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Stroke results in varying levels of motor and sensory disability that have been

linked to the neurodegeneration and neuroinflammation that occur in the

infarct and peri-infarct regions within the brain. Specifically, previous research

has identified a key role of the corticospinal tract in motor dysfunction

and motor recovery post-stroke. Of note, neuroimaging studies have utilized

magnetic resonance imaging (MRI) of the brain to describe the timeline of

neurodegeneration of the corticospinal tract in tandem with motor function

following a stroke. However, research has suggested that alternate motor

pathways may also underlie disease progression and the degree of functional

recovery post-stroke. Here, we assert that expanding neuroimaging techniques

beyond the brain could expand our knowledge of alternate motor pathway

structure post-stroke. In the present work, we will highlight findings that suggest

that alternate motor pathways contribute to post-stroke motor dysfunction

and recovery, such as the reticulospinal and rubrospinal tract. Then we review

imaging and electrophysiological techniques that evaluate alternate motor

pathways in populations of stroke and other neurodegenerative disorders. We

will then outline and describe spinal cord neuroimaging techniques being used in

other neurodegenerative disorders that may provide insight into alternate motor

pathways post-stroke.
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1 Introduction

Stroke is a leading cause of serious, long-term disability in the world (1). Common

consequences of stroke include paralysis, gait dysfunction, sensory deficits, speech

impairments, cognitive impairments, pain, and depression, with ∼90% of patients

experiencing persistent neurological motor deficits that lead to disability and handicaps

(2). Damage to and subsequent degeneration of motor pathways contribute significantly to

motor impairment. Indeed, evidence has been established dating back to 1901 when Barnes

(3) observed degeneration in the spinal cord in postmortem analyses of hemiplegia. In
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fact, early analyses of tracts in the 20th century were predominantly

based on postmortem examinations of degeneration resulting from

clinical cases or preclinical studies in animals (4–6). Today, modern

neuroimaging techniques, such as diffusion tensor imaging, allow

for non-invasive investigation of the integrity of motor pathways

in living stroke patients. As a result, numerous research groups

have established degeneration in the corticospinal tract (CST)

as a significant contributor to motor impairment and recovery

prognosis (7–11). For example, through the use of diffusion tensor

imaging, Maraka et al. (9) found a significant correlation between

the degree of damage to the corticospinal tract and the severity of

motor impairment in patients in each phase of ischemic stroke.

In addition, Byblow et al. (12) have further suggested that acute

stroke patients show ∼70% resolution of motor impairment if

corticospinal tracts are functional. Overall, neuroimaging studies

have confirmed that amount, connectivity, and neurophysiologic

function of CST is related to impairment and functional recovery

post-stroke (13–16).

Work has also suggested that alternate motor pathways

such as the lateral and medial reticulospinal tracts, descending

medial longitudinal fasciculus, and rubrospinal tract may also

impact baseline motor function post-stroke (17, 18) and motor

recovery (19–21). However, the role and function of alternate

motor pathways have not been thoroughly evaluated in the

context of post-stroke recovery, particularly in human subjects.

This is largely since most work to date has evaluated the

brain, which has a unique anatomical organization. Specifically,

the descending and ascending alternate motor pathways can

be difficult to distinguish with brain imaging techniques

because these pathways overlap in the brain or originate

caudal to the pons. For example, several groups have been

able to utilize advanced neuroimaging techniques to delineate

some alternate motor pathways, such as the corticoreticular

pathway (CRP), in the brain in healthy individuals and

with various neuropathologies (22–25), but brain stem or

pathways in the spinal cord implicated in stroke recovery are

less understood.

Thus, we assert that since several alternate motor pathways

begin to delineate as the tracts progress into the spinal cord

or originate subcortically, that future efforts should consider the

spinal cord as a future focus area. Specifically, several studies

have suggested a role of alternate motor pathways post-stroke

using in vivo studies, electrophysiological methods or magnetic

resonance imaging targeting the brain (17, 19, 26–28). Here

we suggest that by using existing or creating new techniques,

such as high-resolution magnetic resonance imaging (MRI) or

spinal cord analyses that focus on areas caudal to the brain,

such as the brainstem or spinal cord, the structures of alternate

motor pathways can be visualized and knowledge gained may

enhance treatment modalities post-stroke (17). Thus, in the present

article, we will first briefly review studies that suggest the role

of alternate motor pathways in stroke impairment and recovery

and the electrophysiological techniques that have been used to

evaluate alternate motor pathways. Then as a primary focus, we

will then provide examples of visualization and quantification

methods that may be used to expand our current knowledge of

alternate motor pathways in future clinical studies in populations

with stroke.

2 Evaluation of alternate motor
pathway role after stroke: in vivo and
clinical studies

Several in vivo, clinical and post-mortem studies have sought to

determine the role of alternatemotor pathways after stroke (29–34).

The pathways that have received the most attention have included

the reticulospinal, rubrospinal, and vestibulospinal. Depictions of

the most evaluated alternate motor pathways after stroke are shown

in Figure 1A. In general, literature supports the idea that while

alternate motor pathways have a compensatory role in post-stroke

recovery, the ipsilesional corticospinal tract remains critical for

fine motor control (30). In contrast, alternate motor pathways

have been shown to have more of a compensatory role (20), often

involved in synergistic movements (40), and are mostly implicated

in gross movement or proximal muscle function. Here, we will first

briefly review the identified roles of these pathways post-stroke,

as a detailed review of each pathway post-stroke is outside the

scope of the present work. For a detailed scope of reticulospinal

pathways (41–43), please refer to the following reviews and studies

(44–46). For a detailed scope of rubrospinal pathways, please refer

to the following reviews and studies (47–52). For a detailed scope of

vestibulospinal pathways, please refer to the following reviews and

studies (43, 53–57).

2.1 Reticulospinal pathways

The reticulospinal pathways emerge from the pontomedullary

reticular formation, located in the midbrain, and project bilaterally

in the spinal cord (58) (Figure 1A). The reticulospinal pathways

have been implicated in posture (59), upper limb flexor movement,

and locomotion (58, 60–64). In addition, studies have suggested

that the reticulospinal pathways work in tandem with the

corticospinal pathways to facilitate control of skilled reaching (65–

69). Indeed, hallmark studies by Drew (65–69) in intact cats have

shown a direct role of reticulospinal pathways in voluntary gait,

postural control, and bilateral reaching movements. Overall, the

reticulospinal tract has been indicated to facilitate motor function

mainly in proximal muscles (up to 40% control). Although, the

projections of the reticulospinal tract may also indicate a role in

recovery of the lower limb in stroke (70).

Given this role, it is not surprising that studies have begun to

evaluate the possible influence of reticulospinal pathways in stroke

recovery. In general, the majority of work to date has focused on the

role of the reticulospinal pathway in the upper limb. For example,

in a macaque model, lesions to the corticospinal tract were found

to result in an increase in activity in intact ipsilateral reticulospinal

pathways on the non-lesioned hemisphere of the brain (61). Hebert

et al. (61) also observed that increases in ipsilateral reticulospinal

pathway activity correlated with reaching function. Zaaimi et al.

(29) built on this work by evaluating extracellular reticular spikes

in macaques that were healthy or 1 year post pyramidal tract lesion.

The group observed that after a pyramidal tract lesion, membrane

properties in the reticular nuclei changed and resulted in increased

reticulospinal output. It was suggested that such change may help

compensate for the loss of drive from the corticospinal pathways
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FIGURE 1

(A) Pictural representation of common tracts associated with recovery following stroke. Image representations were adapted from (35–38). (B)

Atlas-based probabilistic tract reconstruction utilizing FA and Intra-Cellular Volume Fraction (ICVF) with the Spinal Cord Toolbox for visualizing

alternate motor pathways throughout the spinal cord (35, 36, 39). Images of the cervical region were processed using linear interpolation, and the

alpha parameter was modified based on tract intensity.

(29). Similar observations were noted by Darling et al. (19).

Specifically, their group observed that recovery after motor cortex

injury was correlated with projections to the reticular nuclei from

the non-lesioned hemisphere.

Additional studies have confirmed the role of the reticulospinal

pathway in clinical populations, although in general, data is

limited (17, 63, 64, 71–74). For example, similar to Hebert et al.

(61), Karbasforoushan et al. (17) observed that individuals with

a chronic unilateral internal capsule stroke, who had significant

damage to the corticospinal pathway, demonstrated higher white

matter integrity in ipsilateral projections to the paretic limb in

the medial reticulospinal tract compared to healthy controls. It

has also been noted that patients with a more intact medial

reticulospinal tract show improved motor recovery post-stroke.

Work by Karbasforoushan et al. (17) was expanded upon by a

recent study evaluating patients in several phases of ischemic stroke

recovery. Specifically, Choudhury et al. (75) evaluated patients

presenting 6 months to 12 years post-stroke and identified that

reticulospinal tract pathways were critical to regain arm and hand

function in patients with severe damage to the corticospinal tract.

Further, recent reports have even suggested that intervention

approaches targeting the reticulospinal tract post-stroke can result

in significant improvements in upper-limb function (76). Taken

collectively, it has been suggested that changes in the ipsilateral

reticulospinal pathways after stroke impact recruitment of the non-

lesioned hemisphere of the brain and corticoreticular pathway (44)

and relate to baseline impairment (17, 63, 64, 71–74) and spasticity

(77–79). Although limitations should be considered, including how

animal models of stroke may differ from clinical presentations,

especially with respect to overall anatomical differences, chronicity

(70) and methodology of the stroke lesion. In addition, recent

evidence has suggested that the reticulospinal tract may have inputs

to the primary and supplementary motor cortex, so it remains

unclear if the role of reticulospinal tracts is of cortical or subcortical

origin (58). Further, despite the influence of reticulospinal tracts

in posture and locomotion in animal models, very little work

has been done to evaluate the influence of these pathways in the

lower limb. In addition, it remains unclear when reticulospinal
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pathways begin to be recruited or modified after the initial stroke

event. Although some recent work has suggested that reticulospinal

tract connectivity may not influence skill-acquisition gains in the

sub-acute period (80).

2.2 Vestibulospinal pathways

The vestibulospinal pathway originates in the brain stem

(Figure 1A) and contributes to the movement of intercostal

muscles, back muscles, and limb extensors via unilateral and

bilateral projections to the vestibulospinal reflexes (43, 54, 55,

81, 82). Hallmark work by Wilson, Peterson, and others (56,

83–85) in animal models have indicated that the vestibulospinal

pathways have a critical role in body equilibrium, head position

and clear vision with movement. In clinical work, vestibulospinal

tracts have been linked to post-stroke spasticity (86), balance

(87), vertigo/dizziness (88), and locomotion in stroke patients

(89). However, similar to lower limb studies of the reticulospinal

tract in populations with stroke, there currently is a lack of work

evaluating the role of the vestibulospinal tract in populations

with stroke. This is particularly surprising, given the growth

of studies evaluating vestibular rehabilitation approaches in

neurodegenerative populations (90, 91) and high prevalence of

stroke patients with disturbances to the vestibular system (92, 93).

Ultimately, additional studies are needed to understand the full

extent of the effects of the vestibulospinal pathways following

a stroke.

2.3 Rubrospinal pathways

Rubrospinal pathways are believed to originate from the

red nucleus (49, 50) (Figure 1A) and contribute to reaching

and grasping movements (49, 63). As shown in Figure 1A, the

rubrospinal pathway neighbors the corticospinal tract in the

majority of the spinal cord and both run in parallel. Work in animal

and non-human primates has shown that rubrospinal pathways

are important in the recovery of hand function after insult to

the corticospinal pathway. For example, work by Bolzoni et al.

(27) found that the effects of non-invasive brain stimulation to

improve motor function were facilitated by both corticospinal and

rubrospinal pathways in a cat model. An innovative study using

anterograde tracing by Isa and colleagues also found that in rats

following a lesion to the internal capsule, robust axonal sprouting

from the forelimb area to the red nucleus could be observed.

Isa confirmed that selective blockade of the rubrospinal pathways

directly influenced reaching movements following the lesion (94).

In addition, work by Cheney et al. (49, 51, 95) have also shown

that following a unilateral lesion of the pyramidal tract, post-lesion

reorganization occurs in the red nucleus that is linked to output of

flexor muscles.

The impact of the rubrospinal pathway has also been studied

in human patients with stroke (26, 27, 96, 97). For example, Rüber

et al. (26) observed that red nuclei contained more gray and white

matter in patients post-stroke, and that this finding was correlated

with baseline hand and arm function. However, while a role for

rubrospinal pathways has been proposed, current work to date

has evaluated a sample of both acute and chronic patients (range

5–359 months post-stroke). Further, since most projections from

the red nucleus have limited range in the spinal cord in humans

(98), it has been suggested that overall influence of rubrospinal

pathways may be limited in stroke recovery. Therefore, while

rubrospinal pathways may have a role in stroke recovery, a deeper

understanding of whether these pathways are modified in the acute

or chronic phase is still required.

3 Electrophysiology methods to
understand alternative motor
pathways

Neurophysiologists have begun to expand our knowledge of the

functional integrity of alternative motor pathways in animal and

clinical populations. Of note, use of the startle reflex, transcranial

magnetic stimulation, long latency responses (28) and galvanic

stimulation have been popular methods to investigate the function

of reticulospinal, vestibulospinal, and bulbospinal tracts. In the

acoustic startle response, an unexpected acoustic stimulus is

delivered, and electromyography (EMG) is recorded from proximal

upper extremity muscles to quantify drive from the reticulospinal

system (99). The technique has been successfully used in animal

models (100–103) and clinical (104–106) studies to identify the

involvement of reticulospinal pathways. Using the startle response,

it has been suggested that reticulospinal pathways are involved in

spasticity (107) and have enhanced function in severely impaired

patients (75); although contradictory findings have also been

reported (108, 109). A recent review has suggested that stroke

heterogeneity likely attributes to outcomes observed with the

startle reflex and should be accounted for if deployed in clinical

populations (110). It is possible that new methods, though, such

as the StretchfMRI may circumvent some concerns noted with the

startle reflex alone (28).

Transcranial magnetic stimulation (TMS) has also been used to

define surrogate function of the reticulospinal tract (111), but also

the vestibulospinal tract. Here, ipsilateral motor evoked potentials

(iMEPs) in proximal limbs are used as a measure of reticulospinal

tract functional connectivity (80, 112). Using this tool, it has

been suggested that following a stroke, reticulospinal tracts have a

proximal muscle innervation bias (112, 113). Similar approaches,

but instead with galvanic vestibular stimulation, have been used to

evaluate the vestibulospinal tract (114–117).

4 Moving forward: evaluating motor
pathways through novel techniques

Overall, work in pre-clinical and clinical models have

demonstrated a significant role of alternate motor pathways in

baseline impairment and motor recovery after stroke. We believe

that one approach that should be considered to expand knowledge

of the structure of alternate motor pathways after stroke is the use

of novel neuroimaging approaches in the spinal cord. Specifically,

to truly evaluate alternate motor pathways, structures beyond
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the brain must be considered. In the brain, most ascending

and descending pathways overlap and are difficult to distinguish

with available neuroimaging techniques. While neurophysiological

approaches provide some insight, they remain surrogate markers of

the alternate motor pathways. Instead, since many alternate motor

pathways originate below the subcortical regions of the brain, areas

such as the brain stem and spinal cord would need to be evaluated

to provide the most clarity. However, a logical question would

be whether changes in pathways can be observed in structures

so distant from the original site of the ischemic lesion? Further,

would information about pathways in the spinal cord be useful in

populations with stroke?

4.1 Can we evaluate alternative motor
pathways degeneration after stroke in the
spinal cord and would it be useful?

The feasibility of identifying changes in alternate motor

pathways in such structures post-stroke has been validated by

observations in post-mortem studies. Specifically, post-mortem

studies have provided initial groundwork showing that pathways

within the spinal cord (corticospinal and alternate motor) show

atrophy in chronic stroke patients. Of note, several notable studies

(3) dating back to the early 1900s, have evaluated post-mortem the

cervical and thoracic spinal cords of stroke patients. For example,

Buss et al. (118) evaluated post-mortem spinal cords from twenty-

six subjects, including four controls and twenty-two post-stroke

patients. It was observed that there was a gradual loss of myelin

in the spinal cord as early as 1–4 months after the stroke (118).

Additionally, astrocytic scarring was detected in cervical sections

of the spinal cord at the areas of myelin loss, and changes in the

spinal cord after stroke were observed in both the cervical and

thoracic regions of the spinal cord, although the timing of these

events remains unclear (118). Collectively, post-mortem work has

suggested that an insult in the brain may lead to degeneration in

the spinal cord and that this degeneration may continue for years

after. Thus, post-mortem work has established that changes can

be observed in areas caudal of the brain, and therefore it may be

possible to study alternate motor pathways in more detail using

spinal cord and brainstem imaging techniques (35, 119–129).

Changes in the spinal cord may occur after stroke, but would

the knowledge gained be helpful? Certainly. Recent applications

have suggested that the spinal cord holds particular potential

as a target for neurorehabilitation after stroke. For example,

recent work by the Capagrosso group has shown that spinal cord

stimulation of the cervical spinal cord in two patients with chronic

stroke improved strength, movement and kinematics (130, 131).

Specifically, following 19 sessions of spinal cord stimulation of the

cervical spinal cord, chronic stroke participants were able to reach

areas that were unattainable prior to intervention. This work only

supports prior reports in animal models that substantial sprouting

could be observed in the spinal cord following constraint induced

movement therapy post-stroke (132–134). In fact, stroke animal

models have evaluated axonal sprouting in the spinal cord over

the past 10–15 years (135, 136), with overall findings suggesting

a link to movement and neuroplastic changes in the cortices.

We therefore believe that clinical evaluation of similar pathways

holds great potential in improving neurorehabilitation approaches

post-stroke. For example, identifying and monitoring changes

in sprouting and dynamics of alternate motor pathways in the

spinal cord may not only improve our clinical pathophysiological

understanding of recovery, but also provide insights to help in

designing interventions to promote recovery post-stroke.

4.2 Ease of evaluation of alternate motor
pathways in the spinal cord using di�usion
weighted imaging alone

Given that it is feasible to observe degeneration or plasticity

changes in the spinal cord after stroke, and that such information

could inform neurorehabilitation approaches, what techniques

could be used to provide morphological details on alternate motor

pathways in real-time post-stroke clinical populations? Or, if a new

imaging approach could not be found, could changes in image

processing be used to evaluate alternate motor pathways?

Currently a standard approach that is commonly used in

stroke populations is diffusion-weighted imaging (DWI). DWI is

a technique in magnetic resonance imaging (MRI) used to assess

brain and spinal cord white matter (137). Water molecules in the

body undergo random translational motion and by applying special

diffusion gradients, magnetic resonance can be made sensitive

to this motion. For example, DWI allows for the visualization

of the ventricles due to free fluid, and the appearance of the

brain parenchyma due to a higher level of signal intensity.

Diffusion Tensor Imaging (DTI) is another mode of visualization

that considers the architecture of axons in parallel bundles and

the ability of their myelin to allow for the diffusion of water

molecules (Figure 2) (138). By applying diffusion gradients in

various directions, a diffusion tensor can be calculated that

describes diffusion anisotropy, the concept that water molecule

displacement is not equal in all directions (138–144). Anisotropy

has been shown to decrease following the occurrence of a lesion

(145). Additional insights into white matter morphology post-

stroke can be witnessed through the use of three-dimensional fiber

tractography (146), and have been used to predict clinical outcomes

of stroke patients (147).

DTI at the level of the spinal cord has been suggested to

pose challenges, however, due to the range of lesions and difficult

imaging conditions around the spinal cord (148). Furthermore,

proton relaxation times are very similar for different white matter

tracts in the spinal cord making it impossible to differentiate them

using DTI alone (149). In addition, as outlined in Figure 1A, many

tracts show a spread-out anatomical projection and resolution

may be unable to differentiate each alternate motor pathway.

Fortunately, software tools, such as DSI Studio (http://dsi-studio.

labsolver.org/), FMRIB Software Library (FSL), and the Spinal Cord

Toolbox, have been developed to circumvent some limitations

of conventional imaging (35, 150, 151). For example, Spinal

Cord Toolbox provides a probabilistic reconstruction of the white

matter tracts, referencing atlas templates using machine-learning

to continuously improve accuracy and reliability. However,

although there have been remarkable advances with these tools in
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FIGURE 2

Anatomical tracts, neuroimaging analysis, and 3D reconstruction of the corticospinal tract and alternate motor tracts. Advanced neuroimage

processing software, such as FSL for DTI, DSI Studio for DTI Tractography, and AMICO for NODDI, can be employed to quantify di�usion-weighted

imaging, determine microstructure properties, and analyze individual tract morphology. All images were from the cervical region and used linear

interpolation. The left side depicts the T2 weighted anatomical image with the slice location. The left column shows DTI outputs from SCT

processing, MD, FA, and V1. The center illustrates the NODDI processing outputs of isotropic volume fraction (ISOVF; CSF), intra-cellular volume

fraction (ICVF; neurite density), and the overlapped representation of neurite density and CSF. On the right are the 3D reconstruction of the CSF (top)

and neurite density (center) visualized using FSLeyes. Additionally, the 3D fiber reconstruction of DTI tractography (bottom) is presented using

DSIstudio.

tractography, it still remains a relative challenge to study the spinal

cord due to the obstacles in image acquisition, post-processing,

structural integrity and anatomy, and clinical applications (152).

As a result, additional analysis techniques and imaging techniques

beyond DTI are needed to assess alternate motor pathways in

post-stroke patients.

4.3 Moving forward with improved analysis
techniques: use of spinal cord toolbox in
spinal cord tract analysis combined with
DWI

One software that may improve the evaluation of structural

and white matter images of the spinal cord following stroke is

Spinal Cord Toolbox (SCT) (36). SCT is an open-source software

that utilizes Python through command-line or graphical user

interface interactions, making integration into many operating

systems possible (153). Prior to the release of SCT in 2017,

no software package was available to process multi-parametric

MRI data in the spinal cord. Thus, SCT represents a novel data

processing platform to standardize spinal cord analysis procedures.

SCT can process various sequences and contrasts of MRI images

(e.g., DWI, T2- and T2∗- weighted) of the spinal structure (17,

35). The program employs a sequential processing approach to

analyze spinal cord MRI data, beginning with T2-weighted images,

followed by T2∗-weighted images, and concluding with diffusion-

weighted images (DWI). By utilizing spinal cord MNI-Poly-AMU

templates or atlases, the program employs a sophisticated non-

linear registration method to align the MRI data from different

sequences. This approach ensures accurate and reliable extraction

of information about the microstructure and diffusion properties

of the spinal cord.

In the context of alternate motor pathways, SCT is

advantageous since it can quantify DTI metrics along individual

vertebral levels and white matter tracts (Figure 1B). An example of

the program’s effectiveness is demonstrated in a study conducted

by De Leener et al. (119), where T2-weighted images were inputted

into the software and successfully used to identify spinal cord

cross-sectional area, white/gray matter segmentation, and white

matter integrity in various spinal cord pathologies (e.g., multiple

sclerosis, amyotrophic lateral sclerosis, syringomyelia, ischemia,

and cervical spondylotic myelopathy). Work by De Leener

et al. (119) suggests that SCT could potentially be used to track

longitudinal changes in neurodegeneration or regeneration.

It should be noted that one key limitation of SCT, however,

is that the white matter atlas is built from a single vertebral level

(154) and applied to levels superior and inferior using non-linear

warping (35, 39). Even though the SCT software regularizes by

warping the spinal cord to a template and calculates overall shape

and changes in the gray matter, the exact location of the tracts

might vary at different levels of the spinal cord and between subjects

(35, 36). Another limitation is that the capability of the program
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is dependent on the quality of the MRI images inputted, for that

reason, all images should be visually inspected and excluded if

artifacts, low signal, or motion is present. While SCT has a few

limitations, it is considered a less biased method in comparison to

the current practice of manually drawing the tract of interest based

on user knowledge of spinal cord anatomy (35).

In a broader context, there have been over 180 publications

using SCT in clinical populations, which we believe provides

validation and impetus for use of the toolbox in stroke populations.

To date, SCT has only been utilized in three studies in clinical

populations with stroke (155). Of note, SCT was recently utilized

in a stroke population by Karbasforoushan et al. (17), highlighting

the utility of SCT in identifying correlations between changes in

white matter integrity of alternate motor pathways and motor

impairment severity in individuals with stroke.We argue that this is

an area that should be expanded in future research in stroke. Studies

from the early 1900s have provided impetus that the spinal cord

undergoes degeneration post-stroke, and alternate motor pathways

have been implicated in both function and recovery post-stroke.

Further, the spinal cord has shown to have potential as a target for

neuromodulation approaches post-stroke. We propose that future

work should consider implementation of SCT in pathologies of

stroke to help expand knowledge of integrity of alternate motor

pathways, particularly in acute and sub-acute timeframes, where

gaps in knowledge exist.

4.4 Moving forward with improved imaging
techniques: use of neurite orientation
dispersion and density imaging

Since DWI may be challenging in the spinal cord, additional

imaging modalities have been identified to provide pathway-

specific detail. Neurite Orientation Dispersion and Density

Imaging (NODDI) is a multi-compartment diffusion model that is

sensitive to white matter microstructure and neurite morphology

(126, 156, 157). NODDI is similar to DWI, however it traditionally

utilizes more HARDI shells (at least 2), with added multi-

directional intermediate b-values (129). NODDI categorizes several

components of the neuronal space including the apparent volume

of fractions of axons (vin), isotropic water (viso), and the dispersion

of fibers about a central axis (orientation dispersion index, ODI)

(126), additionally, volume fraction of anisotropic intracellular

water (vic) is used to measure regional neurite density, and ODI as

a measure of neurite spatial organization (158). As a result, NODDI

expands traditional DWI approaches by providing information

about neurite density and the orientation/dispersion of axons and

dendrites; microstructural information that has been suggested to

impact function post-stroke (159) (Figure 2).

NODDI does have some limitations that should be considered.

First, most NODDI sequences have long acquisition times

and may not be feasible for all studies; although, some MRI

machine manufacturers are exploring experimental sequences

that use machine learning algorithms to shorten acquisition time

(160). Additionally, the NODDI MATLAB Toolbox software

(nitrc.org/projects/noddi_toolbox), requires a significant amount

of time to compute NODDI, and typically demands expensive

high-performance computing resources. Recently, though,

further development called Accelerated Microstructure Imaging

via Convex Optimization (AMICO) has yielded remarkable

acceleration in computational time by order of magnitudes while

eliminating the high resource expense (161).

Overall, NODDI has primarily been used in neurodegenerative

diseases, such as cervical myelopathy, and multiple sclerosis (MS)

(158, 162, 163), in the brain and spinal cord. For example,

Zhang et al. (162) was able to use NODDI to correlate with

baseline neurologic function in patients with cervical spondylotic

myelopathy, where conventional MRI and DWI did not provide

significant contributions. In addition, By et al. (126) evaluated

the cervical spinal cord in six MS patients using NODDI. The

study observed a decrease in NODDI-derived intra-axonal volume

fraction (vin) in MS patients, signifying a decrease in dendrite and

axon density at the site of the lesion (126, 164). To date, however,

very few studies have used NODDI in populations with stroke

(156, 165–167), and none have evaluated the spinal cord post-

stroke; in fact there was a recent call for large rigorous studies

to be completed in stroke to help further validate NODDI. We

believe that NODDI may provide a method to improve knowledge

around alternate motor pathway morphology post-stroke. Animal

and clinical studies have provided framework that changes inmotor

and alternate motor pathways may show microstructural changes

related to motor impairment and recovery (32, 168, 169) post-

stroke. Expansion of NODDI into the spinal cord, post-stroke, will

allow for a deeper understanding of these changes, particularly in

alternate motor pathways.

5 Discussion and future directions

The amount of sparing in corticospinal pathways in the

lesioned hemisphere after stroke has been suggested to influence

baseline function and recovery potential. However, current

rehabilitation approaches targeting spared corticospinal pathways

have had limited efficacy in patient populations, particularly those

with severe impairments. Therefore, it is vital to understand

what other pathways beyond the corticospinal tract may influence

functional recovery to better inform clinical treatment of patients

with stroke. Alternative motor pathways likely have a significant

role in stroke recovery. This is because many of these pathways

also work independently or in tandem with the corticospinal

tract to mediate motor and sensory function. While these

alternate pathways likely cannot serve as conduits for full

functional recovery (see Section 1), they may hold potential for

improving proximal upper extremity function, providing insight

into spasticity, compensatory patterns, or recovery rates. A possible

role of alternative motor pathways, particularly reticulospinal,

rubrospinal, and vestibulospinal pathways, in stroke baseline

impairment and recovery has been already implicated.

Determining which alternate motor pathway has the most

significance in stroke recovery is a daunting task! We believe

this task will be greatly aided by utilizing spinal cord imaging

and high-definition spinal cord imaging techniques that have yet

to gain attention among stroke researchers. Gross postmortem

studies have indicated the feasibility of evaluating alternative motor

pathways in the brainstem and spinal cord. Existing advanced
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imagemodalities in DTI andNODDI,may allow formicrostructure

details to be collected across the level of the spinal cord in alternate

motor pathways. In tandem, analysis techniques, such as the SCT,

may provide a unique opportunity for clinical studies to evaluate

the time progression of alternate motor pathway degeneration

following a stroke. Moving forward, we recommend further use of

neuroimaging and neuroimage analysis techniques that have yet to

be widely used in stroke populations to expand our knowledge of

alternative motor pathways.While image analysis in the spinal cord

provides unique challenges i.e., overlapping pathways (Figure 1),

pairing existing neurophysiological techniques with new imaging

parameters may result in a better baseline understanding of these

pathways and the subsequent refinement of rehabilitation practices

in stroke survivors.
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