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Aim: The diagnosis of cervical spondylotic myelopathy (CSM) relies on several

methods, including x-rays, computed tomography, and magnetic resonance

imaging (MRI). Although MRI is the most useful diagnostic tool, strategies to

improve the precise and independent diagnosis of CSM using novel MRI imaging

techniques are urgently needed. This study aimed to explore potential brain

biomarkers to improve the precise diagnosis of CSM through the combination

of voxel-based morphometry (VBM) and tensor-based morphometry (TBM) with

machine learning techniques.

Methods: In this retrospective study, 57 patients with CSM and 57 healthy

controls (HCs) were enrolled. The structural changes in the gray matter volume

and white matter volume were determined by VBM. Gray and white matter

deformations were measured by TBM. The support vector machine (SVM) was

used for the classification of CSM patients from HCs based on the structural

features of VBM and TBM.

Results: CSM patients exhibited characteristic structural abnormalities in the

sensorimotor, visual, cognitive, and subcortical regions, as well as in the anterior

corona radiata and the corpus callosum [P < 0.05, false discovery rate (FDR)

corrected]. A multivariate pattern classification analysis revealed that VBM and

TBM could successfully identify CSM patients and HCs [classification accuracy:

81.58%, area under the curve (AUC): 0.85; P < 0.005, Bonferroni corrected]

through characteristic gray matter and white matter impairments.

Conclusion: CSM may cause widespread and remote impairments in brain

structures. This study provided a valuable reference for developing novel

diagnostic strategies to identify CSM.

KEYWORDS

cervical spondylotic myelopathy, structural MRI, tensor-based morphometry, voxel-

based morphometry, multivariate pattern analysis
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Introduction

Cervical spondylotic myelopathy (CSM) refers to a

neurological disorder characterized by spinal cord compression

caused by degenerative changes in the cervical spine. An

epidemiological survey reported that the global incidence of

CSM has been increasing annually as a result of population

aging (1), making it the most common cause of spinal cord

injury (SCI) worldwide (accounting for 54% of non-traumatic

spinal cord injuries) (2). Therefore, it is necessary to conduct

physical examinations for patients with suspected CSM.

However, the symptoms of CSM are almost always insidious

(3), which makes the diagnosis of CSM very challenging (4).

Currently, imaging is still an important approach for evaluating

suspected CSM.

Magnetic resonance imaging (MRI) has been considered the

preferred imaging technique for diagnosing CSM, which allows for

a specific assessment of the compression severity of the spinal cord

(2, 5). The presence of T2 hyperintensity and/or T1 hypointensity

in the spinal cord can serve as diagnostic indicators of CSM.

Nevertheless, these features have an unsatisfactory sensitivity

of 15%−65% and are not present in all patients with clinical

signs (6, 7). Functional MRI and diffusion tensor imaging (DTI)

studies have focused on the impacts of CSM on the brain (8–

13). However, these studies were mostly based on univariate

analyses, and their diagnostic value for CSM has not been

further confirmed. Currently, morphometric studies based on

MRI, including voxel-based morphometry (VBM) and tensor-

based morphometry (TBM), are recognized as highly effective

methods for revealing the neurological and psychological substrates

of a disease (14–16). Furthermore, a multivariate pattern analysis

(MVPA) of MRI data provides an unprecedented possibility to

detect subtle differences in the spatial patterns of structural

brain changes and reorganization in the brain between sick

and healthy individuals (16, 17). The support vector machine

(SVM) is a type of MVPA technique with high accuracy

in the discrimination of binary classification (18). Fernandez

Rojas et al. (18) used the SVM algorithm with 25 features

to identify the four types of pain with a 94.17% accuracy.

Previous studies reported that the SVM technique has much

potential to identify features from different brain parts that can

be used to classify healthy controls (HCs) and CSM patients

(16, 19).

In this study, to develop a model with clinically potential

diagnostic properties for CSM patients, we tested the utility

of structural MRI as a potential biomarker for CSM patients

using the SVM. Then, the diagnostic performance of SVM,

extreme gradient boosting (XGBoost), and light gradient

boosting machines (LightGBM) was further explored. Structural

changes in CSM patients were first estimated by a univariate

analysis of VBM and TBM at the whole-brain level. Then,

MVPA was adopted to classify CSM patients and HCs based

on the morphological information extracted by VBM and

TBM via SVM. Finally, separate MVPAs were performed

for each brain region of the whole brain based on the

template to validate the potential biomarkers for the diagnosis

of CSM.

Methods

Participants

In this retrospective study, 60 right-handed CSM patients

were continuously recruited at Tianjin Medical University General

Hospital, Tianjin, China from 2015 to 2021. The inclusion criteria

were as follows: (a) CSM patients who had spinal cord compression

identified by cervical spine MRI; (b) patients with hyperreflexia,

extremity spasticity, intrinsic muscle atrophy, Hoffmann reflexes,

hand stiffness, or gait dysfunction; (c) patients with clinical

manifestations of extremity sensorimotor deficits or bladder

and bowel dysfunction; and (d) patients with complete MRI

examinations. The exclusion criteria were as follows: (a) patients

with a history of cervical spinal surgery; (b) patients with stenosis

of the extracranial portion of the vertebral artery or in the carotid

artery after Doppler ultrasound examination; (c) patients with

clinical evidence or a history of other neurological, psychiatric,

or systemic diseases, including hypertension, diabetes, active

infection, neoplastic disease, rheumatoid arthritis, and ankylosing

spondylitis after consultation with specialists; (d) patients with

white matter hyperintensity lesions and lacunar infarction in

MRI images; (e) patients with high-energy trauma fractures; (f)

patients with metastatic fractures; (g) patients with concomitant

lumbar stenosis; and (h) patients with alcohol or substance

abuse. All eligible CSM patients underwent clinical examination

and evaluation using the Japanese Orthopedic Association (JOA)

Scoring System scale before MRI to assess neurological dysfunction

due to spinal cord compression.

A total of 60 right-handed HCs with matching age, sex, and

education were actively recruited. The inclusion criteria were as

follows: (a) participants without spinal compression identified by

cervical spine MRI; (b) participants without other spinal or brain

neurological disorders or systemic disease; and (c) participants

with complete MRI examinations. This study was approved by

the institutional review board of Tianjin Medical University

General Hospital, Tianjin, China (No. IRB2023-WZ-065). Written

informed consent was provided by all participants.

Clinical examination

All CSM patients underwent clinical examination and

evaluation with the JOA Scoring System scale before MRI to assess

neurological dysfunction due to spinal cord compression.

MRI data acquisition and image
preprocessing

The flowchart of the methodology is shown in Figure 1. Using

two 3.0-Tesla MRI scanners [the Discovery MR750 scanner (GE

Healthcare, VE 11C, Milwaukee, WI, United States) and the Prisma

scanner (Siemens Healthineers, DV24.0_R01_1344.a, Erlangen,

Germany)] from Tianjin Medical University General Hospital,

three-dimensional sagittal T1-weighted images were obtained.

The imaging parameters of the MR750 scanner were as follows:
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FIGURE 1

The flowchart of the methodology.

repetition time/echo time = 7.8/3.0; inversion time = 450ms; flip

angle= 13◦; thickness= 1.0mm; field of view= 256× 256; matrix

= 256 × 256; no gap; and 180 sections. The imaging parameters of

the Prisma MR scanner were as follows: repetition time/echo time

= 4,000/2.32; flip angle (FA1/FA2) = 4◦/5◦; TI1/TI2 = 700/2,110;

thickness= 1.0mm; field of view= 256× 240; matrix= 256× 240;

no gap; and 208 sections. All images had the same spatial resolution

(1× 1× 1 mm3).

First, all images were double-checked by an experienced

radiologist (Y Wang) to ensure that they had the same

orientation parallel to the anterior–posterior commissure line.

Then, a two-step procedure before preprocessing was performed.

The bias field was corrected for all images. The local and

global intensity were normalized, while image inhomogeneities

and noise were removed using a spatial adaptive non-local

means filter. The strength of graph-cut-based skull stripping

was 0.5. The processed structural images were preprocessed

using the CAT12 toolbox (Computational Anatomy Toolbox;

http://www.neuro.uni-jena.de, Jena, Germany) and Statistical

Parametric Mapping software (SPM12, https://www.fil.ion.ucl.ac.

uk/spm/software/spm12, Functional Imaging Laboratory, UCL

Queen Square Institute of Neurology, London, UK).

VBM and TBM assessment

The processed images were segmented into the gray matter

(GM), the white matter (WM), and the cerebrospinal fluid (CSF)

by integrating the Markov random field and adaptive maximum (a

posterior segmentation technique) (20). Then, the affine and non-

linear co-registration of GM and WM images to the normalized

Montreal Neurological Institute (MNI) space was performed using

diffeomorphic anatomic registration through the exponentiated

Lie algebra technique (DARTEL) and the geodesic shooting

normalization algorithm (21, 22). The structural images were

registered at 1.5 mm3 resolution. Subsequently, a local volume

assessment was performed to identify the mixed tissue types,

including GM-WM and GM-CSF combinations (23). To check

the quality of segmented images, the single slices were visualized,

and the GM and WM modifications were proportionally scaled.

Then, modulated normalization GM volume images (GM-VBM)

and WM volume images (WM-VBM) were generated. Sample

homogeneity was checked utilizing these modulated normalized

segments via boxplots and correlation matrices, and the correlation

coefficients <0.83 were removed. Finally, the GM-VBM and WM-

VBM images were smoothed with a full width at a half-maximum

(FWHM) kernel of 6mm. The smoothed GM-VBM andWM-VBM

images were used for a statistical group analysis. Moreover, the TIV

for each subject was calculated as the equivalence to an estimation

of the sum of GM, WM, and CSF values by CAT12.

The deformation fields were obtained using a three-

dimensional non-linear registration approach when the template

was applied to each processed individual structural image.

The deformation information was coded in deformation fields.

The resultant voxel-wise deformation fields represented the

three-dimensional transformations resulting from the local
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deformation of each brain structure to match the template.

The deformation information in the deformation fields

included differences in positional displacement and local

brain size. Consequently, deformed maps of local voxel-wise

changes were quantified by the Jacobian determinant. The

deformed maps were used as a measure of tissue shrinkage

or expansion (24). Subsequently, the deformed map of

each brain was spatially smoothed by a 6-mm FWHM. The

smoothed TBM was used for group statistical analysis. TBM

Jacobian determinant maps were divided into GM-TBM

images and WM-TBM images by using the GM and WM

masks, respectively.

Univariate statistical analysis

The intergroup differences in GM/WM-VBM and GM/WM-

TBM between the CSM and HC groups were evaluated using

two-sample t-tests controlling for age, sex, education level,

and scanners. The TIV of each subject was regarded as a

covariate in the GM/WM-VBM statistical analysis (25). All

results were corrected for multiple comparisons using the false

discovery rate (FDR) at the cluster level (the initial height

threshold: uncorrected P < 0.001; topological FDR: P <

0.05) (26). When comparing VBM with TBM, the overlapping

results between the corrected GM/WM-VBM and GM/WM-

TBM maps from the GM/WM results at the volumetric level

were analyzed.

Correlation analysis

The clusters with significant differences in VBM and TBM

results were identified. Statistically significant cluster peak

coordination as the center and 3mm as the radius were used

to generate spheres. The average variability in the sphere was

extracted. Spearman’s correlation analyses were conducted between

significant clusters and preoperative JOA scores with age, sex,

education level, and scanners as covariates. A P-value of < 0.05

indicated a significance threshold.

Multivariate pattern classification analysis

MVPA was performed on each measurement method (GM-

VBM, WM-VBM, GM-TBM, and WM-TBM) to distinguish

CSM patients from HCs. The analysis was performed via

the MVPANI toolbox (https://github.com/pymnn/MVPANI) (27),

which was combined with LibSVM to implement a linear

SVM (28). Using leave-one-fold-out cross-validation, MVPA was

performed. The MVPA processing procedures were consistent

for each measurement method and are described in the

Supplementary material. A permutation test was used to test

the statistical significance of the cross-validation. The P-value

with statistical significance was calculated based on the null

distribution obtained from permutation tests (1,000 random times)

and was corrected for multiple comparisons. If none of the 1,000

permutations reached the actual accuracy value, the p-value was

reported as being < 0.001. In this procedure, 10 independent

MVPAs were performed. Thus, the p-values were further corrected

formultiple comparisons by the Bonferroni correction (P< 0.05/10

= 0.005).

To identify whether different structural measurement

methods provided complementary information and improved the

classification accuracy, a procedure for data fusion was performed

using a weighted voting strategy based on the classification results

from all measurement methods (GM-VBM,WM-VBM, GM-TBM,

and WM-TBM). The MVPA process for data fusion is described

in the Supplementary material. According to the results of the

chance-level classification, the null distribution after fusion was

calculated during the permutation tests, and the p-value was

obtained. This fusion procedure was performed for each feature

selection percentage from permutations (1,000 random times)

and was corrected for multiple comparisons by the Bonferroni

correction (P < 0.005).

Validation analysis

MVPA based on various brain regions at the whole brain level

was performed to confirm that the characteristic brain areas were

statistically significant in the accuracy of categorization of CSM

patients and HCs. Different brain regions were defined as the

regions of interest (ROIs). Human brain atlases and WM atlases

were used as the mask in GM and WM ROI-based MVPA (29, 30).

The cross-validation technique was implemented under the same

conditions as for MVPA using a single structural measurement

method. The p-value was calculated based on the null distribution

obtained from permutation tests (1,000 random times). The p-value

from the permutation tests was corrected for multiple comparisons

using the FDR correction.

Results

Demographic data and clinical evaluation

A total of 60 CSM patients and 60 HCs participated in this

study. Furthermore, six subjects were excluded due to incomplete

coverage of the whole brain during imaging (1 out of 6, 17%),

motion artifacts in structural images (3 out of 6, 50%), and post-

processing findings that conflicted with the requirement (within

two standard deviations) of VBM for variance inhomogeneity (2

out of 6, 33%). A total of 57 CSM patients (23 women, 34 men,

52.7 ± 12.4 years) and 57 HCs (26 women, 31 men, 51.0 ± 13.4

years) were finally included in the analysis. Data acquired using the

MR750 scanner from 27 CSM patients and 11 HCs as well as the

data from the Prisma MR scanner from 30 CSM patients and 46

HCs were included.

The demographic data of the CSM and HC groups are shown

in Supplementary Table S1. No significant differences in age, sex,

or education level were observed between the CSM and HC groups

(all P > 0.05). The preoperative JOA scores of the CSM groups are

also shown in Supplementary Table S1. There were no significant
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FIGURE 2

(A, B) Regional GM volume and WM volume changes detected by VBM and color bar for clusters (P < 0.05, FDR corrected). (C, D) Regional

deformation of GM and WM detected by TBM and color bar for clusters (P < 0.05, FDR corrected). All regions indicated in colors ranging from blue to

green (assigned according to t values from two-sample t-tests) have reduced volumes in CSM patients compared with those in HCs.
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FIGURE 3

(A) Regions of GM structural di�erences in CSM patients compared to those in HCs detected by VBM (GM-VBM, in yellow) and TBM (GM-TBM, in red)

are shown in volumetric space. The overlapping regions of GM-VBM and GM-TBM are shown in orange. (B) Regions of WM structural di�erences in

CSM patients compared to those in HCs detected by VBM (WM-VBM, in yellow) and TBM (WM-TBM, in red) are shown in volumetric space. The

overlapping regions of WM-VBM and WM-TBM are shown in orange.

FIGURE 4

(A, B) Positive correlation of reduced GM in the R_SM1 and L_MCC with JOA scores. (C, D) Positive correlation of reduced WM in R_ACR and L_ACR

with JOA scores.
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differences in JOA scores between the data of CSM patients

obtained from the MR750 and Prisma scanners (P= 0.310).

Univariate pattern analysis

Reduced GM and WM volume in CSM patients
based on VBM analysis

Significant GM volume loss was observed in the bilateral

primary sensorimotor cortex (SM1), basal ganglia (BG) (pars

putamen, pars right caudate, and pars right amygdala), right

premotor cortex, right parietal operculum (OP), and cerebellum

of CSM patients (Figure 2A, Supplementary Table S2). In addition,

reduced GM volume was also observed in the bilateral superior

frontal gyrus (SFG) (pars medial and orbital), middle frontal

gyrus (MFG), inferior frontal gyrus (IFG) (pars orbital, opercular,

and triangular), fusiform gyrus, middle cingulate cortex (MCC),

insula, rolandic operculum (ROL), lingual gyrus and hippocampus,

unilateral middle occipital gyrus (MOG), anterior cingulate cortex

(ACC) on the left hemisphere and unilateral middle orbitofrontal

cortex, and gyrus rectus (REC) on the right hemisphere in CSM

patients (Figure 2A, Supplementary Table S2).

Moreover, significantly reduced WM volume was located on

the bilateral anterior corona radiata (ACR) and the right side

of the corpus callosum (CC) (pars genu and body) (Figure 2B,

Supplementary Table S3). In addition, no significant increases in

GM or WM volumes were noted in the whole brain.

Morphological deformation of GM and WM in
CSM patients based on TBM analysis

Significant deformation of GM-TBM was obvious in the

bilateral SFG (pars medial and orbital), MFG, IFG (pars triangular),

REC, fusiform gyrus, MCC, hippocampus, thalamus, BG (pars

amygdala, pars putamen, pars left pallidum, and pars right

caudate), cerebellum, unilateral primary somatosensory cortex

(S1), and ACC on the left hemisphere of CSM patients as well as

in the unilateral middle orbitofrontal cortex, inferior orbitofrontal

cortex, ROL, insula, and para-hippocampus on the right

hemisphere of these patients (Figure 2C, Supplementary Table S4).

Significant structural deformation based on WM-TBM was

located on the right ACR (Figure 2D, Supplementary Table S5). No

significant expansion of GM-TBM or WM-TBM was noted in the

whole brain.

GM changes detected by VBM and TBM
There were extensive overlapping regions of GM structural

alterations across VBM and TBM identified in CSM patients.

Of the GM structural alterations identified by at least one

of the two measurement methods, 27.22% of GM structural

alterations were detected by both VBM and TBM. Overlapping GM

accounted for 34.23% of the total GM-VBM and 57.07% of the

total GM-TBM. These overlapping regions included the bilateral

SFG (pars medial and orbital), MFG, IFG triangular, fusiform

gyrus, MCC, hippocampus, BG (bilateral putamen, right caudate,

right amygdala) cerebellum, unilateral S1, and ACC on the left

hemisphere, as well as in the middle orbitofrontal cortex, inferior

orbitofrontal cortex, ROL, insula, and REC on the right hemisphere

(Figure 3A).

In addition, several regions of GM structural alterations were

detected by either VBMor TBM. A total of 52.30% of GM structural

alterations were detected by VBM alone (Figure 3A), including

the bilateral primary motor cortex (M1), inferior frontal opercular

and lingual gyrus, and unilateral MOG in the left hemisphere.

Compared with VBM, 20.48% of the total GM structural alterations

were detected by TBM alone (Figure 3A). Deformation in some

subcortical regions, including the bilateral thalamus, BG, and right

para-hippocampus, was detected by TBM alone (Figure 3A).

WM changes detected by VBM and TBM
We further investigated the overlapping regions of the WM

structural alterations detected by VBM and TBM. The overlap rate

ofWM structural changes accounted for 39.46% of the total volume

alterations detected byWM-VBM andWM-TBM. The overlapping

regions of WM alterations accounted for 39.97% of the total

WM-VBM and 96.85% of the total WM-TBM. The WM volume

reductions determined by VBM were confined to the bilateral

ACR and the right side of the CC (Figure 3B). TBM only detected

WM deformation in the right ACR (Figure 3B). The structural

alterations of WM in the right ACR widely overlapped with the

changedWM regions detected by both VBM and TBM (Figure 3B).

The non-overlapping ratio was 59.26% for WM-VBM and 1.28%

for WM-TBM.

Correlation analysis

The JOA score of CSM patients was positively correlated with

the reduced GM volume (measured by GM-VBM) in the right

SM1 (r = 0.429, P = 0.001) and the left MCC (r = 0.304, P =

0.021) (Figures 4A, B). In addition, a positive correlation was also

observed between the JOA score and the reduced WM volume

(measured by WM-VBM) in the bilateral ACR (right: r = 0.329,

P= 0.013, left: r= 0.310, P= 0.019) (Figures 4C, D).

Multivariate pattern classification analysis

Classification analysis at the whole-brain level
The number of feature selections corresponding to the highest

classification accuracy for VBM and TBM was 10% for GM-

VBM, 10% for WM-VBM, 20% for GM-TBM, and 30% for

WM-TBM. The highest average classification accuracy across

samples of each measurement method was 78.94% for GM-VBM,

62.28% for WM-VBM, 69.30% for GM-TBM, 71.05% for WM-

TBM, and 81.58% for the combined four measurement methods

(fusion) (Figure 5A). The combined four measurement methods

acquired higher classification accuracies compared to the single

measurement method. The weight map for the feature selection

corresponding to the highest classification accuracy is shown in

Supplementary Figure S1. As a result of the permutation tests, the

classification accuracy of the four measurement methods and the

fusion method was significantly better than chance (P < 0.005;
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FIGURE 5

The diagnostic performance of the SVM model. (A) Classification accuracy for each structural measurement method and combined measurement

method (fusion). (B) The ROC curves for each structural measurement method and the combined measurement method (fusion).

Supplementary Figure S2). The area under the curve (AUC) values

of the receiver operating characteristic (ROC) curves for VBM

and TBM were 0.80 for GM-VBM, 0.73 for WM-VBM, 0.77

for GM-TBM, 0.78 for WM-TBM, and 0.85 for the combined

features (Figure 5B). MVPA results without scanner differences as

covariates are shown in the Supplementary Figures S3–S5.

For XGBoost analysis, the highest average classification

accuracy across samples of each measurement method was

56.14% for GM-TBM, 66.67% for GM-VBM, 59.65% for WM-

TBM, 53.51% for WM-VBM, and 58.99% for the combined four

measurement methods (fusion) (Figure 6A). The AUC values of

VBM and TBM were 0.75 for GM-VBM, 0.57 for WM-VBM, 0.57

for GM-TBM, 0.59 for WM-TBM, and 0.78 for the combined

features (Figure 6B). For LightGBM analysis, the highest average

classification accuracy across samples of eachmeasurementmethod

was 59.65% for GM-TBM, 73.69% for GM-VBM, 58.77% for WM-

TBM, 62.28% for WM-VBM, and 63.60% for the combined four

measurement methods (fusion) (Figure 6C). The AUC values of the

ROC curves for VBM and TBM were 0.81 for GM-VBM, 0.67 for

WM-VBM, 0.63 for GM-TBM, 0.60 forWM-TBM, and 0.78 for the

combined features (Figure 6D). Overall, the accuracy of XGBoost

and LightGBM was not superior to that of SVM. The AUC values

of the GM-VBM calculated by LightGBM were only slightly higher

than the results obtained by SVM.

Validation analysis

Based on the brain regions in MVPA, some shared

brain regions that distinguished CSM patients from

HCs were detected in VBM and TBM, including the

premotor area, SM1, prefrontal cortex (PFC), insula,

precuneus, hippocampus, BG (medial amygdala and ventral

caudate), thalamus, cerebellum (crus II, V), and right ACR

(Figures 7, 8).

Differential brain regions were also discovered by either

VBM or TBM. In GM ROI-based MVPA of VBM, the main

differential regions included the ACC, occipital cortex [occipital

pole, inferior occipital gyrus (IOG), and medioventral occipital

cortex], BG (nucleus accumbens), and cerebellum (I–IV, VIIIb, and

IX). In ROI-based MVPA of TBM, the main differential regions

included the MOG, BG (globus pallidus, dorsolateral putamen,

and dorsal caudate), and cerebellum (Vermis VI) (Figure 7). WM

ROI-based MVPA of VBM detected more characteristic regions

than TBM, including the left ACR, bilateral genu of the CC,

and right body of the CC (Figure 8). The detailed results of

MVPA based on different brain regions are displayed in the

Supplementary Table S6.

Discussion

In the present study, we investigated the characteristic

brain structural alterations in CSM patients with VBM and

TBM. Furthermore, we evaluated the discriminative capability of

brain structural alterations to diagnose CSM and validated the

characteristic brain regions associated with CSM by MVPA. The

main results were as follows. (1) The characteristic structural

changes in CSM involved the brain regions responsible for

multiple functions, including not just the sensorimotor areas

but also the visual and cognitive areas. These regions were also

associated with CSM classification accuracy. (2) In GM, VBM
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FIGURE 6

The diagnostic performance of the XGBoost and LightGBM models. (A) Classification accuracy for each measurement method and the combined

measurement method (fusion) by XGBoost. (B) The ROC curves for each structural measurement method and the combined measurement method

(fusion) by XGBoost. (C) Classification accuracy for each measurement method and the combined measurement method (fusion) by LightGBM. (D)

The ROC curves for each structural measurement method and the combined measurement method (fusion) by LightGBM.

was more sensitive to the detection of structural alterations in

CSM patients. Structural alterations detected by VBM and TBM

were more similar in WM than in GM. (3) The alterations of

the brain structure in CSM patients were specific to both VBM

and TBM. The CSM diagnostic accuracy was improved using

VBM, TBM, and a combination of both measurement methods.

These findings provide novel neuroimaging biomarkers for the

identification of CSM and offer greater possibilities for the accurate

diagnosis and treatment of CSM. In addition, our findings may be

alternative targets for improving brain plasticity in CSM, which

may provide valuable information for developing novel diagnosis

and rehabilitation therapies after postoperative decompression

of CSM.

Characteristic GM changes in the CSM
group correlated with the JOA score

The present study found extensive GM volume reduction and

deformation in the brain regions associated with sensorimotor,

visual, cognitive, and pain modulation functions. Furthermore, the

reduced GM volume in the SM1 andMCCwas positively correlated

with the neurological dysfunction measured by the JOA score.

In addition, the regions associated with sensorimotor, visual, and

cognitive functions were confirmed to distinguish CSM patients

from HCs in MVPA.

In our study, the GM volume reduction and deformation of

sensorimotor regions were located in the SM1 region, premotor
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FIGURE 7

(A) Characteristic regions for distinguishing CSM patients from HCs as detected by VBM. All regions indicated in red are the characteristic regions for

the diagnosis of CSM (corresponding to significant accuracy of classification analysis; permutation test, P < 0.05, FDR corrected). (B) Characteristic

regions for distinguishing CSM patients from HCs as detected by TMB. All regions indicated in blue are the characteristic regions for the diagnosis of

CSM (corresponding to significant accuracy of classification analysis; permutation test, P < 0.05, FDR corrected).

FIGURE 8

(A) Characteristic WM regions for distinguishing CSM patients from HCs as detected by VBM. All regions indicated in red are the characteristic regions

for the diagnosis of CSM (corresponding to significant accuracies from classification analysis; permutation test, P < 0.05, FDR corrected). (B)

Characteristic WM regions for distinguishing CSM patients from HCs as detected by TMB. All blue regions are the characteristic regions for the

diagnosis of CSM (corresponding to significant accuracies from classification analysis; permutation test, P < 0.05, FDR corrected).

cortex, OP, BG, thalamus, and cerebellum (31), which was

consistent with previous structural and fMRI studies (31–

33). However, the mechanisms of GM volume reduction and

deformation in sensorimotor-associated regions remained

unclear. Studies on SCI recognized that the focal lesions of

the spinal cord caused a reorganization of the sensorimotor

cortex, thalamus, BG, and cerebellum (34–38). CSM and SCI

may have similar characteristics in terms of structural changes

in cortical areas associated with the sensorimotor function.

More importantly, the characteristic sensorimotor regions,

including the hubs of the sensorimotor network (SMN), were

useful for the classification of CSM patients and HCs. Our

ROI-based MVPA results suggested that the changes in the

hubs of the SMN network were the characteristic regions of

CSM diagnosis.

The present study observed that the visual correlation regions

with the GM volume reduction and deformation included the

lingual gyrus, fusiform gyrus, and MOG in CSM. An fMRI study

reported decreased neural activities in the visual cortex in CSM

patients (39). Our structural study supplemented the discoveries of

the functional studies of the visual cortex. The reduced GM volume

may relate to decreased local neural activities in the occipital lobe.

Our ROI-based MVPA results also involved the visual network

(VN), indicating that VN variations could be used as distinct

regions to improve the diagnostic accuracy of CSM.

Compared with HCs, the GM volume reduction and

deformation located in the PFC were found in the CSM group,

including the SFG, MFG, and orbitofrontal cortex (OFC). The

PFC was associated with working memory, rule learning, planning,

attention, motivation, and execution of the function (40–43).
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Several studies have also revealed that connectivity exists between

the PFC and the primary sensory cortices as well as the occipital

lobes (9, 44–48). Moreover, a neurological study showed that

axons from the orbitofrontal and medial prefrontal cortices had

neurons projected to the spinal cord via the hypothalamus (49).

Therefore, according to the results of our study, the atrophic PFC

in CSM may be associated with the disintegration of axons and

a reduction in the dendritic density of the motor cortex, visual

cortex, thalamus, cerebellum, and spinal cord. In addition, our

ROI-based MVPA results demonstrated that cognitive networks,

including the central executive network (CEN) (PFC, ACC, and

parietal cortex), salience network (SN) (insula), and default-mode

network (DMN) (PFC, ACC, and precuneus), were the specific

brain regions for identifying CSM. A previous study reported

that the overall efficiency and nodal topological properties of the

DMN were increased in CSM (8, 48). Our findings suggested that

the changes in cognitive networks in CSM patients could become

the characteristic features for the diagnosis of CSM. At present,

changes in cognitive networks have rarely been investigated in

CSM. In the future, studies should investigate in greater detail how

CSM and cognitive networks interact.

Our results revealed the GM volume reduction and

deformation in the limbic system, including the ACC, MCC,

insula, and hippocampus. The ACC and insula are regions

associated with chronic pain (50, 51). Cervical spondylosis (CS)

patients with neck pain exhibited changes in cortical thickness in

the cingulate and insula (34). In our study, the reduced GM volume

and structural deformation in the ACC, MCC, and insula indicated

that these regions might be involved in pain modulation in CSM

patients. Our results were consistent with the modern theories

associated with chronic pain structural reorganization (52, 53).

WM changes in the CSM group correlated
with the JOA score

As described above, the alterations of GM structures in CSM

in our study indicated extensive damage to the cortices and sub-

cortices due to long-term chronic and incomplete SCI. To confirm

WM alterations accompanied by GM changes, we further analyzed

the volume alterations and deformation degree of WM.

Our results revealed the WM volume reduction and

deformation in the ACR, pars genu, and body of the CC.

The reduced WM volume in the ACR was positively correlated

with neurological dysfunction, as evaluated by the JOA score.

Moreover, the WM volume reduction and deformation regions

were confirmed to identify CSM in ROI-based MVPA. ACR was

associated with the corticospinal tract and the internal capsule

(54, 55). The WM volume reduction and deformation of the ACR

further confirmed the reorganization of motor function in CSM

patients. CC interconnected the bilateral cerebral hemispheres and

was key to transmitting cognitive, sensory, and motor information

(56). A study has shown that the CC was organized by the

anterior callosal fibers that connected frontal regions such as the

sensorimotor and PFC (57). In their study, Cunningham et al.

found that fractional anisotropy (FA) decreased within the CC in

SCI patients and that decreased FA in the CC was a biomarker

associated with recovery of upper extremity motor function

recovery (55). The WM volume reduction and deformation in

ACR and CC in this study suggested that WM integrity was

damaged in the frontal cortex and the corticospinal tract in

CSM patients.

Similarities and di�erences in structural
alterations detected by VBM and TBM

Although VBM and TBM were both neuroanatomical

algorithms at the voxel level, they focused on diverse aspects

of exploring brain structural information. The VBM algorithm

is a voxel-based comparison of tissue segmentation maps

normalized to the same stereotactic space (14, 58). The TBM

algorithm analyzed positional differences between each voxel of

the individual brain and the standard template (14, 59). VBM is

more sensitive and powerful in uncertain registration (58, 60).

TBM reflects subtle local differences in brain structure and is

more accurate for uncertainty registration (15, 58, 60–62). The

present study found that the combination of VBM and TBM can

objectively and completely reflect morphological changes while

improving alignment accuracy at the same time.

Moreover, the regions of reduction and deformation were

detected in both VBM and TBM, suggesting that these regions

were mainly associated with a reduction in GM or WM volume,

accompanied by significant local structural deformation. We also

observed differences in the changes in various brain structures.

The main GM structural changes were detected only by VBM,

including the M1, inferior frontal opercularis, lingual gyrus, and

MOG. In TBM, some subcortical regions, especially the thalamus,

were detected. The differences in these regions may be associated

with the discrepancy in the registration accuracy of TBM and

VBM, further demonstrating that the sensitivity of TBM and VBM

was different in different brain structural alterations. From the

biological point of view, the atrophic regions detected by VBM

might represent reduced cortical thickness and cerebral surface

areas, accompanied by lower local deformation presented by gross

volume. TBM detected significant deformation in the subcortical

region, possibly related to more subtle anatomical structures. VBM

detected larger WM ranges with reduced volume, while TBM

detected only one cluster of atrophic WM, entirely included within

the VBM-detected areas. This indicated that VBM was more

sensitive to detecting structural changes in WM. Bernabéu-Sanz

et al. (12) reported the effect of CS in the brain among 27 patients

and 24 HCs. CS patients had significant clusters of gray matter loss

in the major sensorimotor cortices and the thalamus, especially in

the occipital nucleus. The fMRI results showed that the activated

motor regions of CS were located on the periphery of the gray

matter loss clusters.

Classification at the whole-brain level

Machine learning techniques sensitively consider the pattern

information and have unparalleled power to identify subtle

differences in the spatial pattern of functional alterations between
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diseased and disease-free states (18, 63). Few studies have

used machine learning techniques to identify neuroanatomical

biomarkers of CSM, and this study was conducted using

MVPA. Our results indicated that GM-VBM had better

discriminability than other structural measurement methods.

A previous multimodal MRI study suggested that DTI was

the main measurement to distinguish CSM patients from HCs

based on brain structure (12). Our findings complemented the

structural recognition ability of machine learning techniques to

diagnose CSM. In addition, our MVPA results further indicated

that different morphological measurement methods could help

discriminate CSM patients from HCs.

Most previous studies used a single structural measurement

method to estimate the differences between CSM patients and

HCs. Our univariate analyses proved that different measurement

methods can provide different information. In our MVPA

study, the combination of four structural measurement methods

increased the classification accuracy to 81.58%, thus suggesting that

the fusion of information from different structural measurement

methods can enhance classification performance. The classification

accuracy of the fusion was higher than that of the single structural

measurement method, indicating that different measurement

methods should be considered in the diagnosis of CSM from a

neuroimaging diagnostic perspective.

We conducted a diagnostic model to identify characteristic

brain impairments in CSM patients based on VBM and TBM with

SVM. Our findings showed that the VBM and TBM with SVM

performed well in terms of diagnostic performance for identifying

characteristic brain impairment in CSM patients compared with

XGBoost and LightGBM. It is beneficial for clinicians to identify

high-risk groups as early as possible and to formulate intervention

strategies in time to improve patient prognosis. The application

of machine learning can assist with case triage and diagnoses,

enhance image scanning and segmentation, support decision-

making, and predict the risk of disease. Future applications

may also bring forth inexpensive forms of medical imaging

and affordable medical examinations, potentially ending health

disparities and creating more accessible services for countries and

lower-income populations.

Several limitations should be considered when explaining

our findings. First, non-harmonized/different scanners/sequences

were used in the retrospective study. While scanner type was

regressed as a nuisance variable, GM/WM contrast is inherent

to the techniques used, and the robustness of VBM/TBM with

respect to MR sequences/scanner differences was not validated

experimentally. Second, the behavioral metrics (outside of JOA and

motor-related regions in the brain), such as cognition and visual,

were not recorded, and the detected morphological changes may be

associated with behavioral differences (outside of JOA and motor-

related regions in the brain). Third, the degree of cord compression

was not measured. Fourth, JOA subscores, including the motor

function of the upper/lower extremities, sensory function, and

bladder function, were not recorded in the retrospective study,

and the image correlation of JOA subscores was not tested. Fifth,

both VBM-GM and VBM-WM images from each participant were

spatially smoothed using an isotropic Gaussian kernel with a 6-

mm FWHM. Previous studies reported kernel sizes of 8mm and

10mm (64, 65). Overall, compared with the 6mm kernel size, no

significant differences were found in these sizes. Silver et al. (66)

reported that small kernel sizes may be associated with larger (false

positive) cluster sizes. Future studies are needed to further validate

our results with a prospective design, multiple centers, and a large

sample size.

Conclusion

The present study used univariate and multivariate

analyses to delineate widespread characteristic brain structural

impairments detected by VBM and TBM in patients with

CSM, providing novel brain-based diagnostic biomarkers. The

complementary information obtained by VBM and TBM

improved the diagnostic accuracy of CSM by examining

characteristic structural brain changes. It is possible to develop

a neuroanatomic tool for the objective brain-based diagnosis

of CSM.
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