersin.org/journals/materials#articles


Chen et al. 10.3389/fmats.2023.1347176

FIGURE 17
Partial predictions of each model on the CRACK500 dataset.

4.6 Training and prediction process

Figures 11–14 are the average loss curves of each model in the
BUILDINGS dataset, CRACK675 dataset, CRACK500 dataset, and
CFD datasets. The subdiagram (a) on the left is average training loss
on the set, the subdiagram (b) on the right is the average validation
loss on the set.

It can be seen from Figure 11 that on the Buildings dataset,
after 200 rounds of iteration, in contrast, the UNET model and
the PFILSTM model training loss have fallen to a very low,
but the PFILSTM model has the lowest verification loss. The
training loss of the SEGNET model continues to decline. The
DeepLabv3+ model is the model with the highest training loss and
verification loss.

It can be seen from Figure 12A that on the CRACK675 dataset,
the FCN8S model and the PFLSTM model reached fit in about

50 rounds of training, and the training loss and verification
loss will be slowly reduced. To converge, the SEGNET model
still has a downward trend after 200 rounds of training, but
the validation loss curve does not change after 125 training
rounds. It can also be seen from Figure 12B that although the
training loss is relatively low, the verification loss is relatively
high. This is not an overfitting phenomenon, because the
verification loss and training loss curve of the FCN8S model
are synchronized. In the first 40 rounds of model training, both
training loss and validation loss are declining, and there is not
much fluctuation afterward. The reason for this phenomenon
may be that it is not uniform when dividing the dataset. There
is a large gap between the distribution of training images and
verification images, resulting in the FCN8S model not learning
the relevant characteristics of the test set image from the training
set. The PFILSTM and UNET models have low final training
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FIGURE 18
Partial predictions for each model on a CFD dataset.

loss and verification loss. In contrast, PFILSTM performance
is better.

It can be seen from Figure 13 that on the CRACK500 dataset,
the training loss curve and verification loss curve change of the five
models in the experiment are the same. SegNet verified that the loss
fluctuated in the first 10 rounds of training, and the DeepLabv3+
model also appeared. It can be speculated that this was caused
by a slightly higher initial learning rate because, after 25 rounds
and 100 rounds of training, all models were verified. The average
losses on the set and the training set have almost no significant
fluctuations.

It can be seen from Figure 14 that the verification loss of the
FCN8S model on the CFD dataset is also declining. It is speculated
that the reason for this phenomenon is that the number of images
in the CFD dataset is small and the style is relatively singular, while
the CRACK675 dataset is composed of three types of datasets with
a large number and changing style. Therefore, the FCN8S model

can easily learn the relevant features from the training set image
of the CFD dataset to fit the verification set. The volatility of the
verification of the loss curve becomes larger because the number of
images of the CFD dataset is too small. After 200 rounds of training,
the UNET and PFILSTM models are the lowest in training. The
loss of PFLSTMmodel is the lowest, which verifies that its strongest
detection ability.

4.7 Result analysis

Figures 15–18 lists some of the prediction results on the models
on the Buildings, Crack675, Crack500, and CFD datasets, and
the performance of each model is judged according to subjective
intuition and experience.

In Figure 15, the FCN8S model leaks more cracks, especially in
images 4 and 6.The SegNetmodel also leaks prediction in the fourth

Frontiers in Materials 15 frontiersin.org

https://doi.org/10.3389/fmats.2023.1347176
https://www.frontiersin.org/journals/materials
https://www.frontiersin.org/journals/materials#articles


Chen et al. 10.3389/fmats.2023.1347176

FIGURE 19
PR curves for each model on the four data sets.

column, but its main problem is that it is easy to be disturbed. The
interference identification is identified as cracks on the images in
columns 6 and 7. The UNET model has a few predictions error on
the column 6 images. DeepLabv3+ models have not all the cracks
are predicted on the fourth column image, and the PFILSTMmodel
predicts all cracks.

The FCN8s model’s predictions are found to be deficient in
crack representation, thereby overlooking numerous intricate details
of the cracks. This could potentially be attributed to the model’s
approach when handling complex scenarios such as concrete cracks.
It employs multiple rounds of downsampling and upsampling,
which diminishes the resolution of the output image. This results
in a loss of detailed information about the cracks and introduces
a blurring effect. Furthermore, the model’s convolutional network
structure might have an inadequate receptive field size, hindering
its ability to perform precise segmentation. Consequently, the
model’s predictions suggest a lack of sufficient learning of crack
characteristics, rendering it incapable of identifying all the detailed
features of the cracks in the image.

The prediction results of the SegNet model exhibit more noise
compared to other models, which could be a detrimental effect
of “up-pooling.” Given the uneven surface of concrete roads and

the presence of disturbances such as stains and shadows that are
not cracks, these pseudo-cracks interfere with the neural network’s
learning of correct crack features during the model’s learning
process. This ultimately leads to the model learning some noise
features and making predictions based on them. The encoder of
the SegNet model is likely to “store” some noise locations during
pooling, and subsequent sampling operations use these locations to
restore the resolution of the image. Therefore, this model cannot
effectively filter out the noise in the image, ultimately learning
the features of the noise and displaying them in the prediction
result map.

The prediction results of the UNETmodel lack a few cracks, but
roughly determine the location of all cracks in the image.

TheCrack675 dataset is a dataset composed of three datasets and
the visual gaps between each model can be seen in Figure 16.

The prediction results of the DeepLabv3+ model are wider than
the cracks in the label image. This analysis may have occurred
because the decoder uses four times the sampling four consecutive
times, causing the model to lose the detailed information on
the crack edge.

From a subjective perspective, the prediction results of the
PFILSTM model are generally better than the prediction results of
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TABLE 4 Experimental results for each model on four datasets.

Dataset Model Accuracy Precision Recall FlScore mIoU

Buildings

FCN8s 0.9961 0.5229 0.5380 0.5304 0.6785

SegNet 0.9964 0.5547 0.5496 0.5521 0.6888

UNet 0.9980 0.7729 0.7222 0.7467 0.7969

DeepLabv3+ 0.9959 0.3565 0.7285 0.4787 0.6472

PFILSTM 0.9986 0.8255 0.7680 0.7957 0.8152

CRACK675

FCN8s 0.9941 0.4056 0.5364 0.4619 0.6472

SegNet 0.9964 0.5736 0.6330 0.6019 0.7134

UNet 0.9974 0.7093 0.6563 0.6818 0.7743

DeepLabv3+ 0.9884 0.2473 0.7208 0.3683 0.6070

PFILSTM 0.9976 0.7713 0.7164 0.7382 0.7913

CRACK500

FCN8s 0.9514 0.6719 0.6581 0.6649 0.7235

SegNet 0.9513 0.6900 0.6090 0.6470 0.7136

UNet 0.9538 0.6866 0.6792 0.6829 0.7349

DeepLabv3+ 0.9573 0.7152 0.6675 0.6906 0.7413

PFILSTM 0.9579 0.6963 0.7130 0.7046 0.7498

CrackT-net (Gao et al., 2019) — — — 0.6370 —

(Chen et al., 2018) — — — — 0.7360

CrackU-Net (Xu et al., 2019) — 0.6500 0.7720 0.6840 —

ACNet (Badrinarayanan et al., 2017) — 0.6805 0.7489 0.6982 —

CFD

FCN8s 0.9888 0.6454 0.6105 0.6275 0.7229

SegNet 0.9893 0.6816 0.5744 0.6234 0.7210

UNet 0.9901 0.6818 0.6787 0.6803 0.7527

DeepLabv3+ 0.9844 0.5751 0.5267 0.5499 0.6817

PFILSTM 0.9908 0.7208 0.6661 0.6924 0.7601

(Chen et al., 2018) — — — — 0.6200

The bold values indicate the model presented in this paper.

all other models: in the first column image with lower brightness,
all models can accurately predict the position of the crack; the
FCN8S model is the only one that did not completely predict the
cracks; the fourth column is an image of a crack with shadows.
Apart from the PFILSTM model, none of the other models were
able to successfully predict this image. Interestingly, the crack in
the sixth column is so subtle that it is even unrecognizable to the
human eye, yet all models managed to predict the location of the
crack to some extent. In the seventh column image, both the SegNet
model and the UNET model incorrectly predicted the presence of
cracks in the sidewalk image where there were none. In contrast,

the PFILSTM model predicts all the cracks, except for the cracks
in columns 6 and 7 of the image there are some that are not
fully predicted.

In Figure 17, all models have leakage prediction on the images
in column 4, but the PFILSTMmodel has the least number of cracks
predicted by leakage. The SegNet model predicted significant noise
in the upper right of the image in column 5 under the influence of
interferers; the DeepLabv3+model and the PFILSTMmodel did not
predict the crack in the lower right corner of the image in column 6;
the cracks predicted by the PFILSTM model in the seventh column
mesh image have stronger continuity.
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In Figure 18, the FCN8s and SegNet models predicted more
noise. The UNet model also showed noise on the predictions
of images in columns 5 and 6; the FCN8s model predicts the
interference under the image in column 5 as a crack; in column
6, although all models are affected by sidewalks, making the
predictions noisy, the PFILSTMmodel gives the clearest predictions
and the least interference. None of the models accurately predicted
cracks in the seventh column image, whichmay be because the CFD
dataset is too small.

The qualitative analysis above is a subjective evaluation.
Figure 19 shows the precision-recall curve (PR curve) for each
model on the four datasets. The closer the PR curve is to the
upper right corner of the table, the larger the area enclosed by the
coordinate axis, which represents the better the overall performance
of the model.

In Figure 19, the PFILSTMmodel presented in this paper shows
the greatest advantage, and the PR curves on the four datasets of
the experiment are the closest to the upper right corner of the
table, indicating that its performance is the best in the comparison
model. In addition, the PR curves of the DeepLabv3+ model
in Figures 19A, B are closest to the axes, which indicates poor
performance. However, as can be seen from Figures 15, 16, the
DeepLabv3+ model accurately predicts the location of the crack,
but it is wider than the crack on the label, which results in a high
recall, low accuracy, and therefore low overall performance, which
is supported by the distribution of the individual data points in the
graph. On the CRACK500 dataset with wide cracks, it can be seen
from Figure 19C that the DeepLabv3+ model also performs well. In
Figure 19D, it can be seen that the PR curves of the UNet model and
the PFILSTMmodel are relatively close, so their performance is not
far different on the CFD dataset.

Table 4 shows the accuracy, precision, recall, F1 score, and
mIoU data of the four datasets: FCN8s, SegNet, UNet, DeepLabv3+,
the PFILSTM model proposed in this paper, as well as the
models from the literature (Cao et al., 2020; Xiang et al., 2020;
Zhu et al., 2022; Qu et al., 2022), using the same evaluation indices
and datasets.

As can be seen from Table 4, the PFILSTM model proposed
in this paper is optimal for both the F1score and mIoU on the
four datasets. On the CRACK675 dataset, the F1score and mIoU
of the PFILSTM model reached 0.7382 and 0.7913, respectively,
which is 8.27% and 2.20% higher than the next highest UNet model,
respectively. On the CRACK500 dataset, the F1score and mIoU of
the PFILSTMmodel reached 0.7046 and 0.7498, respectively, which
is 2.03% and 1.15%higher than the next highestDeepLabv3+model,
respectively. On the CFD dataset, the PFILSTM model F1score and
mIoU reached 0.6924 and 0.7601, respectively, which is 1.78% and
0.98% higher than the next highest UNet model, respectively.

Compared with other methods of researchers using the same
evaluation index and dataset, the F1score of the PFILSTM
model is improved by 10.61% compared with the CrackT-Net
(Qu et al., 2022) on the CRACK500 dataset. Compared with the
literature (Xiang et al., 2020), the mIoU of the PFILSTM model
is improved by 1.88%.

Compared to the CrackU-Net (Zhu et al., 2022), the F1score of
the PFILSTM is 3.01% better. Compared to the ACNet (Cao et al.,
2020), the F1score of the PFILSTM model is improved by 0.92%.
Compared to the CrackU-Net (Zhu et al., 2022), 𝐹1𝑠𝑐𝑜𝑟𝑒 is 3.01%

higher. Compared to the ACNet (Cao et al., 2020), the F1score of the
PFILSTMmodel is 0.92% higher.

On the CFD dataset, themIoU of the PFILSTMmodel increased
by 22.60% compared to the literature (Xiang et al., 2020). On the
BUILDINGS dataset, the F1score and mIoU of the PFILSTMmodel
reached 0.7957 and 0.8152, respectively, which is 6.56% and 2.30%
higher than the next highest UNet model, respectively.

It can also be seen from the table that the UNet model
is suboptimal on the three datasets, the CRACK675, CFD, and
BUILDINGS. The FCN8s model and DeepLabv3+ model are more
suitable for the CRACK500 datasets, but their performance on other
datasets is not good.The performance of the SegNet model does not
have many bright spots.

Comprehensive analysis of experimental comparison results
shows that the PFILSTM model designed in this paper can learn
better crack features and can better eliminate the influence of
interference factors in the image, which is a great improvement on
the problems of the low recognition accuracy and poor robustness
in existing studies.

5 Conclusion

Focusing on the problems of low accuracy and poor robustness
in existing building crack identification research, this paper
proposes a PFILSTM model. Based on the “U" model, the model
introduces the advantages of long short-term memory mechanisms
and pyramid features, uses the memory mechanisms to learn the
correlation between features at all levels of the image, optimizes
the crack feature information, screens the interference feature
information, and then uses the pyramid feature to further integrate
the multi-scale context information, so that the final semantic
segmentation result is better.

To test the effect of the PFILSTM model, the comparison
experiments with the FCN8s, SegNet, UNet, DeepLabv3+, and
literature (Cao et al., 2020; Xiang et al., 2020; Zhu et al., 2022;
Qu et al., 2022) models were completed on three public datasets
and one private dataset, and the qualitative and quantitative analysis
results showed that the PFILSTMmodel had the best effect.

As for the CFD and CRACK500 datasets, the effect of the
PFILSTM model does not differ from other models, indicating that
there is still room for improvement in the model designed in this
paper, and this problem will continue to be studied in the future.

Data availability statement

Theoriginal contributions presented in the study are included in
the article/SupplementaryMaterial, further inquiries can be directed
to the corresponding authors.

Author contributions

BC: Writing–original draft, Funding acquisition. MF:
Writing–original draft. KL: Writing–review and editing. YG:
Writing–original draft. YW: Writing–review and editing. YC:

Frontiers in Materials 18 frontiersin.org

https://doi.org/10.3389/fmats.2023.1347176
https://www.frontiersin.org/journals/materials
https://www.frontiersin.org/journals/materials#articles


Chen et al. 10.3389/fmats.2023.1347176

Validation, Writing–review and editing. SY: Writing–review and
editing. JS: Writing–review and editing.

Funding

The author(s) declare financial support was received for
the research, authorship, and/or publication of this article. This
work was supported by the Fund of National Engineering and
Research Center for Mountainous Highways (GSGZJ-2022-
04), Key Laboratory of Wind Resistance Technology of Bridge
Structure and Transportation Industry (Tongji University) open
project (KLWRTBMC22-01), Chongqing Construction Science and
Technology Plan Project (2023-0069), Water Resources Science and
Technology Program of Hunan Province (XSKJ2023059-32), and
National Science Foundation of China (60272091, 60373109, and
51808075).

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

The reviewer XL declared a shared affiliation with the author KL
to the handling editor at the time of review.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product thatmay be evaluated in this article, or claim
thatmay bemade by itsmanufacturer, is not guaranteed or endorsed
by the publisher.

References

Asadi Shamsabadi, E., Xu, C., Rao, A. S., Nguyen, T., Ngo, T., and Dias-da-Costa, D.
(2022). Vision transformer-based autonomous crack detection on asphalt and concrete
surfaces. Automation Constr. 140, 104316, 104316. doi:10.1016/j.autcon.2022.104316

Badrinarayanan, V., Kendall, A., and Cipolla, R. (2017). Segnet: a deep convolutional
encoder-decoder architecture for image segmentation. IEEE Trans. pattern analysis
Mach. Intell. 39 (12), 2481–2495. doi:10.1109/tpami.2016.2644615

Berman, M., Triki, A. R., and Blaschko, M. B. (2018). “The lovasz-softmax loss: a
tractable surrogate for the optimization of the intersection-overunionmeasure in neural
networks,” in IEEE/CVFConference onComputer Vision and Pattern Recognition, Salt
Lake City, UT, USA, 18-23 June 2018 (IEEE), 4413–4421.

Cao, J., Yang, G., and Yang, X. (2020). Deep learning pavement crack detection
based on attention mechanism. J. Computer-Aided Des. Comput. Graph. 32 (8), 10.
doi:10.1109/AEECA55500.2022.9918950

Chen, L. C., Papandreou, G., Kokkinos, I., Murphy, K., and Yuille, A. L.
(2017). Deeplab: semantic image segmentation with deep convolutional nets, atrous
convolution, and fully connected crfs. IEEE Trans. pattern analysis Mach. Intell. 40 (4),
834–848. doi:10.1109/tpami.2017.2699184

Chen, L. C., Zhu, Y., and Papandreou, G. (2018). “Encoder-decoder with atrous
separable convolution for semantic image segmentation,” inThe European Conference
on Computer Vision (Spinger), 801–818. doi:10.1007/978-3-030-01234-2_492

Cuilimeng (2023). CrackForest dataset. Avaliable at: https://github.
com/cuilimeng/CrackForest-dataset.

Deng, L., Chu, H., and Long, L. (2023). Review of crack detection in civil
infrastructure based on deep learning. China J. Highw. Transp. 36 (2), 1–21.
doi:10.3969/j.issn.1001-7372.2023.02.001

Gao, C., Yan, J., Zhou, S., Varshney, P. K., and Liu, H. (2019). Long short-term
memory-based deep recurrent neural networks for target tracking. Inf. Sci. 502,
279–296. doi:10.1016/j.ins.2019.06.039

Jieh-Haur, C., Su, M.-C., Cao, R., Hsu, S.-C., and Lu, J.-C. (2017). A self organizing
map optimization based image recognition and processing model for bridge crack
inspection. Automation Constr. 73, 58–66. doi:10.1016/j.autcon.2016.08.033

Kingma, D. P., and Ba, J. (2015). Adam: a method for stochastic optimization. arXiv.
doi:10.48550/arXiv.1412.6980

Labelme (2023). Wkentaro. Avaliable at: https://github.com/wkentaro/labelme/
releases.

Lau, S. L., Chong, E. K., Yang, X., and Wang, X. (2020). Automated pavement
crack segmentation using u-net-based convolutional neural network. IEEE Access 8,
114892–114899. doi:10.1109/access.2020.3003638

Li, G., Zhao, X., Du, K., Ru, F., and Zhang, Y. (2017). Recognition and evaluation
of bridge cracks with modified active contour model and greedy search-based support
vector machine. Automation Constr. 78, 51–61. doi:10.1016/j.autcon.2017.01.019

Lin, T. Y., Dollár, P., and Girshick, R. (2017). “Feature pyramid networks for object
detection,” in 2017 IEEE Conference on computer vision and pattern recognition,
Honolulu, HI, USA, 21-26 July 2017 (IEEE), 2117–2125.

Liu, J., Wang, Z., and Xu, M. (2020). DeepMTT: a deep learning maneuvering target-
tracking algorithm based on bidirectional LSTM network. Inf. Fusion 53, 289–304.
doi:10.1016/j.inffus.2019.06.012

Liu, W., Anguelov, D., and Erhan, D. (2016). “SSD: single shot multibox detector,” in
Proceedings, Part I computer vision–ECCV2016: 14th European conference (Amsterdam,
The Netherlands: Spinger), 21–37.

Liu, Y., Justin, K., and Yeoh, W. (2021). Automated crack pattern recognition
from images for condition assessment of concrete structures. Automation Constr. 128,
103765. doi:10.1016/j.autcon.2021.103765

Liu, Z., Gu, X., Chen, J., Wang, D., Chen, Y., and Wang, L. (2023). Automatic
recognition of pavement cracks from combined GPR B-scan and C-scan images using
multiscale feature fusion deep neural networks. Automation Constr. 146, 104698,
104698. doi:10.1016/j.autcon.2022.104698

Long, J., Shelhamer, E., and Darrell, T. (2015). Fully convolutional networks for
semantic segmentation[C]. IEEE Conf. Comput. Vis. pattern Recognit. 2015, 3431–3440.
doi:10.1109/CVPRW.2017.156

Milletari, F., Navab, N., and Ahmadi, S. A. (2016). “V-net: fully convolutional
neural networks for volumetric medical image segmentation,” in 4th International
Conference on 3D Vision (3DV), Stanford, CA, USA, 25-28 October 2016 (IEEE),
565–571.

Qu, Z., Li, Y., and Zhou, Q. (2022). Crackt-net: a method of convolutional neural
network and transformer for crack segmentation. J. Electron. Imaging 31 (2), 23040.
doi:10.1117/1.JEI.31.2.023040

Ronneberger, O., Fischer, P., and Brox, T. (2015). “U-net: convolutional networks for
biomedical image segmentation,” in Medical Image Computing and Computer-Assisted
Intervention—MICCAI (Spinger), 234–241. doi:10.1007/978-3-319-24574-4_28

Stollenga, M. F., Byeon, W., and Liwicki, M. (2015). “Parallel multi-dimensional
LSTM, with application to fast biomedical volumetric image segmentation,” in The
28th International Conference on Neural Information Processing Systems (ACM),
2998–3006. doi:10.1007/978-3-319-24574-4_282

Xiang, X., Zhang, Y., and El Saddik, A. (2020). Pavement crack detection network
based on pyramid structure and attention mechanism. IET Image Process. 14 (8),
1580–1586. doi:10.1049/iet-ipr.2019.0973

Xu, F., Ma, H., and Sun, J. (2019). “LSTM multi-modal unet for brain tumor
segmentation,” in 4th international conference on image, vision, and computing
(ICIVC), Xiamen, China, 05-07 July 2019 (IEEE), 236–240.

Yang, F., Zhang, L., Yu, S., Prokhorov, D., Mei, X., and Ling, H. (2019). Feature
pyramid and hierarchical boosting network for pavement crack detection. IEEE Trans.
Intelligent Transp. Syst. 21 (4), 1525–1535. doi:10.1109/tits.2019.2910595

Yu, F., andKoltun, V. (2016).Multi-scale context aggregation by dilated convolutions.
arXiv. doi:10.48550/arXiv.1511.07122

Zhao, H., Shi, J., and Qi, X. (2017). “Pyramid scene parsing network,” in 2017 IEEE
Conference on computer vision and pattern recognition, Honolulu, HI, USA, 21-26 July
2017 (IEEE), 2881–2890.

Zhu, Y., Wang, H., and Li, K., (2022). A High-precision pavement crack detection
network structure:crack U-Net. Comput. Sci. 49 (01), 204–211. doi:10.7544/issn1000-
1239.2022.20210122

Zou, Q., Zhang, Z., Li, Q., Qi, X.,Wang, Q., andWang, S. (2019). DeepCrack: learning
hierarchical convolutional features for crack detection. IEEE Trans. Image Process. 28
(3), 1498–1512. doi:10.1109/tip.2018.2878966

Frontiers in Materials 19 frontiersin.org

https://doi.org/10.3389/fmats.2023.1347176
https://doi.org/10.1016/j.autcon.2022.104316
https://doi.org/10.1109/tpami.2016.2644615
https://doi.org/10.1109/AEECA55500.2022.9918950
https://doi.org/10.1109/tpami.2017.2699184
https://doi.org/10.1007/978-3-030-01234-2_492
https://github.com/cuilimeng/CrackForest-dataset
https://github.com/cuilimeng/CrackForest-dataset
https://doi.org/10.3969/j.issn.1001-7372.2023.02.001
https://doi.org/10.1016/j.ins.2019.06.039
https://doi.org/10.1016/j.autcon.2016.08.033
https://doi.org/10.48550/arXiv.1412.6980
https://github.com/wkentaro/labelme/releases
https://github.com/wkentaro/labelme/releases
https://doi.org/10.1109/access.2020.3003638
https://doi.org/10.1016/j.autcon.2017.01.019
https://doi.org/10.1016/j.inffus.2019.06.012
https://doi.org/10.1016/j.autcon.2021.103765
https://doi.org/10.1016/j.autcon.2022.104698
https://doi.org/10.1109/CVPRW.2017.156
https://doi.org/10.1117/1.JEI.31.2.023040
https://doi.org/10.1007/978-3-319-24574-4_28
https://doi.org/10.1007/978-3-319-24574-4_282
https://doi.org/10.1049/iet-ipr.2019.0973
https://doi.org/10.1109/tits.2019.2910595
https://doi.org/10.48550/arXiv.1511.07122
https://doi.org/10.7544/issn1000-1239.2022.20210122
https://doi.org/10.7544/issn1000-1239.2022.20210122
https://doi.org/10.1109/tip.2018.2878966
https://www.frontiersin.org/journals/materials
https://www.frontiersin.org/journals/materials#articles

	1 Introduction
	2 Research status analysis
	3 The PFILSTM method
	3.1 Overall structure of the model
	3.2 ILSTM unit
	3.3 Pyramid unit

	4 Experimental design and experimental results analysis
	4.1 Experimental environment
	4.2 Datasets and their preprocessing
	4.2.1 Public and private dataset
	4.2.2 Dataset preprocessing

	4.3 Process of experiment
	4.4 Loss functions and optimizers
	4.5 Evaluation index of quantitative analysis
	4.6 Training and prediction process
	4.7 Result analysis

	5 Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	References

