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Abstract

In this paper, we formulate the multi-pitch estimation problem and proposender of methods to estimate the set of fundamental frequencies.
The proposed methods, based on the nonlinear least-squares @UEple Signal Classification (MUSIC) and the Capon principles, estimate
the multiple fundamental frequencies via a number of one-dimensieaatises. We also propose an iterative method based on the Expectation
Maximization (EM) algorithm. The statistical properties of the methods aastuated via Monte Carlo simulations for both the single- and
multi-pitch cases.

Key words: parameter estimation, estimation theory, pitch estimationgddmental frequency estimation, periodic signals

1. Introduction riodic waveforms, is a difficult one, and one that has reakive
much less attention than the single-pitch case, thoughbleota

The problem of finding the fundamental frequency, or pitch,exceptions can be found in [15,1,16,17]. The multi-pitch-sc
of a periodic waveform occurs in many signal processing aphario occurs regularly in music signals, perhaps even nrere f
plications, for example in applications involving speecida duently than the single-pitch case, and often also in speech
audio signals. For instance, in audio processing the fuedam Processing. Typically, the situation occurs whenever iplelt
tal frequency plays a key role in automatic transcriptiod an instruments or speakers are present at the same time or when
classification of music [1]. Due to the importance of the prob Multiple tones are being played on a musical instrument. The
lem, a wide variety of fundamental frequency estimationtmet Multi-pitch estimation problem can be defined as followsi-co
ods have been developed in the literature, e.g., [2-14].dstm Sider a signal consisting of several, siy sets of harmonics
cases, these methods are based on a model where only a singlgreafter referred to as sources) with fundamental frecjas
set of harmonically related sinusoids are present at thee sanvx for & = 1,..., K, that is corrupted by an additive white
time. Indeed, the multi-pitch estimation problem, i.ee fiiob- ~ complex circularly symmetric Gaussian noise(n), having
lem of estimating the fundamental frequencies of multige p variances?, forn =0,...,N — 1, i.e,

I K L
* Contact information: phone: +45 96 35 86 20, fax: +45 96 15 15 83 _ Jjwiln

' z(n) = ag.1€e + w(n 1
email: mgc@s. aau. dk () ZZ kol (), (1)
L This work was supported by the Intelligent Sound projectiBta Technical
Research Council grant no. 26-04-0092 whereay, ; = Ak7leﬁ¢k,l’ with Ak’,l >0 and¢k,l being the am-

This work was supported by the Parametric Audio Processinge®t  pjit;de and the phase of thigh harmonic of thek’th source,
Danish Research Council for Technology and Productionr8eie grant no. . . .
274-06-0521. respectively. The problem is then to estimate the fundaahent

3 This work was supported by the Swedish Science Council (VR). frequencies{wy }, or the pitches, from a set oV measured
samples;z(n). In the present work, we assume that the num-

k=11=1
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ber of sourcesk, is known and that the number of harmonics, but the fundamental frequencies could still be determimed i

L, of each source is also known and the same for all sourcesiependently for the individual sources.

For the single-pitch case, the ordéris often also assumed  The rest of the paper is organized as follows: first, in Sectio
known in the literature concerned with parametric fundatalen 2, we introduce some notation and definitions. In Section 3,
frequency estimation (e.g., [6,2,18,15]). Even so, it megns  we present the proposed multi-pitch estimators along wi¢h t
like a restrictive assumption thaf and L are considered to be assumptions they are based on. Then, in Section 4, we analyze
known, but for many practical applications, it is not regdir the performance of the estimators using synthetic signads a
that the order be known precisely. Provided that the ordesdo Monte Carlo simulations. Finally, we conclude the work in
not vary too much, it is often sufficient to simply assume anSection 5.

average order. The role of an order estimate is mainly todavoi

ambiguities in the cost functions that may cause spuriotis €s 2. Preliminaries

mates ay/g times the true fundamental frequency (withy €

N) such as the well-known problems of halvings and doublings.

We note in passi_gg that we here consider the amplitudes ang,¢ anq results. First, constructing a vector formed from
the phaseg A ;e’?+1} as nuisance parameters that are not ofM consecutive samples of the observed signalés) —
interest. However, we see from (1) that the complex ampgisud [2(n) - a(n+ M — 1) |7 with M < N and w(n) =

are linear parameters that are, in principle, much easifndo [w(n) -
than the nonlinear fundamental frequencies,}. Given the
fundamental frequenciesu, }, the amplitudes and phases can

We begin by introducing some useful notation, defini-

~w(n+M—1)]T, with (-)T denoting the transpose,
we note that the signal model in (1) can be written as

easily be found using one of the estimators proposed in F8]. elwrln 0

more on the topic of sinusoidal amplitude estimation, werref K

the interested reader to [19] and the references thereithdtu x(n) = Z Zy ay +w(n), (3)
more, we remark that also real valued signals can be written k=1 0 edwiLn

using the complex model in (1) through the use of the (down-
sampled) discrete-time analytic signal [20], provided thare ~ where the matrixZ, ¢ C™*% has a Vandermonde structure,
are no harmonics in the real signal néaand r relative to  being constructed froni complex sinusoidal vectors as

N. Here, we have used the complex formulation because of its _

. L ; Zi =] z(wg) -+ z(wipl) ], 4)
notational simplicity and because it leads to computatigna _ _
simpler algorithms. withz(w) = [1 e - *M=D T anday = [ag, -+ ap,r]”.

In this paper, we propose and evaluate a number of estimale note that the constadt is chosen differently in the fol-
tors for finding the fundamental frequenciés;} based on lowing sections depending on the method. Next, we define the
well-founded principles from statistical signal procegsiln  covariance matrix as
particular, we propose an approximate nonlinear leastagu R-E {x(n)xH(n)} ) (5)
(NLS) method, a MUItiple Signal Classification (MUSIC)

based method as well as a Capon-based method. These mefre. E{-} and(-)"" denote the statistical expectation and the
ods have the following simple form: conjugate transpose, respectively. In practice, the cavee

matrix is unknown and is replaced by the sample covariance

K matrix defined as

{@n} = arg r{na)]fz J(wi), ) .y
wrti ] N 1 I
R=—-— x(n)x™ (n). (6)
where the function/(-) depends only on the sourde This N-—-M+1 nz:%
means that an estimate of the set of fundamental frequencies N . _ .
d Clearly, for R to be invertible, we require tha/ < % In

can be obtained by evaluating a cost functifoy, ) for a coarse
grid of values and then picking th€ highest peaks, i.e., costly
multi-dimensional searches are avoided. High-resolugisii-
mates can then be found iteratively using the gradientsjran
one case also the Hessian, that are derived in this papdrdor t
various cost functions. Additionally, we propose an itiseat
method based on the Expectation Maximization (EM) prirecipl CRLB. — 602
that is demonstrated to overcome some problems of the NLS FTONs ZlL—l A2 llz'
method for the multi-pitch case, whereas for the singlekpit R ' ) )
case, it is identical to the NLS-based method. We note in-pass N® CRLB can be seen to depend on the pseudo signal-to-noise
ing that if the sources have different numbers of harmoties, 2ti0 (PSNR), defined as
problem becomes somewhat more complicated, but the meth- ZzL:1 A%,zlg
o2

the following, we will assume that/ is chosen accordingly
whenever the inverse of the covariance matrix is used. For a
d single source and a high number of samples, é.;)> 1,

the asymptotic Cramér-Rao lower bound (CRLB) for #igh
source can be shown to be [8]

(7)

ods considered here can still be applied. Specifically, s ¢ PSNRy, =10log, [dB]. (8)
function J(-) would have to be calculated for different number

L ) Under the assumption that the sources are independentand th
of harmonics in order to determine the fundamental frequenc b b

the harmonic frequencies are distinct, (7) can also be ¢egec



to hold approximately for the problem of estimating the fand 1Z' x5 = Tr [Z] xx"Zy] . (14)

mental frequencies in (1). However, for a low number of sam-

. s an alternative to using the deterministic cost function i
ples, the exact CRLB for a fundamental frequency will depen . :
14), we can instead take the expected value after replacing
on the parameters of other sources as well.

by the sub-vectox(n), with M < N, in (14), i.e.,

3. Some Estimators E{|IZ{x(n)|j3} = Tr [Z{ RZ] , (15)

resulting in the fundamental frequency estimator

3.1. Approximate NLS-based Method Ha
wg = arg max Tr [Zk RZk} , (16)
Wg

The first estimator is based on the nonlinear least-squargghch instead of matching the signal model to a single snapsh
method. Under the assumption of white Gaussian noise, thg; « a5 in (14) matches it to the covariance matrix.
NLS method is equivalent to the maximum likelihood method Considering only one source at the time, the gradient of the
which is well-known to have excellent performance: it attai st function in (11) can be shown to be
the CRLB provided that the number of samples is sufficiently

high [21,22]. For the sinusoidal estimation problem, theSNL 7,7 2 27(wk)

method has been shown to achieve the asymptotic CRLB for Owy,

large N also in the colored Gaussian noise case [23], and, =x"[Y} (Z,CHZ,C)f1 ZH

therefore, the NLS can be expected to be robust to the color of Hep \=1 < H

the noise. + Zi (24 Z’“)_l Yi » (7)
For convenience, we define a signal vector containing all — 2, (Z{'Z) Wy (Z{Zi) ~ Z{']x

N samples of the observed signal ms= x(0) with M =

i NxL pai vati -
N. The NLS estimates are obtained as the set of fundament&i'th Y;?] €C ttbetlr?g fthe dderlvailvlefof the Vandirmoncli: ma
frequencies and ampltiudes that minimize the 2-norm of thérIX with respect to the fundamental frequency whose eleamen

difference between this signal vector and the signal maoge), are defined as

0 ,
K 2 (Y], = {azk} = j(n = DiZH=D - (18)
{&r} =arg min ||x — Z Ziagl| 9) w nl
{ar} {wr} =1 ) with [Y}],, denoting the(n,1)'th element of the matrixY.
LXL j vati i
where||- ||, denotes the 2-norm. Assuming that all the frequen-Flgthermore’Wk € C¥* is the dervative of the matrix
cies in{Z;} are distinct and well separated and thats> 1, Zy Ly e,
(9) can be well-approximated by finding the fundamental fre- 9 N-1 ,
quency of the individual sources, i.e., (Wl = [akaHZk} = Z (j(l — m)n) e?@rlt=min,
k lm n=0
g = arg min [x — Zyag 5 (10) (19)

L ) ) The gradient in (17) can be used for finding refined estimates.
Minimizing (10) with respect to the complex amplitudas  pere, we iteratively find such refined estimates of the funda-
gives the estimated, = (Z;'Zx) ~ Z{'x, which, when in-  mental frequency ds
serted in (10), yields

. ol = o 1 sve), (20)
. H H H
W = argmaxx - Zy, (Z,C Zk) Z.x (12) o . L .
wh with 4 being the iteration index anfla small, positive constant
~ argmax x7Z, Z7x (12) thatis found adaptively using approximate line search.[26t
Wi

the approximate solution in (12), the corresponding gratdie
where the last line follows from the assumption that> 1. the much simpler expression

Cast in the framework of (2), the resulting cost function is I I
VJ(wi) =~ 2Re (x" Y, Z}'x). (21)

H_ 2

J () = 12, (13 with Re(-) denoting the real value.
where the matrix produd’x can be implemented efficiently
for a linear grid search oves;, using a fast Fourier transform 3 5 19 c-based Method
(FFT) algorithm. The NLS method can be extended to deal
with an unknown order for the single-pitch case and colored
Gaussian noise in a computationally efficient manner [24]. A
alternative interpretation of the approximate NLS estoné
as follows: (13) can be written a§wy,) = Ele ||z (wil)¥x]|3
which is the periodogram power spectral density estimate of
evaluated at and summed over the harmonic frquemés 4 Note that due to the complicated nature of the NLS and Capeaeba
Furthermore, we note that the NLS cost function in (12) cancost functions, we only use the first order derivative forsthewhile for the
be written as MUSIC cost function, we also derive the Hessian.

We proceed to examine a subspace approach based on the
MUSIC orthogonality principle (see, e.g., [22,26,27])[ T3],
it was shown that high resolution fundamental frequency and
order estimates can be obtained using this principle, and in



[28], the approach was generalized to the multi-pitch esdiom ~ The gradient and the Hessian can be used for finding refined

problem. We will here briefly review these ideas in the contex estimates using Newton’s method, i.e.,
of this paper, i.e., for the case of known order and number ' vj@(i))
of sources. Assuming that the phases of the harmonics are ,(f) ———"k 2
independent and uniformly distributed on the interjalr, 7], v2J (@)

the covariance matrix and its eigenvalue decompositiorEV The method is initialized for = 0 using the coarse fundamental

can be written as frequency estimate obtained from (26).
K Note that while the NLS method is based on an asymptotic
R = UAUY = Z Z.PLZ7 + 51, (22)  assumption that facilitates finding individual fundamérite-

k=1 quencies independently, there is no such approximatiohen t
where U is formed from theM orthonormal eigenvectors of MUSIC approach. The covariance matrix decomposition in the
R,ie,U=[uy --- uy ], Ais adiagonal matrix containing MUSIC approach, however, is dependent on the distribution
the eigenvalues,, and of the phases and the whiteness but not the probabilty gensit
) ) ) function of the noise. The NLS approach, on the other hand,
P, = diag (| A Apr 1) (23) depends on the noise being Gaussian but it is still asymptoti

Let G be the noise Subspace formed from the eigenvectorga”y efficient for colored noise. It should also be notedt,tha
corresponding to tha/ — K L least significant eigenvalues and unlike the Capon and NLS approaches, the MUSIC approach
note that requires a priori knowledge about the number of sources for

K the evaluation of the cost function.
rank (Z szkz,if) = KL.
_ k=1 _ 3.3. Capon-based Method

Then, it can be shown that the noise subspace spanned by

G is orthogonal to all Vandermonde matricg, } that span
the signal subspace formed by the eigenvectors corresppndi
to the KL most significant eigenvalues. Therefore, the set o

INTCES SN
wy, =w

(30)

(24)

We proceed to introduce an estimator based on the Capon
falpproach (see, e.g., [22,29]), which relies on the desiga of
set of filters that pass power undistorted at specific fregjesn

fundamental frequencies can be found as [28]

K
{&r} :argminZHZkHGHi, (25)
tend i3

where|| - || » denotes the Frobenius norm a@dis found from
the EVD of sample covariance matik. Finally, we define the

here the harmonic frequencies, while minimizing the power
at all other frequencies. Defining the filter bank mate{’,
consisting ofL filters of length M, the filter design problem
can be stated as the optimization problem:

min Tr [HkHﬁHk} subjectto HIZ, =1,  (31)
k

cost function to be maximized for each individual sourcé as \wherel is the L x identity matrix. The filter bank matri¥d,

J(wy) = —[|Z{ G| (26)

2
jal)

which can be evaluated efficiently by calculating the FFT of
the noise subspace eigenvectors for each segment (see [8]

further details). The gradient of the cost function (26) ten
shown to be

VJ(wg) = —2Re (Tr {Z{ GG"Y, }), (27)

with Y, € CM*L having elements defined as in (18). Due
to the simplicity of the MUSIC cost function, the Hessian is

readily derived as

92 (wy)
2 s 97 \Wk)
\% J(wk) 8(,&)’3
= —2Re (Tr {Z;/GG"V, + Y/GG"Y,})
(28)
with V. € CM*L peing the second order derivative@f, i.e.,
H? .
[Vk]n 2 {Zk} = —(n-— 1)2[26](&”@1(”71). (29)
! 80‘)]% nl

5 This form is preferred over the more common reciprocal expsasdie
to the ensuing simplicity of the gradient and Hessian.

solving (31) is given by (see, e.g., [22])

H), =R"'Z, (zkHﬁ—lzk) (32)

f'Phis data and frequency dependent filter bank can then be used

to estimate the fundamental frequencies by maximizing the
power of the filter's output, i.eTr [HkHﬁHk}. Inserting (32)
into this expression yields

e —1
W = argmax Tr {(ZkHRlzk) } . (33)
Wi
The cost function can be evaluated for differentas
—~ -1
J(wg) = Tr [(szlzk) } . (34)

Similarly to the MUSIC-based method, the computational com
plexity of the Capon method can be reduced somewhat by cal-
culating Z¥R~'Z; using FFTs. The gradient of the Capon
cost function in (34) can be found to be

~ -1
VJ(wy) = —2Re (Tr{ (z}ijlzk)
x (ZkHﬁ_lYk) (z,g‘j’f{—lz,c)f1 })

The matrixY; € CM*L is constructed as in Section 3.1, i.e.,
having elements defined as in (18). As in the previous cases, w

(35)



iteratively find a refined estimates of the fundamental fezmy 1

““““ NLS
as ~(i41) _ A (d) ~ (4) 0.9¢ 7 —MUSIC||
Wy, =, +0VJ(@,"). (36) os 5 - |- --Capon
Alternatively, the filter bank design in (31) can be formatht '
as the design of a single filter which is subjecftgonstraints, 0.71 ]

one for each harmonic. Interestingly, such an approach has § ¢l 1

some conceptual similarities with the comb-filtering agmto 2

of [18]. L 057 I
804 ]

3.4. EM-based Method 03 |

Finally, we propose an estimator based on the Expectation
Maximization (EM) algorithm [30] (see also [31]). The EM 0.1y
algorithm is an iterative method for maximum likelihoodiest 0 BN ASE

; i i 0.1 0.2 0.3 0.4
mapon. The method prgsen.ted here is a special case of [32] Fundamental Frequency
which dealt with the estimation of the parameters of superim
posed signals. In our case, the superimposed signals are thg. 1. Example of cost functions (scaled for convenience)dm synthetic
harmonic sources. We use here the notation of [32]. First, weources having five harmonics each and true fundamental freigse of
write the observed signal model in (3) as a sunfobources w1 = 0.1650 andwy = 0.3937 for N = 160 and PSNR = 40 dB.

-

in white additive Gaussian noise, i.e., whereZ" is the Vandermonde matrix constructed from the
K fundamental frequency estimanél). The problem of estimat-
x= Z Yk (37)  ing the fundamental frequencies then becomes
k=1
Lo . ~(+1) () H Hry N~y H (1)
where the individual sources are given as wy, = arg max y, " Zy (2/'Zy) ~ Zi'y, (42)
Wi
=7 A~ (2 ~ (2
Yk kak + B w, (38) R arg H(lg)f) Yz(c )szzgyl(~C )’ (43)
with the noise source being arbitrarily decomposed ifAto Y

sources aghw wheref;, > 0 is chosenso that ), _, B = 1.  and the amplitudes that are needed to form the sources éstima
In the EM algorithm, the set of vectoss = {yy} is referred in (41) can be found as
to as the complete data while the observed data referred , , . -1, ,
~(i+1 7(i+1)H 5 (i+1 7(+1)H A (¢
to as the incomplete data. The complete and incomplete data al ™ = (Z,(f Mzt )) Zy Vg0 (aa)
are related through a many-to-one mapping. The EM algorlthrq.he M-step in (43) can be seen to be identical to the NLS,

consists of two steps. The first, termed the expectation-or Ewith the exception that (43) operates on the estimated sourc

step, is the calculation of the conditional expectationtw t _ ;) . , ,
log-likelihood of the complete data, i.e., v, rather than the observed signal Accordingly, refined

_ estimates can be obtained in this framework using a gradient

U(e, 9(1’)) _ / (Inp, (y: 0)) p(ylx; e(i))d% (39) reminiscent of the one in Section 3..1. The E-stepin (41)_ agdt
M-step (43) are then repeated until some convergenceioriter

is met. As can be seen, the EM algorithm splits the difficuittjo

where 8 is a vector containing thé&th iteration estimates L . : S
estimation problem into a number of much simpler estimation

of the parameters in (3) arftlis the unknown parameter vec- . o
b 3) P problems by estimating the individual sources. In eaclaiien

tor that parameterizes the likelihood function. In theduling f the algorithm. the loa-likelihood of the ob d data |
superscripti) denotes iteration number. Then, updated param.9 € agorldrtT;], F O_?r']' elihoo Ot gto serve :?I'S
eters are found in the so-called maximization- or M-step byncrease and the algonthm 1S guaranteed to convergeast e

maximizing the above function, i.e., Fo a Ipcal maximum, u.nder'm|.ld conqn'lons. Th'e.r'nam diffigult
4 , in using the EM algorithm is in obtaining the initial paramet
ol = arg max U(6, 0"). (40)  estimates required to estimate the individual sourceslij e

. here obtain the initial parameters from the approximate NLS
For the problem at hand, the two steps of the EM algorithm

become patrticularly simple due to the noise term being GausA: Numerical Results
sian and white. For details, we refer to [32] and the refezenc
therein. Essentially, the E-step reduces to the followigre

an estimate of thé'th source in noise is obtained based on the N this section, we evaluate the performance of the intreduc
parameters of the previous iteration: estimators. First we provide an illustrative example based

P synthetic signals. Figure 1 shows the cost functions of the p
() 4(0) a1 posed estimators, except for the EM-based solution, foga si
- Z R (41) nal of lengthN = 160 consisting of X' = 2 sources having

i)~ 20a) o
five unit amplitude harmonics each withS N R = 40 dB. The

k=1
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Fig. 2. Example of the proposed methods applied to voiced bpsigoals. First source (a) and its cost functions (b). Séamurce (c) and its cost functions
(d). Mixture of the two sources (e) and the corresponding fsctions (f).



two sources have fundamental frequencies 0.1650 and Q.393@.3), (26), and (34) are evaluated on a coarse grid. Thesethe
respectively. Note that here we show the more traditior@pre  coarse estimates are used to initialize the gradient-bastial
rocal form of the MUSIC cost function, i-el/HZkHGHQF- For ods that are used to obtain refined estimates. For the MUSIC-
the MUSIC-based method, we chooke = | N/2| while for ~ and Capon-based methods, the gradients of (26) and (34) are
the Capon-based method we usdd= [2N/5|. These values Uused, whereas for NLS method, the gradient for the approxi-
were found empirically to result in good performance and wil mate cost function (13) was found not to produce high resolu-
be used in all the experiments reported Herét can be seen tion estimates. Instead, the gradient was derived for thse c
that the cost functions have distinct peaks close to theftese  based on (11). For the EM algorithm, we used initial paramete
quencies with the MUSIC- and Capon-based methods havingstimates from the NLS estimator to form the source estisnate
narrower peaks than the approximate NLS method. Also worthvith 5 = %, Vk. Then, the NLS estimator is applied to each
noting is the multi-modal nature of the cost functions with aof these sources using the approximate NLS cost function in
number of fairly sharp false peaks. Indeed, the multitude-of (13) and to initialize the gradient-based method. A meret-10 |
cal maxima shows why the fundamental frequency estimatiogrations of the EM algorithm were found to be sufficient for
problem is a difficult one. At first sight, this appears to besle the application at hand. We note that the NLS cost function in
of an issue for the MUSIC-based approach, but upon closer irl11) is approximate, being based on neglecting the inned-pro
spection, it can be observed that MUSIC generally suffenmfr Ucts between the sources. Also, for one harmonic source, the
this problem too. NLS method is exact, meaning that there is no approximation
The next example is based on two real voiced speech signal the estimate (11). Moreover, the NLS and the EM methods
sampled at 8 kHz. We have plotted the time signals of the tw@re identical for the single-pitch case.
sources withN = 500 in Figures 2(a) and Figures 2(c) and We start out by presenting the results for the unit amplitude
the sum of these sources in Figure 2(e) with the figure showingase. The RMSEs are shown in Figures 3(a) and 3(b) as a func-
a more complicated signal. The corresponding cost funstiontion of N for one and two sources, respectively. Similarly, in
are depicted in Figures 2(b), 2(d) and 2(f). It can be seent, th Figures 3(c) and 3(d), the RMSEs are shown as a function of
all the methods correctly identify the fundamental freqries  the PSN R for one and two sources. It can be seen that for the
of the individual sources. But it can also be seen that the cogase of one harmonic source, all estimators perform wetl, fo
functions contain a number of spurious peaks. In Figure 2(f)all tested PSNRs with NLS having the best performance. For
the cost functions are even more complicated, but the methodwo sources, however, the RMSE of the NLS method performs
are still able to find the fundamental frequencies of the twgpoorly while both the MUSIC- and Capon-based methods fol-
sources. low the CRLB closely. The EM algorithm can be seen to have
We proceed to evaluate the proposed estimators using Mongxcellent performance attaining the CRLB. It can also be ob-
Carlo simulations by generating signals according to thdeho served that all methods exhibit thresholding effects bel@w
(1) with the phases and the noise being randomized over reaiiB while the NLS method appears to saturate at PSNRs above
izations. For all combinations of parameters 100 Monte cCarl 20 dB.
trials are run. The estimators are evaluated for two soutaes Next, we consider the case where the sinusoidal amplitudes
ing fundamental frequencies; = 0.1580 andw, = 0.6364,  are decaying. Itis not clear from the theoretical derivaibow
and with L = 3, and for one harmonic source of 0.6364. Notethis should affect the performance of the estimators. Theze
that this case is somewhat more difficult that that showngp Fi this is investigated in simulations similar to those in tire-p
ure 1 due to the near-intereger relation between the twoefund Vious section. The results are shown in Figures 3(a) and 3(b)
mental frequencies. We compare the root mean square estimas the RMSE as a function df for one and two sources, re-

tion error (RMSE) of the estimators and the asymptotic CRLBspectively. Similarly, in Figures 3(c) and 3(d), the RMSEs a
given in (7). Here, the RMSE is defined as shown as a function of th& SN R for one and two sources.

The general conclusions that can be drawn from these figures

1 KE - (5) 2 are the same as those from Figure 3. However, comparing Fig-
RMSE = \| o= D (Wk - ‘Uk) ; (45)  ures 3 and 4, a number of peculiarities can be noted. First of
k=1s=1 all, the decaying amplitudes appear to cause a larger gap be-

with wy, andw,is) being the true fundamental frequency and thetween the RMSE and thg CRLB for the methods that are ba;ed
estimate, respectively, and wibeing the number of Monte ©ON theé covariance matrix, namely MUSIC and Capon, while
Carlo trials. The RMSE is calculated jointly for both sowgce e performance of the NLS and EM methods is unaffected by
We test two different cases for the amplitudes, namely onéh's' More importantly, the threshold below yvh|ch the RMSEs
where all amplitudes are set to unity, i.é;; = 1, Vk,i, and  differ from the CRLB by an order of magnitude can now be

' sieen from Figure 4(d) to be different for the various methods

one where the amplitudes of each source are decaying, at co ’ e
be expected for natural spectra, here exemplifieddpy = It now appears that the MUSIC-based method is more sensitive

1/1. The fundamental frequency estimates are obtained in eadR N0ise than the Capon and EM methods.

Monte Carlo simulation as follows: First, the cost funckon !N @ final experiment, the RMSE is studied as a function
of the difference between the fundamental frequencies of tw

6 The reason for having different values af for the two methods is that harmonic sources, i.eA = |w; — ws|, for a PSNR 0f40 dB
they exhibit different sensitivity to the choice af/. and N = 160 . The results are shown in Figures 5(a) and 5(b)
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Fig. 3. Estimated RMSEs for unit amplitudes. RMSE as a functibnV for PSNR = 40 dB for one (a) and two (b) sources. RMSE as a function of
PSNR for N = 400 for one (c) and two (d) sources.

for unit and decaying amplitudes, respectively. It can kEnse interesting and useful observations from the results ptese
that the EM algorithm performs the best for closely spacecdere. For example, some important properties of the estimat
harmonics and that the approximate NLS method performs thean be determined like efficiency and consistency. Also, our
worst. The Capon-based approach can be observed to béyslighexperiments show that the proposed estimators exhibirdiff
worse than the EM algorithm for unit amplitudes but it still ent sensitivities to differences in frequency, the amgktulis-
outperforms the MUSIC-based method. For this experimentiribution and different thresholding effects. These ateraty

we used 100 iterations in the EM algorithm. The decayinguseful observations. Specifically, it appears that the EM an
amplitudes can be seen to cause a degradation of performanCapon methods are the most robust and are better able to re-
of the methods compared to the unit amplitudes. solve closely spaced harmonic sets.

At first sight, the conditions of the simulations reportedehe =~ When making a choice between the various estimators, the
may seem overly simplisitic. Indeed, one would expect speeccomplexity should also be taken into consideration. Theo@ap
and audio signals to contain many sources and many harmonicand MUSIC-based approaches both have compleXityv?)
However, for more and more sources and harmonics the expefsince M is proportional toN) due to the matrix inversions,
iments will be become increasingly complicated and difficul the matrix products and the EVD. On the other hand, the NLS
to analyze and make sense of. As the number of sources groapproximation based on the FFT, and thus also the EM algo-
the interaction effects between the different sources avily  rithm, has complexity)(N log N) assuming that the FFT size
become worse, thereby degrading performance of the estimé& chosen proportionally td/. However, the NLS gradient that
tors. As we have seen it is, though, still possible to makeesomwas used has complexit§(N?) due to the matrix inversions,
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Fig. 4. Estimated RMSEs for decaying amplitudes. RMSE as atibmof N for PSN R = 40 dB for one (a) and two (b) sources. RMSE as a function of
PSNR for N = 400 for one (c) and two (d) sources.

as does the expression in (11). If refined estimates are Rot dbased on the expectation maximization (EM) algorithm, Wwhic
sired, this seems to favor the EM-based estimator for comis identical to the NLS method for the single pitch case, and
plexity constrained situations such as real-time proogsef  consists of a number of independent NLS estimators for the
speech and audio signals. Also, considering that the nagge m multi-pitch case. The basic assumptions for these methmds t
very well be colored in some applications and that the NLSwork for the multi-pitch estimation problem have been ot
and thus also the EM algorithm, is still asymptotically ééfic ~ and their finite sample performance has been evaluated using
for colored noise, this is yet another argument that favioes t Monte Carlo simulations. It has been found that the MUSIC-
EM algorithm. and Capon-based methods have good statistical perforrfance
both the multi- and single-pitch cases, following the Cramé
Rao lower bound (CRLB) closely. As expected, the approxi-
mate NLS has excellent performance for the single-pitcle cas
merput does not perform well for the multi-pitch case. The EM al-
a gorithm is able to mitigate the shortcomings of the NLS fa th
_multi-pitch case as it was found to have excellent perforzean
Ifitttaining the CRLB for the number of observations considere
here. For closely spaced fundamental frequencies and itigcay
amplitudes, the Capon approach has been found to have a per-
ormance superior to that of the MUSIC method and the EM

5. Conclusions

We have considered the problem of estimating the fundal
tal frequencies of superpositions of periodic waveforniso
known as the multi-pitch estimation problem. We have pro
posed a number of estimators that are based on one-dimahsio
evaluations of cost functions, namely the approximate non
linear least-squares (NLS), MUSIC- and Capon-based tec
nigues. Additionally, we have also proposed an iterativéhoe

9
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algorithm once again outperformed the other estimators.
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