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Action Recognition using Motion Primitives

T.B. Moeslund, P. Fihl, M.B. Holte, T.B. Moeslund

Laboratory of Computer Vision and Media Technology
Aalborg University, Denmark
Email: tom@cvmt.dk

Abstract. The number of potential applications has made automatic recognition
of human actions a very active research area. Different appesdtéive been
followed based on trajectories through some state space. In this papdsave
model an action as a trajectory through a state space, but we repfesantions
as a sequence of temporal isolated instances, denoted primitives.friragives
are each defined by four features extracted from motion images. rithiiyes
are recognized in each frame based on a trained classifier resultingguerse
of primitives. From this sequence we recognize different tempotarecusing a
probabilistic Edit Distance method. The method is tested on different aetitims
and without noise and the results show recognizing rate&$ 4% and85.5%,
respectively.

1 Introduction

Automatic recognition of human actions is a very active aesie area due to its nu-
merous applications. As opposed to earlier the currendtiemot as much on first
reconstructing the human and the pose of his/her limbgtsmddo the recognition on
the joint angle data, but rather to do the recognition diyeah the image data, e.g.,
silhouette data [18] [17] or temporal templates[4] [1].

Common for these approaches is that they represent an dgtionage data from
all frames constituting the action, e.g., by a trajectomptiygh some state-space or a
spatio-temporal volume. This means that the methods inrgeregjuire that the applied
image information can be extracted reliably in every sirfggene. In some situations
this will not be possible and therefore a different type gfraach has been suggested.
Here an action is divided into a number of smaller temporgusaces, for example
movemes [6], atomic movements [7], states [5], dynamiaimst[13], examplars [11],
behaviour units [9], and key-frames [8]. The general idethdd approaches based on
finding smaller units will be less sensitive compared to apphes based on an entire
sequence of information.

For some approaches the union of the units represents fine temporal sequence,
whereas for other approaches the units represent only atsaftitbe original sequence.
In Raoet al. [13] dynamic hand gestures are recognized by searchingeztiway in
3D space (x and y-position of the hand, and time) for certgimachic instants. Gon-
zalezet al. [8] look for key-frames for recognizing actions, like walki and running.
Approaches where the entire trajectory (one action) isasgted by a number of sub-
sequences, are Barbétal. [2] for full body motion, where probabilistic PCA is used



for finding transitions between different behaviors, andtiBgeret al. [3] where like-
lihoods are used to separate a trajectory into sub-trajestdl hese sub-trajectories are
modeled by Gaussian distributions each correspondingdmpdral primitive.

2 Paper Content and System Design

In this paper we address action recognition using tempaosthnces (denoted primi-
tives) that only represent a subset of the original sequélia is, our aim is to recog-
nize an action by recognizing only a few primitives as oppdserecognition based on
the entire sequence (possibly divided into sub-trajee)ri

Our approach is based on the fact that an action will alwayadseciated with a
movement, which will manifest itself as temporal changethéimage. So by measur-
ing the temporal changes in the image the action can be é@feWe define primitives
as temporal instances with a significant change and an asté®fined as a set of prim-
itives. This approach allows for handling corrupted inpdeences and as we shall see,
does not require the lengths, the start point, nor the enat pmbe known, which is the
case in many other systems.

Measuring the temporal changes can be done in a number of Weyaim at prim-
itives that are as independent on the environment as pes3ihérefore, we do not rely
on figure-ground segmentation using methods like backgteuibtraction or person-
alized models etc. Instead we define our primitives basedhagé subtracting. Image
subtraction has the benefit that it measures the change imtge over time and can
handle very large changes in the environment.

Concretely we represent our primitives by four featuresaetéd from a motion-
image (found by image subtraction). In each frame the prmiif any, that best ex-
plains the observed data is identified. This leads to a discegognition problem since
a video sequence will be converted into a string containisecuence of symbols, each
representing a primitive. After pruning the string a prabstic Edit Distance classifier
is applied to identify which action best describes the pdusteing. The system is illus-
trated in figure 1. The actions that we focus on in this workfemeone-arm gestures,
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Fig. 1. System overview.



but the approach can with some modifications be generalizbddy actions. The ac-
tions are inspired by [10] and can be seen in figure 2. The pagéuctured as follows.
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Fig. 2. Samples from the five actioné. - Point right: A stretched arm is raised to a horizontal
position pointing right, and then lowered dowB.- Move left: A stretched arm is raised to a
horizontal position pointing right. The arm is then moved in front of the betying at the right
shoulder, and then lowered dow@.- Move right: Right hand is moved up in front of the left
shoulder. The arm is then stretched while moved all the way to the right, andaWered down.

D - Move closer: A stretched arm is raised to a horizontal position pointing forward while the
palm is pointing upwards. The hand is then drawn to the chest, and lowanedH - Raise arm:

The arm is moved along the side of the person and stretched above theahdahen lowered
again.

In section 3 we describe how our features are extracted.cliose4 we describe how
we recognize the primitives, and in section 5 we describe Wwawecognize the ac-
tions. In section 6 the approach is evaluated on a numbettiohaand in section 7 the
approach is discussed.

3 Feature Extraction

Even though image subtraction only provides crude infoionait has the benefit of
being rather independent to illumination changes and icigttypes and styles. Further-



more, no background model or person model is required. Hervelifference images
suffer from "shadow effects” and we therefore apply doubfertence images, which
are known to be more robust [19]. The idea is to use three sameeimages in order to
create two difference images. These are thresholded andcedNiyether. This ensures
that only pixels that have changed in both difference imagesincluded in the final
output. Multiple steps between the three successive imagpzbto generate the double
difference image have been tried out (frame 1-2-3, framebl#hd frame 1-4-7, etc.).
The approach is rather invariant to this choice, i.e., ilavdrto the frame-rate and the
execution speed of the actions. Frame 1-3-5 are used in tris w

When doing arm gestures the double difference image will myugpeaking con-
tain a "motion-cloud”. However, noise will also be presdgither from other move-
ments, e.g., the clothes on the upper body when lifting the(false positives), or the
motion-cloud will be split into a number of separate blobg, a&lue to the shirt having a
uniform color (false negatives). Since the two noise saife®rk against each other”,
it is difficult to binarize the difference image. We theref@pply a hysteresis principle
consisting of two thresholds; andT; with T} > T5. For all difference pixels above
T, we initiate a region growing, which continues to grow urt pixel values falls be-
low T5, see figure 3. The resulting connected motion componentiigher sorted in
respect to their size to obtain robustness towards noigs.histeresis threshold helps
to ensure that noisy motion-clouds are not broken up intdiplelfragments and at the
same time eliminates small noisy motion blobs. The resulinis connected motion-
cloud. We model the motion-cloud compactly by an ellipsee Tength and orientation

Accepted motion
————— Rejected motion

Fig. 3. An illustration of the hysteresis with an upper threshijdand a lower threshold@:. The
figure illustrates the advantage of the hysteresis, where most of the tratb” of interest is
accepted while the smaller "noise-blobs” are rejected.

of the axes of the ellipse are calculated from the Eigeners@nd Eigen-values of the
covariance matrix defined by the motion pixels.

We use four features to represent this cloud. They are inmikgre of image size
and the person’s position in the image. Furthermore, twalafmed with respect to a
reference point currently defined manually as the centerafity of the person. The
features are: the eccentricity of the ellipse, the oriémtatf the ellipse, the size of the



ellipse with respect to the distance from the referencetpoithe ellipse, and the angle
between the reference point and the ellipse.

4 Recognition of Primitives

Each incoming frame is represented by the four extractetdrfes described above. In
this block the feature vector is classified as a particulanitive or noise. A Maha-
lanobis classifier is build by forming the covariance matoixeach primitive based on
a set of representative training examples, see below. Tireféatures are not equally
important and therefore weighted in accordance with tmepdrtance. This yields the
following classifier for recognizing a primitive at time,

Primitive(t) = arg min [(W - (f, — p,) "I, (W - (f, — p,))] (1)
where f, is the feature vector estimated at tirhep, is the mean vector of théth
primitive, I1; is the covariance matrix of thith primitive, andW contains the weights
and are included as an element-wise multiplication.

The classification of a sequence can be viewed as a trajebtaygh the 4D feature
space where, at each time-step, the closest primitive finsef Mahalanobis distance)
is found. To reduce noise in this process we introduce a minirilahalanobis distance
in order for a primitive to be considered in the first placertRermore, to reduce the
flickering observed when the trajectory passes through déebaegion between two
primitives we introduce a hysteresis threshold. It favbesgrimitive recognized in the
preceding frame over all other primitives by modifying timelividual distances. The
classifier hereby obtains a "sticky” effect, which handléarge part of the flickering.

After processing a sequence the output will be a string wighsame length as the
sequence. An example is illustrated in equation 2. Eacérletirresponds to a recog-
nized primitive and? corresponds to time instances where no primitives are bedew
minimum required Mahalanobis distance. The string is padumefirst removing @'s,
isolated instances, and then all repeated letters, seéi@y8aA weight is generated to
reflect the number of repeated letters (this is used below).

String= {0,0,B,B,B,B,B,E,A,A,F,F,F,F,0),D,D,G,G,G,G, 0} (2)
String= {B, A, F,D,G} 3)
Weights= {5,2,4, 2,4} (4)

4.1 Learning Models for the Primitives

In order to recognize the primitives we need to have a prpto&y} representation of
each primitive, i.e., a mean and covariance in the 4D featpage. As can be seen in
figure 2 the actions are all fronto-parallel.

Ongoing work aims at generalizes this work by allow for npliétiviewpoints. One
problem with this is how to train the system - it will requirevery large number of
test sequences. Therefore we have captured all trainirgusaiig a magnetic tracking
system with four sensors. The sensor placements are: one atist, one at the elbow,
one at the shoulder, and one at the upper torso (for refexrehoe hardware used is the



Polhemus FastTrac [15] which gives a maximum sampling ie28dz when using all
four sensors. The data is converted into four Euler anghesetat the shoulder and one
at the elbow in order to make the data invariant to body sizeaétion corresponds to
a trajectory through a 4D space spanned by the Euler angles.

The data is input to a commercial computer graphics humaneméwser [16],
which then animates all captured data. This allows us torgéméraining data for any
view point and to generate additional training data by vayyhe Euler angles (based on
the training data) and varying the clothing of the modeluFég4 shows a person with
magnetic trackers mounted on the arm, two different vigatibns of the 3D tracker
data from Poser, and an example of the test data. Based asytitlsetic training data
we build a classifier for each primitive.

Fig. 4. An illustration of the different types of data used in the system. From lefigtat:r1)
3D tracker data is acquired from magnetic trackers mounted on pengomperform the five
actions. 2) The tracker data is animated in Poser from a fronto-paraiel 8) The tracker data
can be animated from any view point with different clothings and modéglaftér training the
primitives on semi-sythetic data we recognize actions in real video.

4.2 Defining the Primitives

Defining the number of primitives and their characteris{ittuman movement”) is
quite a significant optimization problem. We are aiming d@benating this process [14],
but in this work it was done manually.

The primitives are defined based on an evaluation of videoes®gs showing three
different people performing the five actions. The critega defining the primitives
are 1) that they represent characteristic and representai) configurations, 2) that
their projected 2D configurations contain a certain amodiritomto-parallel motion,
and 3) that the primitives are used in the description of asyna&tions as possible,
i.e., fewer primitives are required. In this way we find 10nutives that can represent
the five actions. Each primitive is appearing in severabactiresulting in five to eight
primitives for each action.

To obtain the prototypical representation we randomlyel® samples of each
primitive from the training video sequences. The doubléed#nce images of these
samples are calculated and the motion-clouds are eactsegpeel by the four features.



The 20 samples then yields a mean vector and a 4x4 covariaaiti fior each primi-
tive.

In figure 4 the 10 primitives and their representations asealized together with
the letter denoting the primitive.

Fig. 5. The figure of each primitive contains the silhouettes of the 20 samplesl addether

which gives the gray silhouette. The 20 motion clouds from the doublereiifée images of the
samples are added on top of the silhouette as the white cloud. The figttresifuore illustrates
the mean of the four features for each primitive by depicting the axesdittad ellipse and the
distance and direction from the reference point to the motion cloud.

5 Recognition of Actions

The result of recognizing the primitives is a string of letteeferring to the known
primitives. During a training phase a string representatibeach action to be recog-
nized is learned. The task is now to compare each of the ldact#ons (strings) with
the detected string. Since the learned strings and thetddtstrings (possibly includ-
ing errors!) will in general not have the same length, theddad pattern recognition
methods will not suffice. We therefore apply the Edit Diseneethod [12], which can
handle matching of strings of different lengths.

The edit distance is a well known method for comparing wordext strings, e.g.,
for spell-checking and plagiarism detection. It operatgsneasuring the distance be-
tween two strings in terms of the number of operations ne@uedder to transform
one to the other. There are three possible operatinsst a letter from the other string,
delete a letter, anaixchange a letter by one from the other string. Whenever one of these
operations is required in order to make the strings mordainthe score or distance is
increased by one.

When the strings representing the actions are of differewthes, the method tends
to favor the shorter strings. Say we have detected the s{ihg”, D} and want to



classify it as being one of the two actiogél = {J,C, G} and#2 = {A,B,C, D, H}.
The edit distance from the detected string to the actidnggwill be two in both cases.
However, it seems more likely that the correct interpretais that the detected string
comes from action #2 in a situation where the start and entdwrs corrupted by noise.
In fact, 2 out of 3 of the primitives have to be changed forat#l whereas only 2 out
of 5 have to be changed for action #2. We therefore normalizeetlit distance by
dividing the output by the length of the action-string, giely 0.67 for action #1 and
0.2 for action #2, i.e., action #2 is recognized.

The edit distance is a deterministic method but by chandnegcbst of each of
the three operations with respect to likelihoods it becomgsobabilistic method
Concretely we apply the weights described above, see equatiThese to some extent
represent the likelihood of a certain primitive being cotr& he higher the weight the
more likely a primitive will be. We incorporate the weightsa the edit distance method
by increasing the score by the weight multiplied Bya scaling factor) whenever a
primitive is deleted or exchanged. The cost ofnserting remains 1.

The above principle works for situations where the inputusexge only contains
one action (possibly corrupted by noise). In a real scen&davever, we will have
sequences which are potentially much longer than an actidnénich might include
more actions after each other. The action recognition prali$ therefore formulated as
for each action to find the substring in the detected strifg¢lvhas the minimum edit
distance. The recognized action will then be the one of thetsimgs with the minimum
distance. Denoting the start point and length of the sulggstsiand!, respectively, we
recognize the action present in the detected string as:

Action =arg inirll PED(Ak,s,l) (5)
wherek index the different actions] is the detected string, amdE D(-) is the proba-
bilistic edit distance.

6 Results

6.1 Test Setup

Two kind of tests are conducted: one with known start and tiog of action execution,
and another with "noise” added in the beginning and end oktguences (unknown
starttime). By adding noise to the sequence we introducestilisstic problem of having
no clear idea about when an action commence and terminaiek wbuld be the case
in a real situation. To achieve a test scenario that resentbig situation we split the
five actions into halves and add one of these half actionsoratydto the beginning
and one to the end of each action to be processed by the syaténs way we get an
unknown start and end point of the real action.

We use eleven test subjects, whom each performs each gé6ttirees. This leads
to 550 sequences. The weighting of the featWésre settd1,4, 2,4}, ands = 1/8.
A string representation of each action is found and sincesttwetest string contains
five primitives and the longest eight primitives, we onlyfpem the probabilistic edit
distance calculation for substrings having the length8, 15].

! This is related to the Weighted Edit Distance method, which however hasisigghts.



6.2 Tests

The overall recognition rate for the test with known stamidiis88.7%. In figure 6(a)
the confusion matrix for the results is shown. As can be sedhe figure, most of the
errors occur by miss-classification between the two actioose closer andraise arm.
The main reasons for this confusion are different perforrearby the test subjects
(some do not raise their arm very much when preformingrtiise arm action), the
similarity of the actions, and the similarity of the primvigis in these actions. As can be
seen in figure 2 both actions are performed along the sideegi¢hson when seen from
the fronto-parallel view and differs mainly in how high therais raised. From figure
5 it can be seen that primitives 'F’, 'G’, 'H’, and 'I' have sifar angles between the
reference point and the motion cloud and 'F’, 'H’ and I’ alkave similar orientation
of the ellipse. These two features, which are the ones withdst weights, make these
four primitives harder to distinguish.

Figure 6(b) shows the confusion matrix for the test resulth woise. The overall
recognition rate for this test i85.5%, which is 3.2% lower than without noise. The
errors are the same as before but with some few additiormbkaraused by the unknown
start and end time of the actions.

2 3 4. |5 2.3 4. |5
1. Point right 1. Point right
2. Move left 7 2. Move left 10
3. Move right 6 3. Move right 8
4. Move closer 4. Move closer 1
5. Raise arm 5. Raise arm 2
(a) Known start and stop time. (b) Unknown start and stop time.

Fig. 6. The confusion matrix for the recognition of the different actions with aittout noise.

7 Conclusion

In this paper we have presented an action recognition appieased on motion primi-
tives as opposed to trajectories. Furthermore, we exteattifes from temporally local
motion as opposed to background subtraction or anotheresgigtion method relying
on learned models and a relatively controlled environméfe.hope this makes our
approach less sensitive, but have still to prove so in a mamgcehensive test.

The results are promising due to two facts. First, the modedsgenerated from
synthetic data (generated based on test subjects) whiteghéata are real data. In fact,
the test data and training data are recorded several mgpinis Bence this is a real test
of the generalization capabilities of the action recognifprocess. This means that we
can expect to use the same scheme when learning models fathimcarnation of the
system, which is aimed at view-invariant action recogniti®econdly, the system does
not break down when exposed to realistic noise. This sugdiest the approach taking
has potential to be expanded into a real system setup, asegppo a lab setup which
is virtually always used when testing action recognitiosteyns.



The primitives used in this work are found manually. Thisyad out to be quite an
effort due to the massive amount of data and possibilitiesredtly we are therefore
working to automate this process [14]. Another ongoingvigtis to avoid manually
defining the reference point, see section 3, by using the (facend by an Adaboost
trained face detector) as a reference for the features.
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