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Immune cell networking in solid
tumors: focus on macrophages
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The tumor microenvironment is composed of tumor cells, stromal cells and

leukocytes, including innate and adaptive immune cells, and represents an

ecological niche that regulates tumor development and progression. In

general, inflammatory cells are considered to contribute to tumor progression

through various mechanisms, including the formation of an immunosuppressive

microenvironment. Macrophages and neutrophils are important components of

the tumor microenvironment and can act as a double-edged sword, promoting

or inhibiting the development of the tumor. Targeting of the immune system is

emerging as an important therapeutic strategy for cancer patients. However, the

efficacy of the various immunotherapies available is still limited. Given the crucial

importance of the crosstalk between macrophages and neutrophils and other

immune cells in the formation of the anti-tumor immune response, targeting

these interactions may represent a promising therapeutic approach against

cancer. Here we will review the current knowledge of the role played by

macrophages and neutrophils in cancer, focusing on their interaction with

other immune cells.
KEYWORDS
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Introduction

To develop and grow, tumor cells require constant support from cells of the

surrounding environment (1–3). Immune cells are key players in this scene where they

actively collaborate to either promote or inhibit tumor growth (4, 5). Through the

production of numerous immunomodulatory molecules (e.g. cytokines, chemokines and

growth factors), tumor cells can modulate the phenotype of immune cells and the positive

or negative influence that they exert on the tumor microenvironment (TME) (6, 7).

Additionally, tumor-infiltrated immune cells are engaged in a number of mutual

interactions which further potentiate or reduce their pro-tumor or anti-tumor activities
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(8–10). Tumor-associated macrophages (TAMs) have long been

identified as central players of this complex intercellular network

(11–13). More recently, neutrophils, traditionally considered only

as short-lived front-line fighters against pathogens, have received

increasing attention due to their important role in regulating tumor

development (14–17).

Being highly plastic and consequently heterogeneous, TAMs

and tumor associated neutrophils (TANs) adapt their phenotype

and activation state to the surrounding environment (11–21).

TAMs and TANs have the capacity to act directly on tumor cells

to promote or inhibit their proliferation, and to modulate the anti-

tumor or pro-tumor activities of other immune cells (11, 14, 22).

Targeting the immune system is now a reality and is emerging as an

important therapeutic approach for the treatment of cancer (23,

24). However, a significant percentage of patients do not respond to

current available treatments (25). Given the crucial importance of

the intercellular crosstalk between immune cells within the TME,

novel therapeutic approaches targeting these interactions might be

beneficial. In this review, after a short overview concerning TAMs

and TANs, we will focus on their complex intercellular interactions

with other immune cells, with a particular emphasis on how these

interactions can influence tumor development and progression.
Macrophages in the
tumor microenvironment

Macrophages are large phagocytic cells of the innate immune

system and are found in tissues where they play numerous roles,

including defense against invading pathogens and maintenance of

tissue homeostasis (19). Macrophages have long been identified as

tumor-infiltrating cells and as one of the key regulators of the

immune response within the TME (11–13). In a majority of human

cancers, a high level of macrophage infiltration has been associated

with a poor prognosis, including in gastric cancer, urogenital and

head neck cancers, pancreatic ductal adenocarcinoma and breast

carcinoma with some notable exceptions such as colorectal cancer

and ovarian cancer (26–33).

The majority of TAMs derive from circulating bone marrow

(BM)-derived monocytes that migrate into the tumor bed mainly

under the influence of chemokines (e.g. C-C motif ligand 2

(CCL2)), cytokine colony stimulating factor 1 (CSF-1), or

complement components (26, 34–39). In addition, numerous

studies have shown that another important source of TAMs was

represented by tissue-resident macrophages (TRMs), which derive

from embryonic precursors and are maintained locally (40–45).

Interestingly, a difference in origin can influence the function of

TAMs within the TME (46, 47).

In addition to their heterogenous origin, TAMs have a high

degree of plasticity and constantly adapt in response to the

microenvironment further increasing their heterogeneity within

the TME (11, 19, 48, 49). Historically, TAMs have been classified

into two major polarization states, generally referred to as M1 (or

classically activated) and M2 (or alternatively activated) (50–52).

M1 polarization can be induced by bacterial products and
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interferon-g (IFN-g) and has been associated with tissue damage

and anti-tumor activities (50, 51). In contrast, M2 polarization,

induced by cytokines of the type 2 immune response, such as

interleukin (IL)-13 and IL-4, has been associated with tissue repair

and tumor-promotion (50, 51, 53). Although this dichotomous

classification is still commonly used, it is nowadays fully recognized

that it is too reductive and does not reflect the extraordinary

complexity and heterogeneity of the different phenotypes and

activation states of TAMs (13, 21, 52). Novel technologies,

including single-cell RNA sequencing and spatial transcriptomic

analyses, have led to a better understanding of macrophage

complexity and heterogeneity in different tumor contexts. In

addition, these technologies have facilitated insight into the

localization of macrophages and their interactions with other cells

within the TME (54–61).
Macrophages and immune cells
cross-talk in the TME

Macrophages and lymphoid cells

The existence of a crosstalk between macrophages and

lymphoid cells within the TME has been clearly defined and

extensively studied. In various human cancers, TAMs were found

in close proximity to different lymphoid cells, including natural

killer (NK) cells and T cells (62–64). The final effect of the

interaction between macrophages and lymphoid cells can differ

depending on the type and the stage of tumors, the presence of

immunomodulatory molecules and the location of TAMs within

the TME.

A large body of evidence has shown that TAMs can inhibit the

anti-tumor activity of lymphoid cells, thereby promoting cancer

progression. As a matter of fact, the presence of monocyte/

macrophage infiltration was found to be inversely correlated with

the presence and activation of NK cells in different human cancers

including lung cancer, gastric cancer and hepatocellular carcinoma

(HCC) (64–66). In contrast, monocyte/macrophage infiltration was

found positively correlated with the presence of regulatory CD4+ T

lymphocytes (T-reg) in prostate cancer and colorectal cancer (67,

68). Consistently, CSF-1– CSF-1 receptor (CSF-1R) axis blockade or

macrophage recruitment blockade via C-C chemokine receptor type

2 (CCR2)-inhibition could restore immune response against tumor

in cancer models (69, 70).

The mechanisms by which TAMs can inhibit the anti-tumor

activities of lymphoid cells are numerous ranging from the release

of soluble inhibitory mediators and cell-cell contact to the

modulation of their recruitment or their exclusion from the

tumor bed (Figure 1). The release of tumor growth factor-b
(TGF-b) by TAMs can directly inhibits T cell and NK cell effector

functions (64, 71–74). In addition, macrophage-derived TGF-b can

promote the generation of T-reg lymphocytes via the induction of

SMAD3-mediated FOXP3 expression and the upregulation of PD-1

(68, 75). TGF-b availability within the TME can be further

amplified by metalloproteinase 9 (MMP-9) secreted by
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macrophages, which can cleave and activate latent TGF-b present in
the extracellular matrix (ECM) (76).

TAMs can release the immunoregulatory enzymes Arginase-1

(Arg-1) and indoleamine 2,3-dioxygenase (IDO) that, by catalyzing

the degradation of L-arginine (L-arg) and L-tryptophan respectively,

deprive T cells of essential nutrients, leading to their functional

impairment (77–79). A third important immunomodulatory enzyme
Frontiers in Immunology 03
produced by macrophages is the inducible nitric oxide synthase

(iNOS), which catalyzes the production of nitric oxide (NO). In turn,

NO has a direct inhibitory effect on T cell proliferation, as well as an

indirect effect due to the secondary production of peroxynitrites able to

impair the interaction of the major histocompatibility complex (MHC)

with the T cell receptor (TCR) via nitration of tyrosines in the TCR-

CD8 complex (80–82).
FIGURE 1

Macrophages inhibit the anti-tumor response of lymphoid cells. (A) Macrophages secrete a plethora of soluble molecules and immunomodulatory
enzymes that inhibit effector cell functions including tumor growth factor b (TGF-b), inducible nitric oxide synthase (iNOS), indoleamine-2,3-
dioxygenase (IDO) and arginase-1 (Arg-1). In addition, they produce metalloproteinase 9 (MMP-9) that induces the activation of the latent TGF-b
present in the extracellular matrix (ECM). TAMs express CD39 and CD73, which convert the pro-inflammatory ATP present in the TME into the
immunosuppressive adenosine. (B) In the context of lung carcinoma, triggering receptor expressed on myeloid cells 2 (TREM2)-expressing
macrophages suppress the cytokine-mediated activation of NK-cells via the production of IL-18-binding protein (IL-18BP) and by limiting IL-15
production by dendritic cells. (C) Macrophages can inhibit the activation of effector cells in a contact-dependent manner. They express immune
checkpoints such as programmed cell death ligand 1 (PD-L1), PD-L2 and B7-H4 that, by binding to their ligands, impair the activity of T cells and NK
cells. In a mouse model of melanoma, the formation of an antigen-specific interaction between macrophages and T cells leads to T cell exhaustion.
(D) Macrophages can inhibit the recruitment of effector T cells into the TME whereas they favor the recruitment of T-reg lymphocytes via the
secretion of CCL22. (E) In pleural and peritoneal body cavities, macrophages expressing T-cell immunoglobulin and mucin domain containing 4
(TIM-4) can sequester CD8+ cytotoxic T cells away from the tumor by binding to phosphatidylserine (PS) expressed on their surface and inhibiting
their proliferation.
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TAMs can exert their pro-tumor activity by blocking the

activity of soluble factors that normally contribute to the

activation of lymphoid cells. For instance, TAMs can express

CD39 and CD73, which are essential in converting the pro-

inflammatory adenosine triphosphate (ATP) present in the TME

into immunosuppressive adenosine (83). In glioblastoma,

kynurenine produced by cancer cells upregulates the expression

of hydrocarbon receptor (AHR) in TAMs. In turn, AHR favors the

expression of the ectonucleotidase CD39, which, in collaboration

with CD73, leads to the dysfunction of CD8+ T cells via the

production of adenosine (84, 85).

In a murine model of lung adenocarcinoma, efferocytosis of

apoptotic cancer cell by macrophages induced a pro-tumorigenic

program controlled by triggering receptor expressed on myeloid

cells 2 (TREM2). In particular, TREM2+ macrophages can prevent

the recruitment and activation of NK cells by blocking the activities

of IL-18 and IL-15 through the production of IL-18 binding protein

and by inhibiting the production of IL-15 by tumor-infiltrating

dendritic cells (65).

The mechanism by which macrophages can dampen the anti-

tumor response goes beyond the secretion of molecules or the

interference with soluble mediators and often requires direct cell-

cell contact.

TAMs have been found to express high levels of immune

checkpoint molecules, including programmed cell death ligand 1

(PD-L1), PD-L2, V-domain Ig suppressor of T cell activation

(VISTA) and B7-H4 (11, 86–93). The interaction of these

immune checkpoints with their ligands expressed on T cells

results in the suppression of the adaptive T cell immune response

(94). Consistently, immune checkpoint blockade can restore T cell-

mediated anti-tumor immune response (89, 91). In addition to T

cells, PD-1, the ligand of PD-L1, can be expressed by a subset of fully

mature NK cells, suggesting that NK cells can also serve as a target

of PD-L1-mediated inhibition by macrophages (95).

In addition to the expression of immune checkpoints, other

mechanisms involving cell-cell contact between macrophages and T

cells have been identified and may lead to T cell exhaustion. For

instance, TAMs and CD8+ T cells can be engaged in a long-lasting

antigen-specific synaptic interaction. This interaction causes only

weak stimulation of the TCR, which is insufficient to activate T cells

and instead leads to their exhaustion (96).

Furthermore, different lines of evidence suggested the

involvement of TAMs in modulating the recruitment of lymphoid

cells within the TME. In cervical and breast cancer models, CSF-1R-

blockade has been shown to enhance CD8+ T cell infiltration (97).

Consistently, LIF-mediated epigenetic silencing of CXCL9, one of the

most important chemokines for CD8+ T cells, in macrophages

resulted in decreased infiltration of CD8+ T cells into the tumor

(98, 99). While they can reduce the recruitment of effector CD8+ T

cells in the TME, macrophages have been suggested to facilitate the

recruitment of T-reg lymphocytes via the secretion of CCL22 in

human ovarian cancer (100). In a mouse model of melanoma, intra-

tumoral administration of an anti-CCL22 antibody reduced the

recruitment of T-reg lymphocytes and inhibited tumor growth (101).

Macrophages have been implicated in the sequestration of

effector T cells away from the tumor bed. Recently, a study
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showed that serous cavity-resident macrophages expressed high

levels of T-cell immunoglobulin and mucin domain containing 4

(TIM-4), a receptor for phosphatidylserine (PS). The interaction

between TIM-4 and PS, highly expressed on cytotoxic CD8+ T cells,

resulted in the sequestration of CD8+ T cells away from the tumor

and inhibited their proliferation (102). Similarly, in samples of

human non-small cell lung carcinoma (NSLC),TAMs reduced the

motility of the CD8+ T cells present in the stroma surrounding the

tumor, limiting their entry into the tumor bed (62).

Although in a large number of studies, TAMs appeared to

reduce the anti-tumor activity of lymphoid cells, some works have

suggested the existence of macrophages with an opposite function

in different tumors (Figure 2). Recently, a study identified a discrete

population of human tissue-resident FOL2R+ macrophages present

in healthy mammary gland and breast cancer primary tumors

endowed with an anti-tumor function. This population of

macrophages was localized in the perivascular areas of the tumor

stroma where they interacted with CD8+ T cells and promoted their

activation (103). Of note, the presence of FOLR2+ macrophages has

been associated with increased survival in breast cancer patients

(103). In addition to T cells, macrophages have the potential to

support the anti-tumor activity of NK cells either via the release of

soluble molecules or via direct contact. For instance, in a model of

mammary tumor, TAMs expressing the lipid transporter epidermal

fatty acid binding proteins-(E-FABP) have been described to have

an anti-tumor activity through the activation of NK cells.

Specifically, the expression of E-FABP promoted the formation of

lipid droplets in TAMs, leading to increased IFN-b production,

which, in turn, favored the recruitment of effector cells, particularly

NK cells (104). Remarkably, the same study showed that E-FABP

was highly expressed in TAMs from women with early-stage

disease, and that this expression decreased with disease

progression (104). In in vitro co-culture experiments, M1-

macrophages induced an IL-23 and IFN-b-dependent
upregulation of natural killer group 2D (NKG2D) expression, an

IL-1b-dependent upregulation of NKp44 expression, and sustained

the production of IFN-g by NK cells via the release of IFN-b and the

engagement of the 2B4-CD48 pathway (105). Similarly, M0 and M2

macrophages reprogrammed to M1 via in vitro LPS stimulation can

promote the cytotoxic activity of NK cells via a contact-dependent

mechanism and drive the production of IFN-g by NK cells via the

interaction between DNAX accessory molecule-1 (DNAM-1) and

2B4 and the production of IL-18 (73, 106).

In addition to T cells and NK cells, some evidence suggested

that macrophages could promote B cell proliferation via the release

of B cell-activating factor (BAFF) or IL-6 (8, 107, 108). However, the

relevance of this interaction within the TME remains to be clarified.

The interaction between macrophages and lymphoid cells

within the TME is mutual and the phenotype and function of

macrophages can also be affected by lymphoid cells (12, 109). For

instance, the IFN-g produced by T-helper (Th)-1 cells, NK cells and

cytotoxic CD8+ T cells increases the presentation of antigens by

macrophages, the production of pro-inflammatory cytokines and

the cytotoxic activity of macrophages against tumor cells (48, 109,

110). In contrast, lymphoid cells found in the TME can also favor a

pro-tumor phenotype of macrophages. For instance, CD4+ Th-2
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cells, innate lymphoid cells (ILCs)-2- and T-reg lymphocytes that

produce IL-4, IL-13 and IL-10 can sustain the formation of M2-like

macrophages with a pro-tumor phenotype (111–115). Interestingly,

it has been shown that mouse T-reg lymphocytes can indirectly

promote the survival of M2-like pro-tumor macrophages. Indeed,

by limiting the production of IFN-g by CD8+ T cells, T- reg
Frontiers in Immunology 05
lymphocytes prevent the inhibition of sterol regulatory element

binding protein 1 (SREBP1)-mediated fatty acid synthesis, which is

crucial for the survival of M2-like macrophages (116).

Additionally, NK cells have been shown to be able to kill

macrophages. Of note, this macrophage killing activity was found

to be especially efficient toward M0 and M2 macrophage subtypes
FIGURE 2

Macrophages promote the anti-tumor response of lymphoid cells. (A) In the context of breast cancer, a population of folate receptor 2 (FOLR2)-
expressing macrophages endowed with anti-tumor properties can establish a prolonged interaction with cytotoxic T cells facilitating their
recruitment and activation. (B) In a mouse model of mammary tumor, accumulation of lipid droplets in epidermal fatty acid binding proteins
(E-FABP)-expressing TAMs induces the production of interferon-b (IFN-b), leading to the recruitment and activation of NK-cells. (C) Macrophages
have the potential to support the anti-tumor activity of NK cells. M1-macrophages induce an IL-23 and IFN-b-dependent upregulation of NKG2D
expression, an IL-1b-dependent upregulation of NKp44 expression, and sustained the production of IFN-g by NK cells via the release of IFN-b and
the interaction of CD48 and DNAX accessory molecule-1 (DNAM-1) with 2B4.
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whereas M1 macrophages were more resistant to lysis due to the

higher expression of human leukocytes antigen (HLA) class I

molecules (106). Similarly, invariant natural killer T cells (iNKT)

have been shown to exert anti-tumor activity by killing

macrophages in a CD1d-dependent mechanism (117).

Finally, some studies have highlighted an effect of B cells on

macrophages in tumor. In a mouse model of melanoma, adoptive

transfer of a subtype of B cells can induce M2-like polarization of

TAMs (118).
Macrophages and myeloid cells

While the interaction between macrophages and lymphoid cells

has been the subject of numerous studies, their interaction with

other myeloid cells has received less attention. Among myeloid

cells, dendritic cells are key players in the orchestration of both

innate and adaptive immune responses in cancer (119).TAMs

produce high levels of vascular endothelial growth factor (VEGF),

IL-10, IL-6 and TGF-b which are described to inhibit the activity of

dendritic cells (11, 120–124). Besides dendritic cells, macrophages

can interact with neutrophils (14). The interaction between these

two important myeloid subtypes within the TME will be further

discussed in this review.
Neutrophils in the
tumor microenvironment

Neutrophils are the most abundant circulating leukocytes in

humans. They have long been considered as simple first-line

fighters against invading pathogens, but are now recognized as

central players in the regulation of tumor development and

progression (14, 16). TANs have been found in the TME of

several human cancers, including renal cell carcinoma,

hepatocellular carcinoma, lung cancer, melanoma, head and neck

cancer, glioma, colorectal cancer, sarcomas, pancreatic cancer,

breast cancer, gastric cancer, urothelial carcinoma and ovarian

cancer (125–136). However, their role is still controversial and

may depend on a number of factors, including the different types of

cancer, the stage of development and the presence of other cells (14,

17, 137). While in a large number of studies, a high level of TANs

has been associated with a poor prognosis for patients, in others,

including colorectal cancer and undifferentiated pleomorphic

sarcoma (UPS), it has been associated with a better outcome (14,

125, 130, 138–143).

Mature mouse and human neutrophils are constantly released

from the BM where they differentiate and mature from progenitors

in response to growth factors, in particular granulocyte-colony

stimulating factor (G-CSF) and granulocyte macrophage-colony

stimulating factor (GM-CSF) (16, 144–149). The process of

neutrophil mobilization from the BM has been extensively

investigated in mice and is highly dependent on the regulation of

the expression of genes coding for CXCR4 and CXCR2 (150). Upon

maturation, BM-neutrophils downregulate CXCR4 expression,

which is the receptor for CXCL12 produced by BM stromal cells,
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and increase the expression of CXCR2. The expression of CXCR2

and the presence CXCL2, which is the ligand for CXCR2, in the

circulation trigger the release of neutrophils into the peripheral

blood (150, 151). The observation of alterations in neutrophil

biology among patients with genetic mutations in CXCR4 and

CXCR2 implies the significance of these molecules also in human

(152, 153). Stress conditions, including cancer, trigger an

“emergency granulopoiesis” program during which the process of

neutrophil maturation and BM egress is altered, resulting in the

release of immature neutrophils into the circulation (154).

Circulating neutrophils express high levels of CXCR1 and

CXCR2, which play a major role in their recruitment into the

TME (14, 16, 155). Numerous studies have shown the involvement

of CXCR1 and CXCR2 ligands, including CXCL1, CXCL2, CXCL5,

CXCL6 and CXCL8 (only for humans) in the recruitment of

neutrophils into the TME (14, 156–162). Additionally, other

inflammatory mediators, including the cytokines TNF-a, IL-17
and IL-1b have been implicated in the recruitment of neutrophils

into the TME (14, 163, 164).

While neutrophils were traditionally considered as short-lived

effector cells with limited plasticity, a large body of evidence

challenged this view and recognized their considerable plasticity

and heterogeneity (17, 18, 20). Based on their phenotype and

function and mirroring the M1/M2 paradigm, TANs have been

classified into anti-tumor (N1) and pro-tumor (N2) neutrophils

(14, 165, 166). As mentioned above for macrophages, new studies

based on state-of-the-art methodology, including single cell RNA

sequencing, mass cytometry by time-of-flight (CyTOF), multiplex

immunofluorescence and spatial transcriptomic have revealed a

high degree of heterogeneity in TANs (14, 16, 167–171).

Pro-tumor neutrophils can directly promote tumor

development by inducing tissue damage and genetic instability

through the production of radical oxygen species (ROS) and

miRNA, and by stimulating tumor growth through the secretion

of cytokines and growth factors (172–177). Additionally, pro-tumor

neutrophils can facilitate the formation of tumor metastasis through

different mechanisms such as the induction of angiogenesis and

ECM remodeling (178–181). In contrast, anti-tumor neutrophils

can inhibit tumor growth through the direct killing of tumor cells

via the production of ROS and NO or by trogocytosis of antibody-

opsonized cancer cells (182, 183).

Besides their direct effect on tumor cells, TANs are engaged in

dynamic and continuous interactions with a large variety of tumor

infiltrating immune cells, affecting their phenotype and effector

functions (14). In turn, these immune cells have a significant impact

on neutrophil recruitment, phenotype and function (14, 17).
Neutrophils and immune cells cross-
talk in tumor

Neutrophils and lymphoid cells

Neutrophils interact with a variety of lymphoid cells including

CD4+ and CD8+ T cells, unconventional T cells, NK cells and B

cells. In human samples, neutrophils have often been found co-
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localized with other lymphoid cells in the tumor bed or in the

tumor-draining lymph nodes (139, 184–186).

Neutrophils have the capacity to either inhibit or activate the

effector functions of these lymphoid cells (Figure 3) (15).

Several lines of evidence have suggested that human and mouse

neutrophil-derived soluble mediators, such as Arg-1, ROS, reactive

nitrogen intermediates (RNI) and prostaglandin E2 (PGE2), played

a key role in suppressing the effector functions of T cells and NK

cells (17, 165, 187–193). In different mouse tumor models, TANs

respond to TGF-b by producing significant amounts of Arg-1,

leading to a reduction in the availability of L-arginine (165).

Given the fundamental role of L-arginine in T cell metabolism, its

deprivation results in T cell dysfunction (165). Accordingly, a
Frontiers in Immunology 07
population of neutrophils expressing Arg-1 has been found in

renal cell carcinoma and NSLC patients with a frequency that

negatively correlates with the frequency of CD8+ cytotoxic T

lymphocytes (191, 192).

Changes in neutrophil metabolism may be linked to their pro-

tumor or anti-tumor activities. In a transplantable mouse model of

breast cancer with limited glucose supply, c-Kit+ immature

neutrophils exhibited increased mitochondrial fatty acid

oxidation, resulting in higher production of ROS and inhibition

of the T cell response (187). The production of RNI, through iNOS–

dependent NO production, was found to hinder T cell activation in

mammary tumor-bearing K14Cre; Cdh1F/F; Trp53F/F (KEP) mice

(189). Neutrophils found within the TME can exhibit endoplasmic
FIGURE 3

Neutrophils can promote or inhibit the anti-tumor response of lymphoid cells. (A) Immunosuppression can be mediated by neutrophils via the
production of reactive oxygen species (ROS), reactive nitrogen intermediate (RNI) and arginase-1 (Arg-1) or through fatty acid transporter protein 2
(FATP2)-dependent production of prostaglandin E2 (PGE2). (B) Neutrophils can indirectly affect the cytotoxic activity of NK cells and CD8+ T cells by
releasing neutrophil extracellular traps (NETs) that shield cancer cells. (C) Neutrophils express immune checkpoints such as programmed cell death 1
ligand 1 (PD-L1) or the V-domain immunoglobulin suppressor of T-cell activation (VISTA) that, by binding to their ligands PD-1 and P-selectin
glycoprotein ligand-1 (PSG-L1), cause T cell and NK cell dysfunction. (D) Neutrophils can acquire antigen presenting cell-like (APC-like) features
under the influence of GM-CSF or interferon (IFN)-g or upon phagocytosis of antibody-antigen complexes via Fc gamma receptors (FcgRs). Similarly,
neutrophils enhance TCR signaling in CD8+ T cells through the interaction between CD54/intercellular adhesion molecule 1 (ICAM-1) expressed on
neutrophils and CD11a expressed on T cells. (E) Tool like receptor (TLR)-stimulated neutrophils can attract and activate NK cells which, in turn,
trigger the maturation of dendritic cells resulting in T cell proliferation and IFN-g production.
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reticulum (ER) stress and altered lipid metabolism (188, 194). This

phenomenon has been associated with the expression of proteins

involved in lipid trafficking and metabolism, such as CD36, lectin-

like oxidized low-density lipoprotein receptor-1 (LOX-1), and fatty

acid transport protein 2 (FATP2), and with an immunosuppressive

phenotype of neutrophils (195). For instance, ER-stressed

neutrophils produce higher amounts of ROS and Arg-1, which

inhibit T cell proliferation and cytokine production (195, 196).

Remarkably, FATP2 expression on neutrophils induced the

production of PGE2, which has potent immunosuppressive

activity on NK cells and CD8+ T cells (188, 197).

Neutrophils can also indirectly affect NK cell and CD8+ T cell

cytotoxic activity through the release of neutrophil extracellular

traps (NETs) that shield cancer cells (198). In this context, CXCL

chemokines produced by tumor cells induce NETosis in

neutrophils, which can coat and protect cancer cells from the

cytotoxic activity of NK cells and CD8+ T cells. Interestingly,

blockade of protein arginine deiminase 4 (PAD-4), which is

essential for the formation of NETs, increased the activity of anti-

PD-1 and anti-Cytotoxic T-Lymphocyte Antigen 4 (CTLA-4)

immunotherapy in a transplantable mouse model of breast

cancer (198).

The interactions between neutrophils and lymphocytes extend

beyond the release of soluble mediators, as neutrophils themselves

express immune checkpoints such as PD-L1 or VISTA. These

molecules can interact with their ligands expressed on T cells and

NK cells, leading to their dysfunction (199–204). Neutrophils

expressing PD-L1 or VISTA have been found in various types of

human and murine cancer, including hepatocellular carcinoma,

melanoma, and gastric cancer (199–203).

As mentioned earlier, neutrophils can also interact with

lymphoid cells to activate their anti-tumor activity. For instance, in

patients with NSLC, neutrophils with antigen-presenting cell (APC)-

like features were found and shown to be capable to activate CD4+

and CD8+ T cells (184). Neutrophils can acquire these APC-like

features in response to TME-derived GM-CSF and IFN-g, which
induce the expression of MHC-II and CD86 in neutrophils (184).

The interaction between these TANs isolated from lung cancer tissue

and activated T cells led to increased expression of the costimulatory

molecules CD54, CD86, OX40L, and 4-1BBL on the neutrophil

surface, which further enhanced T cell proliferation, creating a

positive feedback loop (205). Similar findings were observed in

colorectal cancer patients, where neutrophils enhanced TCR

signaling in CD8+ T cells, in a cell-to-cell contact dependent

manner through the interaction between CD54/intercellular

adhesion molecule 1 (ICAM-1) expressed on neutrophils and

CD11a expressed on T cells (139). Further investigations have

demonstrated that the phagocytosis of antibody-antigen complexes

via Fc gamma receptors (FcgRs) renders murine and human

neutrophils more potent APC-like cells (206).

In addition to T cells, neutrophils can induce NK cell activation

through various mechanisms (207, 208). For example, cytokine-

stimulated NK cells and neutrophils exchange contact-dependent

activation signals involving CD18, ICAM-1 and ICAM-3 (207).

Stimulated neutrophils can attract and activate NK cells trough

release of soluble mediators, including IL-1b and IL-18 (208). In
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turn, activated NK cells can trigger the maturation of dendritic cells,

resulting in T cell proliferation and IFN-g production, suggesting an
additional mechanism trough which neutrophils can indirectly

control the T cell anti-tumor immune response (208).

In addition to conventional T cells, neutrophils can influence

the polarization and activation state of a subset of unconventional T

cells, leading to their secretion of IFN-g. This mechanism required a

tripartite interaction between neutrophils, macrophages and

unconventional T cells (see below) (143).

The reasons for these dichotomous functions of neutrophils on

lymphoid cells are not fully elucidated. Interestingly, a recent study

conducted in head and neck cancer (HNC) patients described this

neutrophil dual role in tumor-draining lymph nodes, where

neutrophils can interact with T cells in a stage-dependent manner

(185). In metastasis-free patients, neutrophils transmigrate to

lymph-nodes, acquiring APC-like features and promoting T cell

anti-tumor activity (185). In contrast, at a later stage, neutrophils

acquire PD-L1 expression and suppress T cell activation (185).

Conversely, neutrophils can be influenced by lymphoid cells,

which can modulate their recruitment and phenotype to the tumor

bed under different conditions (Figure 4) (186, 189, 209, 210). For

instance, in a mouse model of breast cancer in KEP mice, gd T cells

in response to IL-1b showed increased production of IL-17 which

induced a G-CSF dependent accumulation of neutrophils with an

immunosuppressive phenotype in the peripheral blood and

metastatic lung (189). In CRC patients, IL-22 producing T cells

induced the recruitment of neutrophils, by triggering the

production of neutrophil-recruiting chemokines (i.e. CXCL1,

CXCL2, CXCL3) by colorectal cancer cells. Importantly, the

expression of IL-22 was found associated with the presence of

neutrophils and T cells and a favorable prognosis (186).

Recently, in colorectal cancer patients, iNKT cells were found to

increase the recruitment of neutrophils with immunosuppressive

activity (209). The mechanism was related to the presence of the

tumor-associated pathobiont Fusobacterium nucleatum, which

induced the production of IL-17 and GM-CSF in iNKT.

Importantly, the presence of iNKT cells and neutrophils

correlated with a worse prognosis, suggesting that targeting this

crosstalk could improve patient survival (209). On the other hand,

NK cells have been involved in the control of neutrophil pro-tumor

activity through an IFN-g-dependent mechanism in mice (210). In a

mouse model of transplantable sarcoma, the absence of NK cells

induced neutrophils to acquire a pro-tumor phenotype

characterized by the expression of VEGF-A (210) Interestingly,

tumor-reprogrammed neutrophils that localize in a unique hypoxic

and glycolytic niche exert a potent tumor-supporting, pro-

angiogenic function through their high expression of VEGF-A

(171). In contrast, NK cells have been suggested to induce

neutrophil apoptosis via a NKp46 and FAS–dependent

mechanism (211, 212). Remarkably, efferocytosis of apoptotic

neutrophils by macrophages has been well documented to

promote their shift toward an M2-like pro-tumor phenotype (213).

Neutrophils have been shown to interact also with B cells.

Specifically, splenic neutrophils have been described to play a B-cell

helper function, promoting the immunoglobulin class switching

and the production of antibodies by activated B cells through a
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mechanism involving BAFF, APRIL and IL-21 (214). However, the

involvement of this interaction in cancer has not been investigated.
Neutrophils and myeloid cells

As mentioned above for macrophages, while a significant

amount of research has focused on the interaction between

neutrophils and lymphoid cells, a limited number of studies have

explored the cross-talk between neutrophils and other myeloid cells

in the TME (Figure 5) (215).

Neutrophils play a role in promoting the recruitment of other

myeloid cells into the tumor bed through the release of chemokines

such as CCL2, CCL3, and CCL4, which attract monocytes and

dendritic cells (216). Once in the TME, monocytes and dendritic

cells produce CXCL8, which favors the recruitment of additional

neutrophils, creating a feedback loop that fosters the accumulation

of inflammatory cells within the TME (217). Moreover, dendritic

cells have been shown to physically interact with neutrophils via

dendritic cell-specific intercellular adhesion molecule-3-grabbing

non-integrin (DC-SIGN), leading to increased release of TNF-a by

neutrophils (217). This interaction enhances the maturation of
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dendritic cells, thereby improving their capacity to effectively

prime T cells and activate their anti-tumor response (217).

Another intriguing hypothesis is that neutrophils could amplify

the source of antigens that dendritic cells process and present to T

cells (218). Neutrophil-mediated trogoptosis of cancer cells may

lead to an increased release of antigens and damage-associated

molecular patterns (DAMPs) available for dendritic cells (219–222).

This mechanism has been proposed as a potential therapeutic target

and strategy to improve dendritic cell-based anti-cancer vaccines.

In a mouse model of breast cancer, it has been shown that

neutrophil cytotoxic activity can be modulated by monocytes (223).

Breast cancer cells with low spontaneous metastatic potential

secrete high levels of CCL2, leading to the recruitment of IFN-g-
producing monocytes. Subsequently, neutrophils upregulate the

expression of the transmembrane protein 173 (TMEM173, also

known as stimulator of interferon response CGAMP interactor 1

(STING)), which then unleashes their cytotoxic activity (223).

Additionally, neutrophils were found to play a crucial role in

potentiating the release of IL-12 by macrophages in the context of 3-

methylcholanthrene (3-MCA)-induced sarcomagenesis (143). In

turn, IL-12 can activate a subset of unconventional T cells (UTC)

that express high levels of IL-12R, resulting in their production of
FIGURE 4

Lymphoid cells can modulate the activity of neutrophils. (A) Lymphoid cells can regulate the recruitment of neutrophils into the tumor bed. In CRC
patients, tumor-associated pathobiont Fusobacterium nucleatum (Fn) induces the production of IL-17 and GM-CSF in invariant natural killer T cells
(iNKT) resulting in increased neutrophil migration into the tumor bed. Additionally, IL-22 producing T cells induce the recruitment of neutrophils, by
triggering the production of neutrophil-recruiting chemokines (i.e. CXCL1, CXCL2, CXCL3) by colorectal cancer cells. (B) NK cells control pro-tumor
angiogenic function of neutrophils by blocking their secretion of vascular endothelial growth factor (VEGF). (C) NK-cells induce neutrophil apoptosis
in a NKp46 and FAS-dependent manner. Efferocytosis of apoptotic neutrophils by macrophages promote a shift toward an M2-like pro-
tumor phenotype.
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IFN-g and tumor control (143). To further underscore the

importance of the interaction between neutrophils and other

myeloid cells, two recent reports investigating the limited success

of CSF-1R treatment in preclinical models of cancer revealed that

upon TAM deplet ion, neutrophi ls acquired a highly

immunosuppressive phenotype, counteracting the beneficial effect

of macrophage depletion (224, 225).
Conclusion and perspectives

The TME represents a complex ecological niche composed of

tumor cells, stromal cells and immune cells constantly engaged in

mutual interactions that influence tumor development and
Frontiers in Immunology 10
progression. TAMs and TANs are crucial components of this

niche and affect tumor progression by directly influencing tumor

cell proliferation and by shaping the anti-tumor or pro-tumor

response of other immune cells. In turn, the phenotypes and

activities of TAMs and TANs are continuously regulated by other

immune cells present in the TME.

Targeting the immune system represents a therapeutic strategy

against cancer. However, a significant percentage of patients do not

respond to current available treatments, underlining the need for

new therapeutic approaches. As we uncover the complexity of the

interactions between macrophages and neutrophils and other

immune cells, it becomes evident that targeting these interactions

may hold promise for developing novel and effective

immunotherapeutic approaches to fight cancer.
FIGURE 5

Interactions between neutrophils and other myeloid cells in cancer. (A) Macrophages and dendritic cells (DCs) are attracted into the tumor bed by
chemokines released by neutrophils (e.g. CCL2, CCL3, and CCL4). In turn, macrophages and DCs produce chemokines (e.g. CXCL8) which further
fuel neutrophil recruitment. (B) DCs physically interact with neutrophils via dendritic cell-specific intercellular adhesion molecule-3-grabbing non-
integrin (DC-SIGN), resulting in increased release of tumor necrosis factor a (TNF-a). In turn, TNF-a promotes DC maturation. (C) IFN-g produced
by monocytes induces upregulation of transmembrane protein 173 (TMEM173) expression in neutrophils, unleashing their cytotoxic activity. (D) In a
mouse model of sarcoma, neutrophil-macrophage interaction results in increased production of IL-12 by macrophages, which induces the
expression of interferon g (IFN-g) in a subset of unconventional ab T cells (UTCab) and favors their anti-tumor activity.
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