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Background: Tuberous sclerosis complex (TSC) is one of the most common

genetic causes of epilepsy. Identifying di�erentially expressed lipid metabolism

related genes (DELMRGs) is crucial for guiding treatment decisions.

Methods: We acquired tuberous sclerosis related epilepsy (TSE) datasets,

GSE16969 and GSE62019. Di�erential expression analysis identified 1,421

di�erentially expressed genes (DEGs). Intersecting these with lipid metabolism

related genes (LMRGs) yielded 103 DELMRGs. DELMRGs underwent enrichment

analyses, biomarker selection, disease classification modeling, immune

infiltration analysis, weighted gene co-expression network analysis (WGCNA)

and AUCell analysis.

Results: In TSE datasets, 103 DELMRGs were identified. Four diagnostic

biomarkers (ALOX12B, CBS, CPT1C, and DAGLB) showed high accuracy for

epilepsy diagnosis, with an AUC value of 0.9592. Significant di�erences (p < 0.05)

in Plasma cells, T cells regulatory (Tregs), and Macrophages M2 were observed

between diagnostic groups. Microglia cells were highly correlated with lipid

metabolism functions.

Conclusions: Our research unveiled potential DELMRGs (ALOX12B, CBS, CPT1C

and DAGLB) in TSE, which may provide new ideas for studying the psathogenesis

of epilepsy.

KEYWORDS

tuberou sclerosis complex, epilepsy, lipid metabolism, bioinformatics analysis,

biomarkers

Introduction

Tuberous sclerosis complex (TSC) is a rare autosomal dominant genetic disorder

characterized by the growth of benign tumors in multiple organ systems, including the

skin, kidneys, lungs, heart, and brain. A common feature of TSC is epilepsy (1). Epileptic

seizures are a progressively worsening and dynamic process in which several cellular,
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molecular and pathophysiological mechanisms may be involved,

including mammalian target of rapamycin (mTOR) dysregulation

and synaptic abnormalities (2). TSC is a neurodevelopmental

disorder caused by mutations in the TSC1 or TSC2 genes (3).

The proteins encoded by these genes are responsible for regulating

the signal of the mTOR complex (4). mTOR is part of a complex

signal network and plays a crucial role in regulating various cellular

processes, including cell growth and metabolism (5).

Most TSC-related manifestations are the result of over-

activation of the mammalian target of rapamycin (mTOR)

complex. Rapamycin has been widely used in different animal

models of TSC-associated epilepsy and has been shown to

have antiepileptic potential as it not only inhibits seizures but

also prevents seizure development (6). The mTOR pathway

has been established to be closely associated with lipid

metabolism functions (7). Additionally, the ketogenic diet

has shown efficacy in alleviating TSC-associated seizures, and

decanoic acid has been found to reduce mTORC1 activity in

a model of tuberous sclerosis, including astrocytes derived

from TSC patients (8). The cumulative evidence suggests a

close association between lipid metabolism and the occurrence

of TSE.

Recent studies have shown that metabolism is critical

in regulating homeostasis, dormancy and differentiation of

neural stem cells (9). Neural stem cells can utilize free fatty

acid oxidation to generate energy (10). Under energy-deficient

stress conditions, in TSC-deficient cells, high activation of

mTORC1 reconfigures metabolism, leading to increased aerobic

glycolysis and increased fatty acid synthesis. TSC-deficient

cells require autophagy to maintain high mTORC1 activation,

possibly through lipid autophagy, to provide lipids as an

alternative energy source for oxidative phosphorylation. In

vivo inhibition of lipid autophagy or its downstream catabolic

pathways reversed the defective phenotype induced by TSC1-

deficient neural stem cells and reduced tumorigenesis in a

mouse model (7). This evidence suggests an important role

for the mTOR pathway in influencing lipid metabolism in

TSC patients.

The influence of lipid metabolism on epilepsy is likely due to

its function as a “secondary fuel” for the brain. Multiple studies

have revealed potential impairments in glucose metabolism within

regions of the brain affected by epilepsy. Maintaining normal

brain function relies heavily on energy, and deficits in energy may

disrupt the ionic gradient, leading to neuronal depolarization and

epilepsy (5). Ketogenic diets offer ketone bodies like acetoacetic

acid and beta-hydroxybutyric acid, acting as alternative energy

sources for the brain. Around 50% of individuals, including both

children and adults with specific types of epilepsy who can tolerate

and adhere to these dietary regimens, experience a decrease in

the frequency of seizures. Recent data suggests that incorporating

medium-chain triglycerides, which provide caprylic and capric

acid—two medium-chain fatty acids—along with ketone bodies as

supplementary energy for the brain, proves beneficial in rodent

epilepsy models, canines, and human patients with epilepsy (11).

To identify genes closely associated with lipid metabolism

and TSE disease progression, we identified differentially

expressed lipid metabolism related genes for possible

therapeutic targets.

FIGURE 1

Workflow. DEG, di�erential expressed gene; LMRP, lipid metabolism

related pathway; ssGSEA, single-sample gene set enrichment

analysis; DELMRG, di�erential expressed lipid metabolism related

gene; WGCNA, weighted relation network analysis; SVM-RFE,

support vector machine-recursive feature elimination; ROC,

receiver operating curve; LMRC, lipid metabolism related cell.

Materials and methods

Data source

Data related to Tuberous Sclerosis and Epilepsy were

obtained from the Gene Expression Omnibus (GEO) database

(12). Specifically, we downloaded the datasets GSE16969

(13) and GSE62019 (14), as well as single cell sequencing

data from GSE201048 (15) (Supplementary Table 1). Lipid

metabolism related pathways (LMRPs) were also sourced

from the following PubMed articles: PMID35222371 (16),

PMID36091041 (17), PMID36860853 (18), and PMID37469520

(19) (Supplementary Table 2). The design and workflow of this

study are shown in Figure 1.
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Di�erentially expressed genes in tuberous
sclerosis related epilepsy

GSE16969 and GSE62019 were processed using the “sva”

package for acquiring an integrated GEO dataset consisting of

14 samples, among which there were seven tuberous sclerosis

related epilepsy (TSE) samples and seven control (CTRL) samples

(20). The dataset underwent Principal Component Analysis (PCA).

Subsequently, the “limma” package was employed to determine the

differentially expressed genes (DEGs) among the various subgroups

(TSE vs. CTRL) at |log fold change (FC)| > 0.58 and adjusted p <

0.05 (21).

Gene set enrichment analysis

Gene sets were obtained from the MSigDB database,

including the following: “c5.go.v2023.1.Hs.symbols.gmt,”

“c2.cp.kegg.v2023.1.Hs.symbols.gmt,” “c2.cp.reactome.v2023.1.Hs.

sym bol.gmt,” “c2.cp.wikipathways.v20 23.1.Hs.symbols.gmt,”

and “h.all.v2023.1.Hs.symbols.gmt” (22). The resulting dataset

underwent enrichment analysis utilizing the GSEA method

provided by the “clusterProfiler” package, with adjusted p

< 0.05 (23). By combining the LMRPs downloaded from

the literature, with keywords such as “lipid,” “prostanoid,”

“fatty acid,” “cholesterol,” “phosphatidylcholine,” and other

metabolism-related keywords, we identified LMRPs that

exhibited differential enrichment between the TSE and control

groups (24).

Single sample gene set enrichment analysis

Gene sets for LMRPs with inter-group differences, based on

enrichment, underwent ssGSEA analysis in the integrated dataset

related to TSE by comparing TSE and control groups. Enrichment

scores for each sample, which indicate the activity levels of

these pathways, were calculated using the “ssGSEA” algorithm

from the R package (25). Pathways activity variances were

evaluated between the TSE and control groups through the “lmFit”

analysis (21).

Di�erentially expressed lipid metabolism
related genes

The lipid metabolism related genes (LMRGs) were acquired

from the MSigDB database. To identify the DELMRGs, they were

intersected with the DEGs. The resulting overlap was illustrated

in a Venn diagram. Afterward, we conducted protein-protein

interaction (PPI) network analysis on the resulting genes using

the STRING database (26). We employed the Cytoscape (27)

plugin “cytoHubba” (28) and theMaximal Clique Centrality (MCC)

algorithm to pinpoint the ten most pivotal genes within the

network based on their MCC scores.

Weighted gene co-expression network
analysis

Hierarchical clustering was conducted using ssGSEA

enrichment scores for LMRPs that were associated with inter-

group differences. To determine the optimal number of clusters,

the “fviz_nbclust” function of the R package “factoextra” was

utilized. Clustering results were obtained for samples in the

integrated dataset based on their lipid metabolism functions.

Additionally, WGCNA was performed on the combined dataset

related to TSE (28). In this investigation, WGCNA utilized the

amalgamated dataset for TSE as an input to evaluate the connection

between the progression of the disease phenotype and various gene

modules. In addition, it documented the genes within each module,

considering them as feature genes that are specific to the module.

Risk model construction

The “ggvenn” package was used to generate a Venn diagram by

taking the intersection of DELMRGs and lipid metabolism-related

module genes identified viaWGCNA. The support vector machine-

recursive feature elimination (SVM-RFE) algorithmwas utilized for

the feature selection of LMRGs linked with TSE progression, using

the chosen genes (29). Following the selection of feature genes,

logistic regression was employed to develop a diagnostic model.

Subsequently, a risk diagnostic score was determined according to

the gene expression levels and coefficients obtained from multiple

regression analysis.

Diagnosis Score =

∑

i

Coefficient
(

feature genei
)

∗mRNA Expression
(

feature genei
)

The following formula was used to calculate the diagnosis

score: A higher AUC (area under the curve) value indicates better

diagnostic performance. The receiver operating characteristic

(ROC) curve for the TSE progression status risk model was plotted

using the “pROC” package (30). After SVM-RFE feature selection

and model building, a nomogram (24) was created with the

“rms” package.

Immune infiltration analysis

The expression profile dataset of TSE was uploaded onto the

CIBERSORTx website (27). Samples with immune cell enrichment

scores greater than zero were selected via data filtration. Later, the

specific outcomes of the immune cell infiltration abundance matrix

were retrieved and displayed. The distribution of immune cells in

high and low diagnostic score sample groups from the TSE dataset

were presented using bar plots and box plots. The correlation

between immune cells in the groups with high and low diagnostic

scores and TSE risk model genes linked to lipid metabolism were

computed via Spearman rank correlation analysis. A correlation

heat map was produced utilizing the “ggplot2” package.
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Gene set variation analysis

To acquire the reference gene set “h.all.v7.4.symbols.gmt” from

the MSigDB database and execute GSVA on an integrated GEO

dataset comprising varied groups (high vs. low diagnostic score

group) (25). GSVA converts the expression matrix into a pathway

enrichment score matrix. We employed the “lmFit” analysis to

identify the variations in pathways between the high and low

diagnostic score groups (21). After that, we established the Pearson

correlation between the feature genes of the diagnostic model and

the distinctively regulated pathways of the high and low diagnostic

score groups. Visualizations were created in the form of a bubble

chart using the “ggcorrplot” package and scatter charts using

“ggpmisc” and “ggExtra”.

AUCell analysis

We conducted an efficient data processing and visualization

of the GSE201048 single cell dataset utilizing the “Seurat”

package (31). Following this, we employed t-distributed stochastic

neighbor embedding (tSNE) to illustrate the subpopulation

annotations of the cells. To investigate the functional disparities

of lipid metabolism-related cells (LMRCs) among diverse cellular

subpopulations, we utilized the “AUCell” package (32) to determine

the pathway activity of individual cells based on the single cell

expression profiles of GSE201048. We then identified cell clusters

with active “gene sets” within the single cell data. Lastly, we scored

each cell based on the feature genes of the diagnostic model and

gene expression ranking information. The AUC score somewhat

indicated the ratio of top-performing genes found in a selection of

pathway genes in every cell, signifying the action level of specific

gene sets in each cell.

Gene ontology enrichment analysis

Based on the single-cell expression profiles from GSE201048,

we employed the “FindMarkers” function from the “Seurat”

package to detect DEGs among various cell subpopulations (31).

For identifying the DEGs within the single cell subpopulations,

genes satisfying the criteria of |logFC|<= 0.25 and adjusted p <

0.05 were selected. Large-scale functional enrichment studies of

genes in various dimensions and hierarchical levels were conducted

through the widely accepted approach of GO enrichment analysis

(33). The analysis was conducted across three dimensions:

Biological Process (BP), Molecular Function (MF), and Cellular

Component (CC) (34). To identify significantly enriched biological

processes and pathways, we utilized the “clusterProfiler” package

for GO enrichment analysis (23). The visual representation of the

enrichment results was created with the “ggplot2” package (24).

Statistical analysis

We conducted all data calculations and statistical analyses using

R (version 4.2.3). The Benjamini-Hochberg method was applied

for multiple testing adjustments. Independent Student’s t-tests

assessed statistical significance for normally distributed variables.

For non-normally distributed variables, we used the Wilcoxon test.

Spearman’s correlation analysis calculated correlation coefficients

between different molecules. All p-values were two-tailed, and

statistical significance was set at p < 0.05.

Results

Di�erential expression analysis of TSE data

GSE16969 and GSE62019 underwent batch correction and

were merged. Box plots before and after batch correction of the

combined epilepsy dataset were presented in Figures 2A, B, while

Figures 2C, D illustrated the results of PCA for the combined

epilepsy dataset, before and after batch correction, respectively.

In Figure 2E, certain differences at the transcriptome level

between the TSE group and the control group were shown. The

differential expression analysis yielded 1,421 DEGs, comprising

708 upregulated genes and 713 downregulated genes, which were

graphically displayed as a volcano plot in Figure 2F and a heatmap

in Figure 2G. GSEA was performed on pathways from the MSigDB

database, specifically GO, KEGG, HALLMARK, REACTOME,

and WIKIPATHWAY (Supplementary Table 3). Figure 2H

showed that the TSE group was linked to 13 LMRPs, including

“GOBP-PROSTANOID-METABOLIC-PROCESS,” “GOBP-

ICOSANOID-METABOLIC-PROCESS,” “GOBP-POSITIVE-

REGULATION-OF-FATTY-ACID-METABOLIC-PROCESS,”

and “GOBP-PHOSPHATIDYLCHOLINE-METABOLIC-

PROCESS.”

We conducted ssGSEA based on the integrated TSE dataset.

Figure 3A displayed LMRPs with differential ssGSEA scores

between groups (TSE vs. CTRL). Figure 3B presented ssGSEA

scores for 13 LMRPs. Figure 3C shows differential ssGSEA scores

for 10 LMRPs related to GO. Figure 3D illustrated differential

ssGSEA scores for one pathway related to HALLMARK. Figure 3E

displays differential ssGSEA scores for one pathway related to

REACTOME, and Figure 3F showed differential ssGSEA scores for

one pathway related to KEGG. These results demonstrated that the

13 LMRPs enriched through differential expression analysis also

exhibit inter-group differences in ssGSEA scores.

We intersected 13 LMRGs (1,175 unique genes after

deduplication) with the DEGs between the TSE and control

groups, resulting in 103 DELMRGs (Figure 4A). Subsequently, we

examined the expression patterns of these genes in the TSE and

control groups (Figure 4B). The results showed that 33 genes were

downregulated in the TSE group, while 70 genes were upregulated

in the TSE group. We constructed a protein-protein interaction

(PPI) network (Figure 4C). Figure 4D represented the top 10 hub

genes in the PPI network based on MCC scores, with ANXA5

having the highest MCC score and degree.

Results of WGCNA

Figure 5A indicated the optimal number of clusters obtained

through hierarchical clustering, with the result showing that
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FIGURE 2

Di�erential expression analysis of an integrated dataset of TSE. Box plots before (A) and after (B) batch correction of the merged TSE dataset.

Inter-batch analysis using PCA before (C) and after (D) batch correction of the merged TSE dataset. Di�erential analysis of the TSE group and the

control group using PCA after batch correction of the merged TSE dataset (E). Volcano plot (F) and heatmap (G) illustrating DEGs between the TSE

group and the control group. GSEA (TSE vs. CTRL) enrichment analysis bubble chart (H). NES, normalized enrichment score.
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FIGURE 3

ssGSEA of LMRPs in the integrated dataset related to TSE. (A) Di�erential analysis of LMRPs in the TSE integrated dataset. (B) Heatmap of ssGSEA

scores for LMRPs in the TSE integrated dataset. Box plots of ssGSEA scores for lipid metabolism-related GO pathways (C), HALLMARK pathways (D),

REACTOME pathways (E), and KEGG pathways (F) between the TSE group and the control group.

the optimal number of clusters was 2. In Figure 5B, the

hierarchical clustering results demonstrated that GSM424827,

GSM424826, GSM424825, and GSM1518504 clustered together,

while the remaining samples clustered separately. Subsequently, we

performed WGCNA on the integrated dataset of TSE to screen

for co-expression modules related to lipid metabolism subtypes

(Figure 5C) and identified a total of 13 co-expressed gene modules.

Finally, based on the expression patterns of the module genes and

the grouping information of lipidmetabolism subtypes, we assessed

the correlation between gene modules and lipid metabolism

subtypes (Figure 5D).We selected the genemodule with the highest

absolute correlation value (turquoise, r = −0.78, p = 0.0004) for

subsequent analysis, which included 5,286 genes.

Further correlation analysis using a correlation scatterplot

was conducted to assess the relationship between gene

module membership and gene significance (Figure 5E),

revealing a correlation of r = 0.76 and p < 1E-200. Module

membership represented the relationship between genes and

the module, while gene significance indicated the correlation

between genes and phenotypic traits. Notably, genes highly

significantly associated with a phenotype were often crucial

elements within a module significantly associated with

that phenotype.

Subsequently, we performed GO enrichment analysis based on

the genes in the turquoise module (see Supplementary Table 4).

The enriched GO functions primarily focused on lipid
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FIGURE 4

DELMRGs analysis. (A) Venn diagram showing the intersection of DEG (TSE vs. CTRL) and LMRG. (B) Heatmap depicting the expression of DELMRGs

in the TSE and control groups. (C) PPI network of DELMRGs. (D) Top 10 hub genes based on MCC scores.

metabolism-related functions, such as phospholipid biosynthetic

process, glycerophospholipid metabolic process, phospholipid

metabolic process, glycerolipid metabolic process and others

(Figure 5F).

Risk model construction

We intersected the WGCNA co-expressed module genes

related to DELMRGs and TSE (Figure 6A), resulting in 41

differentially expressed genes (DEGs) that were associated with

both lipid metabolism and TSE. Subsequently, we employed

the SVM-RFE algorithm to select four feature genes from the

41 candidates, which could serve as diagnostic biomarkers for

TSE disease grouping (Figure 6B). These four feature genes

were ALOX12B, CBS, CPT1C, and DAGLB. We then used

logistic regression to construct a risk diagnostic model for

TSE disease grouping related to lipid metabolism, where the

diagnosis score was calculated as follows: diagnosis score =

(−64.748046) ∗ expression (ALOX12B) + 99.234770 ∗ expression

(CBS) + (−22.507586) ∗ expression (CPT1C) + 22.629042 ∗

expression (DAGLB).

ROC curve analysis indicated that the constructed risk

model exhibited high diagnostic accuracy for TSE, with

an AUC value of 0.9592 (Figure 6C). Nomogram analysis

was performed to assess the diagnostic capacity of the risk

model, and a column chart (Nomogram) was generated

(Figure 6D), which revealed that the genes ALOX12B and

CBS made significant contributions to the diagnosis of TSE

disease. Subsequently, we examined the expression differences

of the four feature genes between the TSE group and the

control group (Figure 6E). The results showed that the

CBS gene had higher expression in the TSE group, while

ALOX12B, CPT1C, and DAGLB had lower expression in the

TSE group.

Furthermore, we conducted functional analysis (Figure 6F)

to determine the importance of these four feature genes

in GO functions. The analysis suggested that DAGLB and
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FIGURE 5

WGCNA of TSE. (A) Optimal number of clusters line graph for hierarchical clustering. (B) Hierarchical clustering result dendrogram. (C) Gene

clustering dendrogram based on topological overlap (above) and module color assignments for di�erent gene clusters (below). (D) Heatmap

showing the correlation between modules and phenotypic traits. (E) Scatterplot of Gene Significant (GS) and Module Membership (MM) in the

turquoise module. (F) Gene enrichment entries related to lipid metabolism in the turquoise module.

CBS played critical roles, indicating their potential significance

as key genes.

Immune infiltration analysis

In the integrated TSE dataset, we computed the immune cell

infiltration abundances of 22 different immune cell types in the

high and low diagnostic score groups (Figure 7A). The results

indicated a relatively balanced composition of immune cells in

samples from the high and low diagnostic score groups. We

separately compared the differences in the infiltration abundances

of these 22 immune cell types between the high and low

diagnostic score groups (Figure 7B). The results revealed that

certain cells such as Plasma cells, T cells regulatory (Tregs),

and Macrophages M2 showed significant differences (p < 0.05)

between the high and low diagnostic score groups. Specifically,

Macrophages M2 exhibited higher immune infiltration in the high
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FIGURE 6

Construction of the diagnostic model in the integrated TSE dataset. (A) Venn diagram related to lipid metabolism subgroups in DELMRG and

WGCNA. (B) Curve graph displaying the highest accuracy achieved through SVM-RFE feature selection. (C) ROC of the diagnostic model. (D)

Nomogram for the diagnostic model. (E) Expression di�erences of the feature genes in the diagnostic model between the TSE group and the control

group. (F) Ranking of the importance of feature genes in the diagnostic model through Friends analysis.

diagnostic score group, while Plasma cells and T cells regulatory

(Tregs) showed higher immune infiltration in the low diagnostic

score group.

Subsequently, we presented the correlations between immune

cells and the four diagnostic model genes in both the high

and low diagnostic score groups. In the high diagnostic score

group, DAGLB exhibited a significant positive correlation (r =

0.91, p = 0.0039) with Plasma cells (Figure 7C), whereas in the

low diagnostic score group, DAGLB had the highest negative

correlation (r = −0.91, p = 0.0049) with Macrophages M0

(Figure 7D).

Di�erential functional analysis of high and
low diagnostic score groups.

Based on the MSigDB HALLMARK gene set, we conducted

GSVA. In Figure 8A, GSVA scores for pathways showed differences

between the high and low diagnostic score groups (High

vs. Low), with UVRESPONSEUP, SPERMATOGENESIS,

OXIDATIVEPHOSPHORYLATION, MYCTARGETSV2 and

HEDGEHOGSIGNALING exhibiting higher GSVA scores in

the low diagnostic score group. Figure 8B presented the GSVA

scores for differential HALLMARK pathways in the high and
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FIGURE 7

Analysis of immune cell infiltration in high and low diagnostic score groups. (A) Bar chart of immune cell compositions. (B) Box plot of immune cell

infiltration. Pearson correlations between immune cells and the risk model genes within the high (C) and low (D) diagnostic score groups.

Frontiers inNeurology 10 frontiersin.org

https://doi.org/10.3389/fneur.2024.1354062
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Weiliang et al. 10.3389/fneur.2024.1354062

FIGURE 8

GSVA pathway analysis of high and low diagnostic score groups. (A) Di�erential HALLMARK pathways in high and low diagnostic score groups in the

TSE integrated dataset. (B) Heatmap of GSVA scores for HALLMARK Pathways in the TSE integrated dataset. (C) Pearson correlation between GSVA

Scores of HALLMARK pathways and expression of risk model genes. (D) Pearson correlation between the gene ALOX12B and the HALLMARK pathway

MYCTARGETSV2. (E) Pearson correlation between the gene DAGLB and the HALLMARK pathway INTERFERONGAMMARESPONSE.

low diagnostic score groups. Figure 8C indicated the correlation

between diagnostic genes and pathways, revealing that DAGLB,

CPT1C, and ALOX12B were negatively correlated with most

HALLMARK pathways, while CBS was positively correlated with

most pathways. Figure 8D demonstrated a positive correlation (r

= 0.8, p= 0.0006) between ALOX12B and MYCTARGETSV2, and

Figure 8E showed a negative correlation (r = −0.85, p = 0.0001)

between DAGLB and INTERFERONGAMMARESPONSE.
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FIGURE 9

Analysis of GSE201048 single-cell data. (A) Cell type annotation for GSE201048 single-cell data, with each point representing a cell. (B) Bubble plot

showing the expression of marker genes across various cell types, where deeper red indicates higher gene expression and larger points denote a

higher proportion of cells expressing the gene within subpopulations. (C) Proportions of di�erent cell types in the samples. (D) Scatterplot of AUCell

scores for diagnostic model feature genes related to lipid metabolism across single-cell subtypes, with each point representing a cell and darker

points indicating higher AUCell scores. (E) Violin plot depicting AUCell scores of diagnostic model feature genes related to lipid metabolism in

single-cell subtypes, with the x-axis showing single-cell subtypes and the y-axis showing AUCell scores. (F) GO enrichment results for upregulated

di�erentially expressed genes (DEGs) in Microglia compared to other cells, with the x-axis representing Gene ratio (the proportion of genes in the

category out of all genes) and point size indicating the number of di�erentially expressed genes in the pathway, darker colors signify smaller

p-adjusted values. GO, gene ontology.

Single cell data analysis

We downloaded single cell data for epilepsy disease samples

from PMID 35739273, which included 85,000 cells (without normal

controls). The t-SNE plot revealed nine distinct cell subtypes

after unsupervised clustering (Figure 9A). Figure 9B displayed the

expression of marker genes for each cell type. The markers

for various cell subtypes were derived from PMID 35739273.

By examining the expression levels of CD45 (PTPRC), non-

immune cells (CD45low) and immune cells (CD45high) could be

distinguished. Cells with CD45lowCD11blow (CD11b was ITGAM)

expression were identified as Microglia cells. Oligodendrocyte cells
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(CD45lowCD56high) were marked by genes such as MAG, MOG,

and NCAM1 (CD56), while Endothelial cell markers included

CLDN5 and VWF. Smooth Muscle cell markers were ABCC9, and

Pericyte cell markers were MYH11 and ACTA2. Among immune

cells, CD11bhighCD14high cells were identified as Macrophages. T

cell markers included CD3D and CD3E, B cell markers included

MS4A1, and a subgroup of cells exhibited CD56lowCD16high

expression (CD56 was NCAM1 and CD16 was FCGR3A).

Subsequently, we examined the proportions of cell subtypes in

each sample (Figure 9C). The results showed that the distribution

of various cell subtypes in the samples was relatively even, with no

significant bias observed.

Using four risk model genes from the GSE201048 single-

cell data, we scored each cell subtype with AUCell (Figure 9D)

and visualized the results as box plots (Figure 9E). The findings

indicated that Microglia subtypes had the highest AUCell scores,

suggesting a strong association between Microglia cells and lipid

metabolism functions.

Based on upregulated DEGs (Microglia vs. other cells), a GO

analysis was conducted (Figure 9F; Supplementary Table 5). The

results revealed significant enrichment of genes highly expressed

in Microglia cells in pathways related to eicosanoid metabolic

processes, regulation of lipid metabolic processes, prostanoid

metabolic processes, and other LMRPs.

Discussion

In our research, we identified a total of 103 DELMRGs.

To further identify genes related to lipid metabolism for the

construction of a diagnosticmodel for TSE, we took the intersection

of the DELMRGs and the co-expression module genes related to

TSE byWGCNA. This intersection yielded 41 genes that were both

related to lipid metabolism and associated with TSE. We then used

the SVM-RFE algorithm to select four feature genes that can serve

as diagnostic biomarkers for the classification of TSE. These four

feature genes are ALOX12B, CBS, CPT1C, and DAGLB.

Defects in ALOX12B, which subsequently lead to reduced

epidermal LOX activity, result in the retention of scales in the

stratum corneum of the epidermis. Disruption of the permeability

barrier triggered by ALOX12B abnormalities due to an early stop

mutation has been previously reported in a mouse model, where

a complete lack of barrier formation was demonstrated, leading to

rapid dehydration and death in the perinatal period (35).

CBS is a lytic enzyme that is mainly expressed in the

liver. It is the rate-limiting enzyme in the transsulfuration

pathway and is responsible for the metabolic conversion of

homocysteine to the amino acid cysteine (36). CBS deficiency leads

to hyperhomocysteinemia and impaired production of antioxidants

such as hydrogen sulfide. Hepatic CBS plays an important role in

the pathogenesis of NAFLD and in the defense against oxidative

stress (37).

CPT1C is a member of the carnitine palmitoyltransferase

1 family and is involved in the regulation of physiological

functions such as energy metabolism and feeding (38). CPT1C

can have profound effects on brain physiology and total fatty

acid profiles, which can be modulated by nutrients in the diet

(39). Mice deficient in CPT1C exhibit behavioral and metabolic

deficits. Overexpression of CPT1C in the brains of developmentally

transgenicmice results in cerebellar hypoplasia. Thus, it is clear that

CPT1C plays an important role in brain function (40).

Using DAGLB knockout mice, inactivation of DAGLB

in mouse peritoneal macrophages reduced 2-AG, arachidonic

acid and prostaglandins (41). A corresponding reduction in

lipopolysaccharide-induced TNF-α release was also observed.

These findings suggest a role for DAGLB in the lipid network that

regulates the inflammatory response in macrophages (42).

The results of immune infiltration showed Macrophages.M2,

higher immune infiltration in the high diagnostic score group

and Plasma.cells, Tregs higher immune infiltration in the

low diagnostic score group. Cerebral peripheral vascular

macrophages are a special population of macrophages, and

cerebral peripheral vascular macrophages are involved in the

pathogenesis of neurodegenerative diseases, cerebrovascular

dysfunction, autoimmune diseases, traumatic brain injury and

epilepsy. They can act in a protective or deleterious manner on

disease processes and stages (43). The number of Tregs in the

brain was negatively correlated with seizure frequency in patients

with epilepsy (44). Depletion of intracerebral Tregs promoted

astrocytosis, microglia, inflammatory cytokine production,

oxidative stress and neuronal loss in the hippocampus after status

epilepticus seizures (45). Modulation of Tregs in epileptic brain

tissue has therapeutic potential.

Microglia cells are highly correlated with lipid metabolic

functions, and GO analysis showed that highly expressed genes

in Microglia cells were significantly enriched in lipid metabolic

pathways related to icosanoid metabolic process, regulation of

lipid metabolic process, prostanoid metabolic process and so

on. metabolic process, regulation of lipid metabolic process,

prostanoid metabolic process and other lipid metabolic pathways.

Myelin is required for the function of nerve axons in the central

nervous system, and microglia are essential for maintaining myelin

health. Oligodendrocyte status is associated with altered lipid

metabolism (46).

Evidence accumulated over the past two decades has

significantly bolstered the hypothesis that neuroinflammation

plays a crucial role in epileptogenesis. This includes the activation

of microglia and astrocytes, a cascade of inflammatory mediators

being released, and the infiltration of peripheral immune cells from

the bloodstream into the brain. Concurrently, an expanding corpus

of preclinical studies indicates that anti-inflammatory agents,

targeting key inflammatory components, demonstrate efficacy and

hold promise in the treatment of epilepsy (47).

The pathophysiological consequences of microglial activation

encompass exacerbated inflammation, modulation of neuronal

activity, and the provocation of epileptic seizures (48). These

studies collectively reinforce our belief in the significant role of

microglia in TSE.

Furthermore, the mTOR signaling pathway is pivotal in

neural development and neural circuit formation, primarily

through the regulation of protein synthesis and autophagy.

In the brain, inhibition of mTOR signaling diminishes the

formation of autophagosomes, elevates lipopolysaccharide-induced

proinflammatory cytokines in microglia, attenuates microglial

activation, and mitigates astrocyte migration and proliferation,

ultimately leading to a reduction in seizure severity (49).
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We studied epilepsy due to tuberous sclerosis. But the last

single-cell plot was validated with epilepsy due to cortical dysplasia.

TSC and focal cortical dysplasia were focal malformations of

cortical development highly associated with refractory epilepsy.

TSC and FCD were mTOR disorders caused by a series of

pathogenic variants in the target of rapamycin mechanism

(mTOR) pathway genes leading to differential activation of

mTOR signal (50). Considering that the electrical mechanisms

of epilepsy are relatively similar, we extended the diagnostic

genes to another type of epilepsy, and in this way did a

single-cell analysis.

Conclusion

Our research identified potential DELMRGs (ALOX12B, CBS,

CPT1C, and DAGLB) in epilepsy, which may provide new

ideas for studying the pathogenesis of Epilepsy. In the future,

more experiments would be needed to further substantiate

our conclusions.
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