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Abstract
Gastrointestinal (GI) sensory-motor abnormalities 
are common in patients with diabetes mellitus and 
may involve any part of the GI tract. Abnormalities 
are frequently sub-clinical, and fortunately only rarely 
do severe and life-threatening problems occur. The 
pathogenesis of abnormal upper GI sensory-motor 
function in diabetes is incompletely understood and is 
most likely multi-factorial of origin. Diabetic autonomic 
neuropathy as well as acute suboptimal control of 
diabetes has been shown to impair GI motor and sensory 
function. Morphological and biomechanical remodeling 
of the GI wall develops during the duration of diabetes, 
and may contribute to motor and sensory dysfunction. In 
this review sensory and motility disorders of the upper 
GI tract in diabetes is discussed; and the morphological 
changes and biomechanical remodeling related to the 
sensory-motor dysfunction is also addressed.

© 2006 The WJG Press. All rights reserved.
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INTRODUCTION
Diabetes mellitus (DM) is a chronic disease requiring 
lifelong medical attention in order to limit the development 
of  potentially devastating late complications and to manage 
them if  they occur. In the USA, the per capita cost of  
healthcare in 2002 was $13 243 for patients with diabetes 
and $2560 for patients without diabetes[1]. Gastrointestinal 
(GI) disorders are common in diabetic patients[2,3]. As 
many as 75% of  patients attending DM clinics report 
significant GI symptoms[2]. The entire GI tract from 
the esophagus to the anorectal region may be affected. 
Common complaints include dysphasia, early satiety, 
reflux, constipation, abdominal pain, nausea, vomiting and 
diarrhea. The symptoms may be severe and substantially 
decrease quality of  life. The pathogenesis of  the GI 
abnormalities is complex of  nature, multi-factorial (motor 
dysfunction, autonomic neuropathy, glycemic control, 
psychological factors, etc.) and is not well understood[4]. A 
number of  abnormal conditions have been described in 
different segments of  the GI tract in patients with diabetic 
autonomic neuropathy (DAN): esophagus (dysmotility), 
stomach (dysmotility, delayed emptying) and small 
and large bowel (dysmotility, delayed transit, bacterial 
overgrowth and diarrhea)[4]. Only a few studies have 
addressed the visceral sensory function in DM[5-7] and have 
demonstrated abnormalities in perception thresholds, vagal 
tonus and evoked brain potentials in patients with DAN. 
This indicates that DM related neuronal changes may be 
located both in the peripheral and in the central nervous 
system (CNS). As mentioned the entire GI tract may be 
involved in DM, but our review describes the upper GI 
tract only.

Many s tud i e s have demons t r a t ed p rominent 
morphological changes of  the small intestine and 
esophagus in DM[8-11]. Lately, several studies have described 
biomechanical remodeling as well as  morphological 
remodeling in experimental diabetic rats[12-18]. Recently, 
Frøkjær et al [19] have shown that both the neuronal 
function of  the contractile system as well as the structural 
apparatus of  the GI tract may be affected in patients with 
longstanding DM and DAN. Therefore we suggest that 
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along with DAN and glycemic control, the structural and 
biomechanical changes may play important roles in the 
symptomatology of  GI abnormalities in long-standing 
DM. The future management of  diabetic patients with GI 
symptoms may develop accordingly. 

Symptoms from the upper GI tract 
in diabetes mellitus
Motor and sensory abnormalities in DM may affect the 
entire GI tract or part hereof, and the perceived symptoms 
may originate from one or several parts of  the gut, such 
as the esophagus, stomach and small intestine[20,21]. The 
prevalence of  upper GI symptoms is high in both insulin 
dependent DM (IDDM) and non-insulin dependent DM 
(NIDDM)[22-28]. The symptoms relating to the esophagus, 
stomach and small intestine are as follows: (1) Esophagus: 
Heartburn, dysphagia and chest pain[37]; (2) Stomach: 
weight loss and abdominal pain[38]; (3) Small intestine: 
Diarrhea, discomfort, pain and pseudo-obstruction. Most 
symptoms are non-specific of  nature and may relate 
to other GI disorders not necessarily related to DM. 
Therefore, when dealing with GI symptoms, some specific 
issues need to be addressed. Chest pain may relate to 
reflux or esophageal motor disorders, but ischemic heart 
disease and other causes of  non-cardiac chest pain are also 
possible causes and must be excluded. Dysphagia, the most 
characteristic symptom of  impaired esophageal transit, 
may be caused by motility disorders of  the esophagus. It 
is very important, however, to emphasize that dysphagia 
is more often caused by mechanical obstruction such as 
tumors and peptic stenosis than by motility disorders. A 
number of  other incidental conditions must be excluded 
when diabetic gastroparesis is suspected: gastric outlet 
obstruction caused by tumors and ulcer disease; metabolic 
abnormalities such as diabetic ketoacidosis or uremia 
and side effects of  pharmacotherapy. A gastroscopy and 
biochemical screening followed by physical examination 
are obligatory requisites to reach the correct diagnosis. 
The symptoms of  diabetic gastroparesis tend to increase 
in intensity and frequency over the duration of  diabetes 
in patients affected. Most often symptoms are vague 
and nonspecific such as early satiety, slight abdominal 
discomfort and perhaps bloating, and fortunately more 
rarely do nausea and vomiting develop. When nausea and 
vomiting becomes continuous hospitalization is needed 
to control glucose homeostasis, electrolytes and fluid 
substitution is needed. This is a potential life threatening 
situation. In the long run diabetic gastroparesis may be 
accompanied by poor diabetic control, weight loss and 
diminished quality of  life partly due to frequent hospital 
contacts. The symptoms may last for days to months, and 
do often occur in cycles with symptom free intervals[29,30]. 
Diabetic patients frequently report abdominal pain and 
this may be the only symptom of  diabetic gastroparesis; 
however, abdominal pain can also be seen in diabetic 
ketoacidosis and severe metabolic acidosis[31]. These 
conditions are followed by other symptoms as well and 
therefore distinguishable from gastroparesis. Diabetic 
patients with thoracic polyradiculopathy, a rare condition, 

may also suffer from abdominal pain[32]. Diarrhea in DM 
patients may be induced by a number of  factors. These 
may include food composition, abnormal intestinal 
motility, small intestinal bacterial overgrowth, excessive 
loss of  bile acids, pancreatic insufficiency and more[33]. 
Abnormal small intestinal motility (rapid or delayed transit) 
is a frequent condition in the diabetic patients as described 
below. Rapid transit may induce an increase in intra-
luminal contents that reach the caecum, whereas delayed 
transit may cause bacterial overgrowth, both potentially 
resulting in diabetic diarrhea. Bacterial overgrowth has 
been reported in up to 40% of  diabetic patients with 
diarrhea[34,35]. Celiac disease is overrepresented in IDDM 
and a cause of  severe diarrhea to be excluded when dealing 
with diabetic diarrhea[36]. In its most fulminate form, 
diabetic diarrhea is a devastating and horrible condition for 
the person affected, sometimes resulting in catastrophical 
nightly soiling in bed and an uncontrollable condition 
during daytime. Most often, fortunately, this condition is 
self  limiting and symptoms are more manageable.

Sensory dysfunction
Although both the af ferent and ef ferent ner ves 
are affected in DM, the data related to the sensory 
dysfunction of  the GI tract are sparse compared with 
those relating to the motor dysfunction of  the upper GI 
tract. Elevation of  perception thresholds to esophageal 
electrical stimulation has been observed in patients 
with DAN and different severity of  GI symptoms[7]. 
Increased vagal tonus and abnormal evoked brain 
potentials to mechanical and electrical stimulation of  
the esophagus has also been shown[5,6]. Rayner et al 
performed isovolumetric and isobaric distensions of  
the proximal stomach in ten randomly selected patients 
with IDDM[39]. They demonstrated that the perception 
of  gastric distension during euglycemia was increased 
compared with healthy controls. To study mechanisms 
behind postprandial symptoms in patients with diabetes, 
the gastric accommodation of  the meal was assessed by 
abdominal ultrasound[40]. In DM patients, a large proximal 
stomach was associated with perception of  fullness and a 
large antrum was associated with perception of  pain after 
a meal. More recently, Frøkjær et al[41] used a multimodal 
stimulation device (Figure 1) to investigate the visceral 
sensitivity to mechanical, thermal and electrical stimulation 
in the esophagus and duodenum in IDDM patients with 
DAN and GI symptoms. This study demonstrated that the 
patients had decreased sensitivity to the stimulations of  the 
esophagus and duodenum. This indicates that the affection 
of  the sensory nerves is widespread in the GI tract. As the 
multimodal approach is thought to stimulate the mucosa, 
submucosa and muscle layers differentially, the disease 
seems to be generalized to nerves in all layers of  the gut. 

Motility disorders
Long ago, it was known that abnormal motility of  the GI 
tract occurred during the development of  DM[42]. So far 
many studies have demonstrated that DM patients have 
slow transit and abnormal motility. The most frequent 



motility disorders of  upper GI tract are shown in Table 1.

Upper GI transit disorders in DM
Esophagus : Impaired esophageal transit has been 
reported both in IDDM and NIDDM patients[43-47]. The 
esophageal transit appears to be delayed in about 50% 
of  patients with long-standing DM[48]. The retarded 
esophageal transit in the DM usually reflects either 
peristaltic failure or focal low-amplitude pressure waves[49]. 
Stomach: Several animal studies reported a slowing gastric 
emptying in IDDM and NIDDM rats[50-55], whereas other 
studies on IDDM and NIDDM animals demonstrated 
that gastric emptying increased[56-59]. Using radionuclide 
measuring techniques it has been demonstrated that gastric 
empting of  solid, or liquid meals was abnormally slow 
in 30%-50% of  patients with long-standing IDDM and 
NIDDM[60,61]. The gastroparesis in DM has been known 
clinically for more than 50 years[29]. It is not surprising that 
the gastric emptying delay in DM is related to both slow 
transit with increased retention of  food in the proximal 
and distal stomach[62,63], and abnormal motility of  the 
gastric wall[64]. 
Small intestine: Delayed and rapid transit in the small 
intestine was observed in animal diabetic models[65,66,67,68]. 
El-Salhy reported that the GI transit was rapid in non-
obese diabetic mice[67] and was slower in obese diabetic 
mice[68]. Anjaneyulu and Ramarao[69] reported an increase 
in intestinal transit and a decrease in intestinal tone due 
to increased cholinergic and decreased beta-adrenergic 
receptor activities in DM rats. Slow small intestinal 
transit in DM patients have been documented using 
breath hydrogen appearance time after the ingestion of  
lactulose[70,71], by using radiopaque markers[72,73] and by use 
of  metal-detector test[74]. On the other hand, Keshavarzian 

and Iber[75] investigated intestinal transit in IDDM patients 
after the ingestion of  both liquid and solid meals and 
showed abnormal fast intestinal transit in their sample of  
diabetic patients. Nguyen et al[76] used intraluminal multiple 
impedance measurements to identify the postprandial 
duodenal chyme transport in patients with long standing 
IDDM. They demonstrated that the patients had disturbed 
propulsive chyme transport through the duodenum and 
the duodenal chyme clearance activity was decreased. 

The transit disorders can occur in any region of  the gut 
and in every stage of  diabetes[74], and can affect each other. 
Since transit of  food through the esophagus is relative 
fast, the gastric emptying rate is the major determinant of  
the food delivery to the small intestine. The relationship 
between esophageal transit and the rate of  gastric empting 
appears to be poor[43] and the gastroparesis is often 
associated with the intestinal transit delay in DM[74,77]. 

Abnormal patterns of upper GI motility in DM
Esophagus: Esophageal manometric abnormalities oc-
cur in over 50% of  patients with DM (see Table 1)[37]. The 
reduced amplitude of  lower esophageal sphincter pressure 
is in accordance with the increased prevalence of  gastro-
esophageal reflux disease in DM. More recently the evoked 
esophageal contractile activity to standardized bag disten-
sion was assessed using a specialized ultrasound-based 
probe by Frøkjær et al[19]. A balloon-like bag was positioned 
10 cm above the lower esophageal sphincter and inflated. 
It was demonstrated, both at the bag and 6 cm proximally, 
that the distension induced hyperreactivity and impaired 
the coordination of  the contractions in the diabetic pa-
tients. 
Stomach: Motility disorders of  the fundus and pylorus 
have been demonstrated in the diabetic animals[80-83]. In the 
human studies, it is recognized that disordered gastric con-
tractile activity as assessed by manometry and gastric emp-
tying occurs frequently in DM[84,85]. The motility disorders 
may include three aspects: Inter-digestive migrating motor 
complex (IMMC), amplitude and frequency of  contrac-
tions, and pyloric dysfunction (Table 1). 
Small intestine: Camilleri and Malagelada reported that 
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Figure 1  Top: The probe design allowing mechanical, heat and electrical 
stimulation of both the oesophagus and duodenum. The centre of the bag contains 
the sensor of the ultrasound probe imaging the oesophagus and duodenum during 
mechanical distension. The thermal stimuli were given by a pump system, which 
re-circulates water at 60 ℃ through two channels in the probe. The electrodes 
allowed electrical stimulation delivered directly to the mucosal surface. Bottom: 
The somatic referred pain areas to mechanical distension of the duodenum for the 
controls (left) and diabetic patients (right). The areas were larger for the diabetic 
patients.

Table 1  Motility disorders of upper GI tract in DM

Organ	             Motility disorder

Esophagus Amplitude[88,89] and number[46,90] of peristaltic
contractions↑
Number of spontaneous and non-propagated
contractions↑[45]

Amplitude of lower esophageal sphincter 
pressure↓[88]

Multi-peaked contractions[78,79]

Stomach Antral IMMC↓[87]

Post-prandial antral activity and the number of 
antral contractions↓[91]

Pyloric dysmotility[92]

Small intestine Frequency and amplitude of the 
antropyloroduodenal contractions↑↓[93]

Duration of MMC cycle↑[85]

Early recurrence of the MMC and clusters of 
contractile activity[94]
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small intestinal motility was abnormal in about 80% pa-
tients of  long-standing DM with delayed gastric empty-
ing[86]. Both postprandial and fasting small intestinal dys-
motility in the DM was reported (Table 1). Dooley et al[87] 
studied fasting GI motility by manometry for a mean of  
210 min in a group of  12 NIDDM patients with diarrhea 
and DAN. The patients showed grossly disordered motility. 
The migrating motor complex (MMC) disorders reflect the 
prolongation of  phase II without change in the duration 
of  phase I and III. The results of  studies on postprandial 
motility at the level of  the small intestine are inconsistent. 
However, abnormal motility patterns were observed in the 
diabetic subjects[85]. 

Pathophysiology of GI motility 
and sensory dysfunction in DM
Hyperglycemia
Disordered GI function in DM has been attributed to irre-
versible DAN but it is now clear that acute high blood glu-
cose concentration per se have a major reversible influence 
on upper-GI tract motility and sensory function. An ani-
mal study demonstrated that the correction of  hyperglyce-
mia to euglycemic levels restores the delayed transit[65]. Sev-
eral studies in both healthy subjects and DM patients have 
shown that the GI motor function is impaired during acute 
hyperglycemia (Table 2)[84,95-97]. Marked acute hyperglycemia 
affects the motility in every region of  the GI tract[98]. This 
may indicate that cholinergic activity is affected during hy-
perglycemia. Hyperglycemia may also affect the perception 
of  sensations arising from the GI tract (Table 2). However, 
much of  the data have been observational, and there is rel-
atively little information relating to potential mechanisms 
by which these effects are mediated. Because both stimula-
tory and inhibitory effects occur during the hyperglycemia, 
the effects of  glucose are likely to be mediated by neural 
or humoral mechanisms, rather than a direct effect on the 
smooth muscle of  the GI tract. The secretion of  pancreat-
ic polypeptide, which is under vagal cholinergic control, is 
diminished during acute hyperglycemia in healthy control 
subjects[99]. In healthy volunteers, plasma concentrations 
of  motilin are less during hyperglycemia when compared 
with euglycemia[100]. Considering the effects of  systemic 
changes in blood glucose concentrations, animal studies 
have revealed the presence of  glucose-responsive neurons 
in the central nervous system, which may modify vagal ef-
ferent activity[101]. Neurons responsive to glucose have re-
cently been identified in the rat small intestine[102], but their 
response to systemic rather than luminal glucose is unclear. 
Much work is required to elucidate the neural, humoral, 
and cellular mechanisms by which systemic glucose levels 
affects GI motility and sensation. 

Peripheral and central neuronal changes
DAN is seen as a major factor in the pathogenesis of  
disordered GI motor and sensory functions in DM[106,107]. 
Although GI manifestations related to DAN are diverse, 
many GI complications of  DM seem to be related to 
DAN[19,48,72,108-110]. 
Histological findings: The best-characterized signs of  

damage to the autonomic nervous system during DM are 
morphological animal studies[111-117]. The number of  my-
elinated axons in the vagosympathetic trunk is decreased 
in diabetic rats[118]. In the GI tract, many changes of  nerves 
and ganglia were observed i.e. (1) dystrophic axonopa-
thy[119]; (2) degeneration of  mesenteric nerves and gan-
glia[111]; (3) number of  vasoactive intestinal peptide (VIP)-
IR neurons in myenteric ganglia[112]; (4) relative volume 
density in myenteric plexus[120]; (5) number of  adrenergic 
and serotonergic neurons[111]. In addition, the surrounding 
tissue is also often disturbed. There is a thickening of  the 
endothelium[121,122], which may sensitize axons to damage 
from increased pressure or decreased oxygen and glucose 
availability. It is thus possible that axonal damage may be 
secondary to disorders in tissue surrounding the neurons. 
Nitric oxide (NO) is a key neurotransmitter in the regula-
tion of  GI motor function[123,124]. In rodents with strepto-
zotocin (STZ)-induced diabetes, NO synthase expression 
in the gastric myenteric neurons is diminished[125] and asso-
ciated with delayed gastric emptying. The results of  mor-
phologic studies of  the vagal nerves in diabetic patients 
are less consistent. One study demonstrated a decrease in 
unmyelinated axons in the abdominal vagus, another study 
found no abnormalities[126,127]. 
Clinical findings: One study has shown that abnormal 
esophageal motility is more frequent in the diabetic pa-
tients with evidence of  DAN than in those without[37].  The 
presence of  abnormal gastroesophageal reflux in diabetic 
patients has also been associated with the existence of  
DAN[128]. Increased cholinergic tone may relate to multi-
peaked waves in the diabetic esophagus in these patients[78]. 
Gastric emptying largely depends on vagus nerve func-
tion, which can be severely disrupted in DM[60]. Studies 
using cardiac autonomic nerve function tests to assess the 
involvement of  the autonomic nerve system in diabetic 
patients have indicated that the prevalence and severity of  
dysmotility of  the small intestine is substantially greater in 
DM patients with DAN compared to patients with normal 
autonomic function[129].  Diarrhea is evident in 20% of  dia-
betic patients, particularly those with known DAN[130,131]. 
Altogether, abnormal upper GI motility in DM has been 
associated to DAN. However, the question arises as to 
whether neuropathic changes in the intramural GI plex-

Table 2  Acute hyperglycemia and upper GI disorders

Motility disorder                            Sensory disorder

Peristaltic wave duration[98]↑               Amplitude of the cortical evoked 
Peristaltic velocity in the distal                 brain potentials to moderate 
part of the esophagus↓[103]                                   esophageal distension↑[98]

Pressure of the low esophageal               Perception during proximal 
sphincter↓[103]                                                                        gastric distension in healthy subjects 
Gastric emptying of both solids                both in the fasted state and during   

and nutrient liquids↓[104]                                        intra-duodenal lipid infusion↑[95]

Motility index and propagation             Influencing the postprandial 
of duodenal and jejunal waves↓[84]          fullness in IDDM patients↑[105]

Cycle length of inter-digestive       

motor activity in the fasted state↓[56]

Small intestinal transit↓[71]     

Proximal duodenal pressure
 waves↓[104]      
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uses, the extrinsic neuronal pathways or in the central ner-
vous system are primary or secondary.  In a recent study, 
Frøkjær et al found hyperreactivity and impaired coordina-
tion to bag distension of  the esophagus in IDDM patients, 
which indicates that a neuronal dysfunction is responsible 
for the hyperreactivity[19]. This dysfunction can theoreti-
cally be addressed to the mechano-sensitive afferent fibers, 
inter-neurons or efferent fibers located in the esophageal 
wall. However, impaired extra-intestinal pathways can 
potentially also affect the motor response. In another 
study, Frøkjær et al demonstrated that IDDM patients had 
decreased sensitivity to the stimulations of  the esophagus 
and duodenum[41]. This was accompanied by an increase in 
somatic referred pain areas to the gut stimulation (Figure 
1). As the referred pain is a result of  convergence between 
visceral and somatic afferents on central neurons, the find-
ings are indirect evidence for central hyperexcitability and 
neuroplastic changes. Altogether, this indicate that the neu-
ronal changes can be located both peripherally (receptors, 
nerve fibers, ganglions) and in the CNS. Sensory nerve 
dysfunction in the gut may explain why diabetic patients 
with severe GI motility disorders often do not suffer from 
the GI symptoms expected from the abnormal motility 
and motor function. On the another hand a large subgroup 
of  patients with longstanding DM suffers from severe GI 
symptoms[2,26,27]. This overall hyperalgesia/hypersensitivity 
is in contrast to the peripheral autonomic afferent neu-
ropathy that most likely impairs the perception from the 
GI tract. The mismatch between hypo-and hypersensitivity 
can likely be explained by an impaired balance between pe-
ripheral and central neuronal changes. Hence, the impaired 
function of  the peripheral afferent nerves is likely counter-
balanced (or even overruled) by increased central (spinal 
and/or brain) neuronal excitability and this balance may 
determine the symptoms in individual patients. 

It is likely that different pathophysiological mechanisms 
contribute to the peripheral and central neuronal changes 
in DM, including metabolic alterations, microvascular 
changes, and inflammatory changes[132]. Hypoxia, hyper-
glycemia, and increased oxidative stress in DM contribute 
directly and indirectly to Schwann cell dysfunction[133]. This 

will result in impaired paranodal barrier function, dam-
aged myelin, reduced antioxidative capacity, and decreased 
neurotrophic support for axons. Furthermore, the direct 
effects of  prolonged hyperglycemia through the glycation 
on nervous tissue are also important in the development 
of  DAN[134-136]. 

Morphological and biomechanical remodeling
Although the hyperglycemia and neuropathy seem to be 
the main mechanisms to the motor-sensory dysfunction in 
the upper GI tract in DM, the question remains whether 
the disordered motor and sensory functions of  the GI 
tract are only due to the neuronal changes and dysfunction 
or if  primary diabetes-induced structural and biomechani-
cal changes in the GI tract also play a role?  Data on the 
biomechanical properties are crucial for the understanding 
of  the motor function of  the GI tract because, (1) peristal-
tic motion that propels the food through the GI tract is a 
result of  interaction of  the passive and active tissue forces 
and the hydrodynamic forces in the food bolus and (2) re-
modeling of  the mechanical properties reflects the changes 
in the tissue structure that determine a specific motor dys-
function. Therefore, the morphological and biomechanical 
remodeling of  the GI wall may also be an important factor 
in the pathogenesis to the GI motor-sensory dysfunction 
in the diabetic patients.
Esophageal remodeling: Many studies have shown that 
DM causes morphological changes and biomechanical re-
modeling in the esophagus. Yang et al[13] in the in vitro study 
on the STZ-induced diabetic rat esophagus found that 
the wall thickness and cross-sectional wall area increased 
after the induction of  diabetes. Twenty-eight days after the 
diabetic esophagus became stiffer both in shear and in the 
longitudinal direction. The esophageal remodeling was also 
found in NIDDM rat esophagus[18]. In the diabetic rats the 
opening angle and residual strain distribution in the outer 
surface of  the wall decreased, the collagen fraction in the 
mucosa-submucosa layer and the passive circumferential 
stiffness of  the esophageal wall increased (Figure 2). Fur-
thermore, the esophageal weight per length, wall thickness 
and cross-sectional wall area increased in the NIDDM rats. 
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One previous human study reported that among six cases 
of  diffuse muscular hypertrophy of  the esophagus, four 
cases were associated with DM[137]. Recently, Frøkjær et al[19] 
in an human study found an increase in esophageal wall 
thickness and altered deformation to the distension with 
reduced longitudinal shortening and the radial stretch in 
IDDM patients (Figure 3). 
Stomach remodeling: A morphological study in DM rats 
demonstrated that the gastric mucosa thickness increased 
in DM rats compared with controls[138]. Remodeling of  
the interstitial cells network of  Cajal in the stomach were 
found both in animals and humans with DM[139-141]. A 

histopathological study of  the human stomach in DM 
patients with severe gastroparesis showed prominent col-
lagenization and smooth muscle atrophy of  the muscle 
layer[142]. Regarding the biomechanical remodeling of  the 
stomach only one report by Liao et al is available[17]. The 
rat stomach was distended in vitro. Gastric compliance, the 
surface tension, and circumferential and longitudinal de-
formation-pressure curves were calculated based on three-
dimensional ultrasound reconstructions of  non-diabetic 
and diabetic stomach models. In experimental DM, gastric 
compliance was lowered both in the non-glandular stom-
ach (proximal part) and the whole stomach (Figure 4). Fur-
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Figure 3  Left: Cross-sectional ultrasound image of the distended distal esophagus allows identification of the esophageal layers, i.e. mucosa-submucosa, muscle and 
adventitia layers. The white round shadow in the center is caused by the intraluminal ultrasound probe. Right: The distension-induced change in longitudinal stretch ratio is 
illustrated as function of the esophageal radius. The curves were obtained during smooth muscle relaxation with butylscopolamine. Exponential trend lines of the patients 
and controls are shown. The shortening during distension was clearly reduced in the diabetic patients.
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thermore, the circumferential stiffness in the non-glandular 
part increased. The structural changes of  the stomach due 
to DM may together with the sensory and motor nerve 
dysfunction contribute to the delayed gastric emptying and 
the symptoms in diabetic patients. 
Small intestinal remodeling: Many human[2,11,143,144] and 
animal [2,3,10,145-148] studies have shown that DM causes 
morphological alterations in the small intestine (Table 3). 
However, only few data exist relating to biomechanical re-
modeling of  the small intestine in DM[12]. Recently we did 
a series of  studies on the morphological and biomechanical 
remodeling of  small intestine in the STZ-induced diabetic 
rats[14-16]. The major findings in our studies are summarized 
in Table 3 and briefly showed that the stiffness of  the dia-
betic intestinal wall increased in a time-dependent manner 
(Figure 5). The viscoelastic behavior of  intestinal wall also 
changed during the development of  diabetes (Table 3). The 
stress-strain distribution and viscoelastic behavior mainly 
reflects the elastic properties of  intestine. The changes in 
elastic properties reflect the structural remodeling of  the 
intestinal wall during the diabetic development. 

Advanced glycation end products (AGEs) produced 
during the development of  DM likely relate to the mor-
phological changes and biomechanical remodeling of  the 
GI tract in DM. AGEs are generated by the sequential 
non-enzymatic glycation of  protein amino groups and 
by oxidation reaction[149]. The accumulation of  AGEs in 
tissues will alter the structure and function of  matrix pro-
teins[150]. Studies on DM and ageing show that AGEs are 
causing cross-linking of  collagen molecules responsible for 
basement membrane thickening and loss of  matrix elastici-
ty[151-153]. AGEs may contribute to the diabetic GI morpho-
logical and biomechanical remodeling by at least two major 
mechanisms. The first is receptor-independent alteration 
of  the extracellular matrix architecture by non-enzymatic 
glycation and the formation of  protein cross-links. The 
second mechanism is receptor-dependent and consists of  
modulation of  cellular functions through ligation of  spe-
cific cell surface receptors[154-156]. Sanchez SS and coworkers 
have demonstrated that the expression of  small intestinal 
extracellular matrix proteins have changed in STZ-induced 
diabetic rats[152]. Therefore, the nonenzymatic glycation of  
the GI tissue induced by long-term hyperglycemia seems 
to be an important mechanism behind the GI wall remod-
eling in DM.

Table 3  Morphological and biomechanical changes of small 
intestine in DM

Morphological change		          Biomechanical change

Intestinal weight, length, and 
weight per unit length↑

Opening angle and residual
strain in duodenum↓

Surface area of mucosa↑ Opening angle and residual 
Number of goblet cells 
per villus↑

strain in jejunum and ileum↑
Circumferential stiffness of

Smooth muscle mass↑ the intestinal wall↑
Different layer thickness↑ Longitudinal stiffness of the
Proliferating cell nuclear 
antigen (PCNA) ↑

 intestinal wall↑
Stress relaxation of small

interstitial cells of 
Cajal volume↓

intestine↓

Non-diabetic
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Implication of  GI remodeling on mechanosensory 
assessments: Mechanosensation is of  fundamental im-
portance for the GI function. The mechanosensitive nerve 
endings exist extensively in the GI tract where they serve a 
critical role in homeostasis. Several mechanoreceptor-like 
structures have been identified such as intraganglionic lam-
inar nerve endings (IGLE) and intramuscular arrays (IMA) 
in the GI tract[157-164]. The mechanosensitive afferents in 
the intrinsic and extrinsic pathways were described as low-, 
wide-dynamic- or high-threshold tension-receptors[165].  
Therefore, the GI tract structure as well as the tension, 
stress and strain distribution in the wall is important for 
the GI sensory and motor function. The GI wall structure 
or deformation changes in the DM will alter the relative 
positions of  the mechanosensitive afferents (zero setting 
of  the mechanosensitive afferents)[166]. The biomechanical 
remodeling in the DM such as alterations of  residual strain 
and stress distribution and increase the wall stiffness will 
alter the tension and stress distribution of  the mechano-
sensitive afferents. As results, the perception and motility 
of  the GI tract will change as well. Hence, the morpho-
logical changes and biomechanical remodeling of  GI tract 
in the DM is likely to affect the function of  mechanosensi-
tive afferents in the GI wall and further affect the motor 
and sensory function. However, so far the data are sparse 
about the association between the morphological and bio-
mechanical remodeling of  GI tract and the motor-sensory 
dysfunction in the DM[19,41]. The multimodal stimulations 
have proven accurate and reliable in the assessment of  
visceral sensation in several studies[167-169]. The geometry 
data of  GI tract can be obtained by impedance and cross-
sectional imaging such as ultrasound[170-172]. Combined with 
pressure recordings, biomechanical parameters such as 
tension, stress and strain can be obtained and correlated 
to the symptoms and mechanosensory data in the DM 
subjects[41]. Therefore, combined studies the GI motor-
sensory dysfunction and morphological and biomechanical 
remodeling in the diabetic GI tract will improve our under-
standing about the pathophysiology of  GI disorders in the 
DM patients. In the future, animal studies are needed to 
investigate the passive and active biomechanical and mech-
anosensory properties of  the GI tract related to DM. The 
experiments should simulate the physiological conditions 
both in vivo and in vitro in normal and diabetic animals. The 
identification of  mechanosensitive afferents and enteric 
nerve responses to the different stimuli will obviously be 
beneficial to understand the mechanisms of  GI motor-
sensory dysfunction in the DM.

In conclusion, GI symptoms are frequent in the diabet-
ic patients and are associated with sensory-motor abnor-
malities, such as impaired perception and motility of  the 
GI tract. The pathogenesis of  abnormal GI sensory-motor 
function in DM is clearly multi-factorial. DAN seems to 
be the major factor in the pathogenesis of  disordered GI 
motor and sensory functions in DM. Hyperglycemia has 
also been shown to impair GI motor and sensory function. 
Furthermore, the morphological changes and biomechani-
cal remodeling of  the GI wall may compromise the GI 
motor function and affect the function of  the mechano-
sensitive afferents in the GI wall. Studies of  the relation 
between the GI motor-sensory dysfunction, morphological 

changes and biomechanical remodeling in the diabetic GI 
tract may shed of  more light to understand the mechanism 
of  GI motor-sensory dysfunction in the diabetic patients. 
This knowledge may prove to be valuable in the develop-
ment of  new treatment strategies, which can also be evalu-
ated with the developed methods. New treatments that 
may be based on the present knowledge and methods are: 
(1) neurostimulation of  afferent visceral nerves, i.e. gastric 
electric stimulation, (2) agents which can break down al-
ready formed glycation end product protein-protein cross-
links, and (3) modulation of  the central nervous system 
excitability by drugs.
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