
Design-Trotter: System-Level Dynamic Estimation Task

a �rst step towards platform architecture selection

Yannick Le Moullec1, Jean-Philippe Diguet2, Thierry Gourdeaux2, Jean-Luc Philippe2

1 KOM Department, Aalborg University, DK-9220 Aalborg, Denmark
2 LESTER Laboratory, University of South Brittany, F-56321 Lorient Cedex, France

ylm@kom.aau.dk, jean-philippe.diguet@univ-ubs.fr

Abstract

The objective of this work is to explore the design-space
of digital embedded systems, before the high-level syn-
thesis or compilation steps, in order to converge to-
wards promising architecture-application matchings.
This paper presents the �rst step of the "Design-
Trotter" framework. This step, dedicated to the
system-level design-space exploration, is performed be-
fore the SoC architecture de�nition and consists of
functional and algorithmic explorations of the appli-
cation. The �rst sub-goal of this work is to exhibit all
the available parallelism of the application by means
of an e�cient graph representation. The second sub-
goal is to guide the designer by means of dynamic es-
timates. These estimates are dynamic since they are
represented by parallelism vs. delay trade-o� curves,
where a point represents a possible architecture model
in terms of parallelism options for both processing and
data-transfer operations and also for local memory re-
quirements. This paper presents the original tech-
niques that we have developed and some experiments
that illustrate how the designer can bene�t from our
work to build or select an architecture.
Keywords: system-level, design-space exploration,

functional/algorithmic exploration, metrics, paral-
lelism, SoC.

1 Introduction

This work has been elaborated on the basis of the
following observations. Firstly, the trade-o� between
energy savings, area usage and real-time constraints
required for future embedded systems, for instance
in telecommunications, imposes to optimize the usage
of silicon. The necessary improvements of the e�-
ciency ratios (Mips/Watt and Watt/mm2) can only
be reached through i) the implementation of massive
spatial parallelism, ii) the use of limited clock frequen-
cies and iii) the design of more or less dedicated hard-
ware modules [22]. VLSI technology now enables mas-

sive integration of processing units and fast communi-
cation channels on a single chip [5]. This search for
parallelism and dedicated hardware opportunities con-
stitutes an important task of the design �ow. This task
has to be performed before the complete de�nition of
the target architecture and can be de�ned as system-
level architectural exploration.

Secondly, though we now observe that CAD tools for
co-synthesis and co-simulation have reached a reason-
able degree of maturity, system-level exploration tools
still remain at a research stage [18]. However, fast
estimations based on largely abstract and incomplete
speci�cations (of the application and the architecture)
are vital at system level [10]. Most of existing tools
provide an exploration based on a �xed architecture
(e.g., an embedded processor connected to a FPGA)
and a library of pre-characterized functions (on the el-
ements of the �xed architecture). Such static libraries
usually quantify one software implementation and one
or two hardware implementations. Thus, the architec-
tural exploration is bounded by the �xed function gran-
ularity and limited to hardware/software partitioning.
Clearly, another step has to be performed on top of the
one described above to really guide or parameterize ar-
chitectural choices. The work described in this paper
deals with this step.

The �nal point considers design decisions. It is cru-
cial to get early estimations: �rstly to shorten design
delays, secondly to measure the impact of algorith-
mic choices and transformations rapidly and thirdly to
adapt the subsequent architectural choices to the ap-
plication parallelism. At system-level, we focus on this
type of information by means of logical cycles and algo-
rithmic operations, which are technology independent.
As explained later, the architectural model can then be
detailed in order to produce more accurate estimations
when the target architecture has been chosen.

1

Yannick
Typewriter

Yannick
Typewriter
This is the authors' version of the paper that has been published in the
Journal of Embedded Computing, Volume 1, Number 4/2005, Copyright IOS Press 2005

1.1 Contribution

Our work aims at bridging the gap between the speci-
�cation of a system and the de�nition of a target (or a
set of target) architecture(s) for that system. The ex-
ploration of the solution space for embedded systems
can have di�erent meanings. Our work focuses on the
following aspects:

1. Exhibition and Exploitation of the Parallelism

Parallelism is a key parameter in the design of dig-
ital systems. It has a direct impact on several
performance factors such as execution time, en-
ergy consumption, and area. Therefore we seek
to explore the potential parallelism of an applica-
tion in terms of a) type (data-transfer and data-
processing), b) granularity level, and c) type (spa-
tial, temporal). In our work these aspects are
addressed by means of our graph-based internal
representation (detailed in 3.2.1) and via the time
constrained core of our estimator (used with sev-
eral time constraints). This estimator rapidly pro-
vides dynamic exploration of an application by
means of parallelism vs. delay trade-o� curves
on which a point corresponds to a potential ar-
chitecture. The designer has then access to a set
of solutions from which he can choose the most
promising ones according to his design constraints.
These solutions can then be re�ned and mapped
to technology dependent architectural models, us-
ing the next steps of our �ow [21], [16] or existing
co-design tools. The scheduler uses several new
techniques regarding the resources computation,
load balancing, loop and control estimations as
well as HCDFG estimations. Those techniques are
described in section 4.

2. Target Architecture De�nition

At the system level we assume that the target
architecture is not yet de�ned. Therefore we
can only consider algorithmic operators (operators
performing the operations found in the application
speci�cation) since the goal of our work is to guide
the architecture de�nition. At that level, no direc-
tive related to a speci�c technology is introduced.
For that purpose we use an abstract model to rep-
resent the architecture components (for example
time is expressed in cycles). The model used to de-
scribe this abstract architecture is de�ned in 3.2.2.

3. Impact of Speci�cation Choices

Since the core of our estimation framework is
based on a fast scheduler, the designer can evalu-
ate very rapidly the impact of algorithmic trans-
formations. This feature is very important since it

enables the exploration of several speci�cations for
a given application. This is exempli�ed in section
5.

The rest of the paper is organized as follows. Sec-
tion 2 presents related research work. In section 3 the
framework steps and the models used for the applica-
tion and the abstract architecture speci�cations are de-
scribed. The di�erent points of our approach regarding
the system level estimation step are presented in sec-
tion 4. Section 5 presents experimental results and dis-
cussions related to the di�erent aspects of the method.
Finally we conclude and present some perspectives in
section 6.

2 State of the art

In this section we focus on the system-level exploration
before any architectural de�nition. We do not address
exploration based on hardware/software partitioning,
nevertheless some recent references have been given in
a previous paper [1] regarding real-time systems and in
[19] for recon�gurable architectures.
System-level design-space exploration and platform-

based design have been addressed by previous research
work. In [3], a set of de�nitions and a methodology for
platform-based design are presented. The main goal
of the methodology is to favor design re-use and reg-
ularity in order to cope with increasing development
costs. The design method is based on abstraction lay-
ers named "platforms". Platform components (includ-
ing the architecture which is called "architecture plat-
form") are partially or fully pre-designed. The method
is based on a "meeting-in-the-middle" process where
both speci�cations and abstractions of potential im-
plementations are iteratively re�ned and �nally meet
each others.
ARTEMIS [2] is a modeling and simulation environ-

ment which permits design-space exploration at several
abstraction levels. The methodology consists in map-
ping applications described as Kahn Process Networks
onto an architecture model which is roughly and man-
ually de�ned by the designer in a �rst approach. Both
the application and architecture models are simulated
(based on trace-driven approach). The performance
of the system (represented by the architecture units
workload), which results from the simulation, is then
manually analyzed by the designer in order to perform
HW/SW partitioning and iteratively re�ne the archi-
tecture.
Once the architecture has been de�ned by previous

methods, it can be further re�ned. Platune [24] is a
tool for exploring the con�guration space of parame-
terized SoCs. The method enables all Pareto-optimal
con�gurations in terms of execution time and power to

2

Yannick
Typewriter
This is the authors' version of the paper that has been published in the
Journal of Embedded Computing, Volume 1, Number 4/2005, Copyright IOS Press 2005

be found. This is done by taking into account the de-
pendencies between the SoC parameters such as cache
size and associativity, bus width, bu�er sizes etc.
In DTSE [8], which is dedicated to data-transfer

dominated applications, a complete design-space ex-
ploration is applied in order to gradually de�ne an
area and power e�cient memory organization. The
�rst steps (from pruning analysis to memory hierar-
chy) could be usefully performed before our estimation
framework in order to provide promising memory hier-
archies for data-transfer dominated functions. Regard-
ing the following step, we propose a framework which
is more general and not only focused on data manage-
ment. Moreover the data-transfer scheduling in Atom-
ium (a module of the DTSE methodology) is a force
directed scheduling which is too complex to be used for
fast and dynamic estimations. Finally, the last steps of
Atomium can be pro�table after the platform architec-
tural choice, during the architecture design in order to
optimize memory assignment and in-place data map-
ping.
All the previous methods and tools, except [8], rely

on the designer's experience to de�ne an initial ar-
chitecture which will be further re�ned by means of
design-space exploration. The �rst step of our method
consists in exploring and exploiting the potential par-
allelism of an application. This dynamic exploration is
expressed by means of trade-o� curves on which a point
corresponds to a potential architecture. This is a guid-
ance tool for the designer, which helps him to de�ne
the initial architecture. Therefore our work is comple-
mentary to what already exists and helps the designer
to choose or build an architecture. This architecture
can then be re�ned by existing co-design methods or
by the next steps of our �ow as discussed in [16] and
[21].

3 Design Flow and Models

3.1 Main steps of the design �ow

The ideas presented in 1.1 have been implemented in
our framework called Design-Trotter. Its �ow is de-
picted in Fig.1.

3.1.1 System speci�cation

The system to be estimated can �rstly be speci�ed at
the task level. For example we have used methods and
tools such as Radha Ratan in [1] and Esterel Studio in
[14]. This work is not presented in this paper.
The actual entry point of our work is a task de�ni-

tion speci�ed as a set of C functions. These functions
are parsed into our internal representation, HCDFG,
detailed in 3.2.1. The choice of the C language has

been motivated by the availability of many standard
speci�cations written in C and by the fact that the C
language is still the defacto programming language for
embedded systems. However, our framework is open
and other languages could be considered in the future.

3.1.2 Function characterization

The characterization (point (1) in Fig.1) has two objec-
tives. Firstly, it is used to sort the application functions
according to their criticity. The criticity of a function
is expressed as:

γ =
NB op

CP
where NBop is the sum of data-transfer and process-
ing operations and CP is the critical path. This metric
provides a �rst indication about the potential paral-
lelism of the function. For instance, if γ = 1, there
is hardly any chance of obtaining e�cient hardware
implementations. Secondly, it indicates the function
orientation, i.e., the nature of the dominant types
of operations in that function. By counting tests,
data-transfers and processing operations within the
HCDFG representation we can compute ratios which
indicate the function orientation. These metrics are
detailed in [15].
Once the functions have been characterized they are

estimated. The context of this work is the design of
a heterogeneous SoC architecture with (near) optimal
performance/area and power/area ratios. Because of
the size of the design-space, the estimation process is
divided into two levels: the system level and the archi-
tectural level. The �rst one is performed by the func-
tion estimation step (point (2) in Fig.1) which is based
on an abstract architecture model in order to rapidly
explore a large set of parallelism options. The archi-
tecture model is abstract since it is not yet de�ned and
that system level exploration corresponds to an algo-
rithmic level exploration of the parallelism. The second
one (corresponding to HW and SW projections, (points
(3) and (4) in Fig.1) uses technological libraries to get
accurate estimation results. In this paper we present
the algorithms developed for the system level explo-
ration; information regarding the architectural level
can be found in [21] (hardware projection) and [16]
(software projection).

3.1.3 Function level estimation

High-level synthesis tool use static (i.e., prede�ned) li-
braries that describe atomic components such as multi-
pliers and adders. This is not su�cient for complex ap-
plications. These applications are made of several func-
tional blocks (�lters, transforms, quanti�cation, etc.)
that can be very di�erent in terms of size, power con-
sumption, and cost characteristics. These functional

3

Yannick
Typewriter
This is the authors' version of the paper that has been published in the
Journal of Embedded Computing, Volume 1, Number 4/2005, Copyright IOS Press 2005

blocks are complex enough to justify a dynamic archi-
tectural exploration.
The estimation step (point (2) in Fig.1) is based

on a fast, time-constrained, list scheduler. The esti-
mates produced by this step are dynamic since they are
represented by parallelism vs. delay trade-o� curves.
Each point on a trade-o� curve corresponds to a spe-
ci�c schedule for a given cycle budget. It indicates the
amount of required processing and memory resources
to meet the time constraint and therefore represents a
possible architecture model in terms of parallelism op-
tions for both processing and data-transfer operations.

SELECTION

SET OF FUNCTIONS

PARSER

HIERARCHICAL GRAPHS

FUNCTION

CHARACTERIZATION (1)

POTENTIAL

 SOLUTIONS

SOFTWARE

PROJECTION(4)

SOFTWARE UAR

(eg . ARM10)

HARDWARE

PROJECTION (3)

HARDWARE UAR

(eg . Xilinx

XCV2000E)

(3)

INTRA-FUNCTION ESTIMATION (2)

SYSTEM LEVEL UAR

Tasks Graph

Radha Ratan

(Synopsis - Univ. IRVINE)

Hierarchical FSM (ESTEREL
Technologies)

Figure 1: Design-Trotter design �ow. The parts in the
dotted box are presented in this article.

3.2 Models and De�nitions

3.2.1 Application Speci�cation

De�nitions Each C function of the speci�cation is a
node at the top level of the Hierarchical Control and
Data Flow Graph (HCDFG). A function is aHCDFG.
There are three types of elementary (i.e., non hierar-

chical) nodes, the granularity of which depends on the
granularity of the architectural model de�ned in 3.2.2:
A processing node represents an arithmetic or

logic operation, the granularity of the node depends
on the architectural model: (ALU, MAC, +,-, etc.).
A memory node represents a data-transfer. The

main node parameters are the transfer direction (read
/ write), the data format and the hierarchy level which
can be �xed by the designer.
A conditional node represents a test operation (if,

case, loops, etc.)
Three types of oriented edges are used to indicate

scheduling constraints:
A control dependency indicates an order between

operations without data-transfer, for instance a test

operation must be scheduled before the mutual exclu-
sive branches. The control dependency edges can also
be used to impose a given order between independent
operations or graphs with the intention of favoring re-
source optimization (data-reuse for instance).

A scalar data dependency between two nodes A
and B indicates that node A uses a scalar data pro-
duced by node B.

Amultidimensional data dependency is a data-
dependency where the data produced is no more a
scalar but an array. For instance such an edge is cre-
ated between a loop CDFG reading an array trans-
formed by another loop CDFG.

A DFG is a graph which contains only elementary
memory and processing nodes. Namely it represents
a sequence of non conditional instructions of the 'C'
code.

A CDFG is a graph which represents a test or a
loop pattern with associated DFGs.

A HCDFG is a graph which contains only elemen-
tary conditional nodes, HCDFGs and CDFGs.

Graph creation rules The decomposition principle
is quite simple. The graph is traveled with a depth-
�rst search algorithm. A H/CDFG is created when a
conditional node is found in the next hierarchy level.
When no more conditional nodes are found, a DFG
is built. In order to facilitate the estimation process,
CDFG patterns have been de�ned to identify rapidly
loop, if, etc. speci�c nodes. Another important point
is that the model covers the processing complexity of
the complete application. Thus, the computation of
array indexes (address computation), conditional tests
and loop index evolution are represented with DFGs.
A HCDFG example is given in Fig.14

3.2.2 Architecture Speci�cation

The exploration process is based on a generic load-store
architecture model, de�ned as a parameterizable pro-
cessing unit supplied with data by a parameterizable
memory hierarchy. The exploration process provides
the estimated minimum processing parallelism, band-
width parallelism and memory size required for a given
cycle budget. The type of resources available are de-
�ned in the abstract architecture model. At the system
level, the designer de�nes a set of rules, named "UAR"
(User Abstract Rules). The processing part is charac-
terized by the type of available resources: ALU, MAC,
etc. and the operations they can perform; a number of
cycles is associated to every type of operator. Regard-
ing the memory part, the user de�nes the number of
levels (Li) of the hierarchy and the number of cycles
(li) associated for each type of access. In Fig.2, four

4

Yannick
Typewriter
This is the authors' version of the paper that has been published in the
Journal of Embedded Computing, Volume 1, Number 4/2005, Copyright IOS Press 2005

levels are considered. The register level L0, two cache
levels L1 and L2 and a main memory L3.

Fig.3 shows an example of two User Abstract Rules
�les. The �rst one (left) is the initial �le where all re-
sources have a latency equal to one cycle. When the
designer starts to re�ne the architectural model (using
results given by the system level estimation), he can
add new types of resources or specify resource laten-
cies like in the second �le (right). Thus the designer
may improve his analysis by means of system level es-
timation.

Cache 2

Cache 1

R

L3 	l3

L1 	l1

L2 	l2

CDFG

N1
EGT

L0 	l0

Level Cycles

 Main memory

Figure 2: Memory hierarchy model

<LIBRARY> system
<OPERATOR> Alu

<OPERATIONS>
"+","-","*","/",
"<=","=","!=",">="

<ENDOPERATIONS>
<ATTRIBUTES>

latency:cycle:=1
datawidth:INT:=8

<ENDATTRIBUTES>
<ENDOPERATOR>
<OPERATOR> Mac

<OPERATIONS> "*+"
<ENDOPERATIONS>
<ATTRIBUTES>

latency:cycle:=1
datawidth:INT:=8

<ENDATTRIBUTES>
<ENDOPERATOR>

/* MEMORY */
<MEMORY> RAM_DP

<ATTRIBUTES>
access_mode:=rw
latency_read:cycle:=1
latency_write:cycle:=1

<ENDATTRIBUTES>
<ENDMEMORY>

<ENDLIBRARY>

<LIBRARY> system
<OPERATOR> Alu

<OPERATIONS>
"+","-","*","/",
"<=","=","!=",">="

<ENDOPERATIONS>
<ATTRIBUTES>

latency:cycle:=2
datawidth:INT:=32

<ENDATTRIBUTES>
<ENDOPERATOR>
<OPERATOR> Mac

<OPERATIONS> "*+"
<ENDOPERATIONS>
<ATTRIBUTES>

latency:cycle:=3
datawidth:INT:=32

<ENDATTRIBUTES>
<ENDOPERATOR>

/* MEMORY */
<MEMORY> RAM_DP_LEVEL_1

<ATTRIBUTES>
access_mode:=rw
latency_read:cycle:=1
latency_write:cycle:=2

<ENDATTRIBUTES>
<ENDMEMORY>
<MEMORY> RAM_DP_LEVEL_2

<ATTRIBUTES>
access_mode:=rw
latency_read:cycle:=2
latency_write:cycle:=3

<ENDATTRIBUTES>
<ENDMEMORY>

<ENDLIBRARY>

Figure 3: UAR �le examples (left: �rst approach; right:
re�nement)

In this paper we focus on performing the design
space exploration before the architecture selection. For
this, we use a generic architecture model based on
an algorithmic-level UAR. Regarding the subsequent
architectural-levels of Design-Trotter, HW and SW
UAR models are used (cf. Fig.1). They provide ac-
curate execution time and area information; these li-
braries are obtained either by synthesizing operators on
speci�c FPGAs or, when a software projection is per-
formed [16], by using the processor speci�cation tool
Armor [7] which enables execution delays and depen-
dencies between instructions to be indicated accurately.

4 System Level Estimation

In this section we present the di�erent points of the sys-
tem level estimation. Firstly, we introduce some mem-
ory considerations and de�ne the Data Reuse Metric
(DRM). Then we present the sub-steps of the estima-
tion process : DFGs estimation by means of scheduling
(guided by the DRM metric), CDFGs estimation for
loop and control structures and HCDFGs estimation
by means of combination techniques.

4.1 Memory features

4.1.1 Introduction: local/global accesses

A key point in the following sections is the notion of
local and global accesses from a graph point of view.
We have distinguished several types of memory nodes:

• N1: data identi�ed as inputs/outputs of a graph ;

• N2: temporary data produced by internal process-
ings ;

• N3: input data reused in a graph (N1 subset);

• N4: accumulation data annotated with pragmas
during the speci�cation.

Without any architectural assumption we consider a
"graph-based" hierarchy as a systematic analysis sup-
port. A node is called local if it is internal to a graph
and is called global if it is external to the graph (i.e.,
it represents an I/O of the graph). N1 data are al-
ways global, N4 data always local, N2 and N3 data are
initially local but can generate Extra Global Trans-
fers (EGT). The DRM metric gives the global/local
accesses ratio. A local access which produces a mem-
ory con�ict (when the local memory is full) involves a
global read and write operations, thus the number of
extra global accesses is β×EGT where β is the average
number of cycles required to access to the global mem-
ory. In the case of a single main memory which requires
only one cycle per access β = 2 (read plus write).

5

Yannick
Typewriter
This is the authors' version of the paper that has been published in the
Journal of Embedded Computing, Volume 1, Number 4/2005, Copyright IOS Press 2005

Our framework currently focuses on data-transfer
and processing parallelism exploration. The estima-
tion of the memory size is not the objective of our
work. However, we may need some information about
the memory organization in order to quantify data ac-
cesses. Firstly, we have introduced a technique for data
reuse quanti�cation before design space exploration, it
is detailed in (4.1.2). Secondly, as summarized in 4.1.3,
we have added a fast and simple local and background
memory estimation technique.

4.1.2 Data Reuse Metric (DRM)

In order to guide the analysis of the functions and
the scheduling of the DFGs, we have de�ned a met-
ric called DRM: Data Reuse Metric. This metric takes
into account the local memory size, which has to be
�xed or estimated. Given the abstraction level of the
method, accurate temporal estimations are not essen-
tial. In fact, the distribution of memory accesses over
the time (expressed in logical cycles) is su�cient to
compare several solutions. Moreover, as we want to
obtain the estimates rapidly, methods such as clique
coloring have been discarded.
We use average data lifetime to estimate the quantity

of data alive in each cycle, from which the minimum
memory size can be derived. The minimum and maxi-
mum data-life of data d are de�ned as follows:

MinDL(d) = ASAP (dn)−ALAP (d1) + 1

MaxDL(d) = ALAP (dn)−ASAP (d1) + 1

where ASAP and ALAP are the earliest and latest
scheduling dates , respectively; d1 and dn the earliest
and the latest read access to data d for a given time
constraint, respectively. The average data-life of data
d is then given by:

AvDL(d) =
1

2
(MinDL(d) +MaxDL(d))

Finally, the number of data alive per cycle is given by:

AAD =
1

T

∑
d

AvDL(d)

where T is the number of cycles allocated to the esti-
mated function. The number of local transfers turning
into global transfers because of a too small local mem-
ory is given by:

EGT =

{
(AAD − UM)T if AAD > UM

0 otherwise

where UM is the local memory sized. UM can be
de�ned by the user, its default value is AAD.
If we consider the memory hierarchy given in Fig.2

with the following characteristics, L1: l1 = 1, L2: l2 =

2, L3: l3 = 3, and if MRi is the miss ratio of the cache
level i, then:

β = 1.(1−MR1) + 2.MR1.(1−MR2) + 3.MR1.MR2

If we generalize to K levels of hierarchy, we obtain:

β =

K∑
k=1

lk.(1−MRk).

K−1∏
j=1

MRj

Finally the DRM metric is obtained as follows:

DRM =
N1 + β.EGT

N1 +N2 +N3 +N4

Remark: Note that for a given DFG the data-transfer
scheduling is independent from the cache technique
(write back, write through). However in the context
of power estimation, transfers between cache and main
memory must be taken into account [23].

4.1.3 Memory size estimation for loop-CDFGs

This not the main focus of this paper, however it is
necessary to explain how we consider memory size es-
timation for the bandwidth and processing parallelism
estimations. The memory space is divided into parts,
the �rst one is the local memory (L0) that represents
the memory space required to supply the processing
unit with data for a given cycle budget. Without any
space constraints, the local memory size is increased or
decreased during the scheduling process according to
the application requirements. Data-reuse is considered
since a data is assumed to be available in local mem-
ory during its span life, namely between from its �rst
read until its last write. As scheduling is performed
with polynomial algorithms, we obtain a very fast lo-
cal memory size estimation. In another mode of use,
the user can specify a maximum value for the memory
local memory size; in such a case, when the limit is
reached, some extra cycles are added during schedul-
ing depending on the number of cycles associated with
the memory level L1.
The second memory aspect concerns the background

memory (Li levels with i > 0). The designer can choose
a memory hierarchy for each loop-oriented function of
the application and then associate a cycle budget for
each type of access. This memory hierarchy decision
could stem from a high level memory management as
explained in [23].
We have implemented a simple and fast method that

consists in considering a single level background mem-
ory with a size equal to the sum of declared arrays.
Moreover, each loop-CDFG is characterized by the size
of input and output arrays in order to provide memory
hierarchy candidates. The access delays (cycles) are de-
cided by the designer (the default value is one cycle).

6

Yannick
Typewriter
This is the authors' version of the paper that has been published in the
Journal of Embedded Computing, Volume 1, Number 4/2005, Copyright IOS Press 2005

As a result, an histogram provides the designer with the
memory size for each data-type (byte, long, etc.). Some
more accurate values can also be obtained at the sys-
tem level: we have also implemented the background
memory estimation method based on polyhedra com-
putation detailed in [6] and [17]. This work has been
performed with the Polylib library from IRISA [9], that
has been adapted to our HCDFG graph. Regarding
this point, it appeared that the HCDFG structure was
particulary e�cient to retrieve the assignment order
and the index computation since each array access is
enclosed in one or more loop-CDFG where informa-
tion like loop bounds and index evolutions are speci-
�ed. However, this technique has limitations that can
be awkward in the context of design space exploration.
Firstly, it implies to choose a sequential execution in
the case of parallel loops and, as explained later, our
method tries to use the available parallelism when nec-
essary. Secondly it cannot produce optimized results
when the evolution of array indexes is data-dependent.
Such an example can be observed in section 5 from the
object motion detection application where accesses to
the array TabEqui[] depend on the data from CharLa-
bel[]. Background memory estimation is better used
as a �rst design step to tune array sizes and �xe loop
ordering by introducing arti�cial loop dependencies if
necessary. As a result, a �rst memory organization is
obtained and can then be re�ned with the memory hier-
archy decision step based on data reuse optimization.
In a global and complete design �ow, our estimation
framework, based on loop dependencies and array size
declarations can then take bene�t from these two �rst
steps.

4.2 Adaptive DFG Estimation

4.2.1 Scheduling principle

With the information contained in the graph and the
designer rules (UAR), the goal of the method is to min-
imize the quantity of resources and the bandwidth re-
quirement for several time constraints.

The scheduling principle is a time-constrained list-
scheduling heuristic where the number of resources of
type i allocated at the beginning is given by the lower
bound:

Nb resource type i = dNb operations type i

T
e

The method includes three sub-algorithms: processing
�rst, data-transfer �rst and mixed.

Scheduling �rst the most critical type of operations
enables a reduction of the quantity of resources used
for that type; this implies further constraints for the
scheduling of the other type. The type of algorithm

to be applied can be selected by the designer or auto-
matically chosen by our tool thanks to the DRM met-
ric. Functions with high DRM values are data-transfer
oriented, whereas functions with low DRM values are
processing oriented. De�ning precisely the boundaries
between the di�erent orientations is not a trivial task
and we are currently working on this aspect.

Processing �rst and data-transfer �rst algorithms are
used for processing and data-transfer oriented func-
tions respectively. For each cycle the average number
of resources (resp. buses) is computed and the pro-
cessing (resp. memory) nodes are scheduled. Then
ASAP and ALAP dates of memory (resp. processing)
nodes are updated according to the scheduling dates of
the processing (resp. memory) nodes. Finally memory
(resp. processing) nodes are scheduled, using the same
average computation technique.

However, traditional architectural synthesis ap-
proaches based on the dissociation memory/processing
are not always adapted to all cases. Indeed, for some
cases, it is necessary to handle processing and mem-
ory scheduling simultaneously (usually when memory
transfers and processing are balanced). The third algo-
rithm, named "mixed", is used when it is not possible
to de�ne the function orientation precisely. In this case,
both memory and processing nodes are handled with
the same priority. As with the two other algorithms,
the average number of resources is computed for every
cycle and nodes are scheduled according to their prior-
ity (which is a function of the nodes ASAP and ALAP
dates as well as their mobility).

In order to minimize the quantity of necessary re-
sources and to favor reuse, new techniques have been
employed. These are described in the following sec-
tions.

4.2.2 Online Average Resource Computation
(OARC)

Heuristics such as list-scheduling allow rapid computa-
tion of the resource/delay trade-o� curves. However,
heuristics may lead to the rejection of locally optimal
solutions. Therefore, because of data dependencies, the
quantity of resources which has been allocated at the
beginning of the scheduling process is not su�cient,
new ones are allocated during scheduling, but will not
be used optimally. To minimize over-allocation of re-
sources, we propose computing the average number of
resources for every cycle while scheduling (complexity
O(1)) in order to "smooth" the trade-o� curves. The
average number of resources of type i at cycle Cj is
computed as follows:

Nbavg Ri(Cj) = dNRNi(Cj)

NRC(Cj)
e

7

Yannick
Typewriter
This is the authors' version of the paper that has been published in the
Journal of Embedded Computing, Volume 1, Number 4/2005, Copyright IOS Press 2005

where Nbavg Ri is the average number of resources of
type i, NRNi the number of remaining nodes using
resources of type i and NRC is the number of remain-
ing cycles. The example in Fig.4 (schedule of a DCT)
shows how the OARC method saves two memory ac-
cess resources. Memory nodes are white and process-
ing nodes are grey. In case (A) the average number
of memory access resources is computed only once and
equals 1 (d 23

24e). Memory nodes are therefore scheduled
using this resource. As long as the nodes mobility is
di�erent of 0 no extra resource is allocated. At cycle
24 there are 4 memory nodes remaining, the mobility
of which equals 0. As 3 extra resources are allocated
and used during one cycle only, they are not e�ciently
used. In case (B) scheduling is performed using the
OARC technique. The �rst part of the resulting sched-
ule is identical to the previous case. The di�erence
appears at cycle 18 where the average number of mem-
ory access resources equals 2 (d 8

7e). So at cycle 18
one extra memory access resource is allocated and is
used more e�ciently than the 3 others in the previous
case. In case (A) the total number of resources equals
6 (2 processing resources + 4 memory access resources)
whereas in case (B) this number equals 4 (2 processing
resources + 2 memory access resources).

4.2.3 The "draw pile"

This technique is applied for processing �rst and data-
transfer �rst algorithms. Once processing nodes or
memory nodes have been scheduled, some non-used cy-
cles can remain, (i.e., the execution time is shorter than
the time constraint). These cycles located at the end
of the schedule are collected in a "draw pile". While
scheduling memory access or processing nodes respec-
tively, it is possible to "pick" free cycles in the pile, in
order to shift the nodes for which the number of re-
sources is not su�cient. Once the processing or mem-
ory access schedule has been obtained, it cannot be
modi�ed. The only possible variation is to shift a set of
scheduled nodes to the "right" by taking advantage of
the freedom o�ered by the "draw pile" while maintain-
ing their relative ordering. The example in Fig.5 de-
picts how this technique works: the data-transfer �rst
algorithm is used with a time constraint equal to 22
cycles. Firstly, (A), the memory nodes are scheduled
using two resources (d 23

22e). Then, (B), the processing
nodes are scheduled using 4 resources and 10 cycles
(13 to 22) are not used. When the "draw pile" tech-
nique is applied, (C), it is possible to shift the memory
nodes schedule to the right thus enabling the insertion
of some processing nodes. Then only one processing
resource is needed instead of four previously.

4.3 CDFG Estimation

4.3.1 Loop scheduling

The general scheme used to estimate a loop is as fol-
lows: 1) the three parts of the loop (evaluation, core
and evolution) are estimated using DFG scheduling and
CDFG combinations (cf. 4.4). 2) the loop "pattern"
is estimated by performing a sequential combination of
the three parts. 3) the whole loop is estimated by re-
peating N times the loop pattern (with N the number
of iterations). However, in order to explore fully the
available parallelism we have developed techniques to
unfold loops.

4.3.2 Loop exploration

Unfolding loops permits exposure of the potential par-
allelism and thus also allows a reduction of the function
critical path. This can be helpful to successfully sched-
ule a function in a given time constraint. However,
unfolding a loop is limited by data dependencies. We
distinguish two types of dependencies: 1) memory de-
pendencies, and 2) data-�ow (a.k.a true) dependencies.

Memory dependencies This type of dependency
can be eliminated by using structural transformations
as depicted in Alg.1. In the general case, a loop of size
N , unfolded L times, is transformed into a L branches
tree and its critical path is given by:

CPL = dN
L
e+ dLog2(L)e

Algorithm 1 Memory dependencies elimination: ex-
ample

y(k) = 0
for i = 0 to N - 1 do
y(k) = y(k) + aix(k - i)

end for

can be re-written as:

y1(k) = 0
y2(k) = 0
for i = 0 to N

2 − 1 do
y1(k) = y1(k) + aix(k - i)
y2(k) = y2(k) + a

i+N
2
x(k - (i + N

2))

end for
y(k) = y1(k)+y2(k)

8

Yannick
Typewriter
This is the authors' version of the paper that has been published in the
Journal of Embedded Computing, Volume 1, Number 4/2005, Copyright IOS Press 2005

cycles

x0 x1

p0

x6 c3 x3

p1

x4 c7 x2

p2

x5 c5 c2

p3

c6

p4 p6

c4 p7 p5

a1

y7

a4

p9

a2

y6

a0 a3

Ressources

1

y5

y0

y1

y2

y4

y3

cycles

p0

x6 c3 x3

p1

x4 c7 x2

p2

x5 c5 c2 c6

p4 p6

c4 p5

a1

y7

a4

p9

a2

y6

a0

y5

a3

y1

y0

y3

y2

y4

1

p11

p11 p10 p8

12 24

12 24

p3

p7 p10 p8

Ressources

(B)

c1

(A)

c1x7 x1x0

x7

Figure 4: The OARC technique: (A) scheduling without the OARC technique, (B) scheduling with the OARC
technique, which saves 2 memory access resources. (Memory accesses (x's and c's) are represented by white
boxes, processing nodes (p's and a's) are represented by grey boxes)

1

x0

x7 x1

c3

x6 x4

c5

c7

x5x3

x2 c6

c2 c4 y0

y4

y6

y7

y1

y2

y3

y5

cycles11

x7 x1

c3

x6 x4

c5

c7

x5x3

x2 c6

c2 c4 y0

y4

y6

y7

y1

y2

y3

y5

cycles

p0 p1

p4

p2 p3 p5

p7

p6

p8

p9

p11

p10

a0

a1

a2

a3

a4

x7

c1

x1 x6 x4

c5

c7

x5x3

x2 c6

c2 c4

cycles

p0 p1 p2 p3

1

11

11

p4p6 p5 p9

22

22

22

y6

y7

y1

y2

y3

y5

p10 p11 y0

y4

p8 a2 a0 a1

a4 a3

A) Memory accesses scheduling

B) Processing scheduling without the "draw pile"

C) Processing scheduling with the "draw pile"

"draw pile"

1

c1

c3

p7

Resources

Resources

Resources

c1x0

x0

Figure 5: The draw pile technique: (A) memory accesses are scheduled, (B) processing nodes are scheduled
without the "draw pile" technique and (C) processing nodes are scheduled with the draw pile technique, which
saves 3 processing resources (Memory accesses (x's and c's) are represented by white boxes, processing nodes
(p's and a's) are represented by grey boxes)

9

Yannick
Typewriter
This is the authors' version of the paper that has been published in the
Journal of Embedded Computing, Volume 1, Number 4/2005, Copyright IOS Press 2005

Data-�ow dependencies For data-�ow dependen-
cies, researches usually focus on the unfolding factor α
necessary to obtain the optimal rate (i.e., the unfolding
factor which maximizes the throughput). In [4], it is
shown that α can be computed as:

αmgpr = dTmaxPGCD(∆cr, Tcr)

Tcr
e ∆cr

PGCD(∆cr, Tcr)

where Tmax is the latency of the slowest operator, ∆cr

the number of delays and Tcr the accumulated latency
of the critical cycle.
Our problem is di�erent, we have to �nd the mini-

mum unfolding factor to schedule a loop respecting a
time constraint T . Therefore, we have re-formulated
the problem as: if a loop requires T” to be scheduled
without unfolding, we must �nd the unfolding factor to
gain G = T”−T cycles. We can show that the number
of cycles obtained after unfolding a loop with a factor
α is computed as:

T” =
T + (α− 1)dmin

α

where

dmin = dmaxcycles(
Tcr
∆cr

)e

Finally the unfolding factor α to gain G cycles is given
by:

α =
1

1− G
T−dmin

The main points of our loop management policy
are: i) loop unfolding is included in the trade-o�
curves computation as a solution to reach resource
lower bounds, ii) data-�ow and memory dependencies
are both considered whereas they are usually imple-
mented in frameworks dedicated to di�erent applica-
tion domains and iii) the unfolding factor is computed
with the aim to meet time constraints instead of �nding
the optimal rate.

4.3.3 Control Scheduling

This section explains how control constructs (i.e., CD-
FGs) are estimated. DFG cores contained in CD-
FGs are estimated as explained in the previous sec-
tion. We have to deal with two types of control: i)
non-deterministic control (tests which are not solvable
during compilation or synthesis [11]) and ii) deter-
ministic control (bounded loops and tests which can
be removed). Here we present our method for non-
deterministic control. We have to deal with two cases:
equiprobable and non-equiprobable branches. Control
management consists in allocating the necessary re-
sources to execute the branches and to schedule these
branches with the aim of favoring resource reuse. We
use application pro�ling to obtain branches visit prob-
abilities.

Equiprobable branches: 1) Compute average re-
source quantity for all the branches (as well as memory
size if it has not been de�ned by the user).
2) Allocate resources according to the MAX values (be-
tween all the branches).
3) Schedule the branches, starting with the most criti-
cal one. If the number of resources is not su�cient new
resource allocation is allowed.

Non-equiprobable branches: 1) Consider two
branches a and b with probabilities Pa and Pb which
are non-equiprobable (e.g., Pa� Pb). First a is sched-
uled, i.e., the most probable (and not the most critical)
one. This results in a schedule of length T (equal to
the time constraint Tc).
2) Then the other branch is scheduled reusing the re-
sources allocated for the �rst one (for non-equiprobable
branches we do not increase resources if their type is
already present in the �rst branch). This resource con-
strained scheduling results in a schedule of length T'.
If T ′ ≤ T then the schedule obtained is considered as
valid. If T ′ > T then we need to allocate more time
to the second branch (as we do not want to allocate
more resources). As the probability of going through
branch a is much higher than for branch b, we try to
reduce the scheduling length T to "save" cycles that
can be allocated later on to branch b. In this case, the
respect of the time constraint is considered globally,
i.e., the cycles which are saved on the most probable
branch will be used to enable the respect of the time
constraint for the second branch. The time constraint
is considered more important than the cost of the ex-
tra bu�er required to absorb the heterogeneousness of
path delays. The number of passages through a is equal
to Pa × N , where N is the number of iterations. In
∆T × Pa × N the b branch can be executed Pi × N
times (∆T = T ′ − T). Thus we must schedule branch
a within T” such as: T” = T − d ∆T

Pa/Pbe.
3) However, reducing T may lead to increase resources
for branch a. In that case, we select the solution which
minimizes the number of resources required to perform
the function with respect to the time constraint Tc (i.e.,
reduce or not T for branch a).

4.4 HCDFG Combination

The estimation process for a complete function is hi-
erarchical. Firstly, the lowest levels (DFGs) are esti-
mated by means of adaptive scheduling, OARC and
draw pile (4.2.1). Then CDFGs are estimated, using
the loop and control patterns as described previously
((4.3)). Finally combination rules are applied in order
to estimate sequential and parallel executions (which
permits to estimate hierarchy patterns).

10

Yannick
Typewriter
This is the authors' version of the paper that has been published in the
Journal of Embedded Computing, Volume 1, Number 4/2005, Copyright IOS Press 2005

During this bottom-up approach, the combination
order is guided by the criticity metric (cf. 3.1.2): when
three or more elements have to be combined, the two
most critical ones are combined �rst and so on. More-
over, we want to produce the estimates very rapidly in
order to explore large design-spaces. So, considering
the important number of points in each trade-o� curve
we cannot apply an exhaustive search of the Pareto
points like in [20]. Instead, we use a technique based
on CDFGs trade-o� curve peculiar points (PP). A pe-
culiar point corresponds to a solution for which the
cost in terms of resources decreases for a given time
constraint. A peculiar point is noted PP and the set
of peculiar points for a graph x is noted PPGx[]. Note
that the term resource is then is used for processing
units, data transfers and local memories.

4.4.1 Sequential CDFGs

The method used to estimate sequential CDFGs is
illustrated in Fig.6 where the trade-o� curve of the
global CDFG1-2 is optimally built while combining the
trade-o� curves of the sequential CDFG1 and CDFG2.

4
3
2
1

4
3
2
1

4
3
2
1

resources
* * *

* * * * * *

* * * * * * * * * *
*

25 28 34 44 cycles

CG

CDFG 1

CDFG 2

resources

* * *

* * * *
* *

* * *

15 18 20 24 cycles

CDFG 1

CDFG 2

* * * *

* * * * * *
* *

resources

10 14 20 cycles

Figure 6: Sequential CDFGs combination.

The minimum execution time of the sequence
[CDFG1 then CDFG2] is given by tmin =
tmin(CDFG1) + tmin(CDFG2) = 25. The algorithm
�rstly selects the CDFG with the highest cost in terms
of resources (resources which can therefore be reused
by the second CDFG). Then the next peculiar point

of the selected CDFG is processed and the second
point of the global CDFG trade-o� curve is created
for a constraint which is demonstrated in this example:
t2 = t2ndPP (CDFG1)+tmin(CDFG2) = 18+10 = 28.
Then, the process is iterated until the minimum (1
resource or a lower bound �xed by the designer) is
reached. The algorithm is presented in Alg.2, it's com-
plexity is O(n) with n the number of peculiar points.

Algorithm 2 Sequential CDFGs combination

algorithm
PPG1[1..maxIndex1]: Peculiar Points of graph 1
PPG2[1..maxIndex2]: Peculiar Points of graph 2
PPCG[1..maxIndexG]: Peculiar Points of the combined graph
PPCG[1]← PPG1[1]+PPG2[1]
indexCG← 1 index1← 1 index2← 1
t1← PPG1[1]
t2← PPG2[1]
tmax← PPG1[maxIndex1]+PPG1[maxIndex2]
t← PPCG[1]
while t≤Tmax do

indexCG++
if G1[PPG1[index1]]>G2[PPG2[index2]] then

t1← PPG1[index1+1]
index1++

else if G1[PPG1[index1]]<G2[PPG2[index2]] then
t2← PPG2[index2+1]
index2++

else
if G1[PPG1[index1+1]]>G2[PPG2[index2+1]] then

t1← PPG1[index1+1]
index1++

else
t2← PPG2[index2+1]
index2++

end if
end if
CG[t1+t2]← MAXj=1;2[Gj[PPGi][ij]]
PPCG[indexCG← t1+t2]

end while

4.4.2 Parallel CDFGs

The method used to estimate parallel CDFGs is il-
lustrated in Fig.7. In the case of concurrent CD-
FGs, an important issue is that CDFGs can share re-
sources in a given cycle. The minimum cycle budget
is tmin = [MAX[PPG1[1], PPG2[1]]. The algorithm
principle is to select the CDFG with the maximal cost
and to extend its cycle budget to its next PP. Then
a fusion of scheduling pro�les (a trade-o� point corre-
sponds to a speci�c scheduling result) of both CDFGs
is performed and the maximal value gives the Y point
of the global CDFG trade-o� curve. Thus, the algo-
rithm pointer jumps between the PPs of both CDFGs
while always selecting the CDFG with the highest cost.
The algorithm is detailed in Alg.3. There are possible
optimizations: i) with or without pro�le fusion (in the
later case resource sharing is not taken into account
for each cycle), ii) fusion with or without taking into
account graph mobility (relatively to each other). Here
we consider pro�le fusion without mobility. Note that
pro�le fusion increases the estimation complexity; this

11

Yannick
Typewriter
This is the authors' version of the paper that has been published in the
Journal of Embedded Computing, Volume 1, Number 4/2005, Copyright IOS Press 2005

option can be de-activated if speed is the main con-
cern. The algorithm complexity is O(N.T) if the fusion
option is used and O(N) otherwise, with N the number
of PPs and T the average time constraint.

4
3
2
1

resources CG

7
6
5

*

* * *
* *

* * * *

15 16 17 18 19 20 21 22 23 24 cycles

resources

CDFG 1 CDFG 2

* * *

resources

10 14 20 cycles

4
3
2
1

4
3
2
1

15 18 20 24 cycles

* * *
* * * *

* *

* * * *
* * * * * *

* *

CDFG1

CDFG2

Figure 7: Parallel CDFGs combination, without pro�le
fusion.

5 Experimental Results

Our framework has been implemented in a Java tool
named Design-Trotter. Some views of the tool are
shown in Fig.8 where (A) is the result window for the
hierarchy level selected in the HCDFG structure avail-
able in (B). In (A) the designer gets dynamic resource
estimations including processing units, data accesses,
the local memory size, loop unrolling factors and the
DRM for each Pareto cycle budget between the crit-
ical path and the completely sequential solution. In
(B) the designer can select any graph or subgraph of
the application. In window (1), the designer selects a
solution, namely a cycle budget (T = 8136) for a given
sub-graph IF#2. This action induces the opening of
the estimation windows for the sub-graphs (2),(3) and
(4) with an indication about the cycle budget that have
been selected in sub-graphs (2),(3) and (4) to compute
the solution selected in (1). Finally, when DFG (5) is
reached then the associated schedule is provided.
In order to illustrate our methodology and the tech-

niques discussed in the previous sections, we have ex-
perimented with several examples which are now dis-
cussed.

5.1 Adaptive DFG Scheduling

The di�erent scheduling algorithms have been applied
to the Lee DCT example (Fig.9), for several time con-

Algorithm 3 Parallel CDFGs combination

algorithm
PPG1[1..maxIndex1]: Peculiar Points of graph 1
PPG2[1..maxIndex2]: Peculiar Points of graph 2
PPCG[1..maxIndexG]: Peculiar Points of the combined graph
Gi[k,1..k] profile of graph i (from 1 to k cycles) for
trade-off curve of time constraint k
tmin← MAX[PPG1[1];PPG2[1]]
tmax← MAX[PPG1[maxIndex1];PPG1[maxIndex2]]
t←tmin
indexCG← 1 index1← 1 index2← 1
while t≤Tmax do

max← 0
mobility,j ←index-extension
for c=1 TO t do
CG[indexCG,c]← G1[t,c]+G2[t,c]
if CG[indexCG,c]>max then
max← CG[indexCG,c]

end if
end for
CG[t]← max
PPCG[indexCG]← t
if PPG1[index1+1]<PPG2[index2+1] then
t← PPG1[index1+1]
index1++

else
t← PPG2[index2+1]
index2++

end if
indexCG++

end while
cost← CG[indexCG-1]
if cost>1 then

t← number of operation
end if
while cost>1 do
max← 0
for c=1 TO t do
CG[indexCG,c]← G1[t,c]+G2[t,c]
if CG[indexCG,c]>max then
maw← CG[indexCG,c]

end if
end for
cost← max
t++

end while
CG[indexCG]← 1
PPGC[indexCG]← t

/*************************************/
/***********Index Extension***********/
if ∃ PPGk[indexk]<tmin with k∈1,2 then

if ∃ j>indexk such as PPk[j]<tmin then
indexk ←j

end if
end if
/*************************************/

12

Yannick
Typewriter
This is the authors' version of the paper that has been published in the
Journal of Embedded Computing, Volume 1, Number 4/2005, Copyright IOS Press 2005

Exploration parameters

HCDFG structure

Library selection for
archi. projection

 Resource vs cycle budget Trade off curves at each HCDFG level

Alu
Mult
Mem Writes
Mem Reads
Rom Reads
Mem Accesses

DRM
Local Mem Size

Unrolling

Cycles Budget
Max : All Sequential pathMin : Critical path

A

B

The Tool provides the links towards
the relative solutions at lower levels

At a the lowest Level a Scheduled is provided :

1st a given hierarchy level is considered
for HW implementation: e.g. Graph IF#2

A particular point is selected, T = 8136
cycles. Question : which delays have to
be allocated to its sub-graphs ?

Processing unit

Mem Access

Allocated Resources

Cycles

 3

 2

1

O 1 2 3

①

②

③

④

① ②
③
④

⑤

Figure 8: Design-Trotter User Interface

straints. The results (delay/resources trade-o� curves)
presented in Fig.10 to Fig.12, enables the comparison
of the amount of processing and data-transfer resources
for 4 scheduling algorithms. Indeed, apart from the
three scheduling algorithms ("processing �rst", "mem-
ory �rst" and "mixed"), we have implemented the
Force-Directed Scheduling (FDS) algorithm (with a
"mixed" approach) in order to compare and tune our
algorithms to existing work. The memory size can be
�xed by the designer in order to compare several al-
gorithms with several time constraints while achiev-
ing a schedule within the critical path time constraint.
In this example, the local memory size chosen equals
8 data. In fact, the designer has also the possibility
to enable the in�nite local memory size option of our
tool. In that case the tool saves the peak value during
the scheduling of the requested local memory size and
hands it out to the designer.

Figure 9: Lee algorithm for the DCT computation

0

2

4

6

8

10

12

14

7 9 11 13 15 17 19 21 23 25 27 29 31 33

Cycles

B
u
s
 R

e
s
o
u
rc

e
s

Mix

Memo 1st

Proc 1st

FDS

Figure 10: Comparison of the scheduling algorithms:
data-transfer resource trade-o� curve obtained for a
local memory size equal to 8

Regarding our case study (Figs. 10, 11, 12) the �rst
observation that can be made is that although the FDS
scheduling algorithm gives good results, its computa-
tional time is prohibitive in the context of system-level
design-space exploration. Indeed, 50 minutes were nec-

13

Yannick
Typewriter
This is the authors' version of the paper that has been published in the
Journal of Embedded Computing, Volume 1, Number 4/2005, Copyright IOS Press 2005

0

1

2

3

4

5

6

7

8

9

7 9 11 13 15 17 19 21 23 25 27 29 31 33

Cycles

P
ro

c
e

s
s
in

g
 r

e
s
o

u
rc

e
s

Mix

Memo 1st

Proc 1st

FDS

Figure 11: Comparison of the scheduling algorithms:
processing resource (ALU + MAC) trade-o� curve ob-
tained for a local memory size equal to 8

0

0,2

0,4

0,6

0,8

1

0 10 20 30 40

Cycles

D
R

M

DRM

Figure 12: DRM metric evolution for a local memory
size equal to 8

essary to compute the 28 points of the trade-o� curve
with the FDS algorithm whereas only 0.6 seconds (both
on a 1Ghz Pentium III) have been necessary with the
three algorithms that we have presented previously.

With regard to the three other scheduling algo-
rithms, the following remarks can be made. When
DRM values are high the function is data-transfer ori-
ented, in this case with a local memory size equal to 8
and for tight time constraints (from 7 cycles to 19 cycles
in Fig.11) the memory �rst algorithm enables a reduc-
tion of data-transfer resources thanks to its scheduling
order. For lower DRM values the function is process-
ing oriented. In this case, the processing �rst algo-
rithm minimizes processing resources (from 19 cycles
to 26 cycles in Fig.10). Moreover, processing operation
regularity can lead to a measure of data-transfer regu-
larity (as in this example), in such cases the processing
�rst algorithm can perform better than the mixed al-
gorithm. Finally, when neither memory size nor time
constraints are hard, the mixed algorithm takes advan-
tage of its �exibility, i.e., it is not worth scheduling one
type of node before an other one (from 27 cycles to 34
cycles in Fig.11 and Fig.10).

5.2 CDFG Estimation: loops

Algorithm 4 Adaptive filter example

y = 0
for i=0 to 1023 do

y = h(i)× e(k − i) + y
end for

s(k) = y
adapt = 2µ× (yt− y)
h(0) = h(0) + adapt× xt
for i=0 to 1023 do

h(i) = h(i) + adapt× e(i)
end for

@e(k) = @e(k) + 1modulo1024

The second example is an adaptive �lter, which is
described in Alg.4. The �lter example has been used to
test loop unfolding within CDFGs , the results are pre-
sented in Fig.13. Without unfolding (unfolding factor
= 0, cf. Fig.13), 10250 cycles are necessary to perform
the algorithm. If the function must be performed in
less than 3500 cycles it is necessary to unfold the loops
with α = 3 (cf. Fig.13); the new loop critical path
is then CL3 = d5120/3e + dLog2(3)e = 1709 and the
whole function needs 3428 cycles to be performed. If
the time constraint is even smaller, e.g., if the function
must be performed in less than 2600 cycles, it is neces-
sary to unfold the loop with α = 4 (cf. Fig.13), the new
critical path is CL4 = d5120/4e + dLog2(4)e = 1282
and the function requires 2574 cycles.

0

1

2

3

4

5

6

7

8

9

10250 3428 2574

Nb Cycles

R
es

ou
rc

es
 a

nd
 u

nf
ol

di
ng

ALU

MAC

MODULO

BUS

Unfolding factor

Figure 13: Loop unfolding and necessary resources vs.
time constraints for the adaptive �lter example

5.3 CDFG Estimation: control

scheduling

The third example is an object motion detection de-
scribed in [13]. This application is typically embedded
in video cameras and used for parking lot monitoring
(detection of car and person movements), person count-
ing in places such as subways and so on. We have used
a large set of representative input data (from a parking
lot monitoring appliance) to produce a pro�ling of the
application functions. Algo.5 shows a simpli�ed ver-

14

Yannick
Typewriter
This is the authors' version of the paper that has been published in the
Journal of Embedded Computing, Volume 1, Number 4/2005, Copyright IOS Press 2005

sion of the labeling function of the application. After a
threshold stage, the current initial image is processed
in order to assign an object label to each pixel.

Algorithm 5 A control structure within the

labeling function from the object motion

estimation application
for y=0 TO number of lines (nL) do
for x=0 TO number of columns (nC) do
...
if ((CharLabel[xyOffset-1]==0)
and(CharLabel[xyOffset-nC]==0)) then
CharLabel[xyOffset]=newLabel;
newLabel=newLabel+5;

else
CharLabel[xyOffset]=TabEqui[CharLabel[xyOffset-1]];
TabEqui[CharLabel[xyOffset-Image.nC]]
=CharLabel[xyOffset];

end if
...

end for
end for

5.3.1 Distribution of cycles

Probabilities for the two branches of the example pre-
sented in Alg.5 have been obtained from the pro�l-
ing step. The branch taken when the test condition
is true ('then' statement) is labeled a, the other one
('else' statement) is labeled b. The probabilities to
pass through branches a and b are Pa = 0.984 and
Pb = 0.016 respectively. As Pa � Pb, the method
schedules the branch a with a time constraint Tc = 7
cycles (its minimum execution time). Then it sched-
ules the b branch, but that one requires 14 cycles to
be scheduled. In order to "give" more time to the b
branch the a branch is re-scheduled with a new time
constraint given by: T” = 7− d 14−7

0.984
0.016

e = 6. In this case

it is possible to save N × 0.984 × 6 cycles which can
be used to compensate the N × 0.016× (14− 7) cycles
(with N the number of iterations). As it is possible
to schedule branch a within 6 cycles, this solution has
been chosen.

5.3.2 Memory size consideration

In the previous example (Alg.5), the CDFG in-
put declarations produce storage resources for the
initial image: Char[256x256], the labeled image:
CharLabel[256x256] and for the pixel/label trans-
lation array: TabEqui[256]. Then the memory
estimation indicates a potential second level of hi-
erarchy including two arrays of 256 octets due to
Char[XYoffset-1] and Char[XYoffset - Nc] and
CharLabel[XYoffset-1] and Charlabel[XYoffset

- Nc] respectively. This memory hierarchy informa-
tion is locally stored as CDFG attributes and can be
accessed by the designer.

5.4 CDFG Combination

In order to illustrate how the combination of CD-
FGs works, we use the example of the gravity test
function, Fig. 14, from the object motion estima-
tion application. The resulting trade-o� curves are
presented on Figs.15-20. The estimation process fol-
lows the bottom-up approach described in section 4.4.
Firstly, leaf DFGs (DFG2, DFG3 and DFG core4) are
estimated. Then CDFGs IF3, FOR4, FOR3, ELSE1,
FOR3, DFG1, FOR2, FOR1 and IF1 are estimated
through the combination rules described in 4.4. Fi-
nally the whole HCDFG is estimated. In this example
the estimator has found that CDFG ELSE1 can reuse
all the resources of CDFG IF1, therefore the HCDFG
estimation is equal to the estimation of graph FOR1.

CDFG

IF_1#0

IF_2#0

CDFG
FOR_4#0

CDFG

dfgcond_2#0

EIF_2#0

NULL

EFOR_1#0 DFG1#0

CDFG
FOR_3#0

CDFG
FOR_2#0

dfgind_3#0 FOR_3#0

CDFG

dfgind_1#0 FOR_1#0

CDFG
core_1#0

EFOR_3#0

IF_2#0

IF_2#0

dfgcond_2#0

EIF_2#0

DFG_3#0
DFG

NULL

IF_3#0

dfgcond_3#0

EIF_3#0

DFG_2#0
CDFG

ELSE_2#0

dfgind_2#0 FOR_2#0

EFOR_2#0

core_2#0

IF_1#0

CDFG
FOR_1#0

CDFG
ELSE_1#0

dfgcond_1#0

EIF_1#0

dfgind_4#0 FOR_4#0

EFOR_4#0

core_4#0

DFG

DFG

Figure 14: HCDFG of the gravity test function from
the object motion estimation application

Analysis of the trade-o� curves In this paragraph
we show how the information produced by the Design-
Trotter tool can be used by the designer in order to
build or select an architecture. If we refer to the trade-
o� curves (Fig.15 to Fig.20) produced for the gravity
test function we observe that several architectural solu-
tions are conceivable. We can distinguish three mains
options: A) if the function has to be executed as fast as
possible the solution (noted (1) on the trade-o� curves)
must be used. In this case the function is executed in
2589 cycles and requires 8 simultaneous global memory
accesses, 2 multipliers and 2 ALUs. When such mem-
ory bandwidth and processing parallelism requirements
must be met a dedicated architecture such as a FPGA
or ASIC can be used. As data are 8 bits wide, a possible
implementation would require two 32 bits data buses
and two address buses. An alternative would be to use

15

Yannick
Typewriter
This is the authors' version of the paper that has been published in the
Journal of Embedded Computing, Volume 1, Number 4/2005, Copyright IOS Press 2005

’DFG2’ trade-off curve

0

1

2

3

4

5

6

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Cycles

R
es

o
u

rc
es

ALU

Global memory
accesses

Local memory
accesses

Figure 15: DFG2 trade-o� curve

’DFG3’ core trade-off curve

0
1
2
3
4
5
6
7
8
9

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Cycles

R
es

o
u

rc
es ALU

Global memory accesses

local memory accesses

Figure 16: DFG3 trade-o� curve

ELSE1 trade-off curve

0

1

2

3

4

5

6

7

8

9

18
8

19
2

19
6

20
0

20
4

20
8

21
2

21
6

22
0

30
5

Cycles

R
es

ou
rc

es ALUs

Global memory accesses

Local memory accesses

Figure 17: ELSE1 trade-o� curve

FOR_3+DFG1 trade-off curve

0
1
2
3
4
5
6
7
8
9

11
15

13
17

15
19

17
21

19
23

21
25

23
27

Cycles

R
es

o
u

rc
es

ALU

Global memory
accesses

Local memory
accesses

Figure 18: FOR3+DFG1 trade-o� curve

16

Yannick
Typewriter
This is the authors' version of the paper that has been published in the
Journal of Embedded Computing, Volume 1, Number 4/2005, Copyright IOS Press 2005

FOR_2 trade-off curve

0
0,5

1
1,5

2
2,5

3
3,5

4
4,5

1474 1608 1742 1876 2010 2144 2278

Cycles

R
es

o
u

rc
es

ALU

MULT

Global memory accesses

Local memory accesses

Figure 19: FOR2 trade-o� curve

a single 64 bits data bus and a single address bus. B) if
the target architecture has to be relatively simple (e.g.,
because of cost) the designer must select a point on the
trade-o� curve where the number of required resources
is as low as possible.

For example point (3) implies the use of unitary
quantities of resources (1 global memory access, 1 mul-
tiplier and one ALU). If the time required to execute
the function (4605 cycles or about 50% slower than
with the dedicated architecture solution) is su�cient
to respect the time constraint, then the designer can
select this point. In that case, a simple RISC proces-
sor like the Arm9 could do the job.

C) �nally if the time constraint is located between
these two extremes, then a DSP based solution could
be used. For example point (2) requires 2 simultane-
ous global memory accesses but only 1 multiplier and
1 ALU to execute the function in 2958 cycles. By look-
ing at the result provided by Design-Trotter, a system
designer can rapidly see that a powerful DSP like the
TMS320C6201 that uses a complex architecture with
a deep pipeline (up to 11 stages), VLIW instructions
and features parallelism possibilities (up to 8 parallel
instructions) would be under-exploited. Instead, the
designer should choose a simpler model like the ADSP
21161N which has the right architectural features for

For1 trade-off curve

0

2

4

6

8

10

2589 2690 2958 4069 4203 4605

Cycles

R
es

o
u

rc
es

ALU

MULT

Global memory
accesses

Local memory
accesses

(1) (2) (3)

Figure 20: FOR1 trade-o� curve (= CDFG IF1]0 =
whole HCDFG)

17

Yannick
Typewriter
This is the authors' version of the paper that has been published in the
Journal of Embedded Computing, Volume 1, Number 4/2005, Copyright IOS Press 2005

implementing that speci�c solution.

6 Conclusions and perspectives

In this paper we have presented the Design-Trotter
framework and more speci�cally the step dedicated
to system-level design-space exploration for the im-
plementation of embedded applications. This step is
located before the target architecture selection and
the �ne architectural estimation [21]. The major
contributions of this work are the HCDFG-based
representation, the abstract architecture speci�cation,
the characterization of the application and the fast
parallelism exploration with trade-o� curves. The
results produced by the Design-Trotter framework
provide very useful information to the designer.
Firstly, the characterization step indicates the avail-
able average parallelism and both processing and
data-transfer orientation of the application functions.
This orientation information has two purposes: 1)
it can be used by the designer to select a type of
architecture (GPP, DSP, ASIC...) and 2) it is used
to guide the function estimation step. Secondly, the
function estimation step exhibits and explores the
potential parallelism of the functions for several time
constraints. Our method permits the selection of the
most appropriate scheduling algorithm (processing
�rst, data-transfer �rst or mixed). This selection takes
into account the most critical aspects of a function.
The estimation process starts with the parallelism
exploration of DFGs (equivalent to C basic blocs).
Then higher granularity levels of parallelism are
explored hierarchically, with a bottom-up approach.
The parallelism vs. cycle budget tradeo�s are com-
puted while favoring the reuse of resources by taking
into account parameters such as loop unrolling and
mutual exclusions due to conditional statements.
The resulting delay/resources trade-o� curves also
indicate the parallelism lower and upper bounds of
the application. Thus, the designer can choose the
size or can scale its architecture according to these
parallelism bounds. The estimates produced by the
Design-Trotter tool provide relevant information very
rapidly, which help the designer to take decisions very
early in the design process in order to build or select
the system architecture. The applicability of the
method has been demonstrated in several examples,
which illustrate how the designer can explore the
design-space by referring to the trade-o� curves.

The Design-Trotter framework includes other fea-
tures which are not detailed in this paper. Firstly,
the hardware and software projections, [21], [16]
enable the re�nement the estimation on more detailed

architectures. Secondly, an extra type of architecture
is taken into account by means of exploration of
recon�gurable SoCs as explained in [12]. Moreover, to
estimate a whole application (like the object motion
detection) the designer can use two strategies: 1)
the application must be speci�ed as a single global
function. In this case the application is estimated
through the combination rules presented in 4.4 and
results are available for each sub-function; or 2) all
the functions of the application must �rst be speci�ed
individually and estimated within the function step,
then HW/SW partitioning steps of Design-Trotter
[1] can estimate the whole application. Strategy 1)
is to be used when a single target is considered and
strategy 2) is to be used when the functions are clearly
designed for a multi-device target. The contribution
of the inter-function step is then the modeling of
communications between the devices.

Our approach is complementary to existing HLS
tools. It is a two steps process: 1) parallelism explo-
ration and 2) HW/SW projections which provide a
fast design-space exploration presenting a good trade-
o� between speed and accuracy for the exploration
process. It can be used to guide HLS tools which
will generate the �nal HDL and/or software codes.
Actually the accuracy levels obtained for the hardware
projection step are about 10% and 18% for temporal
and area aspects respectively [21].

The main perspective regarding Design-Trotter is
an engineering e�ort located at the interface between
the design space exploration and high level synthesis
and/or compiler tools for (re)con�gurable processors.
The objective is to automatically produce the SystemC
/ C code with associates compilation/synthesis scripts
compliant with the designer choices, after the design
space exploration step with DT. This point addresses
the urgent need of the embedded systems industry for
a substantial improvement of design productivity by
providing e�cient and automated design space explo-
ration methods and tools that are linked to the exist-
ing implementation techniques based on manual and
tedious iterative procedures of code development and
results analysis. Such a complete �ow is able to achieve
uni�ed, integrated and optimized embedded system de-
sign �ows that start from a high level speci�cation, and
which are enable to estimate, analyze and optimize the
performances of an implementation and provide the ca-
pabilities to explore various architectural choices in the
entire design space.

18

Yannick
Typewriter
This is the authors' version of the paper that has been published in the
Journal of Embedded Computing, Volume 1, Number 4/2005, Copyright IOS Press 2005

References

[1] A.Azzedine, J-Ph.Diguet, and J-L.Philippe. Large
exploration for hw/sw partitioning of multirate
and aperiodic real-time systems. In Interna-
tional Symposium on Hardware/Software Code-
sign (CODES), Estes Park, USA, May 2002.

[2] A.D.Pimentel. The artemis workbench for system-
level performance evaluation of embedded sys-
tems. Int. Journal of Embedded Systems, Vol. 1
(No. 7), 2005.

[3] A.L.Sangiovanni-Vincentelli, L.P.Carloni, F.De
Bernardinis, and M.Sgroi. Bene�ts and challenges
of platform-based design. In ACM/Ieee Design
Automation Conference(DAC), San Diego, USA,
June 2004.

[4] D-J.Wang and Y.H.HU. Rate optimal scheduling
of recursive dsp algorithms by unfolding. TCS,
41:672�675, october 1994.

[5] H.-J. Stolberg et. al. An soc with two multimedia
dsps and a risc core for video compression appli-
cations. IEEE International Solid-State Circuits
Conference Digest of Technical Papers, 2004.

[6] F.Balasa, F.Catthoor, and H.De Man. Back-
ground memory area estimation for multi-
dimensional signal processing systems. Ieee
Transaction on Vlsi Systems, 3(2), June 1995.

[7] F.Charot and V.Messé. A �exible code gen-
eration framework for the design of application
speci�c programmable processors. In Interna-
tional Symposium on Hardware/Software Code-
sign (CODES), Roma, Italy, 1999.

[8] IMEC. Data transfer and storage exploration web-
page. http://www.imec.be/design/dtse/, 2005.

[9] IRISA. Polylib. http://www.irisa.fr/polylib.

[10] J.Plantin and E.Stoy. Aspects on system-level
design. In International Symposium on Hard-
ware/Software Codesign (CODES), Rome,Italy,
April 1999.

[11] K.Kuchcinski and C.Wolinski. Global approach to
scheduling complex behaviors based on hierarchi-
cal conditional dependency graphs and constraint
programming. Journal of Systems Architecture,
Elsevier Science, Volume 49, Issues 12-15, 2003.

[12] L.Bossuet, W.Burleson, G.Gogniat, V.Anand,
A.La�ely, and J.L.Philippe. Targeting tiled ar-
chitectures in design exploration. In 10th Recon-
�gurable Architectures Workshop (RAW), Nice,
France, April 2003.

[13] L.Letellier and E.Duchesne. Motion detection
algorithms. Technical report, L.C.E.I, C.E.A,
Saclay, France, 2001.

[14] M.Auguin, K.Ben Chehida, J-Ph.Diguet,
X.Fornari, A-M.Fouilliart, C.Gamrat, G.Gogniat,
P.Kajfasz, and Y.Le Moullec. Partitioning and
CoDesign tools & methodology for Recon�gurable
Computing: the EPICURE philosophy. In 3rd

Int. Work. on Systems, Architectures, Modeling
Simulation (SAMOS03), Samos, Greece, July
2003.

[15] Y.Le Moullec, J-Ph.Diguet, N.Ben Amor,
T.Gourdeaux, and J-L.Philippe. Algorithmic-level
speci�cation and characterization of embedded
multimedia applications with design trotter. To
appear in the Journal of VLSI Signal Processing,
Springer, 2005, 2005.

[16] Y.Le Moullec, J-Ph.Diguet, and P.Koch. A
power aware system-level design space exploration
framework. In DDECS'02, Brno, Czech Republic,
April 2002.

[17] P.Grun, F.Balasa, and N.D.Dutt. Memory size
estimation for multimedia applications. In Inter-
national Symposium on Hardware/Software Code-
sign (CODES), Seattle, USA, March 1998.

[18] R.Goering. Systemc, tlm tools missing as esl in-
terest grows. EE Times, June 2005.

[19] R.L.Lysecky and F.Vahid. A study of the speedups
and competitiveness of fpga soft processor cores
using dynamic hardware/software partitioning. In
Design Automation and Test in Europe Confer-
ence (DATE), Munich, Germany, March 2005.

[20] S.A.Blythe and R.A.Walker. E�cient optimal de-
sign space characterization methodologies. Acm
Transaction on Design Automation of Electronic
Systems, 5(3), July 2000.

[21] S.Bilavarn, G.Gogniat, J.L Philippe, and
L.Bossuet. Low complexity design space explo-
ration from early speci�cations. to appear in
IEEE Transactions on COMPUTER-AIDED
DESIGN of Integrated Circuits and Systems,
2005.

[22] S.Borkar. A vlsi system perspective for micro-
processors beyond 90 nm. In ISQED'03 Keynote
Speeches, Monterey, USA, March 2003.

[23] S.Wuytack, J-Ph.Diguet, F.Catthoor, and H.De
man. Formalized methodology for data reuse
exploration for low-power hierarchical memory

19

Yannick
Typewriter
This is the authors' version of the paper that has been published in the
Journal of Embedded Computing, Volume 1, Number 4/2005, Copyright IOS Press 2005

mappings. Ieee Transaction on Vlsi Systems,
6(4):529�537, December 1998.

[24] T.Givargis, F.Vahid, and J. Henkel. System-level
exploration for pareto-optimal con�gurations in
parameterized system-on-a-chip. IEEE Transac-
tions on Very Large Scale Integration Systems
(TVLSI), vol. 10, no. 4, 2002.

20

Yannick
Typewriter
This is the authors' version of the paper that has been published in the
Journal of Embedded Computing, Volume 1, Number 4/2005, Copyright IOS Press 2005

