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Background and objective: Osteosarcoma is a common primary malignant
tumor of bone, and doxorubicin is one of the most widely used therapeutic
drugs. While the problem of doxorubicin resistance limits the long-term
treatment benefits in osteosarcoma patients. The role of miRNAs and their
target genes in osteosarcoma have become increasingly prominent. Currently,
there is no report on miR-506-3p reversing doxorubicin resistance by targeting
STAT3 in osteosarcoma. The purpose of this study was to investigate the
molecular mechanism that overexpression of miR-506-3p reverses
doxorubicin resistance in drug-resistant osteosarcoma cells.

Methods: Doxorubicin-resistant osteosarcoma cells (U-2OS/Dox) were
constructed by intermittent stepwise increasing stoichiometry. The target
genes of miR-506-3p were predicted by bioinformatics approach and the
targeting relationship between miR-506-3p and STAT3 was detected using
dual luciferase reporter assay. U-2OS/Dox cells were treated with miR-506-3p
overexpression and STAT3 silencing respectively. Then Western blot and RT-
qPCR were used to detect the protein and mRNA expression levels of JAK2/
STAT3 signaling pathway, drug-resistant and apoptotic associated molecules.
The migration and invasion were assessed by cell scratch assay and transwell
assay. The cell proliferative viability and apoptosis were investigated by
CCK8 assay and flow cytometry assay.

Results: U-2OS/Dox cells were successfully constructed with a 14.4-fold
resistance. MiR-506-3p is directly bound to the 3′-UTR of STAT3 mRNA.
Compared with U-2OS cells, the mRNA expression of miR-506-3p was
reduced in U-2OS/Dox cells. Overexpression of miR-506-3p decreased the
mRNA expression levels of JAK2, STAT3, MDR1/ABCB1, MRP1/ABCC1, Survivin
and Bcl-2, and decreased the protein expression levels of p-JAK2, STAT3, MDR1/
ABCB1, MRP1/ABCC1, Survivin and Bcl-2, and conversely increased Bax
expression. It also inhibited the proliferation, migration and invasion of U-
2OS/Dox cells and promoted cells apoptosis. The results of STAT3 silencing
experiments in the above indicators were consistent with that of miR-506-3p
overexpression.

Conclusion: Overexpression of miR-506-3p could inhibit the JAK2/
STAT3 pathway and the malignant biological behaviors, then further reverse
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doxorubicin resistance in drug-resistant osteosarcoma cells. The study reported a
new molecular mechanism for reversing the resistance of osteosarcoma to
doxorubicin chemotherapy and provided theoretical support for solving the
clinical problems of doxorubicin resistance in osteosarcoma.

KEYWORDS

osteosarcoma, doxorubicin resistance, miR-506-3p, JAK2/STAT3 signaling pathway,
U-2OS/Dox

1 Introduction

As a highly aggressive bone malignancy, osteosarcoma was the
most common primary tumor originating from mesenchymal cells,
with a high prevalence in adolescents aged 10–14 years and older
adults over the age of 60 years (Fu et al., 2023). Currently, the first-
line treatment for osteosarcoma includes surgery, radiotherapy and
chemotherapy. Although the 5-year survival rate has improved, the
treatment for advanced and recurrent patients is still unsatisfactory.
Osteosarcoma only responds to high doses of chemotherapeutic
agents and is highly susceptible to chemoresistance, which are the
main reasons for poor prognosis in osteosarcoma patients.
Moreover, for osteosarcoma patients who develop chemotherapy
resistance, the overall 5-year survival rate was significantly reduced
to less than 20% (Zhu et al., 2019). Chemotherapy resistance was
detrimental to subsequent treatment plans for patients, and was one
of the difficulties in treatment for the orthopedic community.
Therefore, it is urgent to solve the problem of chemoresistance in
osteosarcoma patients.

During the treatment for osteosarcoma, chemoresistance is the
most important pathophysiological basis for malignant tumor
proliferation, susceptibility to recurrence and metastasis. The
mechanism of chemoresistance in osteosarcoma has not been
fully elucidated. Possible mechanisms included alteration of the
activity of DNA topoisomerase, increase in the activity of
glutathione transferase, dysfunction of membrane transport,
activation of autophagy, and enhancement of DNA damage
repair, etc (Lilienthal and Herold, 2020). Currently, doxorubicin,
also known as adriamycin, is the cornerstone of osteosarcoma
treatment, and had a response rate of up to 40% on
osteosarcoma (Chou and Gorlick, 2006). However, long-term use
of doxorubicin can lead to drug resistance. The occurrence of
resistance could be caused by a variety of factors, and relevant
pathogenesis is mainly concentrated in the key membrane transport
proteins including P-gP, MDR1/ABCB1, and MRP1/ABCC1
(Elfadadny et al., 2021).

As a confluence of many oncogenic signaling pathways, the
activation of signal transducer and activator of transcription 3
(STAT3) could induce aberrant expression of genes associated
with tumor cell proliferation, differentiation, apoptosis, and
chemo-resistance, and thus promoted tumor transformation,
causing poor prognosis in patients (Barre et al., 2007; Hu et al.,
2019). JAK2/STAT3 is a classical signaling pathway in tumor
research. Under normal physiological conditions, transient
activation of JAK2/STAT3 is strictly regulated. However,
sustained activation of JAK2/STAT3 signaling had been found in
many solid tumors, such as breast cancer, which promoted solid
tumorigenesis, tumor growth, angiogenesis, host immune evasion,

apoptosis resistance, carcinogenesis, and metastasis (Yu et al., 2009;
Mengie Ayele et al., 2022; Rah et al., 2022). It had been demonstrated
that the inhibition of JAK2/STAT3 signaling pathway could
decrease cell viability, invasion and migration of osteosarcoma
cells and induced apoptosis in cancer cells (Jia et al., 2022; Li
and Liu, 2023; Ma et al., 2023). In addition, doxorubicin
resistance could be antagonized by blocking the activation of the
JAK2/STAT3 pathway induced by IL-6 secretion (Lu et al., 2021).
However, the profound mechanism of reversing doxorubicin
resistance mediated by the STAT3 remains to be further discovered.

In recent years, great progress had beenmade in the study of tumor
phenotype changes caused by the interaction of miRNA and target
genes. Some studies had reported that miR-506 could inhibit the
biological activity of glioma cells (Peng et al., 2016), human
hepatocellular carcinoma cells (Su et al., 2019) and colorectal cancer
cells (Wei et al., 2019) by targeting STAT3. MiR-506 was lowly
expressed in osteosarcoma tissues, and upregulation of miR-506
level could inhibit osteosarcoma cell proliferation and invasion, and
promoted osteosarcoma cell apoptosis (Yao et al., 2016; Hu et al., 2017;
Jiashi et al., 2018; Li et al., 2021). So far, the role ofmiR-506-3p reversing
doxorubicin resistance by regulating STAT3 in osteosarcoma has not
been reported. In this study, we focused on investigating the
mechanisms of miR-506-3p reversing doxorubicin resistance in
osteosarcoma, and provided theoretical support for solving the
clinical problems of doxorubicin resistance in osteosarcoma.

2 Results

2.1 Construction of drug-resistant
osteosarcoma cell line

The half inhibitory concentration (IC50) values of drug-sensitive
osteosarcoma cells (U-2OS) and doxorubicin-resistant human
osteosarcoma cell line (U-2OS/Dox) were 2.01 μg/mL and
29.00 μg/mL, respectively. The resistance index (RI) was 14.4-fold
(Figures 1A, B, p < 0.05). The mRNA and protein expression levels
of MDR1 in U-2OS/Dox cells were significantly upregulated
(Figures 1C, D, p < 0.01). The results from cell counting kit-8
(CCK8) andWestern blot assays demonstrated that U-2OS/Dox was
successfully constructed.

2.2 Results of bioinformatics analysis

2.2.1 Target prediction of miR-506-3p
The results of the cancer genome atlas (TCGA) database analysis

showed that the change trends of miR-506-3p in different cancer
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FIGURE 1
Construction of human osteosarcoma doxorubicin-resistant cell line U-2OS/Dox. The cell viability of drug-sensitive osteosarcoma cells U-2OS (A)
and drug-resistant osteosarcoma cells U-2OS/Dox (B) were detected by CCK-8 assay with different concentrations of doxorubicin. IC50 values were
detected in U-2OS (IC50 = 2.01 μg/mL) and in U-2OS/Dox (IC50 = 29.00 μg/mL) by CCK8 assay, RI = 14.4 fold. (C, D) The mRNA and protein expression
levels of MDR1/ABCB1 in U-2OS and U-2OS/Dox were detected through RT-qPCR and Western blot, showing that MDR1/ABCB1 was significantly
upregulated in U-2OS/Dox. *: p < 0.05, **: p < 0.01.

FIGURE 2
Tumor expression profile of miR-506-3p and prediction of binding sites and target mRNAs (A) Expression profiles of miR-506-3p in different tumor
tissues and their paracancerous tissues, lacking the expression level of miR-506-3p in osteosarcoma. (B) The seed sequence of hsa-miR-506-3p was
found to coincide with that of hsa-miR-124 by TargetScan Human 8.0 software prediction. (C) The Venn diagram of target genes prediction regulated by
miR-506-3p in three databases.
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types were not consistent, as shown in Figure 2A. However, the
database lacks findings on the miR-506-3p in osteosarcoma, so this
study explored the expression level of miR-506-3p in drug-sensitive
and drug-resistant cells.

As predicted by TargetScan Human 8.0 database, the seed
sequences of miR-506-3p and miR-124 tended to be consistent.
Moreover, the binding site predicted by the 3′-UTR of miR-506-3p
was broadly conserved with that of miR-124, as shown in Figure 2B.

From the Tumor-miRNA-Pathway database 408 genes were
found, 1648 targets from the miRWalk database and 2245 genes
from the miRDB database. Taking the intersection form byWayne’s
analysis finally yielded 60 genes, and STAT3 was one of the target
genes that miR-506-3p might regulate, as shown in Figure 2C.

2.2.2 GO and KEGG enrichment analysis of miR-
506-3p target genes

We performed Gene Ontology (GO) and Kyoto Encyclopedia of
Genomes (KEGG) pathway enrichment analysis of miR-506-3p
predicted target genes. Among them, GO enrichment analysis
was used to characterize the relevant biological processes (BP),
cellular components (CC) and molecular functions (MF). We

observed that these target genes significantly clustered 23 terms
in BP, 3 terms in CC, and 14 terms in MF (Figures 3A–C). They
might be involved in apoptosis, cell proliferation and cell migration,
which were mediated by transcriptional activator or tyrosine kinase
signaling pathways, including the JAK-STAT. KEGG enrichment
analysis identified eight important signaling pathways (Figure 3D),
including the chemical carcinogenesis-reactive oxygen species
signaling pathway, the Forkhead Box O (FoxO) signaling
pathway, the epidermal growth factor receptor-tyrosine kinase
inhibitor (EGFR-TKI) drug resistance signaling pathway, and the
receptor protein-tyrosine kinase (ErbB) signaling pathway, etc.

2.2.3 Protein-protein interaction (PPI) networks of
miR-506-3p target genes

The STRING database was utilized to screen the target genes of
miR-506-3p. PPI networks were established (Figure 4A), and then, were
imported into Cytoscape software. The key genes targeted by miR-506-
3p were acquired through the cytoHubba plug-in, including STAT3,
RAC-beta serine/threonine-protein kinase (AKT2), B-cell lymphoma 2-
like 11 (BCL2L11), Myocyte enhancer factor 2A (MEF2A),
Recombinant superoxide dismutase 2 (SOD2), Frataxin (FXN), and

FIGURE 3
GO functional and KEGG pathway enrichment analysis of miR-506-3p target mRNAs (A) Twenty-three biological processes (BP) associated with
miR-506-3p target genes and gene products by GO enrichment analysis; (B) Three cellular components (CC) associated with miR-506-3p target genes
by GO enrichment analysis; (C) Fourteen molecular functions (MF) associated with miR-506-3p target genes by GO enrichment analysis. (D) Eight
important signaling pathways associated with miR-506-3p target genes by KEGG enrichment analysis.
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Histone deacetylase 4 (HDAC4) (Figure 4B), which are hub target genes
that may be involved in regulating osteosarcoma development and the
molecular mechanisms of chemoresistance. Our previous studies found
that the inhibition of STAT3 expression could reverse the

chemosensitivity of osteosarcoma cells to doxorubicin, the
STAT3 gene was chosen as a candidate target of miR-506-3p for the
study of the molecular mechanism of reversing doxorubicin
chemoresistance in drug-resistant osteosarcoma cells.

FIGURE 4
PPI network of miR-506-3p target genes (A) PPI network of miR-506-3p target genes were constructed by the STRING database. (B) The key genes
targeted by miR-506-3p, including seven pivotal target genes, namely, STAT3, AKT2, BCL2L11, MEF2A, SOD2, FXN and HDAC4 were screened out by the
cytoHubba plug-in and degree topology algorithm in Cytoscape software (version 3.8.0).

FIGURE 5
Overexpression of miR-506-3p downregulated the expression of STAT3 in U-2OS/Dox (A) The expression level of miR-506-3p in osteosarcoma-
resistant cell line U-2OS/Dox was significantly lower than that in its parental cell line U-2OS. (B, C) ThemRNA and protein expression levels of STAT3were
downregulated after transfection of 40 nM miR-506-3p mimics in U-2OS/Dox cells. (D) The inhibitory effect of miR-506-3p mimics on STAT3 was
enhanced with the increasing concentration of miR-506-3p mimics. *: p < 0.05, **: p < 0.01.
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2.3 MiR-506-3p suppressed STAT3
expression by directly targeting the STAT3
3′-UTR

Real time quantitative polymerase chain reaction (RT-qPCR)
results showed that the expression level of miR-506-3p in U-2OS/
Dox was significantly lower than that in its parental cell line U-2OS
(Figure 5A, p < 0.05). After transfection of U-2OS/Dox cells with
miR-506-3p mimics, we found that transfection of 40 nM miR-506-
3p mimics downregulated STAT3 expression at the mRNA and
protein levels (Figures 5B, C, p < 0.01). With the increasing
concentration of miR-506-3p mimics, its inhibitory effect on
STAT3 was also gradually enhanced (Figure 5D, p < 0.01). It
indicated that miR-506-3p was negatively correlated with
STAT3 expression in U-2OS/Dox cells relative to U-2OS, and
overexpression of miR-506-3p inhibited STAT3 expression in U-
2OS/Dox cells.

As verified by the dual luciferase reporter gene assay, the relative
activity of STAT3 wild-type luciferase expression vector was
significantly decreased to 0.291 ± 0.014 after transfection with
miR-506-3p mimics, whereas that of the other three controls was
0.748 ± 0.025, 0.743 ± 0.007 and 0.746 ± 0.028 (Figure 6, p < 0.01). It
could be seen that miR-506-3p bound directly to STAT3 3′-
untranslated region (3′-UTR), indicating that there may be a
targeted regulatory relationship between miR-506-3p and STAT3.

2.4 Effects of miR-506-3p overexpression
and STAT3 silencing on migration and
invasion of U-2OS/Dox cells

MiR-506-3p mimics and mimics-NC were transfected into U-
2OS/Dox cells using liposome transfection technology. RT-qPCR
assay of the transfection efficiency showed that the miR-506-3p
expression level in the mimics group was significantly higher than
that in the control and mimics-NC groups, indicating successful
transfection (Figure 7A, p < 0.01). The gene silencing technology
was utilized to cause low expression of STAT3 in U-2OS/Dox cells.
RT-qPCR andWestern blot experiments showed that the expression
level of STAT3 in the STAT3-siRNA1 group was significantly

reduced compared with that in the STAT3-siRNA-NC group,
STAT3-siRNA2 and STAT3-siRNA3 (Figures 7B–D, p < 0.05).
Thereby, STAT3-siRNA1 had the best effect on gene silencing
among all the groups tested and was chosen for the following
experiments.

The results showed that after doxorubicin was added to each
group (U-2OS/Dox group, U-2OS/Dox + miR-506-3p mimics-NC
group, U-2OS/Dox + miR-506-3p mimics group, U-2OS/Dox +
STAT3-siRNA-NC group and U-2OS/Dox + STAT3-siRNA1
group), compared with the control group (U-2OS/Dox + Dox),
the numbers of migrating cells (Figure 8, p < 0.05) and invading cells
(Figure 9, p < 0.05) were significantly reduced in the miR-506-3p
overexpressing group (U-2OS/Dox + miR-506-3p mimics) and
STAT3 silencing group (U-2OS/Dox + STAT3-siRNA1).

2.5 Effects of miR-506-3p overexpression
and STAT3 silencing on proliferation and
apoptosis of U-2OS/Dox cells

After the U-2OS/Dox cells in each group were co-cultured with
29 μg/mL doxorubicin for 24 h, 48 h and 72 h, through CCK8 test,
the cell proliferation activities in the overexpression miR-506-3p
group and the STAT3 silencing group were significantly reduced
compared with the control group (Figure 10, p < 0.05). Flow
cytometry results showed that the apoptosis rate was significantly
higher in the miR-506-3p overexpression group and the of
STAT3 silencing group (Figures 11A, B, p < 0.01). The
expressions of anti-apoptotic proteins Survivin and B-cell
lymphoma-2 (Bcl-2) were detected by Western blot and RT-
qPCR, and the results showed that the expressions of Survivin
(Figures 11C, E) and Bcl-2 (Figures 11C, G) were significantly
reduced in the miR-506-3p overexpression group and the
STAT3 silencing group. The protein (Figure 11C) and mRNA
(Figure 11F) expression levels of pro-apoptotic protein Bcl-2
associated X (Bax) were significantly increased. The relative
protein expression ratio of Bcl-2/Bax was significantly reduced in
the overexpression of miR-506-3p group and the silencing
STAT3 group (Figure 11D, p < 0.01). The results above indicated
that overexpression of miR-506-3p inhibited U-2OS/Dox cell

FIGURE 6
MiR-506-3p targeting STAT3 by dual luciferase reporter gene assay (A) Prediction of potential binding sites of miR-506-3p to the 3′-UTR of STAT3.
(B)Dual luciferase reporter gene assay showed a significant decrease in the relative activity of STAT3 wild-type luciferase-expressing vectors. **: p < 0.01.
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proliferation and promoted U-2OS/Dox cell apoptosis, consistent
with the effects of silencing STAT3.

2.6 Effects of miR-506-3p overexpression
and STAT3 silencing on drug resistance
pathway proteins in U-2OS/Dox cells

After doxorubicin was added to each group (U-2OS group, U-
2OS/Dox group, U-2OS/Dox + STAT3-siRNA-NC group, U-2OS/
Dox + STAT3-siRNA1 group, U-2OS/Dox + miR-506-3p mimics-
NC group and U-2OS/Dox +miR-506-3p mimics group), compared
with the U-2OS/Dox + Dox group, the mRNA expression levels of
JAK2, STAT3, MRP1/ABCC1 and MDR1/ABCB1 were all
remarkably inhibited in the miR-506-3p overexpression group
and the STAT3 silencing group (Figures 12A–D, p < 0.01).
However, at the protein expression level, overexpression of miR-
506-3p and silencing of STAT3 significantly reduced the expression
levels of p-JAK2/JAK2 (Figures 12E, F, p < 0.05) and STAT3 protein
(Figures 12E, I, p < 0.05), which also reduced the expression levels of
p-STAT3/STAT3 (Figures 12E, G) and JAK2 protein (Figures 12E,
H), but there was no statistically significant difference. The results

suggested that miR-506-3p overexpression inhibited the JAK2/
STAT3 signaling pathway, thereby reversed the chemoresistance
of U-2OS/Dox cells to doxorubicin, consistent with the results of
STAT3 silencing.

3 Discussion

Currently, chemotherapy had become one of the mainstream
treatments for osteosarcoma. MAP, consisting of methotrexate,
doxorubicin and cisplatin, was the most widely available
chemotherapy regimen for osteosarcoma (Hu et al., 2022).
Unfortunately, some osteosarcoma patients showed poor
chemosensitivity to these antitumor agents, and they were prone to
chemoresistance during treatment, evenwith rising dose, shortening the
period of chemotherapy or changing interval with other anticancer
drugs. These patients still could not avoid recurrence and metastasis
(Xiao et al., 2018). Doxorubicin, as the first-line drug for osteosarcoma,
could induce osteosarcoma cell apoptosis and activated host immune
response against tumor-specific antigens (Hattinger et al., 2015).
However, due to serious drug resistance issues, osteosarcoma
patients were greatly limited in their choice of regimens.

FIGURE 7
The Screening of STAT3 siRNAs (A) The miR-506-3p expression level in U-2OS/Dox + miR-506-3p mimics group was significantly higher than that
in the U-2OS/Dox control group or U-2OS/Dox + miR-506-3p mimics-NC group by RT-qPCR detection, indicating that transfection was successful.
(B–D) STAT3-siRNA1 had the best silencing effect on STAT3 gene by RT-qPCR and Western blot experiments. *: p < 0.05, **: p < 0.01.
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STATs were a family of proteins that existed in the cytoplasm
and could be translocated into the nucleus to bind to DNA upon
activation, which had the dual functions of signal transduction and
transcriptional regulation. STAT3, an important member of the
family of STATs, had been recognized as an oncogene that was
closely related to tumor development (Barton, 2006). Studies had
shown that STAT3 was highly expressed and continuously activated
in osteosarcoma, which was involved in various pathological
processes such as cell transformation, proliferation, tumor
formation, invasion, migration, immune escape and drug
resistance (Salas et al., 2014; Zhang et al., 2017). Inhibition of
STAT3 activity had been shown to improve the chemosensitivity
of osteosarcoma cells (Wang et al., 2011; Liu et al., 2021). We found
that silencing STAT3 inhibited the cells proliferation, migration, and
invasion ability of U-2OS/Dox cells and promoted cells apoptosis.

Studies had demonstrated that there were a large number of
differentially expressed miRNAs in osteosarcoma tissues and cell
lines. Some of these miRNAs were related to the development of

osteosarcoma, while others were involved in the regulation of drug
resistance in osteosarcoma (Tang et al., 2021). High expression of
miR-124 in tumor tissues was a favorable prognostic marker for
osteosarcoma (Wang et al., 2016; Cong et al., 2018). Three other
studies have confirmed that miR-124 could inhibit the protein
expression of STAT3 by directly targeting the 3′-UTR that binds
STAT3, thereby suppress the invasive andmigratory ability of tumor
cells and help to overcome chemoresistance (Hu et al., 2016; Liu
et al., 2019; Qi et al., 2019). We found that the seed sequence of hsa-
miR-506-3p converged with that of hsa-miR-124 by pre-
bioinformatics analysis, and the predicted that the binding site of
miR-506-3p to the 3′-UTR of target gene STAT3 was broadly
conserved with miR-124. Therefore, we predict that miR-506-3p
is also able to directly target STAT3. MiR-506-3p played an
important role in malignant tumor proliferation, apoptosis,
migration, invasion, and epithelial-mesenchymal transition
(Wang et al., 2019; Li et al., 2020; Liu et al., 2020). Moreover, it
was closely related to tumor resistance. MiR-506-3p mainly played

FIGURE 8
The migratory abilities of drug-resistant osteosarcoma cells were both inhibited by miR-506-3p overexpression and silencing STAT3 (A) The cell
healing images of scratches at 0 h, 24 h or 48 h by cell scratching assay (magnification, ×100). The number of migrated cells in the U-2OS/Doxwere both
significantly reduced in the overexpression of miR-506-3p group (U-2OS/Dox + miR-506-3p mimics) and the silencing of STAT3 group (U-2OS/Dox +
STAT3-siRNA1) after 24 h (B) or 48 h (C) of co-culture, compared with the drug-resistant osteosarcoma cells spiked group (U-2OS/Dox + Dox). *:
p < 0.05, **: p < 0.01.
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an antitumor role, and could also increase the sensitivity of osteosarcoma
to cisplatin (Dong and Qu, 2020). However, no studies have been
reported on the role of miR-506-3p in the development of
osteosarcoma and reversal of doxorubicin resistance by targeting
STAT3. Our study found that miR-506-3p was significantly inhibited
in U-2OS/Dox cells and further acquired the key target genes regulated
by miR-506-3p, including STAT3. To fully understand the targeting
relationship between miR-506-3p and STAT3, we performed dual
luciferase reporter gene assay experiments, and demonstrated that
there was a complementary binding sequence with miR-506-3p in
the base sequence of STAT3 3′-UTR. In addition, the experimental
results showed that overexpression of miR-506-3p reduced the
STAT3 protein expression level in doxorubicin-resistant osteosarcoma
cells U-2OS/Dox, indicating that miR-506-3p could inhibit the
expression of STAT3 in osteosarcoma cells.

Tumor invasion and metastasis are complex processes regulated
by multiple factors and multiple steps, involving tumor cells
swimming out of the primary tumor, breaking through the
basement membrane, passing through the cell stroma, entering
blood vessels or lymphatic vessels, migrating to distant sites,
finally colonizing and growing. The interactions of a variety of
genes together formed a complex molecular biology network, which
was the main biological feature of malignant tumors different from
benign tumors (Hu et al., 2015; Chen et al., 2019). The effective
control of proliferation, migration and invasion can inhibit the
occurrence and development of tumors to a certain extent. It had
been demonstrated that many miRNAs played a critical regulatory
role in invasion and migration of osteosarcoma cells, including miR-
506-3p (Jiashi et al., 2018). Our study also showed that overexpression

of miR-506-3p inhibited the proliferation, migration and invasion of
U-2OS/Dox cells, confirming that miR-506-3p plays an antitumor
role in osteosarcoma.

Apoptosis was a tightly regulated cellular signaling process that
occured via an extrinsic pathway of cell membrane death receptors
and/or an intrinsic pathway dependent on mitochondria (Lossi,
2022). The Bcl-2 family played a key regulatory role in the extrinsic
pathway of apoptosis, and consisted of pro-apoptotic proteins (such
as Bax and Bak) and anti-apoptotic proteins (such as Bcl-2 and Bcl-
xl). When the balance of anti-apoptotic and pro-apoptotic proteins
in the Bcl-2 family was disrupted, it led to dysregulation of apoptosis
(Wong, 2011). This defective apoptotic mechanism promoted the
continued proliferation, angiogenesis and metastasis of tumor cells
and was one of the major causes of carcinogenesis. Moreover, it had
been demonstrated that defective tumor-induced apoptosis significantly
raised the threshold of tumor cell death, thereby nullifying the cytotoxic
effects of conventional chemotherapy and radiotherapy and mediating
chemoresistance (Schimmer, 2004).We found that the expression of Bcl-
2 was higher in drug-resistant osteosarcoma cells than in drug-sensitive
osteosarcoma cells after treatedwith doxorubicin, whereas the expression
of pro-apoptotic proteins was the opposite, leading to defective apoptosis
in drug-resistant osteosarcoma cells, inhibiting apoptosis and mediating
doxorubicin chemoresistance. However, compared with drug-resistant
osteosarcoma cells, overexpression of miR-506-3p or silencing of
STAT3 decreased the expression of Bcl-2 and increased the
expression of Bax, which in turn led to a decrease in the Bcl-2/Bax
ratio. This result reversed the dysregulation of apoptosis in drug-resistant
osteosarcoma cells and promoted apoptosis, thereby improving the
sensitivity of drug-resistant osteosarcoma cells to doxorubicin.

FIGURE 9
The invasive abilities of drug-resistant osteosarcoma cells were both inhibited by miR-506-3p overexpression and silencing STAT3 (A) The cell
migration rates were detected by the transwell assay under an inverted microscope (magnification, ×100) after 24 h incubation. (B) The number of
invasive cells in the U-2OS/Dox were both significantly reduced in the overexpression of miR-506-3p group (U-2OS/Dox +miR-506-3pmimics) and the
silencing of STAT3 group (U-2OS/Dox + STAT3-siRNA1) after 24 h co-culture, compared with the drug-resistant osteosarcoma cells spiked group
(U-2OS/Dox + Dox). *: p < 0.05.
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Moreover, it had been found that Survivin expression was elevated in
tumor tissues of chemotherapy-resistant osteosarcoma patients, and that
continued chemotherapy could mediate the enrichment of high
Survivin-expressing osteosarcoma cells, which ultimately lead to the
development ofmultidrug resistance in the clinic (Wei et al., 2021). As an
important downstream effector, downregulation of Survivin expression
significantly reduces the incidence of chemoresistance development in
osteosarcoma (Tsai et al., 2014). Our study also confirmed that Survivin
was highly expressed in osteosarcoma-resistant cells, and overexpression
of miR-506-3p or silencing of STAT3 was able to inhibit Survivin
expression, thereby enhancing the sensitivity of drug-resistant
osteosarcoma cells to doxorubicin.

The higher degree of drug accumulation in tumor cells, the stronger
ability to kill tumor cells. The efficacy of doxorubicin, a substrate of
p-glycoprotein (P-gP), is influenced by the active efflux of the drug
mediated by the ATP-binding cassette (ABC) transporter protein. The
efflux effect led to a decrease in intracellular doxorubicin concentration

and the development of acquired resistance, which given rise to
recurrence or deterioration in nearly one-third of osteosarcoma
patients (Kathawala et al., 2015). It had been demonstrated that
inhibition of MDR1/ABCB1 or MRP1/ABCC1 in the ABC
transporter protein family could reverse doxorubicin resistance in
tumor cells including osteosarcoma (Tsang et al., 2003; Sampson
et al., 2019; Gerardo-Ramirez et al., 2022; Packeiser et al., 2023).
The results of the present study showed that the expression levels of
both MDR1/ABCB1 and MRP1/ABCC1 in drug-resistant
osteosarcoma cells line U-2OS/Dox were significantly higher than
those in drug-sensitive osteosarcoma cells line U-2OS. The enhanced
action of these membrane efflux pumps led to a decrease in the
concentration of antitumor drugs in osteosarcoma cells, thus,
acquired resistance occurred (Gonzalez-Fernandez et al., 2017).
However, decreasing the expression levels of MDR1/ABCB1 and
MRP1/ABCC1 in U-2OS/Dox increased the chemosensitivity of
drug-resistant osteosarcoma cells to doxorubicin.

FIGURE 10
The proliferation abilities of drug-resistant osteosarcoma cells were both inhibited by miR-506-3p overexpression and silencing STAT3 (A) U-2OS/
Dox cells were divided into 5 groups for different treatments, the cell proliferation abilities were detected using CCK8 assay after co-cultured with 29 μg/
mL doxorubicin for 24 h, 48 h and 72 h (B–D) The cell proliferation activities of the overexpression of miR-506-3p group and the silencing of
STAT3 group were both significantly reduced, compared with the U-2OS/Dox + Dox group. *: p < 0.05, **: p < 0.01.
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JAK2 was a tyrosine kinase that existed under the cell membrane,
and it could bind to various cytokine receptors to activate transcription
factors such as STAT3 (Huang et al., 2022), an intranuclear transcription
factor that promotes cell proliferation, differentiation, apoptosis, and
immune response (Ma et al., 2020). Under normal physiological

conditions, the JAK2/STAT3 signaling pathway was involved in
many important biological processes, such as embryonic
development, immune response, cell proliferation and differentiation.
However, under certain pathological conditions, the JAK2/
STAT3 signaling pathway was also abnormally activated, cytokines

FIGURE 11
The apoptosis of drug-resistant osteosarcoma cells was both increased by miR-506-3p overexpression and silencing STAT3 (A, B) The apoptosis
rate of each group was detected using Annexin V-FITC/PI double-stained apoptosis cassette. The apoptosis rates were both significantly higher in the
overexpression of miR-506-3p group and the silencing of STAT3 group by flow cytometry. (C) TheWestern blot protein bands of Survivin, Bax and Bcl-2.
(D) The relative protein expression ratio of Bcl-2/Bax was significantly reduced in the overexpression of miR-506-3p group and the silencing
STAT3 group by Western blot. The mRNA expressions of the apoptotic proteins Survivin (E) and Bcl-2 (G) were both inhibited by overexpression of miR-
506-3p and silencing of STAT3 through RT-qPCR, and the mRNA expression level of Bax (F) was significantly increased. **: p < 0.01.
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bind to their corresponding receptors, leading to recruitment of related
JAKs, further change to p-JAK, JAK activation leads to formation of
docking sites for STAT, STATs are phosphorylated to p-STAT by
tyrosine, STATs dissociate from the receptor to form dimers, STAT
dimers enter the nucleus, bind to DNA, and regulate transcription, the
JAK/STAT signaling pathway is activated (Hu et al., 2021; Wang et al.,
2022). Our study found that overexpression ofmiR-506-3p and silencing
STAT3 inhibited the mRNA expression levels of JAK2 and

STAT3 genes. However, at the protein expression level, overexpression
of miR-506-3p and silencing of STAT3 expression had a significant
inhibitory effect on the expression of p-JAK2/JAK2 and STAT3 total
proteins, and there were no statistically significant differences on the
expression of p-STAT3/STAT3 and JAK2 total proteins. It suggested
that miR-506-3p might be able to reverse chemoresistance to
doxorubicin in drug-resistant osteosarcoma cells by inhibiting the
phosphorylation of JAK2 and the expression of total STAT3 protein in

FIGURE 12
Overexpression of miR-506-3p and silencing STAT3 could both inhibit the expression of drug-resistant proteins in drug-resistant osteosarcoma
cells by targeting the JAK2-STAT3 signaling pathway The mRNA expressions of JAK2 (A), STAT3 (B), MRP1/ABCC1 (C) and MDR1/ABCB1 (D) were both
inhibited bymiR-506-3p overexpression and silencing STAT3, comparedwith the U-2OS/Dox +Dox group. (E) TheWestern blot protein bands of STAT3,
p-STAT3, JAK2, p-JAK2, MRP1/ABCC1 and MDR1/ABCB1. Densitometry analysis for p-JAK2/JAK2 (F), p-STAT3/STAT3 (G), JAK2 (H) and STAT3 (I),
showed that protein expression levels of p-JAK2/JAK2 and STAT3 were significantly reduced. *: p < 0.05, **: p < 0.01.
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drug-resistant osteosarcoma cells and inhibiting the over-activation of
JAK2/STAT3 signaling pathway. Of course, the specific mechanism of
miR-506-3p in the regulation of JAK2/STAT3 signaling pathway in
Doxorubicin-resistant osteosarcoma patients needs to be further
investigated.

4 Conclusion

In summary, the study demonstrated that miR-506-3p could inhibit
JAK2/STAT3 signaling pathway by directly binding STAT3, thus
reversed the malignant biological behaviors such as proliferation,
migration and invasion of drug-resistant osteosarcoma cells,
promoted cell apoptosis, as well as inhibited the expressions of drug-
resistant proteins. Our study provided theoretical support for improving
chemical sensitivity of drug-resistant osteosarcoma cells in an attempt to
solve the problem of doxorubicin resistance in osteosarcoma treatment.

5 Materials and methods

5.1 Construction and cell culture of drug-
resistant osteosarcoma cell line U-2OS/Dox

The human osteosarcoma cell line U-2OS was obtained from the
Chinese Academy of Sciences (Shanghai, China). The doxorubicin-
resistant cell line U-2OS/Dox was measured using an intermittent
stepwise increase method (Serra et al., 1993). U-2OS cells in
logarithmic phase were taken, and doxorubicin was used as the
inducing drug, and drug resistance of U-2OS cells was induced by
gradually increasing the drug concentration of doxorubicin (30 ng/mL,
100 ng/mL and 580 ng/mL), and each concentration was shocked for
9 times, and then after the cells grew stably in this concentration, the
concentration of the drug was increased to continue the culture.
Doxorubicin drug induction lasted 6–8months until the cells were
able to grow stably in 580 ng/mL doxorubicin. The IC50 of the resistant
cell lines was detected and the RI was calculated. RI = [IC50 of the
resistant cell line]/[IC50 of the parental cell line], and RI > 10 was
considered that the resistant cell line met the requirements. Both cell
lines were cultured in McCoys (GIBCO, Invitrogen, Carlsbad, CA,
United States) supplemented with 10% fetal bovine serum (GIBCO,
Invitrogen, Carlsbad, CA, United States) in a constant temperature
incubator at 37°C with 5% CO2.

5.2 Bioinformatics predictions

TargetScan Human 8.0 (https://www.targetscan.org/vert_80
(McGeary et al., 2019) was used to predict biological targets of
miR-506-3p by searching for the presence of conserved 8mer, 7mer,
and 6mer sites that match the seed region of each miRNA. Tumor-
miRNA-Pathway (http://bioinfo.life.hust.edu.cn/miR_path/index.
html) (Ma et al., 2016), miRWalk (http://mirwalk.umm.uni-
heidelberg.de/) (Sticht et al., 2018) and miRDB (https://mirdb.
org/) (Chen and Wang, 2020) were used to predict the target
genes of miR-506-3p. Then the intersection of three databases
was taken. We also searched the expression profiles of miR-506-
3p in different tumor tissues and their paracancerous tissues using

the Tumor-miRNA-Pathway database. After that, GO and KEGG
enrichment analysis of the screened miR-506-3p target genes was
performed using the DAVID database (https://david.ncifcrf.gov/
home.jsp) (Jiao et al., 2012). Finally, PPI networks were
constructed, including physical and functional associations, for
the selected miR-506-3p target genes using the STRING database
(https://cn.string-db.org/) (Szklarczyk et al., 2021). We selected the
default parameter of the system, a medium confidence of 0.400, to
screen 30 interacting target genes. In addition, the hub target genes
were explored using the cytoHubba plug-in and degree topology
algorithm in Cytoscape (version 3.8.0) software.

5.3 Dual luciferase reporter gene assay

The 293T cells and target plasmids were prepared for transfection
beforehand, when the cell density reached 50%–70%. Solution A was
prepared by combining 10 μL DMEM, 0.16 μg of h-STAT3-3′-UTR
target plasmid and 5 p.m. of hsa-miR-506-3p NC at room
temperature. Solution B was prepared by combining 10 μL DMEM
with 0.3 μL transfection reagent (Hanhen Bio-products LipoFiter™,
the concentration of which is 0.8 mg/mL) and left at room
temperature for 5 min. Solution A and solution B were thoroughly
mixed and left for 20 min. After 6 h of transfection, fresh mediumwas
changed, and the cells were collected after 48 h of transfection, and the
luciferase activity was detected by fluorescence detector.

5.4 Cell transfection

U-2OS cells and U-2OS/Dox cells were used as transfection targets
in logarithmic growth phase. Cells were inoculated in 6-well plates 24 h
prior to transfection, and transfection was carried out when the cell
confluence was about 50%, and the cell culture medium was changed
30 min prior to transfection, with reference to the instructions of the
transfection reagent of lipofectamine 3000 (thermo, L3000001, United
States). The cells were first respectively transfected into U-2OS/Dox
cells with STAT3-siRNA1, siRNA2, siRNA3 and siRNA-NC (Ribobio,
Guangzhou, China) at the final concentration of 50 nM, which were
targeted to the STAT3 mRNA and screened for the best STAT3-
siRNA. MiR-506-3p mimics and miR-506-3p mimics-NC (Hanheng,
Shanghai, China) were transfected into U-2OS/Dox cells at a final
concentration of 50 nM, and cells were harvested 48 h after
transfection. The primers of STAT3-siRNA1, siRNA2, siRNA3,
miR-506-3p mimics and miR-506-3p mimics-NC were 5′-GGCGTC
CAGTTCACTACTA-3′, 5′-AGACCCGTCAACAAATTAA-3′, 5′-
CATCGAGCAGCTGACTACA-3′, 5′-UAAGGCACCCUUCUGAGU
AGA-3′ and 5′-UCACAACCUCCUCCUGAGUAGA-3′, respectively.

5.5 CCK8 assay

5.5.1 CCK8 detection of U-2OS and U-2OS/Dox
cell viability

U-2OS and U-2OS/Dox cells were inoculated into 96-well
plates at 6×103/well for 24 h. Increasing concentrations of
doxorubicin (0, 0.5, 1, 2, 4, 8, 16, 32 μg/mL) were added to the
plates and blank control wells without cytosol were set up, with

Frontiers in Pharmacology frontiersin.org13

Wang et al. 10.3389/fphar.2024.1303732

https://www.targetscan.org/vert_80
http://bioinfo.life.hust.edu.cn/miR_path/index.html
http://bioinfo.life.hust.edu.cn/miR_path/index.html
http://mirwalk.umm.uni-heidelberg.de/
http://mirwalk.umm.uni-heidelberg.de/
https://mirdb.org/
https://mirdb.org/
https://david.ncifcrf.gov/home.jsp
https://david.ncifcrf.gov/home.jsp
https://cn.string-db.org/
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2024.1303732


three replicate wells for each treatment. After 24 h of incubation,
10 μL CCK8 reagent (Kemix, Beijing, China) was added to each
well, and the absorbance at 450 nm was measured on an enzyme
labeler after another 1.5 h of incubation (A). Cell viability (%) =
[A (experiment)—A (blank)]/[A (control)—A (blank)] × 100%.
The IC50 values of U-2OS and U-2OS/Dox cells were determined
by plotting the concentration-effect histogram with the drug
concentration as the horizontal coordinate and the cell
survival rate as the vertical coordinate.

5.5.2 CCK8 detection of U-2OS/Dox cell viability
after transfection with miR-506-3p mimics

The cells were divided into five groups: blank control group (U-
2OS/Dox group), negative control group (U-2OS/Dox + STAT3-
siRNA-NC group, U-2OS/Dox + miR-506-3p mimics-NC group)
and experimental group (U-2OS/Dox + STAT3-siRNA1 group, U-
2OS/Dox + miR-506-3p mimics group). The group-treated cells in step
5.4 were inoculated into 96-well plates and pre-cultured for 24 h, 48 h
and 72 h. Then 10 μL CCK8 reagents was added, and then the
absorbance at 450 nm wavelength was measured on the enzyme
labeling instrument after incubation for another 1.5 h. The
absorbance at 450 nm wavelength was determined (A). Cell viability
(%) = [A (experiment)—A (blank)]/[A (control)—A (blank)] × 100%.
The difference in cell viability of U-2OS/Dox cells transfected withmiR-
506-3p mimics was analyzed and compared with that of U-2OS/Dox
cells of the original drug-resistant strain.

5.6 RT-qPCR assay

The cells were divided into 6 groups: U-2OS group, blank
control group (U-2OS/Dox group), negative control group (U-
2OS/Dox + STAT3-siRNA-NC group, U-2OS/Dox + miR-506-3p
mimics-NC group) and experimental group (U-2OS/Dox +
STAT3-siRNA1 group, U-2OS/Dox + miR-506-3p mimics
group).The cells in logarithmic growth phase were taken and
the total RNA in the cells was extracted using Trizol reagent total
RNA extraction kit (Vazyme, Nanjing, China). MiRNA and
mRNA were reverse transcribed into cDNA according to the
procedure of Reverse Transcription Kit (Takara, Japan), the
reaction was terminated after incubation at 50°C for 15 min
and at 75°C for 5 min, and then subjected to real-time
fluorescence quantitative analysis. The mRNA fluorescence
quantification was performed by dye method, and the final
concentration of both forward primer and reverse primer was
50 nM. Predegeneration was 95°C for 5 min, and amplification
was performed at 95°C for 10 s, 60°C for 10 s, and 72°C for 10 s, a
total of 40 cycles. The solubility curves were plotted and analysed
based on 2−ΔΔct calculations. All genes and their corresponding
specific primer sequences (5′-3′) were shown in Table 1.

5.7 Western blot assay

The cells were centrifuged at 2500 rpm for 5 min, then
protein cleavaged with strong RIPA lysis buffer (CWBIO,
Jiangsu, China), and centrifuged at 13,000 rpm for 6 min at
4°C to collect the total proteins, and the protein concentration

was measured by BCA kit. After denaturation at 98°C for 10 min,
the proteins were separated by 10% SDS-PAGE and transferred
onto a PVDF membrane. The membrane was incubated with
primary antibody at 4°C overnight, rinsed, and then incubated
with secondary antibody at room temperature for 2 h. Finally,
enhanced chemiluminescence (ECL) reaction was performed and
visualized, and the images were processed using ImageJ software
to calculate the relative protein expression levels. Primary antibodies
were anti-STAT3 (1:1000, #30835, CST, Danvers, MA, United States),
anti-p-STAT3 (1:1000, #94994, CST), anti-JAK2 (1:1000, YT2426,
ImmunoWay, United States), anti-p-JAK2 (1:1000, YP0306,
ImmunoWay), anti-MDR1/ABCB1 (1:1000, #13342, CST), anti-
MRP1/ABCC1 (1:1000, #14685, CST), anti-Survivin (1:1000,
#2808, CST), anti-Bax (1:1000, #2772, CST), anti-Bcl-2 (1:1000,
#3498, CST), and anti-β-actin (1:1000, #8457, CST), anti-GAPDH
(1:10000, AP0063, Bioworld, United States). Secondary antibodies
were HPR-conjugated goat anti-mouse (1:10000, abs20039, absin,
Shanghai, China), goat anti-rabbit (1:10000, abs20040, absin), and
goat anti-rabbit (1:10000, E030120-01, Earthox, United States).

5.8 Cell mobility scratch assay

The cells of each group were inoculated in 6-well plates at a density
of 2×105/well, and transfection was carried out when the cell density
reached 50%. After the cells were spread all over the bottom of the plate,

TABLE 1 The primers of genes used for RT-qPCR.

Gene name Direction Sequence

STAT3 Forward AGCAGCACCTTCAGGATGTC

Reverse GCATCTTCTGCCTGGTCACT

JAK2 Forward TGGAGGGAACATCCACCTCT

Reverse TCTGCCTCAGATTTCCCAAGG

miR-506-3p Forward ACCACCGTAAGGCACCCTTCT

Reverse ATCCAGTGCAGGGTCCGAGG

MDR1/ABCB1 Forward GCTGTCAAGGAAGCCAATGC

Reverse GAGGATCTTGGGGTTGCGAA

MRP1/ABCC1 Forward TCCCCTGAACATTCTCCCCA

Reverse ATGCTGTCAGGTTCCAGCTC

Survivin Forward GAGGCTGGCTTCATCCACT

Reverse TGGTTTCCTTTGCATGGGGT

Bax Forward CCCCCGAGAGGTCTTTTTCC

Reverse CTGATCAGTTCCGGCACCTT

Bcl-2 Forward TGGTGGAGGAGCTCTTCAGG

Reverse CTCTCCACACACATGACCCC

GAPDH Forward ATTCCACCCATGGCAAATTCC

Reverse GACTCCACGACGTACTCAGC

U6 (by stem-loop) Forward AGAGAAGATTAGCATGGCCCCTG

Reverse CAGTGCAGGGTCCGAGGT
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the cells were gently scratched vertically with the tip of a 200 μL pipette
and rinsed gently with PBS for 2 times, and then cultured in low-serum
medium (containing 2% FBS) for 24 h. The cellular healing images of
the scratches were observed and photographed under a microscope at
the moment of scratches (0 h), 24 h and 48 h, and the widths of the
scratches were measured to calculate the cell migration force. Cell
migration force = [scratch width (0 h)—scratch width (24 h or 48 h)]/
scratch width (0 h) × 100%.

5.9 Transwell assay for cell invasiveness

Two hundreds microliter of cell suspension for each group
(5×104 cells) were added to the Transwell coated with Matrigel
matrix gel, and 600 μL complete culture medium containing 10%
FBS was added to the lower chamber. After incubation for 24 h, the
non-migrated cells were wiped off from the membrane of the upper
chamber, and the membrane of the lower chamber was fixed with
4% paraformaldehyde for 10 min. After drying naturally, the
membrane was stained with 0.5% crystalline violet solution for
15 min at room temperature, and then observed under an
inverted microscope. Three 100 × fields of view were randomly
taken for photographing, and the total number of cells in the five
different fields of view (top, bottom, left, right and center) were
counted and averaged to calculate the cell migration rate.

5.10 Flow cytometry

Cells were digested with EDTA-free trypsin, and the density of
each cell suspension was adjusted to 2×105 cells/mL. Onemillilitre of
cell suspension was added into a sterile centrifuge tube, and the cells
were centrifuged at 2000 rpm for 5 min at room temperature to
collect the cells, and the supernate was discarded. The cells were
washed twice with pre-cooled PBS (4°C), and 300 μL 1× binding
buffer was added to resuspend the cells. Cells were washed twice
with pre-cooled PBS (4°C), resuspended by adding 300 μL 1×
binding buffer. According to the instructions of the Annexin
V-FITC/PI Dual Staining Apoptosis Detection Kit (BD
Biosciences, 556547, United States), incubated for 15 min at
room temperature with 5 μL Annexin V-FITC, and then 5 μL PI
was added for 5 min prior to the start-up of the detection. The
apoptosis rate of each group was detected by flow cytometry, and the
total apoptosis rate (%) = [early apoptosis rate (Q4 quadrant
percentage)] + [late apoptosis rate (Q2 quadrant percentage)].

5.11 Statistical analysis

Data were obtained from at least three independent replicated
experiments and the results were expressed as mean ± standard
deviation (‾x ± s). Data were analyzed and processed using IBM
SPSS 24.0 and GraphPad Prism 9.0.0 software. Comparisons
between multiple groups were analyzed by one-way ANOVA or
Kruskal-Walis H Test, and comparisons between two groups were
made by t-Test or Mann-Whitney U Test, with p < 0.05 indicating
that the differences were statistically significant.
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Glossary

STAT3 signal transducer and activator of transcription 3

JAK2 janus kinase 2

miRNA microRNA

U-2OS/Dox doxorubicin-resistant U-2OS cells

mRNA messenger ribonucleic acid

p-JAK2 phospho-JAK2

p-STAT3 phospho-STAT3

P-gP P-glycoprotein

MDR1 multi-drug resistance protein 1

ABCB1 ATP-binding cassette subfamily B member 1

MRP1 multi-drug resistant associate protein 1

ABCC1 ATP-binding cassette subfamily C member 1

Bax Bcl-2 associated X

Bcl-2 B-cell lymphoma-2

RT-qPCR real time quantitative polymerase chain reaction

CCK8 cell counting kit-8

39-UTR 3′-untranslated region

IC50 half inhibitory concentration

RI resistance index

NC negative control

TCGA the cancer genome atlas

GO Gene Ontology

KEGG Kyoto Encyclopedia of Genes and Genomes

BP biological processes

MF molecular function

CC cellular component

FoxO Forkhead Box O

EGFR-TKI epidermal growth factor receptor-tyrosine kinase inhibitor

ErbB receptor protein-tyrosine kinase

PPI protein-protein interaction

AKT2 RAC-beta serine/threonine-protein kinase

BCL2L11 B-cell lymphoma 2-like 11

MEF2A myocyte enhancer factor 2A

SOD2 Recombinant ruperoxide dismutase 2

FXN Frataxin

HDAC4 Histone deacetylase 4
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