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I. INTRODUCTION 

While the number of people aged 65 years or older is expected 

to continue increasing [1], caregivers for the elderly have become 

scarce due to the rising elderly population, resulting in an increas-

ing number of the elderly people living alone or in families com-

prising two elderly spouses [1]. Several factors, including corona-

virus disease 2019 (COVID-19), have compelled the elderly to 

spend a considerable amount of their time indoors. Under such 

circumstances, an unforeseen crisis would be difficult for them to 

manage if no help is present nearby. Falls account for the largest 

proportion of injuries among people older than 65 [2], since loss 

of muscle mass due to aging often causes elderly individuals to lose 

their balance and fall. In the absence of prompt treatment, a fall-

related injury may even become severe. As a result, precise and 

prompt detection is of utmost importance in such cases. Moreover, 

long-term research has accurately identified falls as a hazard to the 

health of the elderly [3–6]. 

However, since certain circumstances cannot always be con-

trolled, several researchers have attempted to detect falls using 

different kinds of sensors. Current research on fall detection can 

be divided into studies on contact sensors and non-contact sen-

sors based on the detection equipment employed. In the context 

of contact sensors, accelerometers [3], gyroscopes [4], and 

smartphones [5], which are typically worn around the waist and 

on the wrists during experiments, are frequently employed [6]. 

However, contact sensors are characterized by numerous draw-

backs, such as the need for charging connectors, inadequate 

mounting positions, and the discomfort of constantly wearing 

them. Alternatively, non-contact sensors mostly use cameras and 
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Abstract 
 

Fall accidents pose a significant threat of severe injuries for the elderly, who often need immediate assistance when they fall. Since the use 

of conventional contact sensors or cameras might be uncomfortable for the user, research on fall detection using non-contact sensors has 

received considerable attention. While most prior studies have relied heavily on Doppler-based velocity parameters to detect falls, using only 

Doppler information may lead to erroneous detection of fall-like behavior. As a result, a feature that accounts for additional information is 

necessary. Addressing this need, this study developed an algorithm for classifying falls by detecting human motions using frequency modu-

lation continuous wave radar, proposing a novel feature to reduce detection errors. The suggested feature was computed using the range-

velocity map of the 2D Fourier transform and evaluated using supervised machine learning techniques, such as support vector machine and 

linear discriminant analysis, attaining an accuracy higher than 91%. 

Key Words: Contactless Detection, Detection Error Reduction, Fall Detection, FMCW Radar, Fused Feature. 

 

 

Manuscript received April 27, 2023 ; Revised July 10, 2023 ; Accepted August 16, 2023. (ID No. 20230427-082J)  
1Department of Electronic Engineering, Soongsil University, Seoul, Republic of Korea.  
2Department of Software Convergence, Soongsil University, Seoul, Republic of Korea. 
*Corresponding Author: Hyun-Chool Shin (e-mail: shinhc@ssu.ac.kr)   
 

 

This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0) which permits 

unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. 

ⓒ Copyright The Korean Institute of Electromagnetic Engineering and Science. 

http://crossmark.crossref.org/dialog/?doi=10.26866/jees.2024.1.r.207&domain=pdf&date_stamp=2024-01-31


  BAIK and SHIN: FALL DETECTION USING FMCW RADAR TO REDUCE DETECTION ERRORS FOR THE ELDERLY  

79 

  
 

radars [7–9]. For instance, camera-based fall detection recognizes 

human silhouettes in recorded videos and classifies movements 

by extracting binary image motion characteristics [7]. In such 

cases, either the binary picture is separated into five zones de-

pending on the person’s silhouette to determine the person’s con-

dition [8] or a multilayer perceptron algorithm is used to classify 

different aspects, such as the person’s form, head position, and 

motion [9]. However, although cameras can identify the specific 

behavior of a target, they are light-sensitive and cannot be 

mounted in private areas, such as toilets and bedrooms. 

Radar is commonly employed for fall detection owing to its 

ability to address the drawbacks of both contact sensors and cam-

eras, as well as due to its suitability for indoor detection [10–15]. 

Previous studies have employed impulse radio ultra-wideband ra-

dar for fall detection utilized convolutional neural network algo-

rithms, while accounting for the following inputs: time of arrival 

of signals [10], range map [11], fast Fourier transform (FFT) im-

age [12], and singular value decomposition image [12]. Notably, 

researchers have mostly relied on velocity information to identify 

falling objects when using frequency-modulated continuous wave 

(FMCW) radar [13–15]. Furthermore, most previous studies 

employed categorization algorithms based on deep learning that 

accepted Doppler map pictures as input to subsequently reflect 

changes in object velocity over time [13]. Recent research has fo-

cused on enhancing the effectiveness of fall detection by utilizing 

an approach that converges or classifies several features. Studies 

have experimented with using a combination of deep learning 

techniques, such as AlexNet, VGG-19-Net, and VGG-16-Net, 

to extract velocity features [14] or have employed the method of 

classifying four different actions into two groups, with range 

maps as inputs, to then classify each group using Doppler maps 

[15]. 

A fall involves a large, fast-moving body that moves more 

quickly than usual in a short amount of time and is characterized 

by variances in range, velocity, and acceleration [11, 16, 17]. In this 

context, while most earlier investigations utilized Doppler maps to 

identify falls as a feature of an object’s velocity, the features drawn 

only from Doppler data are susceptible to detection errors [16, 17]. 

As a result, recent studies have focused on accounting for features 

that provide diverse information and then merging them [11, 14–

16], since utilizing fused features can increase fall detection accu-

racy compared to using only single features. 

This study proposes a novel method for detecting falls and 

minimizing false alarm rates using FMCW radar. Range-velocity 

and range-acceleration maps consisting of complicated infor-

mation on range, velocity, and acceleration were considered in this 

study since the information from Doppler maps, although fre-

quently utilized in the past, suffers from multiple limitations 

when it comes to detecting falls. In each map, two new features—

centroid range and range width—were calculated by combining 

the two features. Notably, centroid range refers to the predicted 

value of a range weighted by velocity or acceleration, whereas 

range width indicates the range of distances at which movement 

occurs over a specific velocity or acceleration. These new features 

may be considered fusion features, whose variations are influ-

enced by two separate features. The performance of the new fea-

tures was validated by comparing them to existing features in 

terms of fall detection accuracy and detection error rate using the 

most popular machine learning techniques—support vector ma-

chine (SVM) and linear discriminant analysis (LDA). 

II. FMCW RADAR AND CONVENTIONAL FEATURES FOR 

FALL DETECTION 

1. FMCW Radar Signal Processing 

To detect objects, an FMCW radar uses chirp signals, which 

are sinusoids modulated at a linearly increasing frequency. Nota-

bly, the range and velocity of a moving object can be measured by 

analyzing the demodulated signal generated from the transmitted 

and received signals. The transmitted signal 𝑆[𝜏] is a chirp signal 

whose frequency increases linearly, defined in slow time as follows: 
 𝑆[𝜏] = 𝐴 ∙ 𝑐𝑜𝑠 ቀ2𝜋 ቀ𝑓௖ + ஻ௐ∙ఛଶ ೎் ቁ 𝜏ቁ, (1)
 

where 𝜏 is the sample index of the chirp, A is the amplitude of 

the transmitted signal, 𝑓௖  is the carrier frequency, BW is the 

bandwidth, and 𝑇௖  is the chirp duration. Meanwhile, the re-

ceived signal 𝑅[𝜏] refers to a signal that is delayed by 𝜏ௗ, denot-

ing the time taken by the transmitted signal to reflect back to the 

object, expressed as: 
 𝑅[𝜏] = 𝐵 ∙ 𝑐𝑜𝑠 ቆ2𝜋 ቀ𝑓௖ + 𝑓ௗ + ஻ௐ∙(ఛିఛ೏)ଶ ೎் ቁ (𝜏 − 𝜏ௗ)ቇ, (2)
 

where B is the amplitude of the received signal. Notably, the 

Doppler frequency 𝑓ௗ can be verified in the frequency domain 

due to the Doppler effect. After undergoing low-pass filtering, 

the transmitted and received signals were demodulated in the 

mixer to arrive at the demodulation signal 𝑀[𝜏]. Meanwhile, C 

refers to the amplitude of the demodulation signal. 
 𝑀[𝜏] = 𝐶 ∙ 𝑐𝑜𝑠 ቀ2𝜋 ቀ஻ௐ்೎ ∙ 𝜏ௗቁ 𝜏 + 2𝜋(𝑓௖ + 𝑓ௗ)𝜏ௗቁ. (3)
 

To extract features from the frequency and phase domains of 

the radar signal, the formula for sample 𝜏 and chirp n at specific 

scan 𝑡 can be expressed as follows: 
 𝑥[𝑛, 𝜏, 𝑡] = 𝐶(𝑛, 𝜏, 𝑡) ∙ cos(2𝜋𝑓௕𝜏 + 𝛼𝑣 ∙ 𝑛 + 𝜑), (4)
 

where C is the amplitude of the signal and 𝑓௕ is the beat frequency, 

which indicates the difference between the transmission and recep-

tion frequencies and equals ஻ௐ∙ଶ௥೎்∙௖ . Furthermore, 𝑟  is the range 
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between the radar and the object. To reveal the velocity infor-

mation in the phase domain, ସగ௙೎∙ ೎்௖  was expressed as 𝛼 and the 

remainder as constant 𝜑.  
 

2. Conventional Features 

The range and velocity of the object were determined by em-

ploying FFT, considering the signal’s frequency and phase infor-

mation. The range for each scan 𝑡 was obtained by performing 

FFT on sample τ using Eq. (4), as shown in Eq. (5). The change 

in range over time was determined by taking the average of chirp 𝑛 and displaying it as a range map, as formulated in Eq. (6). 
 [𝑛, 𝑟, 𝑡] = ෍ 𝑥[𝑛, 𝜏, 𝑡] ∙ 𝑒ି௝ଶగ௙್ఛ,்ିଵఛୀ଴  (5)

 𝑋(𝑡, 𝑟) =  1𝑁 ෍ |𝑋[𝑛, 𝑟, 𝑡]|ேିଵ௡ୀ଴ . (6)
 

Here, 𝑇 denotes the number of fast-time samples and N is the 

number of chirps in one scan. By performing 2D-FFT on chirp 

n in Eq. (5), which had already been fast Fourier transformed 

once, the velocity of the moving object for scan 𝑡 was obtained, 

as noted in Eq. (7). Subsequently, the Doppler map can be ob-

tained by using the average range to calculate the change in ve-

locity over time, as shown in Eq. (8). 
 𝑌[𝑣, 𝑟, 𝑡] = ෍ 𝑋[𝑛, 𝑟, 𝑡] ∙ 𝑒ି௝ఈ௩௡,ேିଵ௡ୀ଴  (7)

 𝑌(𝑡, 𝑣) = 1𝑇 ෍ |𝑌[𝑣, 𝑟, 𝑡]. |்ିଵ௥ୀ଴  (8)
 

To calculate the scan velocity, the average of the samples was 

calculated and the Doppler map was displayed, as shown in Fig. 

1. Since the received radar signals also contain information on un-

wanted objects, an moving target indicator (MTI) filter was ap-

plied to the Doppler map to eliminate information related to non-

moving objects, calculated using the difference in the mean for all 

data [18]. 

Subsequently, the velocity 𝑣௘௫௧(𝑡) and acceleration 𝑎𝑐𝑐(𝑡) 

of the object were calculated from the Doppler map, depicted in 

Fig. 2, as follows: 
  𝑣௞(𝑡) = ሼ𝑣|𝑌(𝑡, 𝑣) > 𝑝𝑜𝑤𝑒𝑟 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑ሽ, (9)

 𝑣௘௫௧(𝑡) = max௩ೖ (|(𝑣௞(𝑡)|), (10)
 𝑎𝑐𝑐(𝑡) = ௩೐ೣ೟(௧)ି௩೐ೣ೟(௧ି௧ೞ)௧ೞ . (11)

 

Notably, the 𝑝𝑜𝑤𝑒𝑟 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 used an arbitrarily set value 

based on the experimental situation. The maximum absolute 

value of the velocity 𝑣௞(𝑡) of the filtered Doppler map is shown 

as Eq. (10), while acceleration 𝑎𝑐𝑐(𝑡) was calculated using the 

difference in velocity 𝑣௘௫௧(𝑡) between scans. 

Fig. 2 shows a graph depicting the use of radar to detect the falling 

motion of a person whose body flips while grooming their hair 

sitting on a bed. As shown in Fig. 2, it is difficult to detect the point 

of fall using only velocity and acceleration, indicating that detection 

errors are common since different motions have similar values. 

 

 
 

Fig. 1. The FFT process for obtaining range and velocity information 

of a person falling from bed. From the top, the figure shows 

the range map, the 1D-FFT in a specific scan, the range-Dop-

pler map obtained using 2D-FFT, and the Doppler map. 
 

 
 

Fig. 2. Conventional features: Doppler map, velocity, and acceleration 

in order from the top (arrows indicate spots where false detec-

tion of falling may occur). 
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III. PROPOSED FEATURES 

This study proposes a range–velocity map representing the range 

and velocity over time and a range–velocity map representing range 

and acceleration, calculated as follows: 
 𝑍(𝑡, 𝑟) = arg max௩ (|𝑌[𝑟, 𝑣, 𝑡]|), (12)

 𝐴(𝑡, 𝑟) = ௓(௧,௥)ି௓(௧ି௧ೞ,௥)௧ೞ . (13)
 

Here, R denotes the maximum detection range of the radar. 

The map of time and range, along with the value of the maxi-

mum velocity in the Doppler map, was displayed as the range–

velocity map 𝑍(𝑡, 𝑟). Subsequently, acceleration was obtained 

using the velocity difference from the range–velocity map and 

then displayed as a range–acceleration map 𝐴(𝑡, 𝑟). 

By adding range information to the velocity information, as 

shown in Fig. 3, the movement of the object that was invisible on 

the Doppler map could now be observed. In other words, this 

new map enabled the detection of sections in which the velocity 

and range or the acceleration and range increased simultaneously. 

To distinguish such a fall, this study proposes two new features—

centroid range and range width. 

The centroid range is the expected value of a range when ve-

locity or acceleration is weighted. A scan of the range–velocity 

map expresses the velocity of the object detected at each range in 

color, indicating the velocity distribution in terms of range. 

A fall is an action in which the velocity and acceleration of the 

body change rapidly. This change in the two features can be de-

termined by calculating the average range while accounting for 

velocity. From the two new maps, the velocity centroid range 𝑟௩௖(𝑡) and acceleration centroid range 𝑟௔௖(𝑡) were calculated, as 

follows: 
 𝑟௩௖(𝑡) = ∑ 𝑍(𝑡, 𝑟) ∙ 𝑟ோ௥ୀଵ∑ 𝑍(𝑡, 𝑟)ோ௥ୀଵ , (14)
 𝑟௔௖(𝑡) = ∑ 𝐴(𝑡, 𝑟) ∙ 𝑟ோ௥ୀଵ∑ 𝐴(𝑡, 𝑟)ோ௥ୀଵ . (15)
 

Range width refers to the range of distance over which motions 

with a velocity or acceleration larger than a certain value appear. 

This study used only the velocity section to minimize the noise 

of non-moving objects and to determine the range of motion of 

the displayed objects.  

Since a fall changes the range and velocity of the entire body, a 

wide range must be displayed on the map. Therefore, the range 

width was calculated using the difference between the maximum 

and minimum values of the range detected in each scan of the map. 

Similar to the centroid range, two features based on velocity and 

acceleration—the velocity range width 𝑟௩௪(𝑡) and the acceleration 

range width 𝑟௔௪(𝑡)—were obtained, as follows: 

𝑟௩௪(𝑡) = arg max௥ ሼ𝑍(𝑡, 𝑟)ሽ − arg min௥ ሼ𝑍(𝑡, 𝑟)ሽ𝑓𝑜𝑟 𝑍(𝑡, 𝑟) ≠ 0,  (16)
 𝑟௔௪(𝑡) = arg max௥ ሼ𝐴(𝑡, 𝑟)ሽ − arg min௥ ሼ𝐴(𝑡, 𝑟)ሽ𝑓𝑜𝑟 𝐴(𝑡, 𝑟) ≠ 0.  (17)

IV. EXPERIMENT RESULTS 

1. New Features Considered under Falling Situations  

Fig. 2 highlights the points at which detection errors in the ve-

locity and acceleration data were determined for a flipping body 

and for small movements, such as grooming hair using hands. In 

this context, Fig. 3 shows that the sections indicating a high risk of 

detection errors in daily motions have a relatively low value. Fig. 4 

 
 

Fig. 3. Proposed features in order form the top: range-velocity map 

with velocity added to the range map and range-acceleration 

map with acceleration added; features obtained using new 

maps: velocity centroid range, velocity range width, accelera-

tion centroid range, and acceleration range width.



JOURNAL OF ELECTROMAGNETIC ENGINEERING AND SCIENCE, VOL. 24, NO. 1, JAN. 2024 

82 
   

  

presents the results obtained by comparing the values of the old 

and new features for falls and daily motions using additional ex-

amples. All examples were drawn from experimental data, includ-

ing the body flip and the small movement—grooming hair with 

hands—before falling. Fig. 4 lists the Doppler map, velocity, 

acceleration, range-velocity map, centroid range, and range width 

to compare the difference in values related to the same motion. As 

observed in the case of conventional features, such as velocity and 

acceleration, daily motions may be falsely detected as falls. In con-

trast, in the proposed features, the values of the corresponding 

(a) (b) 

Fig. 4. Comparison of the conventional and proposed features for falls and daily motions using two different examples: (a) first example, and 

(b) second example. 
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interval are more distinct when a fall occurs. 

A scatter graph depicting 28 selected falls and daily motion 

data was plotted, as shown in Fig. 5, to identify the degree of 

representation of the fall characteristics. In Fig. 5(a) and 5(b), the 

values of the existing features with regard to motion are listed. To 

individually verify the data distribution of the motions, they are 

displayed at different heights on the vertical axis. It is evident that 

while the values of the falls and daily motions tend to be differ-

entiated when considering velocity, the distribution of values are 

too similar in the case of acceleration, making it difficult to 

(a) (b) 

(c) (d) 

(e) (f) 

Fig. 5. Scatter plot of averages of the fall and daily motion data compared in terms of (a) velocity, (b) acceleration, (c) velocity and velocity 

centroid range, (d) acceleration and acceleration centroid range, (e) velocity and velocity range width, and (f) acceleration and 

acceleration range width. The white dots and crossbars represent the means and standard deviations of each distribution, respectively.  
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distinguish them. Fig. 5(c)–5(f) compare the distributions of the 

new features with those of the existing features for the same mo-

tion. Specifically, the mean and standard deviation for each da-

taset were plotted to distinguish the distributions. 

With the addition of new features, including range infor-

mation, the distribution of falls and daily motions can be easily 

distinguished. Between the two new features, the centroid range 

helped identify the characteristics of falls better than the range 

width, since the range between the averages was larger. 
 

2. Experimental Setup 

For this experiment, the FMCW radar was mounted on a ceil-

ing situated 2.9 m above the bed to detect motions near the bed, as 

shown in Fig. 6. The FMCW radar, whose specifications are listed 

in Table 1, can detect objects located within 0–7.5 m with a veloc-

ity of up to 3.9 m/s. To conduct the experiment, five participants 

aged 25–35 acted as slowly as the elderly. All experiments were 

conducted with each participant in the same space using the same 

power threshold. The experimental motions included a fall motion 

from the bed, as well as five daily motions that could result in de-

tection errors pertaining to a fall. The daily motions—sitting up, 

sitting at the front of the bed, moving to the end of the bed, sitting 

at the end of the bed, and standing up from the bed—are depicted 

in detail in Fig. 7. In this experiment, a fall was considered the mo-

tion of falling to the floor while lying in bed, while daily motion 

was set to denote movement of the torso similar to a fall. 
 

3. Comparison of the Feature Results by Motion 

Feature graphs of motions that may cause fall detection errors 

were generated using the data obtained from the experiment for 

comparison with the fall data. Fig. 8(a)–8(d) present the experi-

mental data for the daily motions, including sitting up, sitting at 

the front of the bed, moving to the end of the bed, sitting at the 

end of the bed, and standing up from the bed, respectively. The 

intervals in which values similar to a fall in velocity and accelera-

tion appeared were considered the hazard interval for fall detec-

tion errors. A comparison of these intervals between the conven-

tional and new features was conducted. Contrary to the results of 

the fall data, the new features exhibited relatively low values for 

intervals in which the existing features measured high values. 

This study, therefore, attempted to reduce fall detection errors 

using specific characteristics. 

4. Results of the Classif ication Performance Evaluation 

The results for the new and existing features were compared 

using SVM and LDA to determine their classification perfor-

mance. SVM and LDA are machine learning techniques—the 

former sets the criteria for classifying data belonging to the same 

category, and the latter classifies data linearly by reducing its di-

mensionality. Both methods are simple and popularly used for 

classifying fall detection [18]. In this paper, SVM used the linear 

kernel, with the cost parameter C being 1, while LDA considered 

two classes—fall and daily motions. As classification data, 21 fall 

data and 141 daily motion data were utilized, with the training 

and testing datasets used at a 6:4 ratio. The correct answers and 

results predicted by the classifier are presented in the confusion 

matrices in Fig. 9, where true positive (TP) and true negative 

(TN) represent the number of correct detections, while false pos-

itive (FP) and false negative (FN) indicate the number of false 

 
Fig. 6. The FMCW radar used in the experiment and the experi-

mental setup.  
 

(a) (b)

(c) (d)

(e) (f)

Fig. 7. The daily motions and falls are considered experimental mo-

tions with the possibility of generating fall detection errors: 

(a) fall, (b) sit-up, (c) sitting on the front of the bed, (d) 

moving to the end of the bed, (e) sitting on the end of the 

bed, and (f) standing up from the bed.  

Table 1. Radar specifications 

Parameter Value 

Center frequency 61 GHz 

Bandwidth 3 GHz 

Chirp duration 300 μs 

Sampling frequency 1 MHz 

Scan interval 100 ms 
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detections. To evaluate the classification results using the matrix, 

four evaluation metrics (i.e., accuracy, precision, recall, and F1-

score) were calculated, as follows: 
 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = ்௉ା்ே்௉ା்ேାி௉ାிே, (18)

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = ்௉்௉ାி௉, (19)
 𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃𝑇𝑃+𝐹𝑁, (20)
  𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2 × ௉௥௘௖௜௦௜௢௡ ×ோ௘௖௔௟௟௉௥௘௖௜௦௜௢௡ାோ௘௖௔௟௟. (21)
 

(a) (b) 

Fig. 8. Graphs showing the existing and new features with regard to the fall detection error hazard interval for daily motions: (a) sit-up, (b) 

sitting at the front of the bed, (c) moving to the end of the bed, and (d) sitting at the end of the bed. 
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Accuracy is the percentage of cases correctly predicted as true 

and false, precision is the percentage of correct answers that the 

model classified as true, recall is the proportion of actual correct 

answers that the model predicted to be true, and the F1 score is 

the harmonic mean of precision and recall. 

Fig. 9(b)–9(e) present the confusion matrix results for the 

existing and new features. Table 2 shows the SVM and LDA 

results obtained using the two existing features, as well as the six 

existing and new features. In most cases, the performance im-

proved when the new features were added. For instance, exclud-

ing precision, all evaluation metrics exhibited the highest results 

in the classification method that considered the new features. 

(c) (d) 

Fig. 8. Continued. 
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Among the evaluation metrics for the existing features, recall dis-

played low performance. However, when new features were 

added, the performance increased significantly, proving that the 

new features were effective in resolving fall detection errors. 

V. CONCLUSION 

This study aimed to detect falls and reduce detection errors us-

ing FMCW radar. While range maps and Doppler maps have 

been widely used in the past for this purpose, they depict only a 

single feature, thus increasing the probability of fall detection er-

rors. Addressing this shortcoming, this study proposes new fea-

tures that account for complex information using range-velocity 

and range-acceleration maps. These new features are the centroid 

range and range width—factors that have never been considered 

in FMCW radar systems, even for other applications. A scatter 

plot was drawn using experimental data on falls and daily motions 

to verify the distinction between the existing and new features. 

The data were classified using SVM and LDA, after which the 

classification performance was compared using four evaluation 

metrics—accuracy, precision, recall, and F1-score. When consid-

ering the new features, all the evaluation metrics exhibited their 

best performances, except for precision. The increase in recall, 

which represents the proportion of actual correct answers pre-

dicted by the model to be true, proved that the new features were 

effective in resolving detection errors. The proposed features can 

be expected to increase fall detection rates and prevent mishaps 

caused by the alarm not sounding even when an actual fall occurs. 

However, this paper considered only one type of fall motion—

the most popular fall behavior observed in conventional research. 

Since different types of fall motions other than the one consid-

ered in this paper may also occur, future studies must focus on 

accounting for them to ensure accurate detection. 
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