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Background: The incidence of pediatric Crohn’s disease (PCD) is increasing

worldwide every year. The challenges in early diagnosis and treatment of PCD

persist due to its inherent heterogeneity. This study’s objective was to discover

novel diagnostic markers and molecular subtypes aimed at enhancing the

prognosis for patients suffering from PCD.

Methods: Candidate genes were obtained from the GSE117993 dataset and the

GSE93624 dataset by weighted gene co-expression network analysis (WGCNA)

and differential analysis, followed by intersection with platelet-related genes.

Based on this, diagnostic markers were screened by five machine learning

algorithms. We constructed predictive models and molecular subtypes based

on key markers. The models were evaluated using the GSE101794 dataset as the

validation set, combined with receiver operating characteristic curves, decision

curve analysis, clinical impact curves, and calibration curves. In addition, we

performed pathway enrichment analysis and immune infiltration analysis for

different molecular subtypes to assess their differences.

Results: Through WGCNA and differential analysis, we successfully identified 44

candidate genes. Following this, employing five machine learning algorithms, we

ultimately narrowed it down to five pivotal markers: GNA15, PIK3R3, PLEK,

SERPINE1, and STAT1. Using these five key markers as a foundation, we

developed a nomogram exhibiting exceptional performance. Furthermore, we

distinguished two platelet-related subtypes of PCD through consensus

clustering analysis. Subsequent analyses involving pathway enrichment and

immune infiltration unveiled notable disparities in gene expression patterns,

enrichment pathways, and immune infi ltration landscapes between

these subtypes.
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Conclusion: In this study, we have successfully identified five promising

diagnostic markers and developed a robust nomogram with high predictive

efficacy. Furthermore, the recognition of distinct PCD subtypes enhances our

comprehension of potential pathogenic mechanisms and paves the way for

future prospects in early diagnosis and personalized treatment.
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Introduction

Crohn’s disease is a chronic inflammatory disorder primarily

affecting the gastrointestinal tract, and it is categorized as an

inflammatory bowel disease (IBD) along with ulcerative colitis.

Crohn’s disease can involve any part of the gastrointestinal tract,

from the oral cavity to the rectum, but most commonly affects the

small intestine and the initial portion of the large intestine (1). In

recent years, with the change in people’s lifestyles and the influence

of environmental factors, the incidence and prevalence of Crohn’s

disease have gradually increased and shown a significant trend

toward younger ages (2). Pediatric Crohn’s disease (PCD) patients

usually have more extensive involvement, a more severe disease,

and more atypical symptoms than adults with Crohn’s disease (3).

However, PCD is not the early stage of adult Crohn’s disease and is

quite different from adult IBD etiology and symptoms (4, 5).

Presently, the precise etiology of PCD remains partially elusive.

Generally, it is attributed to factors such as environmental

influences, alterations in intestinal flora, genetic predisposition,

anomalous immune responses of the mucosa, and impairment of

epithelial barrier function (1, 6).

Given the heterogeneity of PCD patient characteristics, the

diagnosis of PCD is particularly difficult in clinical practice and

often requires a combination of ultrasound, endoscopy, and

pathology to confirm the diagnosis (7). Therefore, it is imperative

to find more accurate, convenient, non-invasive, and highly specific

diagnostic tools for children with Crohn’s disease. In recent years,

molecular typing has made great strides in the understanding and

treatment of many diseases. Mature molecular typing strategies are

able to predict the optimal therapeutic strategy prior to patient

treatment, thereby substantially improving patient prognosis (8). In

previous reports, the molecular subtyping of diseases such as

hepatocellular carcinoma, osteoarthritis, and rheumatoid arthritis,

for example, has laid the foundation for their individualized

treatment (9–11). Therefore, the development of molecular

subtyping of PCD based on its molecular features is crucial for

improving the accuracy of clinical treatment decisions and

deepening our understanding of PCD.

Platelets are small blood cells derived from bone marrow, and in

addition to their well-known role in blood clotting and wound
02
healing, there is growing evidence that they also play a crucial role

in autoimmune processes (12, 13). Currently, research on the role of

platelets in the pathogenesis of a number of autoimmune diseases,

including rheumatoid arthritis and systemic lupus erythematosus, is

progressing (14, 15). However, the contribution of platelets to the

pathogenesis of PCD, a classic autoinflammatory disease, has not

been investigated. Expanding the scope to encompass systems and

cell types that have not been extensively studied could furnish a

more comprehensive understanding of PCD progression and

potentially uncover novel biomarkers.

Although the precise pathogenic mechanisms of PCD remain

enigmatic, platelets have garnered considerable attention as

potential players in the genesis of autoimmune-related conditions.

Our study aims to contribute to the burgeoning body of research by

investigating the regulation of platelet-related genes (PRGs) in PCD

through an integrated bioinformatics approach. We also endeavor

to devise diagnostic models and molecular subtypes grounded in

platelet-associated pathways. Our findings hold the promise of

illuminating the pathogenesis and prognostic diversity of PCD.

Additionally, the identification of fresh biomarkers holds the

potential to facilitate early diagnosis, tailored treatment strategies,

and risk stratification for PCD in the future. The schematic

depiction of our study’s methodology is outlined in Figure 1.
Methods

Dataset acquisition and processing

In this study, we obtained three datasets from the Gene

Expression Omnibus (GEO) database (https://www.ncbi.nlm.

nih.gov/geo/) to support subsequent analysis: GSE117993 (16),

GSE93624 (17), and GSE101794 (18). The GSE117993 dataset

comprises transcriptome data from 55 normal individuals and 92

patients with PCD. Similarly, GSE93624 contains transcriptome

data from 35 normal individuals and 210 PCD patients. Both

GSE117993 and GSE93624 were employed as training sets within

this study. Additionally, the GSE101794 dataset includes 304 ileal

biopsy samples, with 50 sourced from individuals with normal

conditions and 254 obtained from PCD patients. This dataset serves
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as the validation set. Detailed specifics regarding these three datasets

can be found in Table 1 and Supplementary Table 1. Subsequently,

we integrated the two training datasets using the “limma” package

in R software (version 4.2.2) (19). Notably, when multiple probes

from distinct platforms identified identical genes, we computed the

average value to represent the expression level. We then employed

the “sva” packages to normalize and correct for batch effects in the

training set (20). Additionally, for the acquisition of platelet-related

genes (PRGs), we utilized a gene set consisting of 300 PRGs

identified in a previous similar study (11).
Identification of differentially
expressed genes

Differential gene analysis was conducted between the samples

using the “limma” package on the normalized dataset. We applied
Frontiers in Immunology 03
significance criteria with adjusted p-values < 0.05 and |log2 fold

change (FC)| > 0.3. Subsequently, the differentially expressed genes

(DEGs) that met these criteria were visualized using the volcano

plot. Additionally, the heat map was generated to display the top 20

up-regulated DEGs and the top 20 down-regulated DEGs.
Immune infiltration analysis

The single-sample gene enrichment analysis (ssGSEA)

algorithm characterizes the state of a cell by assessing the activity

levels of specific biological processes and pathway pairs. In this

study, we employed the ssGSEA algorithm, relying on the “GSVA”

package (21), to assess the relative infiltration abundance and

correlation among immune cells in both the PCD and normal

group samples. Subsequently, we visualized the results using the

“gglot2” package (https://sourceforge.net/projects/ggplot2.mirror/).
Identification of platelet-related signature
genes based on weighted gene co-
expression network analysis (WGCNA)

To probe the potential regulatory associations between genes, we

used the “WGCNA” package of the R software to construct gene co-

expression networks (22). First, in order to ensure the reliability of the

constructed network results, the normal-value samples were screened

with mean fragments per kilobase million (FPKM) > 0.5 as the

filtering criterion. Second, cluster analysis was performed using the

“flashClust” toolkit, retaining the samples that best fit in the cluster

under a specified threshold. Third, use the “pickSoftThreshold”

function to select the soft threshold of the optimal weighting

coefficient b value to establish a scale-free network, thereby

transforming the similarity matrix into an adjacency matrix.

Fourth, convert the adjacency matrix into a topological overlap

matrix (TOM) and calculate the corresponding dissimilarity (1-

TOM). Fifth, the module clipping height was set to 0.3 and the

minimum number of modules was set to 100, and then the dynamic

tree cutting method was used to identify modules from the

hierarchical clustering tree. In addition, we calculated the module

membership (MM) and gene significance (GS) for the modules

correlated to the clinical attributes. Finally, the module most closely

related to PCD was screened, and the genes in this module were

intersected with the DEGs and PRGs for further analysis.
TABLE 1 Characteristics of the microarray datasets for PCD.

GEO ID Platform Year PCD Control Biopsy Tissue Source

Training set:

GSE117993 GPL16791 2018 106 PCD samples 55 controls rectal

GSE93624 GPL11154 2017 210 PCD samples 35 controls ileum

Validation set:

GSE101794 GPL11154 2018 254 PCD samples 50 controls ileum
GEO, Gene Expression Omnibus; PCD, PCD.
FIGURE 1

Flowchart for research. DEGs, differentially expressed genes;
WGCNA,Weighted gene co-expression network analysis; GBM,
Gradient boosting machine; LASSO, Least absolute shrinkage and
selection operator; RF, random forest; SVM-RFE, support vector
machine-recursive feature elimination; XGBoost, Extreme Gradient
boosting; ROC, receiver operating characteristic curve; GSEA, gene
set enrichment analysis; DCA, decision curve analysis; CIC, clinical
impact curves; GSVA, gene set variation analysis.
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Functional enrichment analysis

To investigate the underlying biological mechanisms involved

in the development of PCD, we conducted gene ontology (GO) and

Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment

analyses on key module genes, respectively. All analysis were

performed by the “clusterProfiler” package of the R software (23),

and adjusted q-values < 0.05 were set as significant enrichment

thresholds. Subsequently, we obtained candidate diagnostic genes

for further analysis by intersecting the key modular genes with

DEGs and PRGs.
Feature genes selection for PCD via
machine learning

To identify key markers for PCD, we applied five machine learning

algorithms: Support Vector Machine Recursive Feature Elimination

(SVM-RFE), Least Absolute Shrinkage and Selection Operator Logistic

Regression (LASSO), Gradient Boosting Machine (GBM), Extreme

Gradient boosting (XGBoost) and Random Forest. These algorithms

were implemented using specific R packages: “e1071” for Support

Vector Machine Recursive Feature Elimination (available at https://

github.com/johncolby/SVM-RFE), “glmnet” (24) for the LASSO

logistic regression, “xgboost” for the XGBoost, (available at https://

cran.r-project.org/web/packages/xgboost/) “caret” for the GBM

(available at https://cran.r-project.org/web/packages/caret/), and

“randomForest” (available at https://cran.r-project.org/web/

packages/randomForest/) for Random Forest. It’s noteworthy that in

this study, both the LASSO regression and SVM-RFE algorithms were

evaluated using 10-fold cross-validation to estimate their prediction

performance. Additionally, for the Random Forest (RF) algorithm,

genes with a relative importance greater than 2.5 were considered key

markers. For the “XGBoost” and “GBM” algorithms, we selected the

top ten genes in terms of importance for the screening of candidate

marker genes. The signature genes were determined by identifying the

intersection of genes screened by these five algorithms. To visually

represent the relationships among the signature genes, we utilized the

“circlize” package to create a heatmap of gene correlations (25). These

maps illustrate the interplay between the roles of these genes.

Additionally, we generated heat maps based on Spearman correlation

analysis to depict the relationships between the signature genes and 23

immune cell types.
Gene Set Enrichment Analysis (GSEA) for
single diagnostic marker

To thoroughly investigate the potential connections between

key diagnostic genes and signaling pathways, we conducted a

comparative analysis of biosignaling pathways between the

disease and control groups. Subsequently, we generated ridge

maps utilizing the “clusterProfiler” package to visually represent

the top 10 enrichment results for each gene.
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Establishment and validation of the
nomogram for PCD

We developed a clinical prediction model for PCD based on

these signature genes, utilizing the “gglot2” package. The calibration

curve was used to evaluate the nomogram model’s predictive

accuracy. Then, we performed decision curve analysis and clinical

impact curve analysis to estimate the nomogram model’s clinical

utility. Furthermore, we assessed and validated the predictive

performance of each signature gene in both the training and

validation sets using receiver operating characteristic (ROC)

curves. A larger area under the curve (AUC) in the ROC analysis

indicated better predictive performance of the model. Finally, we

use the dataset GSE101794 as a validation set to test whether the

prediction model is generalizable.
Identification of platelet-associated
molecular subtypes of PCD by consensus
cluster analysis

Consensus clustering is an unsupervised algorithm designed to

identify and cluster individual samples within a dataset, facilitating

the distinction of various subtypes. In this study, we applied

consensus clustering to differentiate between distinct subtypes of

platelet-related PCD molecules. This differentiation was based on

the feature genes identified by five machine learning algorithms,

and we utilized the “ConsensusClusterPlus” package for this

purpose (26). The optimal number of clusters was determined

through the analysis of consensus cumulative distribution

function (CDF) plots, principal component analysis (PCA),

consensus matrix plots, relative changes in the area under the

CDF curve, and tracking plots. To explore variances in platelet-

associated pathways across different molecular subtypes, we

employed the gene set variation analysis (GSVA) algorithm and

visualized the results. Additionally, for the analysis of discrepancies

in immune cell infiltration status among subtypes, we conducted

the ssGSEA algorithm using R, followed by the Wilcoxon test to

assess differences in the immune microenvironment.
Results

Data processing and identification of DEGs

The training set consists of GSE117993 and GSE93624 and

contains a total of 302 PCD patients and 90 normal patient samples.

After the ComBat algorithm to remove the batch effect, all the

samples in the training set were centered and well-distributed,

indicating the high quality and cross-comparability of this

microarray dataset (Figures 2A, B). Subsequent differential

analysis eventually screened out 1643 genes, including 887 up-

regulated genes and 756 down-regulated genes (Figure 2C and

Supplementary Table 1). The heatmap demonstrated the top 20 up-
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https://github.com/johncolby/SVM-RFE
https://github.com/johncolby/SVM-RFE
https://cran.r-project.org/web/packages/xgboost/
https://cran.r-project.org/web/packages/xgboost/
https://cran.r-project.org/web/packages/caret/
https://cran.r-project.org/web/packages/randomForest/
https://cran.r-project.org/web/packages/randomForest/
https://doi.org/10.3389/fimmu.2024.1323418
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Tang et al. 10.3389/fimmu.2024.1323418
and down-regulated DEGs between PCD patients and the control

group (Figure 2D).
Immune infiltration analysis

In this study, we used the ssGSEA algorithm to compare the

levels of immune cell infiltration between the PCD patients and the

normal group in the combined dataset. Figure 3A depicts the

difference in expression of 23 immune cells in PCD samples and

normal samples. Box plots were used to show the differences in

immune cell infiltration between the PCD and control groups

(Figure 3B). The results showed that cells such as activated CD4

T cells, activated B cells, macrophages, and neutrophils were

significantly higher in the PCD patient group compared to the

control group. In addition, we investigated the relationship between

immune cells. As illustrated by the correlation heatmap in

Figure 3C, macrophages, immature dendritic cells, mast cells,

activated dendritic cells, and type 2 T helper cells exhibited strong

correlations with the majority of other immune cell types.
Frontiers in Immunology 05
Identification of platelet-related signature
genes based on WGCNA

We used WGCNA to filter the set of genes that are more

consistent with PCD and selected the optimal soft threshold based

on the results of the “pickSoftThreshold” function of the

“WGCNA” package. In addition, in order to make the co-

expression network conform to the scale-free principle, b=7
(scale-free R2 = 0.9) was chosen to construct the gene co-

expression network in this study (Figure 4A). Finally, we

converted the similarity matrix to TOM. Next, based on TOM,

we used the previously mentioned criteria to merge the modules

that were closer together, and finally obtained a total of 11 modules

(Figures 4B, C and Supplementary Table 2). Finally, based on the

results of the module-trait association analysis, we selected the

turquoise module with the strongest association with PCD (5997

genes in total). In addition, a substantial positive correlation was

identified between module membership and gene significance in the

turquoise module for PCD samples (r = 0.89, p = 1e-200), as

illustrated in Figure 4D.
B

C D

A

FIGURE 2

Data processing and screening for DEGs. (A, B) PCA plots showing the difference in expression profiles of the combined GSE93624 and GSE117993
dataset before and after the de-batch effect. (C) Volcano plot of DEGs in the combined dataset. (D) Heatmap of DEGs in the combined dataset.
DEGs, differentially expressed genes.
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Functional enrichment analysis

In order to investigate the biological functions and pathways

associated with the turquoise modular gene set, which exhibited the

strongest association with PCD as identified through WGCNA, in the

context of PCD development, we conducted GO and KEGG analyses

on this gene set. This analysis yielded a total of 37 significantly enriched

signaling pathways and 1661 biological processes that displayed

significant associations (refer to Supplementary Table 3). As depicted

in Figure 5A, these genes were predominantly enriched in signaling

pathways closely linked to immune and inflammatory responses,

including but not limited to the PI3K-Akt, MAPK, TNF, IL-17, and

Rap 1 pathways. The GO enrichment analysis indicated that the

majority of these genes were primarily involved in cytokine-mediated

signaling pathways, positive regulation of cytokine production,

responses to molecules of bacterial origin, cell chemotaxis, and

reactions to lipopolysaccharides and polysaccharides, among other

biological processes, as illustrated in Figure 5B. Furthermore, we

employed a Venn diagram, as depicted in Figure 5C, to identify an
Frontiers in Immunology 06
intersection between the key module gene set and DEGs as well as

PRGs. This intersection yielded a set of 44 candidate diagnostic genes

for subsequent analysis.

Screening signature genes by
machine learning

Based on the 44 key genes screened in the previous step, we used

five machine learning algorithms to further identify potential

platelet-related biomarkers for PCD. In the SVM-RFE algorithm,

we finally identified 15 featured genes (Figures 6A, B). In the LASSO

algorithm, we screened 16 feature genes (Figures 6C, D). In the

“XGBoost” and “GBM” algorithms, we filtered out the top 10

feature genes in terms of importance (Figures 6E, F).And in the

RF algorithm, we finally screened a total of 16 feature genes with

relative importance greater than 2.5 (Figure 6G and Supplementary

Figure 1). Subsequently, the Venn diagram showed that there were

five identical genes among the five machine learning algorithms:

PIK3R3, STAT1, PLEK, GNA15, and SERPINE1 (Figure 6H).
B

C

A

FIGURE 3

Immune cell infiltration analysis in combined datasets. (A) Heatmap of all PCD patient and control samples with 23 immune cells. (B) Boxplot
depicting the level of immune cell infiltration in PCD patients and controls. (C) Heatmap depicting the correlations between distinct immune cell
compositions. PCD, pediatric Crohn’s disease; *p < 0.05, **p < 0.01, ***p < 0.001; ns, no significance.
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The association of key markers with
immune cells and GSEA

We conducted Spearman correlation analysis to elucidate the

interrelationships among the diagnostic genes and their potential

association with immune cell infiltration, thereby enhancing our

understanding of the functional role of these pivotal markers in

immune infiltration. The correlation analysis revealed a robust

positive correlation among all five diagnostic genes (all exceeding

0.4), as illustrated in Figure 7A. Furthermore, the associations

between these five diagnostic genes and a majority of the immune

cells exhibited a highly consistent pattern. Specifically, all five

diagnostic markers displayed varying degrees of negative

correlation with activated B cells, CD56 bright natural killer cells,

CD56dim natural killer cells, monocytes, eosinophils, T-helper cells

type 17, and activated CD8 T cells. Additionally, there existed an

overall strong positive correlation between the remaining 16

immune cells and these five diagnostic genes, as depicted in

Figure 7B. As demonstrated in Figures 8A–E, GNA15, PIK3R3,

PLEK, SERPINE1, and STAT1 exhibited significant enrichment in

inflammatory and immune-related pathways, such as cytokine-
Frontiers in Immunology 07
cytokine receptor interaction, NOD-like receptor signaling

pathway, and chemokine signaling pathway.
Establishment and validation of the
nomogram for PCD

Inspired by the results of previous studies, we constructed a

clinical risk prediction model for PCD using the five signature genes

that were finally screened (Figure 9A). In addition, the ROC-AUCs

of the five characterized genes were higher than 0.8, indicating that

the model has good discriminative performance (Figure 9B). The

calibration curve of the model showed that the nomogram

performed close to ideal with excellent predictive consistency

(Figure 9C). As shown in Figure 9D, there is a high net clinical

benefit for clinicians and patients using this model. The clinical

impact curve further confirms the high clinical efficacy of this

predictive model (Figure 9E). Finally, we further validated the

predictive ability of the model in an external dataset GSE101794.

In the validation set, the AUC of the model is 0.839, indicating that

the model has some stability and generalizability (Figure 9F).
B

C D

A

FIGURE 4

Weighted gene co-expression network analysis. (A) Identification of soft−threshold powers. R2 = 0.90. (B) Relationships between modules and traits
in PCD and control. The numbers in each cell represent the correlation coefficient and p-value. (C) Cluster tree for all genes in the combined
dataset. (D) Scatterplot of genes in the turquoise module with the strongest correlation to PCD. PCD, pediatric Crohn’s disease.
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Identification of platelet-associated
molecular subtypes of PCD by consensus
cluster analysis

To identify different PCD molecular subtypes, we analyzed the

expression profiles of five characteristic genes in all PCD samples in

the training set based on a consensus clustering approach. The

consensus matrix plot, CDF plot, and the area under the CDF

curve change plot finally identified K=2 as the optimal number of

subtypes (Figure 10A and Supplementary Figures 2A–C). We named

the two platelet molecular subtypes as C1 (n=115) and C2 (n=187)

(Supplementary Table 4). Principal component analysis revealed

significant heterogeneity in gene expression patterns between the

two subtypes (Figure 10B). Subsequently, we also highlighted the

expression pattern of PDEGs in the two subtypes with heatmap and

boxplot (Figures 10C, D). It was evident that the expression of the five

key marks was significantly upregulated in the C2 cluster. In order to

delve further into the potential pathogenic mechanisms of each

subtype and evaluate disparities in enriched pathways between

them, we conducted GSVA for the two subtypes. Our findings

revealed notable distinctions. For instance, the C2 cluster exhibited

significantly greater enrichment compared to the C1 cluster across

the majority of the HALLMARK pathways, encompassing responses

to interferon gamma and interferon alpha, xenograft rejection, and

inflammatory response. Notably, the fatty acid metabolism pathway
Frontiers in Immunology 08
displayed heightened enrichment in C1 clusters as opposed to C2

clusters (Figure 11A). Likewise, C2 clusters demonstrated

significantly greater enrichment than C1 clusters in pathways

involving interleukin 6, 9, 21, 35, and cytokine signaling within the

immune system (Figure 11B). Additionally, our analysis based on the

KEGG database revealed a significant enrichment in pathways like

systemic lupus erythematosus, complement coagulation cascade

reaction, and cell adhesion molecules for the C2 cluster

(Figure 11C). It is imperative to note that in subsequent immune

cell infiltration analysis, we observed a substantially higher

abundance of immune infiltration in the C2 cluster across all 23

immune cell types, aligning consistently with the findings from the

GSVA (Figures 12A, B).
Discussion

PCD is a refractory disease that has a major impact on all

aspects of a child’s life. In terms of nutrition, chronic inflammation

and malabsorption can lead to nutritional deficiencies and growth

disorders that affect children’s development and overall health (27).

On a psychological level, living with a chronic disease can take a toll

on a child’s mental and emotional health, potentially leading to

anxiety, depression, and decreased quality of life (28). In terms of

school and social activities, frequent symptoms and medical
B C

A

FIGURE 5

Functional enrichment analysis of key module genes and identification of candidate diagnostic genes. (A) The bubble plot showing the most
enriched KEGG pathways of key module. (B) Gene Ontology analysis of key module. (C) Candidate diagnostic genes were obtained by overlapping
key modules, DEGs and PRGs. DEGs, differentially expressed genes; PRGs, platelet-related genes; KEGG, kyoto encyclopedia of genes and genome;
BP, biological process; CC, cellular component; MF, molecular function.
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1323418
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Tang et al. 10.3389/fimmu.2024.1323418
appointments can disrupt a child’s educational and social life,

requiring support from healthcare providers and educators (29).

In addition, the vast majority of children with PCD are also at risk

for long-term complications, and if not managed properly, PCD can

lead to serious complications, including an increased risk of

strictures, fistulas, and colorectal cancer (30). This is despite the

fact that research into the development of PCD has achieved some

milestones in recent years (31). However, issues such as delayed

diagnosis, growth and developmental problems, drug safety,

psychosocial support, and access to health care remain. Therefore,

accurate differentiation of PCD clusters at the molecular level will
Frontiers in Immunology 09
improve our understanding of PCD heterogeneity and is essential to

guiding individualized treatment of PCD. And platelet-related

genes have demonstrated excellent diagnostic performance and

molecular subtype discrimination in previous studies. However,

whether platelets are associated with the development of PCD and

the underlying molecular mechanisms of platelets in PCD remain

unclear. Therefore, the exploration of new platelet-related

diagnostic markers and risk stratification for children with PCD

remains an urgent need.

In this study, we identified 887 up-regulated and 756 down-

regulated DEGs from 302 PCD cases and 90 normal control
B

C D

E F

G H

A

FIGURE 6

Screening key markers by machine learning. (A, B) Fifteen feature genes were screened by SVM-RFE algorithm. (C, D) Sixteen feature genes were
screened by LASSO algorithm. (E) The top 20 genes in terms of importance as filtered by the GBM algorithm. (F) The top 20 genes in terms of
importance as filtered by the XGBoost algorithm. (G) Sixteen feature genes were screened by RF algorithm. (H) Five key markers were screened by
Venn diagram of five algorithms. LASSO, least absolute shrinkage and selection operator; SVM-RFE, support vector machine-recursive feature
elimination; GBM, Gradient Boosting Machine; XGBoost, Extreme Gradient boosting; RF, random forest.
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samples using data from the GSE93624 and GSE117993 datasets.

Employing WGCNA, we isolated 5997 pivotal modular genes

closely associated with PCD. Subsequent GO enrichment analysis

revealed that these key module genes were primarily enriched in

biological processes, including the positive regulation of cytokine

production, the negative regulation of immune system processes,

and leukocyte migration. Positive regulation of cytokine production
Frontiers in Immunology 10
means increasing the expression or activity of cytokines, which are

important for both normal and abnormal cell-mediated immune

responses and intestinal inflammation. Cytokines play a central role

in CD as they can either promote or suppress gut inflammation (32,

33). Leukocyte migration, also known as leukocyte transport, plays

a pivotal role in the pathogenesis of IBD (34). In IBD, there is a

chronic inflammatory cell infiltrate in the intestinal mucosa, and
B C

D E

A

FIGURE 8

GSEA for the single mark. (A) GNA15. (B) PIK3R3. (C) PLEK. (D) SERPINNE1. (E) STAT1.
BA

FIGURE 7

(A) The heatmap shows the relationship between the key markers. (B) Correlation heatmap depicting the relationship between immune cell
infiltration and key markers.
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immune cells are transported to the gastrointestinal tract through

specific mechanisms. Integrins, cell surface receptors, bind cell

adhesion molecules, facilitating leukocyte homing and retention.

Therapies targeting leukocyte trafficking may play a crucial role in

achieving stratified precision medication administration in the care

of IBD (35). However, it is important to note that patients may

exhibit varying responses to these treatments, underscoring the

need for additional mechanistic studies in clinical trials.

Furthermore, KEGG enrichment analysis revealed that the

development of PCD is primarily associated with signaling

pathways such as PI3K-Akt, MAPK, and Rap 1. The PI3K-Akt,

MAPK, and Rap 1 pathways are pivotal in various cellular

processes, including cell growth, proliferation, differentiation, and
Frontiers in Immunology 11
survival (36). Aberrant activation of these pathways has been linked

to various diseases, including cancer (37). While specific

information regarding the relationship between these pathways

and IBD is lacking, it is established that inflammation and

immune responses play a significant role in IBD. These pathways

may potentially influence these processes. For example, the PI3K-

Akt pathway is known to regulate immune and inflammatory

responses (38), and the MAPK pathway also plays a role in

proinflammatory cytokine production (39). As for the Rap 1

pathway, although its role in IBD remains to be fully elucidated,

Rap 1 is involved in a variety of cellular processes, including cell

adhesion and cell-cell interactions, which could have implications

for the pathogenesis of IBD (37). In a subsequent immune cell
B
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A

FIGURE 9

Construction of the prediction model. (A) Nomogram of PCD patients based on 5 key markers. (B) ROC curve of key markers in PCD diagnosis.
(C) The calibration curve demonstrates nomogram’s excellent predictive performance. (D) The results of the decision curve analysis showed a good
net clinical benefit rate for the model. (E) Assessing the clinical impact of the nomogram by clinical impact curves. (F) The ROC curve demonstrates
the predictive power of the predictive model in the validation set GSE101794. *p < 0.05, **p < 0.01, ***p < 0.001.
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infiltration analysis, we found that 19 types of immune cells,

including activated B cells, activated CD4 T cells, and monocytes,

had higher infiltration abundance in PCD patients. Previous studies

have found that in patients with Crohn’s disease, B cells show signs

of chronic stimulation and are localized to granulomatous tissue.

These cells also exhibit increased molecular maturation of IgA and

IgG1 (40). In addition, there are studies that have identified distinct

subpopulations of B cells that are highly infiltrated in the lamina

propria of patients with Crohn’s disease. These cells express genes

related to antigen presentation. This subset of B cells is thought to

play a potential promoting role in the pathogenesis of Crohn’s

disease (41). In previous studies, CD4 T cells were found to play a

key role in the pathogenesis of Crohn’s disease (42). These cells can

differentiate into regulatory and effector T cells, such as Th1, Th2,

Th17, follicular helper T cells (Tfh), and regulatory T-cells (Tregs),

depending on the cytokine milieu. In particular, CD4+ tissue-

resident memory T (T_RM) cells have been found to be

expanded in Crohn’s disease and are the major source of mucosal

tumor necrosis factor a (TNFa), a principal mediator of intestinal

injury. There is a unique population of TNFa + IL-17A + CD4 +

T_RM cells in Crohn’s disease which are largely absent in controls

(43). In the context of Crohn’s disease, recent developments suggest

that there is an impaired monocyte function initiating the disease

and an overactivation of monocytes and adaptive immunity

maintaining the disease (44). Monocytes and monocyte-derived
Frontiers in Immunology 12
macrophages have been found to be crucial players in the chronic

inflammation seen in Crohn’s disease patients (45).

We performed an intersection analysis involving DEGs, key

modular genes identified through WGCNA, and PRGs. This

resulted in the identification of 44 potential diagnostic markers.

Subsequently, we employed five machine learning algorithms to

further screen for the top five diagnostic biomarkers associated with

PCD: PIK3R3, STAT1, PLEK, GNA15, and SERPINE1, which

exhibited the strongest diagnostic capabilities. PIK3R3 serves as

the regulatory subunit of phosphatidylinositol kinase, a crucial

signaling pathway implicated in cell growth, proliferation, and

immune response. This kinase plays a pivotal role in various

essential mediators of cellular processes, including inflammation

and immune regulation. In a study conducted by Wang et al., they

observed that the overexpression of PIK3R3, primarily dependent

on SNAI2, triggers a significant intestinal epithelial-mesenchymal

transition (EMT). Furthermore, the downregulation of PIK3R3

reversed this process, potentially leading to increased invasion

and metastasis of colorectal cancer cells (46). Signal transduction

and activator of transcription 1 (STAT1) plays a multifaceted role in

the pathogenesis of Crohn’s disease, an IBD. Research indicates that

STAT1 is involved in the epigenetic regulation of two key genes,

Lymphocyte Cytosolic Protein 2 (LCP2) and TNF-a‐inducible
protein 2 (TNFAIP2), by recruiting EP300, thereby contributing

to the development of IBD. Specifically, phosphorylated STAT1
B

C D

A

FIGURE 10

Identification of Platelet-Related Molecular Subtypes of PCD by Consensus Cluster anaylsis. (A) Consensus matrix heatmap for k = 2. (B) Sample
distributions of the two subtypes were visualized by principal component analysis. Heatmap (C) and boxplot (D) demonstrating the expression
differences of the five key markers in different subtypes. *** p < 0.001.
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(p-STAT1) binds to the enhancer loci of these two genes, where

H3K27ac enrichment is notable, leading to subsequent EP300

binding and the regulation of gene expression. This process

promotes the expression of TNFAIP2 and LCP2 by augmenting

the H3K27ac enrichment on their enhancers, ultimately

contributing to the pathogenesis of chronic inflammation (47).

Furthermore, a study employing an acute colitis model revealed

significant improvements in disease state among STAT1-deficient

mice in comparison to wild-type mice. Notably, the induction of

highly expressed Ly6c cells in colorectal tissues was notably reduced

in STAT1-deficient mice (48). Serpin Peptidase Inhibitor 1

(SERPINE1) has been identified as a potential new disease activity
Frontiers in Immunology 13
marker in IBD, which includes Crohn’s disease. In a study, it was

found that the expression of SERPINE1 differed significantly in

healthy subjects compared to IBD patients with active disease. After

therapy induction, a remarkable decrease was observed in the

mucosal SERPINE1 concentration in responders. Moreover, the

study found that serum SERPINE1 correlates with disease activity

(p<0,01, cut-off value: 22 mg/ml, sensitivity = 80%, specificity =

60%, accuracy = 74%), whereas no correlation was observed

between the mucosal SerpineE1 concentration and the disease

activity (p > 0.1, sensitivity = 72%, specificity = 77.8%, accuracy =

73.5%). These findings suggest that SERPINE1 could potentially be

used as a marker to monitor disease activity and therapeutic
B

C

A

FIGURE 11

Gene set variation analysis between two different subtypes of PCD. (A) Enriched pathways based on the hallmark pathway. (B) Enriched pathways
based on the reactome pathway. (C) Enriched pathways based on the KEGG pathway.
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response in IBD, including Crohn’s disease (49). PLEK, also known

as Pleckstrin, encodes a protein involved in intracellular signaling

and the regulation of cell growth, proliferation, and differentiation.

It plays a role in diverse cellular processes, including platelet

activation and immune response regulation (50). The study by

Chen and Medrano et al. reported that aberrant expression of PLEK

may be involved in the pathogenesis of IBD by increasing

inflammatory factors, which is consistent with our findings (51,

52). GNA15 is a gene that encodes a subunit of a guanine

nucleotide-binding protein (G protein). The G proteins, including

GNA15, are known to be involved in signal transduction pathways

that regulate immune responses. Dysregulation of G protein

signaling could potentially contribute to abnormal immune

responses and inflammation, which are key features of Crohn’s

disease (53). However, direct evidence linking GNA 15 to Crohn’s

disease or IBD is lacking in the current literature.

In clinical practice, accurate diagnosis of PCD is often

accompanied by the performance of invasive procedures, which

causes great pain to the affected children. In addition, due to the

heterogeneity of PCD, the same therapeutic regimen is not effective for

all PCD patients. Therefore, the creation of predictive modeling tools at

the genetic level to look for potential molecular subtypes of PCD, while

imposing some relatively large burdens in terms of testing costs,

nevertheless, the new predictive modeling and molecular typing will

not only be effective in reducing the suffering of the children, but also

provide for improved diagnostic accuracy, as well as risk stratification

and grading of patients with PCD. In this study, we developed a novel

predictive model based on five biomarkers for predicting the risk of

developing PCD. In subsequent internal and external validations, it

demonstrated excellent predictive accuracy and good clinical benefit

rates. This suggests that such work will enable accurate assessment and

management of patients when encountered in clinical practice. In

addition, we identified two platelet molecular subtypes of PCD based

on these five markers. In a subsequent pathway enrichment analysis,

we found that the marker activity of the C2 cluster was significantly

higher than that of the C1 cluster in all pathways except the fatty acid

metabolism pathway.In addition, immune infiltration analysis revealed

significant differences in the degree of infiltration of both subtypes in 23

immune cells. This provides a new theoretical basis for risk
Frontiers in Immunology 14
stratification and personalized diagnosis and treatment of PCD.

However, this study still has some limitations. First, selection and

detection bias could not be completely avoided because the data used in

this study were all from the same database. Second, despite the

completion of a large number of secondary analysis of previous data,

large-scale experiments at the clinical, cellular, and molecular levels, as

well as prospective studies, are still needed to further validate

our conclusions.

Conclusions

In summary, this study unveils, for the first time, a potential

association between PCD and PRGs through the integration of

WGCNA with machine learning algorithms. Furthermore, we

identified five novel diagnostic markers: PIK3R3, STAT1, PLEK,

GNA15, and SERPINE1. The nomogram constructed using these

five markers present the prospect of a non-invasive approach to

diagnosing PCD. Additionally, we have, for the first time, classified

PCD into two distinct molecular subtypes. This breakthrough may

offer fresh perspectives for exploring the heterogeneity of clinical

presentations and prognosis of PCD. Moreover, it lays a theoretical

foundation for early prevention, risk stratification, and personalized

diagnosis and treatment of UC in the future.
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