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The genus Leptospira is a diverse and unique group of bacteria comprising 
multiple saprophytic and pathogenic species, which survive and persist in suitable 
moist environments. Pathogenic species cause human and animal leptospirosis, 
a global and neglected zoonotic disease. Disease transmission occurs by 
exposure to contaminated water and moist soil environments or by contact with 
domestic animals and wildlife acting as reservoir hosts that shed Leptospira via 
urine. Here, we describe the unexpected diversity of saprophytic and pathogenic 
species of Leptospira isolated from water in the Midwestern United  States. 
Samples were collected by volunteers in 11 counties in Iowa from water sources, 
including puddles, sewage, creeks, ponds, lakes, and rivers, during the summer 
of 2021. One hundred and five water samples were tested by culture for the 
presence of saprophytic and pathogenic species and by lipL32 qPCR specific for 
the detection of pathogens; 82 (78.1%) were culture positive and five (4.8%) were 
positive by lipL32 qPCR. Whole genome sequencing of isolates cultured from 
water samples identified 10 species of saprophytes, namely L. montravelensis, 
L. kemamanensis, L. bandrabouensis, L. bourretii, L. bouyouniensis, L. chreensis, 
L. ellinghausenii, L. terpstrae, L. yanagawae, and L. abararensis, as well as three 
novel saprophytic species. Whole genome sequencing also identified two novel 
pathogenic species. The remaining cultures comprised mixed populations of 
saprophytic species and six comprised a mixture of saprophytic and pathogenic 
species. One of these mixed cultures was enriched to select for a clonal isolate 
of pathogenic Leptospira, strain WS101.C1, which was classified as L. interrogans 
serogroup Djasiman serovar Djasiman. Cumulatively, 9.5% (10/105) of water 
samples were positive for pathogenic Leptospira. This study emphasizes the 
diversity of Leptospira present in water sources in the Midwestern United States 
and provides unique opportunities to explore the geographic diversity and 
evolution of this genus. The identification of known and novel pathogenic 
species circulating in local water sources highlights their potential usefulness as 
diagnostic antigens, as well as the role of water in the transmission of infection 
to human and animal populations. Integrating knowledge on human, animal, 
and environmental health is essential to control and predict risk for zoonoses.
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1 Introduction

Leptospirosis is a neglected zoonotic disease with a worldwide 
distribution caused by pathogenic leptospires that can survive and 
persist in suitable moist environments (Bharti et al., 2003; Thibeaux 
et al., 2017; Casanovas-Massana et al., 2018; Stone et al., 2022). The 
genus Leptospira is diverse and divided into 72 species (Vincent et al., 
2019; Casanovas-Massana et al., 2020; Grillová et al., 2021; Korba 
et  al., 2021; Fernandes et  al., 2022; Dos Santos et  al., 2023). The 
phylogenomic analysis separates the genus into two clades: the S clade 
contains saprophytes isolated from the environment and not 
responsible for infections, compared to the P clade, which contains 
pathogens/intermediates responsible for infections in humans and 
animals. Each S and P clade is further subdivided into two subclades: 
S1 and S2 contain 26 and 5 species, respectively, while P1 and P2 
contain 20 and 21 species, respectively.

The epidemiology of a zoonotic disease such as leptospirosis is 
complex and makes it a paradigm of One Health (Bharti et al., 2003; 
Putz and Nally, 2020; Sykes et  al., 2022). Pathogenic Leptospira 
colonizes the proximal renal tubules of domestic animals and wildlife, 
which can act as reservoir hosts of infection and excrete Leptospira via 
urine into the environment. Transmission to humans and animals 
occurs by direct contact with reservoir hosts or indirect exposure to 
environmental water and moist soil contaminated with pathogenic 
Leptospira (Faine et al., 1999). Leptospires can also colonize the genital 
tract of domestic livestock and are shed via semen or uterine 
discharges (Ellis, 2015). Leptospira can be maintained in moist soil and 
water for weeks to months (Saito et al., 2013; Bierque et al., 2020; Stone 
et al., 2022).

Human leptospirosis ranges in severity from a mild, self-limited 
febrile illness to a fulminant, life-threatening disease (Haake and 
Levett, 2015). In the United States, leptospirosis is rarely recognized, 
and most cases are associated with occupational exposure to infected 
animals (Heath et al., 1965), recreational exposures (Schiemann, 1973; 
Sasaki et al., 1993; Katz et al., 1997; Lee et al., 2002), and individuals 
living in economically disadvantaged inner-city environments (Vinetz 
et al., 1996; Viotti et al., 2020; McNeilly et al., 2023). In the state of 
Iowa, outbreaks of human leptospirosis were associated with farm 
creeks, wildlife, and domestic livestock (Diesch and McCulloch, 1966; 
Diesch et al., 1970). Serogroup Pomona was isolated from humans 
with bovine contacts, while serogroup Icterohaemorrhagiae was 
isolated from a patient exposed to mud polluted with rat feces (Tjalma 
and Galton, 1965). The few cases where pathogenic leptospires have 
been isolated were from surface waters of recreational areas (Diesch 
and McCulloch, 1966; Braun and McCULLOCH, 1968; Crawford 
et al., 1969), wildlife (Diesch et al., 1970; Smith et al., 1992), and cattle 
and swine (Ellis and Thiermann, 1986; Bolin and Cassells, 1990; Bolin 
et al., 1991; Nally et al., 2018).

Integrating the knowledge of human, animal, and environmental 
health is essential to control and predict zoonotic diseases. While 
investigations on animal and human interfaces are increasing, greater 
incorporation of environmental and ecosystem components has been 

highlighted as a missing link in the One Health approach (Nally et al., 
2016; Warnasekara et al., 2022). The importance and role of water in 
the transmission of leptospirosis is well-established (Monahan et al., 
2009; Barragan et al., 2011; Bierque et al., 2020; Stone et al., 2022). 
Here, we describe saprophytic and pathogenic species of Leptospira 
isolated from water sources in the Midwestern United States, including 
the presence of novel species.

2 Materials and methods

2.1 Study site and sampling

This study was conducted in Iowa, a midwestern U.S. state. 
Water samples were collected from 11 counties in central Iowa 
(Polk, Story, Boone, Appanoose, Warren, Marshall, Webster, 
Audubon, Dallas, Hardin, and Hamilton) from puddles, sewage, 
creeks, ponds, lakes, and rivers during the summer months of 2021. 
Water samples were collected by volunteers who were provided with 
a kit containing a 50-mL conical tube, a 1-mL syringe, and two 
15-mL conical tubes containing either 5 mL of HAN media 
(Hornsby et al., 2020) or 5 mL of HAN media, which contained a 
combination of antimicrobial agents, including sulfamethoxazole 
(40 μg/mL), trimethoprim (20 μg/mL), amphotericin B (5 μg/mL), 
fosfomycin (400 μg/mL), and 5-fluorouracil (100 μg/mL) (STAFF) 
(Chakraborty et  al., 2011), for each water sample collected. 
Volunteers were asked to collect 40 mL of surface water into a sterile 
50-mL conical tube. A 250-μL aliquot of each water sample was then 
transferred, using the 1-ml syringe, into each 15-mL tube containing 
media. Samples were labeled with GPS coordinates of the sample 
location and a description of the water sample type. Water sources 
were selected by volunteers, which included areas with a wildlife 
presence, domestic animal presence, and recreational areas. A total 
of 105 water samples were collected (Supplementary Table S1). 
Representative photographs of sample sites taken by volunteers are 
provided (Figure  1). The samples were transported at ambient 
temperature to the National Veterinary Services Laboratories, 
APHIS, Ames, IA, within 24 h of collection and were processed for 
culture and lipL32 rt-PCR.

2.2 DNA extraction and lipL32 qPCR

In total, 40 mL of each water sample was centrifuged at 15,000 × g 
for 20 min at 4°C (Riediger et al., 2016). Pellets were resuspended in 
500 μL PBS, and DNA was extracted using an automated Maxwell RSC 
cell DNA purification kit (Promega Corporation, Madison, WI) as 
previously described (Casanovas-Massana et  al., 2018). DNA was 
tested in triplicate by lipL32 qPCR as previously described (Hamond 
et al., 2022). In brief, the lipL32 gene was amplified and detected using 
the following primers and probe: LipL32-47Fd (5′-GCATTACM 
GCTTGTGGTG-3′) and LipL32-301Rd (5′-CCGATTTCGCCWG 
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TTGG-3′), and LipL32-189P (6-carboxyfluorescein [FAM]-5′-AAA 
GCCAGGACAAGCGCCG-3′-black hole quencher 1 [BHQ1]), using 
PerfeCTa qPCR ToughMix®, Low ROX™ (Quanta Biosciences, 
Gaithersburg, MD, United States). As a control for PCR inhibitors, the 
TaqMan® Exogenous Internal Positive Control (Applied Biosystems) 
was added to the master mix to confirm DNA amplification and detect 
the presence of amplification inhibitory substances in each sample. 
The sample was considered positive when duplicates or triplicates 
were positive with Ct values <40 (Stoddard et al., 2009; Galloway and 
Hoffmaster, 2015).

2.3 Culture

A 250-μL aliquot of each water sample was inoculated at the time 
of collection into 5 mL of HAN liquid media (Hornsby et al., 2020) or 
5 mL of HAN liquid media containing STAFF (Chakraborty et al., 
2011). In the laboratory, 500 μL of the inoculated media containing 
STAFF was then used to inoculate 2 × 5 mL of HAN media containing 
STAFF and incubated at 29°C and 37°C. Cultures were examined daily 
by darkfield microscopy for up to 6 months. Media without STAFF 
resulted in heavy growth of contaminants.

2.4 Genome sequencing and analysis

DNA was extracted from separate 5 mL cultures obtained from 
recovered isolates using the Maxwell RSC Purefood Purification 
Pathogen kit (Promega Corporation, Madison, WI), following the 
manufacturer’s instructions. The concentration of genomic DNA was 

determined using Qubit® (Qubit dsDNA Broad Range Assay, Qubit 
3.0 fluorometer, Invitrogen, Carlsbad, CA, United States). Illumina 
whole-genome sequence was obtained per the manufacturer’s 
instructions by employing the Illumina Nextera XT DNA Library 
Preparation Kit and the MiSeq Desktop Sequencer (2×250 v2 
paired-end chemistry, Illumina, San Diego, CA), as previously 
described (Hamond et al., 2022).

Genome analysis after assembly, including scaffold length and 
number, N50, and top BLAST identifications, was used to determine 
whether each assembled genome was derived from a single species’ 
DNA. Illumina whole genome sequencing (WGS) reads were analyzed 
with Kraken (Wood and Salzberg, 2014) and visually displayed with 
Krona (Ondov et  al., 2011). This analysis assisted in evaluating 
genomic DNA fidelity to a single isolate and species identification. 
Paired-end reads were assembled with SPAdes, which was run with 
the careful option enabled (Bankevich et al., 2012), and assemblies 
were checked for quality by comparing the expected genome size with 
the total assembly size and verifying scaffolds as Leptospira by BLAST 
(Altschul et al., 1990).

Phylogenetic trees were built from assembled genomes with 
Mashtree (Katz et al., 2019) and Leptospira species in the National 
Center for Biotechnology Information (NCBI) RefSeq (O'Leary et al., 
2016), which are labeled with the NCBI accession number. Samples 
were subsets on Mashtree groupings based on three main branches. 
Using subsets of assembled and NCBI RefSeq, three genome trees 
were built using kSNP (Gardner et al., 2015). TipAlleleCounts-ML 
tree output from kSNP showed approximate SNP counts between 
isolates and those isolates most similar to references. All data from 
isolates of Leptospira detected in this study are labeled according to 
Supplementary Table S1. Sequencing data for all samples were 

FIGURE 1

Representative photographs of water sample sites. WS designation refers to those listed in Supplementary Table S1.

https://doi.org/10.3389/frwa.2024.1278088
>https://www.frontiersin.org/journals/Water
https://www.frontiersin.org


Hamond et al. 10.3389/frwa.2024.1278088

Frontiers in Water 04 frontiersin.org

deposited in the NCBI GenBank database, BioProject number 
PRJNA944241, Supplementary Table S2.

Bracken (Bayesian Re-estimation of Abundance with Kraken) was 
used as a statistical method for computing the abundance of species 
in DNA sequences from a metagenomics sample1 (Lu et al., 2017).

For all cultures, including cultures with mixed species of 
Leptospira, the DNA sequence for the ppk gene was informatically 
extracted from each genome assembly using Geneious Prime 2022.2.2. 
The ppk gene was also extracted from the WGS of the reference strains 
obtained from NCBI using the same method. A phylogenetic tree was 
made for the ppk gene using the Geneious Tree Builder Tamura-Nei 
model and the Neighbor-Joining method. The reference strains are 
labeled with the NCBI accession number followed by the species and 
strain. In cultures with mixed species, the ppk sequences extracted 
from WGS assemblies include a label of 1, 2, or 3 to differentiate the 
separately assembled ppk genes that were derived from the 
mixed population.

A delineation of the species based on the genome sequences was 
performed by Average Nucleotide Identity (ANI) using EZBioCloud 
(Yoon et al., 2017). An OrthoANI result greater than or equal to 95% 
was considered the same species. The reference genomes for each 
species group were the same as those used in the ppk analysis.

2.5 Sequencing of lipL32 and lfb1

The lipL32 gene was amplified for sequencing using the same 
primers as the qPCR. PCR products were then purified and labeled 
using the Big Dye Terminator v3.1 cycle sequencing reagent (Applied 
Biosystems, Foster City, California, United States). The lfb1 gene was 
detected with primers LFB1-F (5′-CATTCATGTTTCGAATCA 
TTTCAAA-3′) and LFB1-R (5′-GGCCCAAGTTCCTTCTAAAAG-3′) 
(Merien et  al., 2005). Sequencing was performed using the ABI 
3130XL Genetic Analyzer. Sequence data were analyzed with 
DNAStar’s Lasergene sequence analysis software. Consensus 
sequences were compared with available sequences in the GenBank 
database using BLAST.

2.6 Serotyping of Leptospira cultured from 
water sources

Leptospira was serotyped by the microscopic agglutination test 
(MAT) using a panel of polyclonal rabbit reference antisera representing 
14 serogroups: Australis, Autumnalis, Ballum, Bataviae, Canicola, 
Djasiman, Grippotyphosa, Hebdomadis, Icterohaemorrhagiae, Mini, 
Pomona, Pyrogenes, Sejröe, Tarassovi, and (Serogroup not 
yet  determined) serovar Room22 as previously described 
(Supplementary Table S3). The isolate WS101.C1 was further typed to 
the serovar level by the World Organisation for Animal Health (WOAH) 
Reference Laboratory for Leptospirosis by performing MAT with a panel 
of reference monoclonal antibodies that characteristically agglutinate 
serovars from the relevant serogroups as previously described (Terpstra 
et al., 1985; Hartskeerl et al., 2006; Goris and Hartskeerl, 2014).

1 https://ccb.jhu.edu/software/bracken/

2.7 Approach to enrich for clonal isolates 
of Leptospira

Sample WS101 was determined by WGS to contain both 
saprophytic and pathogenic species of Leptospira. To separate the 
pathogen and obtain a clonal isolate, the culture was grown in liquid 
HAN at 37°C in 5% CO2 (Hornsby et al., 2020) and enriched using 
polyclonal rabbit reference antisera for serogroup Djasiman before 
plating for screening of clonal isolates on agar plates, and as previously 
described (Hamond et al., 2023). To identify clonal isolates, DNA was 
extracted from a 5-mL culture using the Maxwell RSC Purefood 
Purification Pathogen kit (Promega Corporation, Madison, WI), 
following instructions from the manufacturer. PCR for rrs was 
performed as previously described (Mérien et  al., 1992). PCR 
amplicons were sequenced, and consensus sequence data were 
generated and analyzed as previously described (Hamond et al., 2022).

2.8 Evaluation of virulence

All animal experimentation was conducted in accordance with 
protocols as reviewed and approved by the Animal Care & Use 
Committee at the National Animal Disease Center (ARS-2021-938) 
and as approved by USDA institutional guidelines. Three water 
samples in which pathogenic leptospires were detected [WS58 (L. sp. 
nov Patho P2), WS92 (L. sp. nov Patho P1), and WS101.C1 
(L. interrogans serogroup Djasiman)] were used to inoculate liquid 
HAN medium at 29°C. The virulence of the pathogens cultured in the 
aforementioned manner was evaluated by intraperitoneal injection of 
108 Leptospira in 1 mL into groups (n = 4 per group) of female golden 
Syrian hamsters (Mesocricetus auratus). A negative control group 
received HAN media alone. At 3 weeks post-inoculation, kidney 
tissues were harvested for Leptospira culture and lipL32 qPCR, as 
previously described (Wunder Jr et al., 2016; Fernandes et al., 2022). 
DNA from L. interrogans serovar Canicola strain H. Utrecht IV was 
used for a standard curve. Sera were collected for MAT, which was 
performed according to World Organization for Animal Health 
(WOAH) guidelines (Cole et al., 1973), using a panel of 17 antigens 
representative of 14 serogroups, serovar Room22 
(Supplementary Table S4), and strains WS58, WS92, and WS101.C1. 
A titer was considered positive at ≥ 1:100.

2.9 Spatial data

Geographic Information System (GIS) mapping was prepared, 
and its accuracy was assessed using Google Earth software.

3 Results

3.1 lipL32 qPCR

One hundred and five water samples were collected from water 
sources in 11 counties in the state of Iowa, including recreational areas 
and those with a wildlife and domestic animal presence (Figure 1). Of 
these, five (4.8%) samples (WS40, WS57, WS84, WS91, and WS101) 
collected from five different counties (Appanoose, Webster, Polk, 
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Boone, and Hamilton) were positive by lipL32 qPCR 
(Supplementary Table S1; Figure 2). Positive Ct values ranged from 24 
to 37 (mean = 33.6 ± 5.5) (Supplementary Table S1).

3.2 Culture

Positive cultures for spirochetes were detected in 82/105 (78.1%) 
water samples and in all counties (Supplementary Table S1; Figure 2). 
Leptospira-positive cultures free of other microbial organisms were 
only detected in HAN media containing STAFF selective agents when 
incubated at 29°C.

3.3 Genotyping of cultures

Genome sequencing of leptospires cultured from water samples 
identified 10 different species of saprophytic Leptospira belonging to 
subclade S1, including three (WS1, WS43, and WS49) speciated as 
L. montravelensis, two (WS2 and WS57) as L. kemamanensis, seven 

(WS15, WS26, WS33, WS48, WS82, WS89, and WS103) as 
L. bandrabouensis, four (WS5, WS37, WS41, and WS75) as L. bourretii, 
five (WS31, WS59, WS62, WS77, and WS80) as L. bouyouniensis, two 
(WS34 and WS56) as L. chreensis, two (WS66 and WS70) as 
L. ellinghausenii, seven (WS40, WS44, WS45, WS46, WS74, WS86, and 
WS98) as L. terpstrae, WS63 as L. yanagawae, and WS24 as 
L. abararensis (Supplementary Table S1; Figure 3).

Analysis of genomic sequencing reads and assemblies identified 
mixed populations of saprophytic species in 23 cultures, including 
WS6, WS7, WS8, WS9, WS12, WS13, WS14, WS17, WS20, 
WS35, WS36, WS38, WS42, WS47, WS50, WS51, WS52, WS53, 
WS55, WS68, WS72, WS73, and WS76 (Supplementary Table S1; 
Supplementary Figure S1).

Analysis of genomic sequencing reads and assemblies also 
identified mixed populations of both saprophytic and pathogenic 
species in six cultures, including WS73, WS84, WS91, WS95, WS96, 
and WS101 (Supplementary Table S1; Supplementary Figure S2). The 
genome sequence from sample WS73 comprised 4% P1 and 83% S1, 
WS84 comprised 79.5% P2 and 13.3% of S1, WS91 comprised 22.5% 
P1 and 63.1% S1, WS95 comprised 6.5% P1 and 90.6% S1, WS96 

FIGURE 2

Distribution of saprophyte and pathogenic Leptospira in water samples in central Iowa, U.S.
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comprised 7% P1 and 90.2% S1, and WS101 comprised 27.6% P1 and 
67.2% S1 (Supplementary Figure S2). Given that water samples WS73, 
WS95, and WS96 had originally tested lipL32 qPCR negative, but that 

genomic analyses indicated the presence of DNA derived from 
pathogenic species, the gene sequence for lipL32 was extracted from 
each of these sequences to detect matching lipL32 primers and probes. 

FIGURE 3

Maximum-likelihood phylogenetic tree created using kSNP3.0, a reference-free phylogenetic analysis tool, of isolates identified as saprophytes, 
subclade S1, in water samples by whole genome sequencing. The high diversity of genomes in subclade S1 by kSNP3.0 results in two groupings shown 
separately in Panels A,B, and as illustrated in Supplementary Figure S7. Genome sequences from GenBank are preceded by an accession number, while 
genome sequences from water sources (WS) are preceded by NVSL. The end number is the estimated number of SNPs to the nearest neighbor.
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Results show that the lipL32 qPCR assay has two forward primer 
mismatches and a missing probe sequence in the WS73 lipL32, while 
the sequence matching the reverse primer is missing in the lipL32 
sequence from WS95 (Supplementary Figure S3). Given that water 
samples WS40 and WS57 had originally tested lipL32 qPCR positive, 
but analyses of genome sequence failed to identify pathogenic species, 
PCR for detection of lipL32 and lfb1 was performed, and amplicons 
were sequenced (Supplementary Figure S4). The results confirmed the 
presence of lipL32 derived from pathogenic Leptospira in samples 
WS40 and WS57 (Supplementary Figure S5). Sequencing of amplicons 
from lfb1 was not successful.

Analysis of genome sequences also identified cultures comprising 
new species of Leptospira, as determined by comparison of average 
nucleotide identity (ANI) < 95%. A new saprophytic species of 
Leptospira designated L. sp. nov Sapro S1.1 was assigned for strains 
WS4, WS10, WS11, WS16, WS30, WS54, WS90, and WS97 isolated in 
Boone, Story, and Audubon Counties (Supplementary Table S1; 
Figure 4). A new saprophytic species of Leptospira designated L. sp. 
nov Sapro S1.2 was assigned for strains WS19, WS60, WS64, WS69, 
WS71, WS78, WS81, WS85, and WS99 isolated in Boone, Polk, 
Hamilton, and Story Counties (Supplementary Table S1; Figure 4). A 
new saprophytic species of Leptospira designated L. sp. nov Sapro S1.3 
was assigned for strain WS39 from Story County 
(Supplementary Table S1; Figure 4). A new pathogenic species of 
Leptospira designated L. sp. nov Patho 1 was assigned for strain WS92 
(Supplementary Table S1; Figures 4, 5), and a new pathogenic species 
of Leptospira designated L. sp. nov Patho 2 was assigned for strain 
WS58 (Supplementary Table S1; Figures 4, 6), both of which were 
isolated in Webster County (Supplementary Table S1). Sample WS92 
L. sp. nov Patho 1 originally tested lipL32 qPCR negative 
(Supplementary Table S1) and was still negative after additional PCRs 
for lipL32 and lfb1 (Supplementary Figure S4). Primers used in our 
PCR assays did not match or amplify sequences for lipL32 or lfb1 in 
WS92 (Supplementary Figure S4). Phylogeny of the WGS from all 
non-mixed cultures is provided in Supplementary Figure S6.

3.4 Serotyping of cultures with reference 
antisera

Serotyping of cultures was performed by MAT using a panel of 17 
anti-Leptospira rabbit reference sera (Supplementary Table S3). No 
reactivity was detected for strains WS24 (L. abararensis); strains 
WS15, WS26, WS33, WS48, WS82, WS89, and WS103 
(L. bandrabouensis); strains WS5, WS37, WS41 and WS75 (L. bourreti); 
strains WS31, WS59, WS62, WS77, and WS80 (L. bouyouniensis); 
strains WS34 and WS56 (L. chreensis); strain WS66 (L. ellinghausenii); 
strain WS2 (L. kemamanensis); strains WS1, WS43, and WS49 
(L. montravelensis); and strains WS40, WS44, WS45, WS46, WS74, 
and WS98 (L. terpstrae) (Supplementary Table S1).

Low reactivity was detected for strain WS70 (L. ellinghausenii) 
with serogroups Hebdomadis (1:200), Autumnalis (1:100), Bataviae 
(1:100), Icterohaemorrhagiae (1:100), Tarassovi (1:100), Szwajizak 
(1:100), and Room22 (1:100); for strain WS81 (L. sp. nov Sapro S1.2) 
and WS57 (L. kemamanensis) to serogroup Pyrogenes (1:100); for 
strain WS86 (L. terpstrae) to serovar Room22 (1:200); for strain WS63 
(L. yanagawae) to serogroup Pyrogenes (1:200); and for strain WS19 
(L. sp. nov Sapro S1.2) to Djasiman (1:200) (Supplementary Table S1).

No reactivity was detected for strain WS58 [L. sp. Nov Patho P2] 
or strain WS92 [L. sp. Nov Patho P1].

3.5 Isolation and classification of a clonal 
isolate of pathogenic Leptospira from 
mixed cultures

Culture from water sample WS101 had a positive MAT of 
1:51,200 when tested against reference antisera specific for serogroup 
Djasiman. Given that genome analysis for strain WS101 
(Supplementary Table S1) suggested a population of mixed species 
and a relatively low Ct value of 24 for lipL32, suggesting a high 
number of pathogens, additional enrichment for serogroup Djasiman 
with reference antisera followed by plating on agar plates was 
performed as previously described (Hamond et al., 2023). Of the 20 
colonies (WS101.C1 to WS101C.20) selected from agar plates, all 
were positive by PCR for rrs, and sequencing of amplicons identified 
L. interrogans. Complete genome sequencing of clonal isolate WS101.
C1 indicated a lower number of scaffolds (n = 239 and genome size of 
4,614,224 bp) than that for the mixed culture WS101 (number of 
scaffolds = 2,986 and genome size of 11,472,664 bp) that was identified 
as belonging to L. interrogans. Serotyping of strain WS101.C1 had a 
titer of 1:51,200 when tested with reference antisera for serogroup 
Djasiman. Serotyping with panels of reference monoclonal antibodies 
for serogroup Djasiman identified strain WS101.C1 as belonging to 
serovar Djasiman. Strain WS101.C1 is classified as L. interrogans 
serogroup Djasiman serovar Djasiman.

Attempts to isolate a pathogenic species from mixed culture WS84 
were not successful, though a clonal isolate of saprophytic species 
L. sp. nov Sapro S1.2 was recovered and designated WS84.C5 (Figure 3; 
Supplementary Table S2).

3.6 Evaluation of virulence

Experimentally inoculated hamsters did not show any clinical 
signs of infection or weight loss after intraperitoneal inoculation with 
any of the three pathogenic isolates. At 3 weeks post-infection, all 
kidney samples from each group were negative by culture and lipL32 
qPCR. MAT reactivity was detected in hamsters inoculated with 
WS58 [L. sp. nov Patho P2] when tested against the homologous 
isolate WS58 [L. sp. nov Patho P2] at 1:3200. Similarly, MAT reactivity 
was detected in hamsters inoculated with WS92 [L. sp. nov Patho P1] 
when tested against the homologous isolate WS92 [L. sp. nov Patho 
P1] at 1:1600. Hamsters inoculated with L. interrogans serogroup 
Djasiman strain WS101.C1 had a positive titer to WS101.C1 at 1:6400 
and to reference strain L. interrogans serogroup Djasiman serovar 
Djasiman strain at 1:6400. Hamsters inoculated with strains WS58 
[L. sp. nov Patho P2] or WS92 [L. sp. nov Patho P1] were seronegative 
for other serogroups tested (Supplementary Table S4).

4 Discussion

The advent of appropriate combinations of selective antimicrobials 
has facilitated a rapid and significant increase in the ability to culture 
saprophytic and pathogenic species of the genus Leptospira from 
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FIGURE 4

Average Nucleotide Identity (ANI) values to delineate the identification of new species. An OrthoANI result greater than or equal to 95% was considered 
the same species.
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environmental sources (Chakraborty et al., 2011). The recovery and 
characterization of isolates of Leptospira from water and soil provide 
unique opportunities to explore the geographic diversity and evolution 
of this genus and further explore the role of the environment in the 
maintenance and transmission of pathogenic species associated with 

human and animal leptospirosis (Bierque et al., 2020; Fernandes et al., 
2022). In this study, water samples collected by volunteers in the state 
of Iowa in the summer of 2021 were assessed for the presence of 
Leptospira by culture and PCR to determine which species could 
be identified.

FIGURE 5

Maximum-likelihood phylogenetic tree created using kSNP3.0, a reference-free phylogenetic analysis tool, of isolates identified as pathogens, subclade 
P1, in water samples by whole genome sequencing. Genome sequences from GenBank are preceded by an accession number, while genome 
sequences from water sources (WS) are preceded by NVSL. The end number is the estimated number of SNPs to the nearest neighbor.

FIGURE 6

Maximum-likelihood phylogenetic tree created using kSNP3.0, a reference-free phylogenetic analysis tool, of isolates identified as pathogens, subclade 
P2, in water samples by whole genome sequencing. Genome sequences from GenBank are preceded by an accession number, while genome 
sequences from water sources (WS) are preceded by NVSL. The end number is the estimated number of SNPs to the nearest neighbor.
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Over 78% (82/105) of collected water samples were culture-
positive for Leptospira, as confirmed by WGS. This emphasizes the 
widespread distribution of Leptospira in  local water sources 
(Supplementary Table S1; Figure 2). Known saprophytic species 
were cultured directly from 34/82 culture-positive water samples 
and included L. terpstrae and L. yanagawae, which were originally 
isolated in China and Brazil, respectively (Smythe et al., 2013), as 
well as the more recently described L. montravelensis, 
L. kemamanensis, L. bandrabouensis, L. bourretii, L. bouyouniensis, 
L. chreensis, L. ellinghausenii, and L. abararensis isolated in 
countries including New Caledonia, Malaysia, the island of Mayotte 
in the Indian Ocean, Algeria, and Japan (Vincent et al., 2019). In 
addition, three new saprophytic species were identified, as defined 
by an ANI <95%, by direct culture from 18/82 culture-positive 
water samples; L. sp. nov Sapro S1.1 was cultured directly from 
eight samples, L. sp. nov Sapro S1.2 was cultured directly from nine 
samples and a single sample identified as L. sp. nov Sapro S1.3. 
Phenotype, morphology, and a complete closed genome for 
reference strains in each of these new saprophytic species are 
in progress.

WGS analyses identified mixed species of saprophytes in 23/82 
culture-positive samples, while mixed species of pathogens and 
saprophytes were identified in 6/82 culture-positive samples. Since 16S 
rRNA is insufficient to robustly distinguish Leptospira species, the ppk 
gene encoding a polyphosphate kinase was used to identify species in 
mixed cultures (Vincent et al., 2019). Gene sequences for ppk were 
extracted from WGS assemblies and clades assigned 
(Supplementary Table S1). Of note, phylogenies based on ppk assigned 
WS75 and WS41 as more closely related to L. mtsangambouensis 
(Supplementary Figure S1) compared to phylogenies based on WGS, 
which assigned these samples to L. bourretii (Supplementary Figure S6), 
further highlighting the diversity of this genus and the need to employ 
multiple genes to accurately assign species.

Of the 105 water samples tested by PCR for the presence of lipL32, 
a Leptospira pathogen-specific gene, to identify water samples 
containing pathogenic species of the P1 clade of Leptospira, five (4.8%) 
were positive. Sample WS101 was the only water sample that was 
positive for pathogenic species by both PCR and WGS analyses of the 
culture isolate, in which 27.6% of WGS reads were assigned as 
L. interrogans (Supplementary Figure S2). The presence of pathogenic 
Leptospira in culture-positive sample WS101 was also indicated by a 
positive MAT titer for the presence of serogroup Djasiman. The 
selection of a clonal isolate derived from this mixed culture allowed 
for the identification of a single species as L. interrogans serogroup 
Djasiman serovar Djasiman strain WS101.C1 (raw data deposited 
under accession number SRR25177450  in GenBank). Given that 
samples WS40, WS57, WS84, and WS91 were PCR positive for lipL32 
but culture negative for pathogens by WGS, PCR for lipL32 was 
repeated and amplicons were sequenced (Supplementary Figures S4, 
S5). The results confirmed the presence of pathogenic leptospires 
when these water samples were collected and suggested that the 
growth of the more fastidious pathogens was outcompeted by faster-
growing saprophytes before WGS of culture. Conversely, six water 
samples were culture-positive for pathogens by WGS but negative by 
PCR. Inspection of lipL32 sequences extracted from WGS assemblies 
of cultures positive for pathogens but PCR negative for lipL32 samples 
confirmed that WS73 lacked a matching probe sequence, WS92 lacked 
a matching forward and reverse primers sequence, WS95 lacked a 

matching reverse primer sequence, and both WS58 and WS84 belong 
to clade P2 (Supplementary Figure S3). A repeat PCR of WS96 
remained negative for lipL32, despite matching probe and primers, but 
was positive for lfb1. The gene encoding LipL32 is present in all 
pathogenic species of clades P1 and P2 and is the most used target for 
molecular detection of pathogenic Leptospira. The extensive gene 
sequence polymorphisms (Stone et al., 2022) highlight the need to 
update primers and probe for lipL32 to account for the diversity of this 
genus and the detection of both clades P1 and P2.

WGS analyses of isolates WS92 and WS58 identified new 
pathogenic species belonging to clade P1 and P2, respectively. 
Additional analyses of genome sequence for WS58 using the 
JSpeciesWS GenomesDB database (Richter et  al., 2015) 
determined that WS58 was highly similar to unclassified 
Leptospira sp. B5-022 (GenBank Accession ANIJ00000000), an 
isolate cultured from a rat in Denmark (data not shown): though 
this genome submission annotates Leptospira sp. B5-022 as 
L. hovindhougenii, this species has not yet been formally described 
or recognized. Notably, an isolate recovered from a dog in Italy 
also had a similar genome (Piredda et al., 2021). No evidence of 
infection was observed in the hamster model of leptospirosis after 
inoculation with strain WS92, WS98, or L. interrogans serovar 
Djasiman strain WS101.C1. All hamsters seroconverted, though 
seroconversion in hamsters inoculated with WS92 or WS58 was 
limited to agglutination with the challenge isolate, suggesting 
these strains belong to novel serogroups. As expected, hamsters 
inoculated with strain WS101.C1 had a positive MAT titer to the 
serovar Djasiman reference strain and to strain WS101.C1. 
Serotyping of new pathogenic species is essential to determine if 
they are represented in MAT diagnostic panels and to limit false 
negative reactions. Serogroup Djasiman is not routinely included 
in MAT diagnostic panels, but testing of equine samples has 
confirmed exposure to this serogroup (Hamond, LeCount, and 
Anderson, unpublished data). It remains to be  determined if 
exposure of horses, or other domestic livestock, to serogroup 
Djasiman is facilitated via contaminated waterways. Phenotype, 
morphology, and a complete closed genome for reference strains 
in each new pathogenic species are in progress.

The recovery of leptospires from the environment is challenging 
(Chakraborty et al., 2011; Thibeaux et al., 2018) and more so for 
pathogenic leptospires with relatively long generation times 
(Picardeau, 2015). One major obstacle to recovering leptospires 
without contamination is the ability to select a single species from 
a complex polymicrobial sample. In contrast to other growth media 
used at 28–30°C, HAN media functions at both 28–30°C and 37°C 
(Picardeau, 2015; Hornsby et  al., 2020). However, in this study, 
HAN media was only successful at 29°C, as even with the inclusion 
of STAFF, unacceptable levels of contaminating bacteria were 
cultured in environmental samples incubated at 37°C (data not 
shown). Other approaches have used agar plates to culture 
environmental samples, but our study prioritized the use of liquid 
media so volunteers could inoculate immediately at the time of 
collection. Alternative approaches could use qPCR or fluorescent 
antibody testing (FAT) to screen early stages of positive cultures to 
identify those containing pathogens, which in turn could be selected 
for the enrichment of clonal pathogens on agar plates. Screening of 
positive cultures from environmental samples by MAT also serves 
to identify those containing pathogenic serogroups. Such an 
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approach is exemplified in this study by the high titer of sample 
WS101 for serogroup Djasiman (Supplementary Table S1).

Leptospirosis is a zoonotic, neglected, and emerging disease in the 
United  States. Infection is associated with recreational exposures, 
occupational exposures to infected animals, and individuals living in 
economically disadvantaged urban inner-city environments (Heath Jr. 
et al., 1965; Sasaki et al., 1993; Vinetz et al., 1996; Katz et al., 1997; Lee 
et al., 2002; Haake and Levett, 2015; McNeilly et al., 2023). In Iowa, an 
outbreak of human leptospirosis was associated with exposure to animals 
and the environment (Schiemann, 1973; Lee et al., 2002). Environmental 
freshwater facilitates the transmission of leptospirosis in human and 
animal populations (Saito et al., 2013; Thibeaux et al., 2017). In this study, 
sample collection was limited to summer months associated with 
increased outdoor activities and water locales chosen by volunteers. Five 
samples (WS40, WS57, WS84, WS91, and WS101) were positive by 
qPCR, six samples (WS73, WS84, WS91, WS95, WS96, and WS101) 
were positive for known pathogenic species by WGS of cultures, and two 
(WS58 and WS92) were positive for new pathogenic species by WGS of 
cultures. The identification of 9.5% (10/105) of water samples positive for 
pathogenic Leptospira highlights the prevalence and diversity of 
Leptospira in water sources. This finding also highlights the need for 
more comprehensive investigations into the role of moist environments 
in maintaining pathogenic Leptospira and associated risks to animal and 
public health.
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