

Aalborg Universitet

An Interface Theory for Input/Output Automata

Larsen, Kim Guldstrand; Nyman, Ulrik Mathias; Wasowski, Andrzej

Publication date:
2006

Document Version
Publisher's PDF, also known as Version of record

Link to publication from Aalborg University

Citation for published version (APA):
Larsen, K. G., Nyman, U., & Wasowski, A. (2006). An Interface Theory for Input/Output Automata. (RS-06-10
ed.) Århus: BRICS.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 ? Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 ? You may not further distribute the material or use it for any profit-making activity or commercial gain
 ? You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: April 29, 2017

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by VBN

https://core.ac.uk/display/60357684?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://vbn.aau.dk/en/publications/an-interface-theory-for-inputoutput-automata(b265cf20-9efe-11db-8ed6-000ea68e967b).html

BRICS
Basic Research in Computer Science

An Interface Theory for
Input/Output Automata

Kim G. Larsen
Ulrik Nyman
Andrzej Wasowski

BRICS Report Series RS-06-11

ISSN 0909-0878 June 2006

B
R

IC
S

R
S

-06-11
Larsen

etal.:
A

n
Interface

T
heory

forInput/O
utputA

utom
ata

Copyright c© 2006, Kim G. Larsen & Ulrik Nyman & Andrzej
Wasowski.
BRICS, Department of Computer Science
University of Aarhus. All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

See back inner page for a list of recent BRICS Report Series publications.
Copies may be obtained by contacting:

BRICS
Department of Computer Science
University of Aarhus
IT-parken, Aabogade 34
DK–8200 Aarhus N
Denmark
Telephone: +45 8942 9300
Telefax: +45 8942 5601
Internet: BRICS@brics.dk

BRICS publications are in general accessible through the World Wide
Web and anonymous FTP through these URLs:

http://www.brics.dk
ftp://ftp.brics.dk
This document in subdirectory RS/06/11/

An Interface Theory for
Input/Output Automata

Kim G. Larsena,b Ulrik Nymanb

Andrzej Wąsowskic∗

aBRICS†, Department of Computer Science,
Aalborg University,

Fr. Bajersvej 7B, DK-9220 Aalborg Ø, Denmark

bCISS, Center for Embedded Software Systems,
Aalborg University,

Fr. Bajersvej 7B, DK-9220 Aalborg Ø, Denmark
{kgl,ulrik}@cs.aau.dk

aComputational Logic and Algorithms Group,
IT University of Copenhagen,

Rued Langgaards Vej 7, DK-2300 København S, Denmark
wasowski@itu.dk

December 17, 2006

Abstract

Building on the theory of interface automata by de Alfaro
and Henzinger we design an interface language for Lynch’s In-
put/Output Automata, a popular formalism used in the devel-
opment of distributed asynchronous systems, not addressed by

∗Partly supported by Center for Embedded Software Systems (CISS) in Aalborg.
†Basic Research in Computer Science (www.brics.dk),
funded by the Danish National Research Foundation.

1

previous interface research. We introduce an explicit separation
of assumptions from guarantees not yet seen in other behavioral
interface theories. Moreover we derive the composition operator
systematically and formally, guaranteeing that the resulting com-
positions are always the weakest in the sense of assumptions, and
the strongest in the sense of guarantees. We also present a method
for solving systems of relativized behavioral inequalities as used in
our setup and draw a formal correspondence between our work
and interface automata. Proofs are provided in an appendix.

1 Introduction
A suitably expressive interface language lies at the very center of any
component-oriented development framework. Interfaces are abstractions
of components, carrying all essential information necessary to establish
cross-component compatibility. Instead of reasoning about components
directly, one typically examines compatibility of their interfaces, while
the adherence of a particular implementation to its interface is tested
separately. This, not only allows for independent development of com-
ponents, but also by introducing compositionality helps to combat the
state space explosion problem in various automatic analyses.

Type annotations, type checking, and type inference have tradition-
ally been used to decide compatibility of components soundly with re-
spect to memory safety. However, static type correctness in this tradi-
tional sense fails to guarantee more elaborate properties, like correctness
of communication, or deadlock freeness. This observation has inspired a
long line of research on behavioral type systems and behavioral interface
languages suitable for specification of highly trusted computer systems
(see [9, 22, 18, 19] and references therein for examples).

We follow de Alfaro and Henzinger [2, 3] in studying an automata
based interface language, or interface automata. Unlike them however,
we explicitly separate, in the interface description, the assumptions that
a component may make about its use from the guarantees that it needs
to commit to. Assumptions describe the possible behaviors of the com-
ponent’s external environment, while guarantees describe the possible
behaviors of the component itself.

Each interface in our theory consists of two I/O automata. The first,
called the environment, represents assumptions. The second, called the
specification, describes guarantees. Figure 1 shows an interface for a

2

0 1
send?

ok !

EnvClient

send ok fail

0 1
send !

ok?

SpecClient

send ok fail

Figure 1: Client = (EnvClient , SpecClient)

5

0 1 2 3 4

6

ack !ok?
ack !

send ! trnsmt? nack ! trnsmt?

fail? nack !

EnvTryTwicesend ok fail

trnsmt ack nack

5

0 1 2 3 4

6

ack?ok !
ack?

send? trnsmt! nack? trnsmt!

fail ! nack?

SpecTryTwicesend ok fail

trnsmt ack nack

Figure 2: TryTwice = (EnvTryTwice , SpecTryTwice)

Client component consisting of the automata EnvClient and SpecClient .
The arrows incoming to or outgoing from the box surrounding each of
the automata visualize their static types, or signatures. The environment
EnvClient specifies that even though the static type does allow a fail ac-
tion, the emission of this action is disallowed for all compliant execution
environments. The only legal input is send. One can still use the Client
component in a context that syntactically permits fail, but the behavior
of the Client is only guaranteed in environments that do not fail.

Alfaro and Henzinger model assumptions about the use of a compo-
nent by the interface’s inabilities to receive inputs. The output transi-
tions of the very same interface automaton describe its guarantees. Since
we separate the two, we alleviate the need for blocking. Our automata are
input enabled—accepting any input from their signature in every state.
In order to avoid clutter we usually do not draw loop transitions, which
correspond to ignoring an input. There is one such implicit transition
1 send?−−−−→1 in EnvClient and three in SpecClient .

Two interfaces can be combined into a composite interface, describing
a new set of assumptions and guarantees. Interface TryTwice, presented
in Fig. 2 can be composed with Client . The two components do not
form a closed system, but are intended for use together with a further
unspecified LinkLayer component.

Composition of interfaces is a central construction in any interface
theory. One of our contributions is that the composition is derived sys-
tematically: we formally state requirements for it in the form of a system
of inequalities, and derive a result of the composition as a maximal solu-

3

0 2 3 4 T

ack !

ack ! trnsmt?

nack ! ack !

trnsmt? nack ! trnsmt? trnsmt?

EnvComp1

trnsmt ack nack

0 2 3 4 6

ack?

ack?

trnsmt ! nack? trnsmt ! nack?

SpecComp1

trnsmt ack nack

Figure 3: (EnvTryTwice , SpecTryTwice)|(EnvClient , SpecClient) = Comp1

tion of this system. Consequently properties of the composition hold by
construction.

Figure 3 shows the interface resulting from composing Client and
TryTwice. Later we shall explain how it has been computed. Now ob-
serve that any component legally interacting with this new interface may
not send a nack twice in response to the transmt request—a simple con-
sequence of the fact that this would make TryTwice respond with a fail
to Client, violating the assumptions of the latter. The additional state T
manifests the fact that the computed environment expresses the weak-
est assumptions. It allows receiving arbitrary behavior after a second
transmt in a row, because any compliant implementation would never
send it, and thus would never be affected by the subsequent behaviour.

An advantage of separating assumptions from guarantees is that one
of the automata can be changed without affecting the other. Thus the
same guarantees can be used for multiple interfaces. In [12] we have
argued that this is useful for modeling software product lines: a fam-
ily of component variants may be specified using a single specification
(guarantee) and multiple environmental restrictions (assumptions). An
advanced compiler may use the assumptions to derive specialized ver-
sions of the component from the same source code. Let us illustrate this
with an example. Figure 4a gives an alternative environment EnvNoNack

for the SpecTryTwice specification. This environment disallows the send-
ing of a nack as a response to a trnsmt request. Any implementation
of TryTwice is also an implementation of (EnvNoNack , SpecTryTwice). If
it is only used in EnvNoNack , then it could be automatically special-
ized to these specific circumstances. The error handling code could
be removed as it is not needed in such a context. The composition
Comp2 = (EnvNoNack , SpecTryTwice)|(EnvClient , SpecClient) has exactly the
same specification part as the Comp1 composition. The resulting envi-
ronment EnvComp2 (Fig. 4b) disallows the generation of the nack input
even though the static type permits this.

4

(a)

0 1 2 5

ok?
ack !send ! trnsmt?

send ok fail

trnsmt ack nack

(b)

0 2 T

ack !
nack !

ack !
trnsmt? trnsmt?

trnsmt ack nack

Figure 4: (a) The environment EnvNoNack and (b) the environment
EnvComp2 .

As we have also argued in [12] the separation supports a simple declar-
ative style of modeling assumptions: simple properties can be modeled
as standalone automata and combined using the process algebraic oper-
ators of sum and product, corresponding to disjunction and conjunction
of properties respectively.

An interesting theoretical side effect of our exposition, is an informal
correspondence drawn between blocking and non-blocking interface the-
ories. A single blocking interface automaton of [2] expresses both the
assumptions of a component and its commitments. When a blocking
interface automaton is unable to accept an input, it effectively assumes
that any compatible environment will never provide it. In the theory for
non-blocking systems the interfaces are composed of two non-blocking
automata, and the same effect is achieved by explicitly using one of the
automata for describing the permissible behavior of the surroundings.

The paper develops as follows. Section 2 defines I/O automata and
interfaces. Section 3 discusses refinement of interfaces. The most central
section, Section 4, is devoted to composition, while a more technical sec-
tion, Section 5, is devoted to systems of inequalities used in section 4 and
is a contribution in itself. But reading it is not essential for appreciating
our interface theory. Section 6 draws a correspondence between interface
automata and our interfaces, while section 7 discusses other related work.
We conclude in section 8. The appendix A contains the proofs of all our
claims.

2 I/O Automata and Their Interfaces
Definition 1. An I/O automaton S=(statesS, startS, inS, outS, intS, stepsS)
is a 6-tuple, where statesS is a set of states, startS ∈ statesS is an initial
state, inS is a set of input actions, outS a set of output actions, and
intS is a set of internal actions. All of the action sets are mutually dis-
joint. We abbreviate extS = inS ∪ outS and actS = extS ∪ intS. Then

5

stepsS ⊆ statesS × actS × statesS is the set of transitions. I/O automata
are input enabled: for every state s and any action i ∈ inS there exists a
state s′ and a transition (s, i, s′) ∈ stepsS.

We write q a−→S q
′ if (q, a, q′) ∈ stepsS. We often explicitly suffix exter-

nal actions with direction of communication writing q a!−→S q
′ if a ∈ outS,

and q a?−−→S q
′ if a ∈ inS. Notice that the labels a! and a? still denote

exactly the same action, and we can drop the suffixes whenever the di-
rection of communication is irrelevant. We write q a6−→, meaning that

there is no q′ such that q a−→q′.
Definition 2. An execution of an I/O-automaton S starting in a state
q0 is a finite sequence of labels q0, a0, q

1, a1, q
2, a2, . . . , q

n−1, an−1, q
n such

that all qi’s are members of statesS, all ai’s are members of actS and for
every k = 0 . . . n − 1 it is the case that qk ak−−→S q

k+1. A trace σ of S is
an execution ψ of S starting in the initial state, with all the states and
internal actions deleted: σ = ψ � extS, where ψ � X denotes a sequence
created from ψ by removing symbols that are not in set X. The set of all
traces of automaton S is denoted TrS.

Two I/O-automata S1 and S2 are syntactically composable if their
input and output sets do not overlap and their internal actions are
not shared: inS1 ∩ inS2 = outS1 ∩outS2 = intS1 ∩actS2 = actS1 ∩ intS2 =
∅. Two syntactically composable automata S1 =(statesS1 , startS1 , inS1 ,
outS1 , intS1, stepsS1

) and S2 = (statesS2 , startS2 , inS2 , outS2, intS2 , stepsS2
)

can be composed into a single product automaton S = S1|S2, where
S=(statesS, startS, inS, outS, intS, stepsS) and statesS =statesS1×statesS2 ,
startS = (startS1 , startS2), inS = inS1 ∪ inS2 \ outS1 \ outS2 , outS = outS1

∪ outS2 \ inS1 \ inS2 , intS = intS1 ∪ intS2 ∪ (extS1∩extS2), and stepsS are
defined by the following rules:

if q1 a−→S1 q
′
1 and a∈actS1\actS2 then (q1, q2)

a−→S1|S2(q
′
1, q2)

if q2 a−→S2 q
′
2 and a∈actS2\actS1 then (q1, q2)

a−→S1|S2(q1, q
′
2)

if q1 a−→S1 q
′
1 and q2 a−→S2 q

′
2 then (q1, q2)

a−→S1|S2
(q′1, q

′
2)

In practice unreachable states may be removed from the product, without
affecting the results presented below.

Our composition differs from the standard I/O automata composition
in that it applies hiding immediately. It is equivalent with the standard
composition as long as each action is only shared by at most two com-
ponents.

We define an interface model to be a pair (E, S) of I/O automata:

6

Definition 3. A pair of I/O automata (E, S) is an interface if E|S is a
closed system, i.e. inE =outS and outE = inS.

The environment automaton E drives the specification automaton S.
Any implementation I of S must conform to S as long as it is receiving
input that conforms to E. The behavior of I on sequences of inputs that
cannot be provided by E is not constrained. We formalize this using
relativized refinement:

Definition 4. An I/O automaton I implements an interface (E, S), writ-
ten E |= I 6 S, iff outI = outS and inI = inS and TrE ∩ TrI ⊆ TrS.

3 Refinement of Interfaces
We establish a hierarchy on interfaces in order to quantify their generality.

Definition 5. Let (E1, S1) and (E2, S2) be two interfaces with the same
signatures. We will say that (E1, S1) is a stronger interface than (E2, S2),
written (E1, S1) � (E2, S2), if (E1, S1) has less implementations than
(E2, S2), so for any I/O automaton I: E1 |= I 6 S1 implies E2 |= I 6 S2.

The refinement of interfaces can be seen as a subtyping relation in
a behavioral type system for components. In such an interpretation we
would say that (E1, S1) is a subtype of (E2, S2). We propose several
simple sound characterizations of the above refinement that are useful in
making proofs:

Theorem 6. Let (E1, S1), (E2, S2) be interfaces with identical signatures.
Then

1. TrE1∩TrS1 = TrE2∩TrS2 implies (E1, S1) � (E2, S2) and (E2, S2) �
(E1, S1)

2. TrE2⊆TrE1 ∧ TrS1⊆TrS2 implies (E1, S1) � (E2, S2)

3. TrE1\ TrS1 ⊇ TrE2\ TrS2 implies (E1, S1) � (E2, S2)

The above characterizations are convenient in establishing subtyping
relations among interfaces in many concrete cases. However none of
them are complete. The refinement of interfaces can be characterized
in a sound and complete manner using a notion of tests that resembles
failure traces of Hoare [7], but determinized, relativized with respect to
the environment, and suffix closed.

7

Definition 7. The set of conformance tests of interface (E, S) is defined
as:

test(E,S) = {σ · a | σ∈ TrE ∩ TrS, σ · a∈ TrE \ TrS} · ext∗E ,

where X∗ denotes the set of all finite sequences over alphabet X.

Theorem 8. Let (E1, S1) and (E2, S2) be two interfaces with identical
signatures. Then test(E1,S1) ⊇ test(E2,S2) iff (E1, S1) � (E2, S2).

Without spelling out the details, we remark that a finite automaton,
such that test(E,S) is its accepted language, can be computed in quadratic
time, and can be used for testing containment in applications of the above
theorem.

4 Interface Compositions
We would like to abstract compositions of components by compositions of
their interfaces. For any two compatible interfaces (E1, S1) and (E2, S2)
we should be able to derive an interface of their composition (E, S),
the one that is implemented flawlessly by any two implementations of
(E1, S1) and (E2, S2).

Two interfaces are syntactically composable if the I/O automata com-
prising them are pointwise syntactically composable. This guarantees
that any components I1 and I2 implementing syntactically composable
interfaces (E1, S1) and (E2, S2), are also syntactically composable. The
question that we want to address is the dynamic compatibility of I1 and
I2: can I1 violate the environmental assumptions expressed in E2? Can
I2 violate the assumptions in E1?

We may be tempted to say that the composite interface is the compo-
sition of the interface parts: (E, S) = (E1|E2, S1|S2). This construction,
however, is unsound. It is possible to find two compliant implementa-
tions that, when composed together, violate (E, S). In order to arrive
at a sound and complete notion of composition, we will state the re-
quirements for the composite interface, and then derive the construction
from them. The three requirements are: independent implementability
[3], mutal deadlock freeness, and associativity.

Independent implementability means that (E, S) is such, that the
implementations of (E1, S1) and (E2, S2) can be developed independently

8

of each other, and their composition will implement the composition of
their interfaces:

For all I1, I2. E1 |= I1 6 S1 and E2 |= I2 6 S2 implies E |= I1|I2 6 S .
(1)

Mutual deadlock freeness means that any two correct implementations,
when composed and embedded in an environment that obeys the assump-
tions of E, will not violate each other’s assumptions:

For all I1, I2.E1 |= I1 6 S1 and E2 |= I2 6 S2

implies I1 |= E|I2 6 E1 and I2 |= E|I1 6 E2 . (2)

You may find it useful to refer to the flowgraph on Fig. 5a, while studying
the above rule. Observe that in the composed system I1 is indeed the
environment in which E|I2 operates. The composition E|I2 is also the en-
vironment for I1 and it is supposed not to violate any of the assumptions
expressed in E1.

Finally, associativity means that in whatever order compositions are
applied, they give rise to equivalent interfaces:

((E1, S1) | (E2, S2)) | (E3, S3) � (E1, S1) | ((E2, S2) | (E3, S3))

(E1, S1) | ((E2, S2) | (E3, S3)) � ((E1, S1) | (E2, S2)) | (E3, S3) . (3)

A disadvantage of the above requirements is that they are not con-
structive. They rely on quantification over all implementations, which
makes them useless for computing the composition. Fortunately the
quantification can be eliminated. The following theorem reduces the
property of mutual deadlock freeness of all implementations to mutual
deadlock freeness of the interfaces being composed:

Theorem 9. Any environment E fulfills the requirement (2) iff it fulfills
the following condition:

S1 |= E|S2 6 E1 and S2 |= E|S1 6 E2 . (4)

The above reduction is very fortunate, as (4) also implies indepen-
dent implementability with the choice of the guarantees component to
be S1|S2:

Theorem 10. Let (E1, S1) and (E2, S2) be syntactically composable in-
terfaces, and E be an environment I/O automaton satisfying property (4).
Then for all I1 and I2 such that E1 |= I1 6 S1 and E2 |= I2 6 S2 we have
E |= I1|I2 6 S1|S2.

9

(a)

I1 I2

E2E1

E
(b)

0 1
send !

fail?

EnvAlwaysFail

send ok fail

0 1
send?

fail !

SpecAlwaysFail

send ok fail

Figure 5: (a) Flowgraph for a composition of (E1, S1) and (E2, S2). (b)
AlwaysFail

Consequently if we were able to find an environment E satisfying (4),
then the interface (E, S1|S2) would satisfy mutual deadlock freeness and
independent implementability—a good candidate for the composition of
environments. However, the environment satisfying (4) may not always
exist. This is the case, if S1 unconditionally, independently of E’s behav-
ior, violates the assumptions of S2 expressed in E2. In this case (E1, S1)
and (E2, S2) are said to be incompatible.

Definition 11. Interfaces (E1, S1), (E2, S2) are incompatible if there ex-
ists no I/O automaton E such that: S1 |= E|S2 6 E1 and S2 |= E|S1 6 E2.

Figure 5b shows an interface AlwaysFail , which has a signature com-
patible with the signature of Client . Nevertheless the dynamic types
of Client and AlwaysFail are incompatible in that they share only one
nonempty trace, consisting of one step, and this trace ends in a deadlock.

In fact there typically exist many pairs (E, S) that satisfy all our
requirements. For example an interface (M,U), consisting of a mute
environment M never producing any outputs and a universal system
specification U generating all possible traces, would satisfy the composi-
tion requirements of any two compatible interfaces. The interface (M,U)
allows any implementation—it says that its implementations will behave
in an arbitrary fashion (U), not allowing any external stimulation (M).
Clearly, as a component interface, (M,U) is useless.

We should ensure that our composition operator produces the inter-
face that carries over all the information available from its components.
It must have the smallest possible set of implementations, while still
satisfying all our requirements. Similarly, it must maximize the set of
components compatible with it (as opposed to the set of components
implementing it). We shall call this optimal interface the most general.
Intuitively to achieve this optimality we need an environment E satisfying
the requirements such that it is maximal with respect to trace inclusion.
By increasing the set TrE we make it easier for components to be com-
patible with our interface. Similarly we make it harder to implement the

10

composite interface, as increasing the set of traces of E decreases the
assumptions that an implementation can make. The following theorem
says that such a maximal E always exists for compatible interfaces:

Theorem 12. Let (E1, S1) and (E2, S2) be two syntactically composable
interfaces. If there exists an I/O automaton E enjoying property (4)
then there also exists a maximal such environment with respect to trace
inclusion.

Theorem 13. The composition operator mapping interfaces (E1, S1) and
(E2, S2) to (E, S1|S2), where E is the maximal solution of (4), is asso-
ciative.

Theorems 12–13 together with our earlier observations suggest that
the interface (E, S1|S2), where E is this maximal solution of equations (4),
is even more likely to be the most general interface that we are searching
for. A maximal solution of (4) can be found algorithmically for finite
state interfaces. Section 5 describes a method that can be used for this
purpose.

As increasing the environment E makes the interfaces more general,
so does decreasing the specification S (within the limits set by the re-
quirements). For any particular selection of E satisfying (1), no S can
be smaller (relative to E) than S1|S2, because S1 and S2 themselves are
valid implementations. So S1|S2 is the smallest possible specification of
the composite interface with respect to any particular choice of E. This
observation can be generalized to a claim that (E, S1|S2) is the most
general interface possible:

Theorem 14. Let (E1, S1), (E2, S2) be interfaces. Let E be the maximal
solution to (4) and let (E ′, S ′) satisfy independent implementability and
mutual deadlock freeness. If (E ′, S ′) is compatible with (E ′′, S ′′) then also
(E, S1|S2) is compatible with (E ′′, S ′′).

Having concluded that (E, S1|S2), where E is a maximal solution of
(4), is well defined and the most general, we can use it as a definition
of the composition operator. We will denote this composite interface by
(E1, S1)|(E2, S2).

Furthermore our composition of interfaces is complete in the following
sense

Theorem 15. For compatible interfaces (E1, S1), (E2, S2) and any (E ′, S ′)
satisfying independent implementability and mutual deadlock freeness:

(E1, S1)|(E2, S2) � (E ′, S ′) .

11

We remark that our composition would not be complete if we only
required independent implementability. It seems likely from the work pre-
sented in [21] that it is indeed impossible, for our setting, to be complete
in the above sense using only independent implementability. Similarly
we would not be complete if we only required mutual deadlock freeness,
simply because it does not restrict the S component, which can then be
taken to be mute, likely yielding a smaller interface than ours. Still our
composition is sound and complete with respect to both requirements
combined. Requirements (2) and (3) have been introduced solely for
their inherent usefulness. Their interplay guaranteeing soundness and
completeness is a pleasant side effect.

Definition 16. Let (E1, S1), (E2, S2) be syntactically composable in-
terfaces. Their composition, denoted (E1, S1)|(E2, S2), is an interface
(E, S1|S2), where E has the same signature as E1|E2, and is a maximal
solution of (4).

The operator of Def. 16 is associative, supports independent imple-
mentability and mutual deadlock freeness, and produces the most general
interfaces.

5 Solving Behavioral Inequalities
Computing compositions of interfaces requires a method for finding so-
lutions of systems of relativized linear inequalities. In particular we are
interested in systems of inequalities of the following form:

C(E) :

P1 |= E|S1 6 F1

...
Pm |= E|Sm 6 Fm

(5)

where {Pi}i=1..m, {Si}i=1..m and {Fi}i=1..m are states of the three I/O
automata P , S and F and E is a single unknown automaton. We are
interested in finding a greatest such E with respect to 6, or in reporting
incompatibility between components, if no solutions exist. Since in (4)
various components of inequalities come from separate automata, in order
to apply the method below we need to construct three automata P , S and
F as the disjoint unions of the automata that appear in the given place of
the constraints in (4). We introduce three convenient mapping functions
in, out and ext which from a state of the two automata F and S return

12

respectively the set of input, output or external actions of the automata
that this state originates from in the disjoint union computation. We
will use them in the algorithm below to recover some of the signature
information lost by making the disjoint union.

For simplicity of exposition we shall also assume that all I/O au-
tomata involved in the systems are deterministic. Otherwise they can
be determinized without loss of information, as long as our refinement
criterion is based on language inclusion. This assumption is not inherent
to the method, though.

We should now state a property similar to Theorem 12, but formu-
lated for systems of inequalities in general. We expand it to any number
of constraints and do not require that all the I/O automata come from
the same interfaces.

Theorem 17. Let C(E) be a finite system of relativized inequalities:

C(E) :

P1 |= E|S1 6 F1

...
Pm |= E|Sm 6 Fm

If C(E) has a solution (an I/O automaton satisfying all the constraints),
then C(E) also has a greatest solution with respect to trace set inclusion.

We begin with constructing a modal transition system [16] corre-
sponding to C(E), and then choose a maximal solution from its states and
transitions. From our perspective modal transition systems are automata
with two transition relations −→may and −→must.

Definition 18. A modal transition system is a quadruple S = (Q,A,

−→may,−→must), where Q is a set of systems of constraints (states), A is
a set of actions, −→may ⊆ Q× A×Q is the may transition relation, and
−→must ⊆ Q× A×Q is the must transition relation, −→must ⊆ −→may.

Systems of relativized inequalities can be seen as sets of constraint
triples {(P1, S1, F1), . . . , (Pm, Sm, Fm)} over the solution E. The con-
straints evolve when any of their components, including the unknown
E, takes an action. This evolution comprises not only state changes of
the I/O automata, but also removing and introducing constraints. Legal
actions of the unknown component E in any of its states are dependent
on the states of the constraints—on what all the Pi’s, Si’s and all the
Fi’s can do. This is why we label states of our modal transition systems

13

with systems of inequalities (sets of constraints). All the steps that are
allowed by the constraints, but are not strictly required (like a possibility
to produce an output) should give rise to may transitions in the modal
transition system. While all the steps that are strictly required (like
input actions enforced by input-enabledness) give rise to corresponding
must transitions.

Formally three I/O automata P, S, F induce a modal transition sys-
tem E=(Q,A0,−→may,−→must), where elements of Q are sets of constraints
over states of P , S and F, enriched with a distinct primitive constraint
False denoting an empty set of solutions. The initial state A0 is equal
to the set {(P1, S1, F1), . . . , (Pm, Sm, Fm)} of initial constraints, and the
transition relations are defined according to the following rules:

E a!−→mayE
′ if and only if both of the following rules are sat-

isfied:

For all (P, S, F) ∈ E such that a ∈ outE \ inS

If ∃F ′. F a!−→F ′ and ∃P ′. P a−→P ′ then (P ′, S, F ′) ∈ E ′

Else if ∃P ′.P a?−−→P ′ and F a!6−−→ then False ∈ E ′

For all (P, S, F) ∈ E and all S ′ such that a∈outE ∩ inS

If S a?−−→S ′ also (P, S ′, F) ∈ E′

E a?−−→mustE
′ and E a?−−→mayE

′ iff both of the following rules
are satisfied:

For all (P, S, F) ∈ E and all F ′ such that a ∈ inE \ outS
If F a?−−→F ′ and P a!−→P ′ then (P ′, S, F ′) ∈ E ′

For all (P, S, F) ∈ E such that a ∈ inE ∩ outS
If S a!−→S ′ then (P, S ′, F) ∈ E′

Each state E ∈ Q of E is minimal such that it satisfies the above transi-
tion rules and the following closure rules :

For all (P, S, F) ∈ E and a ∈ extS ∩ extF

If ∃S ′. S a−→S ′ and ∃F ′. F a−→F ′ and ∃P ′. P a−→P ′

then also (P ′, S ′, F ′) ∈ E.

For all (P, S, F) ∈ E and a ∈ extS ∩ extF

If S a!−→S ′ and F a!6−→ and ∃P ′. P a?−−→P ′ then False ∈ E.

14

The two may rules discuss E making an output transition concerning
an external output, or an internal communication with S respectively.
The must rules state that E needs to accept all the inputs from the out-
side and from S respectively. Finally the closure rules allow S to advance
without any interference with E on its own external actions. Whenever
there is a possibility of violation of the relativized trace inclusion, we add
false to the target state of E, hinting that E should not be allowed to
make that step.

Definition 19. The state consistency relation S over a modal transition
system E = (Q,A,−→may,−→must) is the maximal subset of Q such that if
E ∈ S then False /∈ E and whenever E a−→mustE

′ then E ′ ∈ S.

Definition 20. A consistent set of transitions T of a modal transition
system E = (Q,A,−→may,−→must) with respect to consistency relation S is
a maximal subset of −→may, where whenever (s, a, s′) ∈ T then s ∈ S and
s′ ∈ S.

Theorem 21. Let C(E) be a system of inequalities as required above,
and E = (Q,A,−→may,−→must) be the modal transition system induced by
C. Then the maximal solution of C(E) is an I/O automaton E such that
its set of states statesE is a maximal consistency relation over E ,

startE ={(F1, S1), ..., (Fm, Sm)},

inE =

m⋃
i=1

(inFi
\ inSi

) ∪
m⋃

i=1

(outSi
\ outFi

)

outE =
m⋃

i=1

(outFi
\ outSi

) ∪
m⋃

i=1

(inSi
\ inFi

),

and its set of transitions stepE is a maximal consistent set of transitions
of E with respect to statesE. If the maximal state consistency relation of
E is empty then C has no solutions.

The set S can be found by a simple maximal fixpoint computation.
In practice the consistency of the initial state may be decided in a local
fashion without constructing the entire modal transition system.

Figure 6 shows the consistent part of the modal transition system
induced by (EnvTryTwice , SpecTryTwice)|(EnvClient , SpecClient). It can then
be minimized in order to obtain EnvComp1 , shown in Fig. 3. Similarly
the specification SpecComp1 from Fig. 3 has been obtained by minimizing
SpecTryTwice | SpecClient .

15

ST0 |= � | SC0 6 ET0
SC0 |= � | ST0 6 EC0

ST1 |= � | SC1 6 ET1
SC1 |= � | ST1 6 EC1

ST5 |= � | SC1 6 ET5
SC1 |= � | ST5 6 EC1

ST0 |= � | SC0 6 ET0
SC0 |= � | ST0 6 EC0
ST1 |= � | SC1 6 ET1
SC1 |= � | ST1 6 EC1

ST4 |= � | SC1 6 ET4
SC1 |= � | ST4 6 EC1

ST2 |= � | SC1 6 ET2
SC1 |= � | ST2 6 EC1

ST3 |= � | SC1 6 ET3
SC1 |= � | ST3 6 EC1 TRUE

trnsmt? trnsmt?

nack!

ack!
trnsmt?

ack!

trnsmt?

trnsmt?

Figure 6: The resulting modal transition system for the computation of
EnvComp1 .

6 Interface Automata
The relation of our theory to interface automata [2, 3] requires special at-
tention, as we address several issues of that work; most importantly the
representation of assumptions and guarantees within a single automa-
ton. We clearly separate assumptions from guarantees, and the pairs of
assumptions and guarantees can be constructed independently. In [3] Al-
faro and Henzinger discuss static Assume/Guarantee interfaces featuring
a similar split, however they do not persue the idea to the dynamic case.

In a larger perspective our work can be seen as a study of building
interface theories as such: starting with a selection of the building blocks,
going through requirements analysis, deriving the composition operator,
and studying its generality. Let us review this process briefly. We be-
gin with selecting important ingredients such as a component model, an
interface model, an implementation relation and a refinement relation.
The particular choice of input-enabled systems and (relativized) trace
inclusion is not crucial for our developments. In fact we believe that a
similar theory can be built using (relativized) simulation, or for timed
automata. We choose I/O automata and trace inclusion because they
are very different from Alfaro and Henzinger’s interface automata, so we
incidentally provide a component theory for a different community—the
I/O automata community. At the same time our choice challenges some
opinions expressed in [2, 3] that building such a theory, especially sup-
porting contravariant refinement, is impossible using language inclusion
criteria or in a non-blocking setting.

Furthermore we show how the composition operator can be derived

16

from requirements (by analysis, reduction and automated solving), while
Alfaro and Henzinger introduce this operator in a rather ad hoc manner.
After having derived our operator we discuss its generality, and conclude
that it is indeed the most general operator possible, meeting our require-
ments with respect to trace inclusion, with respect to the � refinement,
and with respect to compatibility with other components. We conjec-
ture that the operator of our predecessors is also the most general in
their setting, however they never make that claim.

Let us now draw a formal correspondance between the two interface
theories.

Definition 22 (after [3]). An interface automaton is a six-tuple S =
(statesS, startS, inS, outS, intS, stepsS), where statesS is a finite set of states,
startS ∈ statesS is an initial state, inS, outS, and intS are three pair-
wise disjoint sets of input, output, and internal actions respectively, and
stepsS ⊆ statesS × actS × statesS is an input-deterministic transition re-
lation, where actS = inS ∪ outS ∪ intS

Notice that the transition relation of interface automata may be non
input-enabled. Syntactic composability of interface automata is governed
by the same rule as the composability of I/O automata, defined on p. 6.
The composed interface is computed by taking a product of the two
automata, and removing from it all incompatible states. A state of the
product is an error state if one of its components can produce a shared
output, that the other is unable to receive. A state of the product is
incompatible if it can reach an error state by an execution over internally
controllable transitions (transitions labeled with actions from: intS1|S2 ∪
outS1|S2

).

Definition 23. Two syntactically composable interface automata S1 and
S2 are compatible iff removing all incompatible states from their product
leaves an interface automaton with a non-empty set of reachable states.

The function unzip defined below translates an interface automaton
to an I/O automaton interface. If A is an interface automaton then
unzipA := (E, S), where statesS = statesE = statesA ∪ {T}, startS =
startE = startA, inS = outE = inA, outS = inE = outA, intS = intE =
intA. The transition relations of E and S are created from the transition
relation of A by making it input-enabled on the respective input sets:

stepsE = stepsA ∪ {(s, a, T)|s ∈ statesA, a ∈ inE , s
a6−→A}

stepsS = stepsA ∪ {(s, a, T)|s ∈ statesA, a ∈ inS, s
a6−→A}

17

Theorem 24. If A1 and A2 are two compatible interface automata, then
unzipA1 and unzipA2 are compatible I/O automata interfaces.

The zip function is a reverse of unzip: it translates an I/O au-
tomata interface into a single interface automaton, by computing the
product of the two parts using the classic algorithm [8, chpt. 4.2] from
automata theory: zip(E,S) := A, where statesA = statesE × statesS,
startA = (startE , startS), inA = inS, outA = outS, intA = intS ∪ intE ,
and stepsA = {((s, e), a, (s′, e′))|s a−→s′ and e a−→e′}.
Theorem 25. If (E1, S1), (E2, S2) are compatible deterministic I/O au-
tomata interfaces, then zip(E1,S1), zip(E2,S2) are compatible interface au-
tomata.

The fact that our compatibility only implies compatibility in the in-
terface automata sense for unzippings of deterministic interfaces is not
surprising. It is actually expected, due to the very different nature of
the refinement relations used in the two theories: trace inclusion and
alternating simulation [4].

Alfaro and Henzinger choose alternating simulation to support con-
travariant treatment of inputs and outputs. We stress that our choice
of input-enabledness and relativized trace inclusion already guarantee
contravariant treatment of behaviors in a very similar spirit. Still our
theory somewhat strictly requires that implementations of an interface
have precisely the same sort as their interfaces, so it is technically not
possible to substitute a richer component in place of a simpler one, if
they are the same on shared functionality. We stress that this deficiency
is not inherent, while it simplifies the presentation. Contravariant signa-
ture extensions can be easily realized with relativized trace inclusion in
the input-enabled setting. Instead of requiring inI = inS and outI = outS
in Def. 3, insist on inS ⊆ inI and outI ⊆ outS. In fact the only significant
change required in later developments is the addition of a side condition
to the independent implementability rule:

∀I1, I2.E1 |= I1 6 S1 and E2 |= I2 6 S2 and
inI1 ∩ outS2 ⊆ inS1 and inI2 ∩ outS1 ⊆ inS2 implies E |= I1|I2 6 S . (6)

This is the very same side condition that Alfaro and Henzinger add to in-
dependent implementability in order to support contravariant signature
extensions. It ensures that even though the implementation allows addi-
tional inputs, it will only be used as described in this interface. The other
components will not communicate with it on these additional inputs.

18

7 Other Related Work
Our work relates directly to the original version of interface automata
[2, 3], which was later extended with time and resource information in
[1] and [5]. To strengthen the case, we have used some examples from [3]
adapting them to our framework, and aligned the terminology with [2, 3]
as much as possible. Another approach to compatibility for blocking-
services is taken by Rajamani and Rehof in [22] targeting compatibility
of web services. We work in the input-enabled asynchronous setting of
I/O-automata [20], which is semantically closer to implementations of
embedded systems. To the best of our knowledge similar properties have
not been studied in the I/O automata community yet.

The notion of relativized refinement and equivalence, or more pre-
cisely simulation and bisimulation, is due to Larsen [10, 11]. It was so far
applied in the setting of protocol verification [14], automatic testing [13]
and modeling software product lines [12]. Here we adapt it to a language
inclusion based refinement.

The general method of solving systems of behavioral equations using
disjunctive modal transition systems and bisimulation as a requirement
was published in [17]. The method presented in section 5 is an adaptation
of this earlier work to an input-enabled setting and language-inclusion
based refinement. The original method does not assume determinism of
processes in the system of constraints.

The preliminary version of this paper [15] featured a stronger defi-
nition of mutual deadlock freeness: E|S1 6 E2 and E|S2 6 E1. Being
stronger, this formulation also implies independent-implementability, but
it rules out many useful compositions as incompatible. The relativized
version proposed here (2) is weaker, but still strong enough to imply in-
dependent implementability. As we have seen in the previous section, it
behaves reasonably allowing roughly the same kind of compatible inter-
faces as interface automata. The present paper, completely rewritten,
reworks the theory with this new characterization, adding associativity,
refinement of interfaces, a new method for solving systems of inequalities,
contravariant signature extension, and the correspondence to interface
automata.

19

8 Conclusion
We have proposed an interface theory for distributed networks of asyn-
chronous components modeled as I/O automata. The characteristic fea-
ture of our interfaces is an explicit separation of assumptions from guar-
antees. Apart from the usual engineering advantages offered by such a
separation of concerns, it also allows modeling of families of interfaces
implemented by software product lines.

We demonstrated that it is possible to build a reasonably behaved
interface theory in an input-enabled setting, with language inclusion as
refinement. We emphasize that our derivation of interface composition is
systematic: we state requirements for composition and reduce the prob-
lem to finding a solution of a corresponding system of behavioral in-
equalities. We also discuss the generality of the constructed interface,
concluding that it exhibits the weakest assumptions and the strongest
guarantees that are possible with our requirements. Finally we describe
a method for solving systems of inequalities arising in our setup and
draw a formal correspondence between the present work and interface
automata.

References
[1] L. de Alfaro, T. A. Henzinger, and M. I. A. Stoelinga. Timed inter-

faces. In A. Sangiovanni-Vincentelli and J. Sifakis, editors, EMSOFT
02: Proc. of 2nd Intl. Workshop on Embedded Software, Lecture
Notes in Computer Science, pages 108–122. Springer, 2002.

[2] Luca de Alfaro and Thomas A. Henzinger. Interface automata. In
Proceedings of the Ninth Annual Symposium on Foundations of Soft-
ware Engineering (FSE), pages 109–120, Vienna, Austria, Septem-
ber 2001. ACM Press.

[3] Luca de Alfaro and Thomas A. Henzinger. Interface-based design. In
In Engineering Theories of Software Intensive Systems, proceedings
of the Marktoberdorf Summer School. Kluwer Academic Publishers,
2004.

[4] Rajeev Alur, Thomas A. Henzinger, Orna Kupferman, and Moshe
Vardi. Alternating refinement relations. In Davide Sangiorgi and
Robert de Simone, editors, Proceedings of the Ninth International

20

Conference on Concurrency Theory (CONCUR’98), volume 1466 of
Lecture Notes in Computer Science, pages 163–178. Springer-Verlag,
1998.

[5] A. Chakabarti, L. de Alfaro, T. A. Henzinger, and M. I. A. Stoelinga.
Resource interfaces. In R. Alur and I. Lee, editors, EMSOFT 03: 3rd
Intl. Workshop on Embedded Software, Lecture Notes in Computer
Science. Springer, 2003.

[6] Holger Hermanns, Jakob Rehof, and Marielle I. A. Stoelinga, editors.
Workshop Procedings FIT 2005: Foundations of Interface Technolo-
gies, ENTCS. Elsevier Science Publishers, 2005.

[7] C.A.R. Hoare. Communicating Sequential Processes. International
Series in Computer Science. Prentice Hall, 1985.

[8] John E. Hopcroft, Rejeev Motwani, and Jeffrey D. Ullman. Intro-
duction to Automata Theory, Languages and Computation. Addison-
Wesley, 2nd edition, 2001.

[9] Atsushi Igarashi and Naoki Kobayashi. A generic type system for
the pi-calculus. In POPL 2001. ACM Press, 2001.

[10] Kim G. Larsen. Context Dependent Bisimulation Between Processes.
PhD thesis, Edinburgh University, 1986.

[11] Kim G. Larsen. A context dependent equivalence between processes.
Theoretical Computer Science, 49:184–215, 1987.

[12] Kim G. Larsen, Ulrik Larsen, and Andrzej Wąsowski. Color-blind
specifications for transformations of reactive synchronous programs.
In Maura Cerioli, editor, Proceedings of FASE, Edinburgh, UK, April
2005, LNCS. Springer-Verlag, 2005.

[13] Kim G. Larsen, Marius Mikucionis, and Brian Nielsen. Online test-
ing of real-time systems using uppaal. In Formal Approaches to
Testing of Software (FATES), Linz, Austria. September 21, 2004,
volume 1644 of Lecture Notes in Computer Science. Springer-Verlag,
2005.

[14] Kim G. Larsen and Robin Milner. A compositional protocol verifica-
tion using relativized bisimulation. Information and Computation,
99(1):80–108, 1992.

21

[15] Kim G. Larsen, Ulrik Nyman, and Andrzej Wąsowski. Interface
input/output automata: Splitting assumptions from guarantees. In
Hermanns et al. [6].

[16] Kim Guldstrand Larsen and Bent Thomsen. A modal process logic.
In LICS, pages 203–210. IEEE Computer Society, 1988.

[17] Kim Guldstrand Larsen and Liu Xinxin. Equation solving using
modal transition systems. In Fifth Annual IEEE Symposium on
Logics in Computer Science (LICS), 4–7 June 1990, Philadelphia,
PA, USA, pages 108–117, 1990.

[18] E. A. Lee and Y. Xiong. A behavioral type system and its application
in Ptolemy II. Formal Aspects of Computing Journal, 2004. Special
issue on Semantic Foundations of Engineering Design Languages.

[19] Edward A. Lee, Haiyang Zheng, and Ye Zhou. Causality interfaces
and compositional causality analysis. In Hermanns et al. [6].

[20] Nancy Lynch. I/O automata: A model for discrete event systems.
In Annual Conference on Information Sciences and Systems, pages
29–38, Princeton University, Princeton, N.J., 1988.

[21] Patrick Maier. Compositional circular assume-guarantee rules can-
not be sound and complete. In A.D. Gordon, editor, Foundations of
Software Science and Computational Structures: 6th International
Conference, FOSSACS 2003, volume 2620 of Lecture Notes in Com-
puter Science, pages 343–357. Springer-Verlag, 2003.

[22] Sriram K. Rajamani and Jakob Rehof. Conformance checking for
models of asynchronous message passing software. In Ed Brinksma
and Kim Guldstrand Larsen, editors, 14th International Confer-
ence on Computer Aided Verification (CAV), volume 2404 of Lecture
Notes in Computer Science, pages 166–179, Copenhagen, Denmark,
July 2002. Springer-Verlag.

22

A Proofs
This appendix contains proofs of theorems and lemmas, along with some
counterexamples for negative claims or one-way implications. The ap-
pendix is not an integral part of the paper, and reading it is not required
in order to assess the value of the results.

Before we continue with arguing for the correctness of the claims
expressed in the main matter of the paper, let us introduce several basic
technicalities:

Definition 26. Given an input set I, a set of traces Σ is I-enabled if
any trace of Σ can be extended with any input of I and still remain a
trace of Σ:

∀σ ∈ Σ. ∀j ∈ 1 . . . |σ|. ∀i ∈ I.∃σ′ ∈ Σ.σ′ = σ · i .

Theorem 27. For any I/O automaton A, the set of traces TrA is inA-
enabled.

Lemma 28. For any two syntactically composable I/O automata A and
B:

TrA|B = {σ �extA|B |σ �extA ∈ TrA

and σ �extB ∈ TrB

and σ ∈ (extA ∪ extB)∗}

Let us switch back to the main line of the discussion now. We begin
the discussion of correctness of our claims with section 3:

Proof of Theorem 6. Consider the three cases separately:

1. Let E1 |= I 6 S1 and σ ∈ TrE2 ∩TrI . If σ ∈ TrE1 then by assump-
tion σ ∈ TrE1 ∩ TrI ⊆ TrE1 ∩ TrS1 = TrE2 ∩ TrS2 and we are done.
So assume that σ /∈ TrE1 and take σ′ 6 σ, such that σ′ ∈ TrE1 , and
σ′a 6 σ, σ′ /∈ TrE1 . Now σ′ ∈ TrE1∩TrI ⊆ TrE1∩S1 = TrE2∩TrS2 .
So σ′ ∈ TrS2 ∩ TrE2. Due to input-enabledness a ∈ outE1 = inS2 ,
so σ′a ∈ TrS2 ∩ TrE2 = TrS1 ∩ TrE1 . A contradiction, as we re-
quired that σ′a /∈ TrE1. So σ ∈ TrE1 , which ultimately implies
E2 |= I 6 S2. The proof of E2 |= I 6 S2 implying E1 |= I 6 S1

is entirely symmetric. Finally a counterexample exists witnessing
that the implication of the first case of the theorem does not hold

23

in the converse direction (completeness). Similarly counterexam-
ples are known that the characterization cannot be weakened, by
changing equality into set inclusion and implying refinement one
way.

2. The proof of the second case is trivial. It is also easy to show a
counterexample for incompleteness.

3. Let E1 |= I 6 S1 and observe that TrE2 ∩ TrI = (TrE2 ∩ TrS2 ∩
TrI) ∪ (TrE2\TrS2) ∩ TrI . Only the second summand in the above
union can violate E2 |= I 6 S2, but fortunately it can be shown
that this summand is empty. Observe that (TrE2\TrS2) ∩ TrI ⊆
(TrE1\TrS1)∩TrI . If the left hand-side of the inclusion is non-empty,
then so is the right hand side, but this contradicts E1 |= I 6 S1,
which finishes the proof. A counterexample is known that witnesses
the characterization of the third case being incomplete.

Proof of Theorem 8. We split the proof of the equivalence into two im-
plication proofs.

(⇒) Assume test(E2,S2) ⊆ test(E1,S1). Instead of proving the implica-
tion E1 |= I 6 S1 =⇒ E2 |= I 6 S2 directly, show the contrapositive:

E2 6|= I 6 S2 implies E1 6|= I 6 S1 (7)

This can be done by considering a shortest trace witnessing the an-
tecedent of (7), and observing that it belongs to test(E2,S2), which means
that it also belongs to test(E1,S1) and witnesses the consequent.

(⇐) The proof in the opposite direction proceeds by the contraposi-
tive of the main implication:

test(E2,S2) 6⊆ test(E1,S1) implies
exists I such that E1 |= I 6 S1 and E2 6|= I 6 S2 (8)

The counterexample I can be constructed by building an automaton
around the trace witnessing the antecedent—a test of (E2, S2), which is
not a test of (E1, S1)—and input-enabling it. The traces of such automa-
ton can only be prefixes of the backbone trace σ, perhaps suffixed with
finite sequences of inputs (the construction is often used see Fig. for ex-
ample). After constructing I in this way it is easy to conclude that it
implements (E1, S1) and does not implement (E2, S2).

24

In section 4, p. 8 we claimed that for given two syntactically compos-
able interfaces (E1, S1), (E2, S2) the interface composed of their pointwise
compositions (E1|E2, S1|S2) is unsound, or more precisely it violates the
independent implementability rule (1). The counterexample supporting
this claim is:

b a

a!b?

E1 S1

a? b!

a? a?

a b

c? b?

E2 S2

c b b c

b? c!

a? a?

I2

a

b
c

Observe that E1 |= S1 6 S1 and E2 |= I2 6 S2, but E1|E2 6|= S1|I2 6 S1|S2.

The following quite technical lemma states how a trace of three co-
operating components can be split into traces on the respective local
interfaces. Its nature is rather technical, but we rely on it in the proof
of Theorem 9 and some subsequent results.

Lemma 29. Let extC = extA|B and σ ∈ TrA|B ∩ TrC. There exists
σ′ ∈ (extA ∪ extB ∪ extC)∗ such that the following three properties hold:

1. σ = σ′ �extC ∈ TrA|B ∩ TrC

2. σ′ �extB ∈ TrA|C ∩ TrB

3. σ′ �extA ∈ TrB|C ∩ TrA

Moreover each of the traces constructed by restriction in the above three
cases, is a result of a composition of the traces constructed in the two
other cases.

Proof of the lemma 29. The first case basically repeats the assumption.
The remaining cases are symmetric, so let us look just at the first of them.

25

By lemma 28 there exists σ′ ∈ (extA ∪ extB)∗ such that σ′ �extA|B = σ,
σ′ �extA ∈ TrA, and σ′ �extB ∈ TrB. With this information and extA|B =
extC we can apply lemma 29, using the same σ′ but a different configu-
ration of restrictions, to show that σ′ �extB ∈ TrA|C .

The fact that the trace of each case is a composition of the traces of
two other cases, follows from the way we apply lemma 28 in each of the
three proofs. Incidentally the two traces that we compose while applying
the lemma are always the same traces that are used in the proofs of other
cases (it is essential the we always use the same σ′).

The following lemma gives a more algebraic way of using the former
observation. Intuitively it means that if we are using an automaton C in
a context of A1 and A2, then we may soundly substitute an automaton
that is smaller in the same context.

Lemma 30. Let A1, A2, B, C and D be I/O automata. Then the fol-
lowing proof rule is sound:

A1 |= C|A2 6 D A1|A2 |= B 6 C

A1 |= B|A2 6 D

Proof of Lemma 30. Let σ ∈ TrA1 ∩ TrB|A2
. We need to show that σ ∈

TrD. By Lemma 29 we know that there exists σ′ ∈ (extB ∪ extA2)
∗ such

that:

1. σ′ �extB ∈ TrB ∩ TrA1|A2,

2. σ = σ′ �extA1 ∈ TrA1 ∩ TrB|A2

3. σ′ �extA2 ∈ TrA2 ∩ TrB|A1

The first one of the above together with the second premise of the
lemma’s rule imply that σ′ �extC = σ′ �extA1|A2 ∈ TrC . Also σ′ �extC|A2 =
σ′ �extA1 = σ.

Summarizing we get that: σ′ �extC|A2
= σ, σ′ �extC ∈ TrC , and

σ′ �extA2 ∈ TrA2 . By Lemma 28 we get σ ∈ TrC|A2 . Since also σ ∈ TrA1 ,
we conclude that σ ∈ TrD by the first premise of the rule.

We prove the Theorem 9 with a series of simpler claims.

Lemma 31. Let (E1, S1), (E2, S2) be syntactically composable interfaces,
E an I/O automaton such that inE = outS1|S2, outE = inS1|S2. Let I2
have the same signature as S2. Then I2 6|= E|S1 6 E2 implies that either
S2 6|= E|S1 6 E2 or E2 6|= I2 6 S2.

26

Proof. Show that the trace witnessing I2 6|= E|S1 6 E2 witnesses
S2 6|= E|S1 6 E2 or it contains a prefix witnessing E2 6|= I2 6 S2.

Taking the contrapositive of the above lemma (applied twice) leads
us to the following corollary:

Corollary 32. Let (E1, S1), and (E2, S2) be syntactically composable in-
terfaces and let E be an I/O automaton with the same signature as E1|E2.
Then S2 |= E|S1 6 E2 and E2 |= I2 6 S2 imply that I2 |= E|S1 6 E2. Sim-
ilarly S1 |= E|S2 6 E1 and E1 |= I1 6 S1 imply that I1 |= E|S2 6 E1.

Lemma 33. Let (E1, S1), (E2, S2) be syntactically composable interfaces,
E an I/O automaton such that inE = outS1|S2

, outE = inS1|S2
, and

E1 |= I1 6 S1, E2 |= I2 6 S2. Then S2 6|= E|I1 6 E2 implies that either
S2 6|= E|S1 6 E2 or S1 6|= E|S2 6 E1.

Proof. Take any σ ∈ TrS2∩TrE|I1 and σ /∈ TrE2. By lemma 29 there exists
σ′ ∈ (extE ∪ extI1)∗ such that σ = σ′ �extS2 ∈ TrS2 ∩ TrE|I1, σ′ �extE ∈
TrE ∩ TrI1|S1, and σ′ �extI1 ∈ TrI1 ∩ TrE|S2.

If σ′ �extI1 ∈ TrS1 then by lemma 28 and the above memberships we
get that σ′ �extS2 ∈ TrE|S1

(or more precisely we get σ′ �extS2 ∈ TrE|I1 and
the former follows from σ′ �extI1 ∈ TrS1). Observe that now σ′ �extS2 = σ
witnesses S2 6|= E|S1 6 E2.

Otherwise if σ′ �extI1 /∈ TrS1 then by assumptions σ′ �extI1 /∈ TrE1 .
Take σE1 to be the longest prefix of σ′ �extI1 such that σE1 ∈ TrE1. Since
E1 |= I1 6 S1 then σE1 ∈ TrS1. Let a be the next action following σE1 in
σ′ �extI1. Due to input-enabledness of E1 it must be that a ∈ outE1 =
inS1. Due to the input-enabledness of S1: σE1a ∈ TrS1 . Observe that
σE1a witnesses that S1 6|= E|S2 6 E1.

A contrapositive of the above lemma (applied twice) leads us to the
following corollary:

Corollary 34. Let (E1, S1), and (E2, S2) be syntactically composable in-
terfaces and let E be an I/O automaton with the same signature as E1|E2

such that S2 |= E|S1 6 E2 and S1 |= E|S2 6 E1. Then E1 |= I1 6 S1 and
E2 |= I2 6 S2 implies S2 |= E|I1 6 E2 and S1 |= E|I2 6 E1.

Proof of Theorem 9. Observe that the theorem holds trivially for the
left-to-right direction (completeness of the simplified characterization
with respect to the one containing universal quantification). This is be-
cause E1 |= S1 6 S1 and E2 |= S2 6 S2. The simplified characterization
turns out to be just a special case of the general one.

27

As far as the right-to-left direction (soundness) is concerned observe
that by way of corollary 34 we obtain that: S2 |= E|I1 6 E2 and
S1 |= E|I2 6 E1. From the former, by way of corollary 32 taking inter-
faces (E1, I1) and (E2, S2), we obtain I2 |= E|I1 6 E2. From the latter, by
way of corollary 32 taking (E1, S1) and (E2, I2), we get I1 |= E|I2 6 E1,
which finishes the proof.

Proof of Theorem 10. Consider the contrapositive instead. For any two
automata I1 and I2 it says that:

E 6|= I1|I2 6S1|S2 =⇒ E1 6|= I1 6S1 ∨E2 6|= I2 6S2 .

So consider I1, I2 satisfying the antecedent. There exists a trace
σ ∈ TrE ∩ TrI1|I2 such that σ /∈ TrS1|S2 . By lemma 28 there exists
σ′ ∈ (extI1 ∪ extI2)∗ such that:

1. σ′ �extI1|I2 = σ

2. σI1 := σ′ �extI1 ∈ TrI1

3. σI2 := σ′ �extI2 ∈ TrI2

Now we want to execute σI1 on S1 and σI2 on S2. One of them must fail as
otherwise σ would succeed on S1|S2 contradicting our earlier assumption.

Without loss of generality assume that σI1 fails on S1 (σI1 /∈ TrS1)
pointwise earlier than σI2 fails on S2 (which may not fail at all). By
pointwise, we do not mean that σI1 fails in fewer steps than σI2 , but that
the symbol which makes σI1 fail comes earlier in the merged trace σ′ than
the possible failing symbol of σI2 . In other words, it is S1 that makes
S1|S2 fail on σ.

Consider a prefix ξ = a1 . . . ak of σI1 such that all strict prefixes of ξ
are traces of S1, ak ∈ outS1 and ξ /∈ TrS1 (ak cannot be matched by S1).

We will show that E1 6|= I1 6 S1. We already know that ξ ∈ TrI1 and
ξ 6∈ TrS1. We still need to argue that ξ ∈ TrE1. Intuitively we should
use the assumption S1 |= E|S2 6 E1 in showing this, as this is the only
inequality we have that can be directly used for proving that something
is a trace of E1. Unfortunately ξ 6∈ TrS1 , so we cannot use it directly.

Instead take a prefix ξ′ of ξ such that ξ = ξ′ak. We want to show that
ξ′ ∈ TrE|S2

. Consider ξ′′, a prefix of σ′ corresponding to ξ′ (σ′ embeds σI1 ,
ξ is a prefix of σI1 , and ξ′ is a prefix of ξ). In other words: ξ′′ � extI1 = ξ′.
(Note that extI1 = extS1).

Then we make the following basic observations:

28

4. ξ′′ �extE|S2 = ξ′, because extE|S2 = extI1 .

5. ξ′′ �extE ∈ TrE , because extI1|I2 = extE and σ ∈ TrE , ξ′′ is a prefix
of σ′ and σ′ �extI1|I2 = σ.

6. ξ′′ �extS2 ∈ TrS2 , because ξ′′ �extS2 is a prefix of σI2 , which is also a
trace of S2, because σI2 fails later on S2 than σI1 fails on S1.

7. ξ′′ ∈ (extE ∪ extS2)
∗, because ξ′′ is a prefix of σ′ and σ′ ∈ (extI1 ∪

extI2)∗ and extE ∪ extS2 = extI1 ∪ extI2.

Properties 4–7 mean that ξ′′ is a witness of the fact that ξ′ ∈ TrE|S2

(lemma 28). Also ξ′ ∈ TrS1 because ak was the first action failing on
S1. From these two facts we conclude that ξ′ ∈ TrE1 by assumption that
S1 |= E|S2 6 E1. Moreover since ak ∈ outS1 = inE1 and E1 is input-
enabled we have that ξ ∈ TrE1.

Summing up: ξ ∈ TrE1, ξ ∈ TrI1 and ξ /∈ TrS1 , which means that:
E1 6|= I1 6 S1, which finishes the proof (except for the dual case if σI2 fails
on S2, before σI1 fails on S1, which we leave out due to its symmetry).

A counterexample showing that theorem 10 cannot be extended to
hold in the opposite direction:

a b

a?

E1 S1

a!b?

b a

b?

E2

b c

S2

b! c?

c b

a? c!

E

a c

Automata E1, and E2 are mute (they cannot produce any outputs),
while S1 and S2 are universal (they generate complete languages over
their alphabets). Also E is universal over its own alphabet. For this
reason it is not hard to conclude that for any two implementations I1, I2

29

of the same signatures as S1, S2 respectively the following three imple-
mentation relations hold:

E1 |= I1 6 S1 E2 |= I2 6 S2 E |= I1|I2 6 S1|S2

So E exhibits the independent implementability property with specifica-
tion S1|S2. Nevertheless S1 6|= E|S2 6 E1 (witnessed by a trace contain-
ing a single action b).

Theorem 35. The set of all input enabled languages (trace sets) of a
given signature forms a complete lattice, ordered by inclusion of trace
set, with set intersection being the greatest lower bound operator, and set
union being the least upper bound operator.

The above lattice induces a quotient lattice on I/O automata of a
given signature. Computing a product of two automata gives an au-
tomaton that belongs to the greatest lower bound class, while taking a
sum of two automata gives an automaton that belongs to the least upper
bound class.

Proof of Theorem 12. We can view the process of solving (4) composi-
tionally: each of the two equations can be solved separately and then
the environment being the greatest lower bound of the two solutions is
a solution to the entire system of equations. So it suffices to prove that
each of the equations separately has a greatest solution. This argument
boils down to showing that for any two solutions E ′ and E′′ of given
equation, an automaton E from their greatest lower bound class is also
a solution (E will be such that TrE = TrE′ ∪ TrE′′).

Fortunately this is actually the case as “|” distributes over union,
which can be easily shown using lemma 28. So for the first equation
we get: TrS1 ∩ TrE′|S2 ⊆ TrE1 and TrS1 ∩ TrE′′|S2 ⊆ TrE1 and TrE|S1 =
TrE′|S1

∪ TrE′′|S1
implies that TrS1 ∩ TrE|S2

⊆ TrE1. Similarly for the
second equation.

Proof. (Proof of Theorem 13) It is fairly easy to see that if

(E, S) = ((E1, S1) | (E2, S2)) | (E3, S3) ,

then S 6 S1|S2|S3 and S1|S2|S3 6 S, and similarly for the dual parenthe-
sizing of this composition (follows from associativity of parallel composi-
tion of I/O automata). So if we combine three interfaces, we are guaran-
teed that they have equivalent specification component. We should now
argue that they also have equivalent environment components.

30

Observe that by definition of composition E must fulfill the following
inequalities (together with some maximal E12 that has to exist):

S1|S2 |= E|S3 6 E12 (9)
S3 |= E|S1|S2 6 E3 (10)
S2 |= E12|S1 6 E2 (11)
S1 |= E12|S2 6 E1 (12)

By Lemma 36 then E must be a maximal solution of

S1 |= E|S2|S3 6 E1 (13)
S2 |= E|S1|S3 6 E2 (14)
S3 |= E|S1|S2 6 E3 (15)

Similarly by Lemma 37 any maximal solution of inequalities (13)–
(15) is also a maximal solution of inequalities (9)–(12) for some existing
E12. All this means that the two characterizations are equivalent. Sim-
ilarly we can reduce the alternative parenthesizing of the composition
of three interfaces to the same characterization (13)–(15), meaning that
both parenthesizing yield equivalent environment components E, which
finishes the proof.

Lemma 36. Any E satisfying (9)–(12) for some choice of E12, also
satisfies inequalities (13)–(15).

Proof. So assume that E satisfying (9)–(12). Observe that by (12), (9),
Lemma 30, and commutativity of “|”, we get (13).

S1 |= E12|S2 6 E1 S1|S2 |= E|S3 6 E12

S1 |= E|S2|S3 6 E1

(16)

Similarly by (11), (9) and Lemma 30, we get (14).

S2 |= E12|S1 6 E2 S1|S2 |= E|S3 6 E12

S2 |= E|S1|S3 6 E2

(17)

Finally (15) is directly contain in our assumptions as (10).

Lemma 37. If E satisfies (13)–(15) then there exists E12 such that both
satisfy (9)–(11).

31

Proof. Assume that E satisfies (13)–(15). Observe that (13) and (14)
mean that E|S3 satisfies mutual deadlock freeness requirements (4) for
composition of (E1, S1) and (E2, S2):

S1 |= (E|S3)|S2 6 E1 (18)
S2 |= (E|S3)|S1 6 E2 (19)

But this means, by Thm. 12 that there exist a maximal such E12 satisfy-
ing these equations—we conclude that inequalities (11) and (12) are sat-
isfied. Further observe that due to maximality of E12 we get E|S3 6 E12

which implies in particular that:

S1|S2 |= E|S3 6 E12 , (20)

so (9) is satisfied. Finally (10) is directly contained in our assumptions
as (15).

Proof. (Proof of Theorem 14) We prove the contrapositive of theorem’s
claim:

(E ′′, S ′′) incompatible with (E, S1|S2) implies
(E ′′, S ′′) incompatible with (E ′, S ′) (21)

Let M be a mute environment (not producing any outputs) of the same
signature as E ′′|E. Then (E ′′, S ′′) incompatible with (E, S1|S2) means
either (a) S1|S2 6|= M |S ′′ 6 E, or (b) S ′′ 6|= M |S1|S2 6 E ′′, because if the
mute environment M cannot satisfy the mutual deadlock freeness then
certainly any bigger environment cannot.

(a) There exists a trace σ · a such that σ · a ∈ TrM |S′′ ∩ TrS1|S2
and

σ · a /∈ TrE , while σ ∈ TrE . Take σE′ · b a prefix of σ · a such that
σE′ ∈ TrE′ and σE′ · b /∈ TrE′. Such a prefix always exists as TrE′ ⊂ TrE

— both E and E ′ are solutions of the same mutual deadlock freeness
inequalities, and E is maximal, so. Since (E ′, S ′) satisfies independent
implementability, and S1, S2 are legal implementations themselves we
get that E ′ |= S1|S2 6 S ′. Since σE′ ∈ TrE′ ∩TrS1|S2

then σE′ ∈ TrS′. As
b ∈ inS′ then due to input-enabledness σE′ ·b ∈ TrS′. Summing up σE′ ·b ∈
TrS′ ∩TrM |S′′ and σE′ · b /∈ TrE′, which means that S ′ 6|= M |S ′′ 6 E ′ and
consequently (E′′, S ′′) incompatible with (E ′, S ′).

(b) From assumption there exists a trace σ such that σ ∈ TrM |S1|S2 ∩
TrS′′ , σ /∈ TrE′′. By Lemma 29 there exists σ′ such that σ′ �extS1|S2

∈
TrS1|S2 ∩ TrM |S′′. If σ′ �extS1|S2 ∈ TrE′ then by E ′ |= S1|S2 6 S ′ we get

32

σ′ �extS1|S2 ∈ TrS′, and consequently by lemma 28 σ ∈ TrM |S′ ∩TrS′′ and
σ /∈ TrE′′, so S ′′ 6|= M |S ′ 6 E ′′, effectively implying incompatibility of
(E ′, S ′) and (E ′′, S ′′).

What if σ′ �extS1|S2 /∈ TrE′? Then consider a prefix σE′ ·b of σ′ �extS1|S2

such that σE′ ∈ TrE′ and σE′ · b /∈ TrE′. We get that σE′ · b ∈ TrM |S′′

as a prefix, σE′ · b ∈ TrS′ by E ′ |= S1|S2 6 S ′ and b input of S ′, and
σE′ · b /∈ TrE′. This effectively means that S ′ 6|= M |S ′′ 6 E ′, so (E ′, S ′)
and (E ′′, S ′′) are incompatible.

Proof of Theorem 15. By independent implementability TrE′∩TrS1|S2 ⊆
TrE′ ∩ TrS′, which implies TrE′ \ TrS′ ⊆ TrE′ \ TrS1|S2 ⊆ TrE \ TrS1|S2 ,
the second inclusion by maximality of E: TrE′ ⊂ TrE . By the third case
of Theorem 6 we get (E, S1|S2) � (E ′, S ′).

Proof of Theorem 17. This proof is a simple generalization of the argu-
ment in the proof of Theorem 12.

We are now interested in proving Theorem 21 arguing the correctness
of our method for solving systems of inequalities. Let us start with an
auxiliary well-foundedness lemma.

Lemma 38. Let C(E) be a system of inequalities

C(E) :

P1 |= E|S1 6 F1

...
Pm |= E|Sm 6 Fm

and E = (Q,A,−→may,−→must) be a modal transition system induced by C.
If E is an I/O automaton such that its set of states statesE is a maximal
consistency relation over E and

startE ={(F1, S1), ..., (Fm, Sm)},

inE =

m⋃
i=1

(inFi
\ inSi

) ∪
m⋃

i=1

(outSi
\ outFi

)

outE =
m⋃

i=1

(outFi
\ outSi

) ∪
m⋃

i=1

(inSi
\ inFi

),

and its set of transitions stepE is a maximal consistent set of transitions
of E with respect to statesE and the maximal state consistency relation
of E is not empty, then

33

1. The signature of E is the same as a signature of solutions of C(E)

2. E is input enabled.

Proof. Ad (i). By simple inspection of the rules and Definition 19 one
can convince herself that that actions in the modal transition systems are
only taken from inE and outE . Ad (ii) Note that the rules for generating
transitions are input enabled. If an input labeled transition is missing it
must be because it was removed. However all input transitions are must
transitions, so if it was removed also its source state should be removed,
which contradicts with existence of a non-input enabled state.

Sketch of Proof of Theorem 21. The correctness of algorithm is largerly
by construction: assume a solution found using this method does not
satisfy one of the inequalities and get a witnessing traces. Find a contra-
diction, as any witnessing trace leads to a conclusion that an inconsistent
state or a transition is in the solution.

Maximality follows from choice of the maximal consistency relation.

Below we present a pseudocode Solve of a natural (non-optimized)
algorithm implementing the method. We start with the set of states
Q equal to the initial set of inequalities. After exhaustively adding alls
states reachable by must transitions, we remove those that are reachable
backwards from error states. Once this is done we explore possible may
transitions. The three parts of the algorithm are iterated until no more
states can be added. The algorithm relies on three functions δ (computing
a closure of a set of constraints), φ (computing a must step), and ψ
(computing a may step). The functions, also presented below, are simple
reformulations of the rules presented above.

δ(E) = {(P ′, S′, F ′) | (P, S, F) ∈ E, a ∈ extS ∩ extF ,
S a−→S′, F a−→F ′, P a−→P ′}

∪ {False | (P, S, F) ∈ E, a ∈ extS ∩ extF ,
S a?−−→S′, F ′ a!6−−→,P a?−−→P ′}

φa(E) =
{(P ′, S, F ′) |(P, S, F)∈E, a∈ inE\outS , F a?−−→F ′, P a!−−→P ′}

∪ {(P, S′, F) | (P, S, F) ∈ E, a ∈ intE ∩ outS, S a!−−→S′}

φ(Q) = {(E, a, δ(φa(E))) |E ∈ Q, a ∈ inE}

34

ψa(E) =
{(P ′, S, F ′) | (P, S, F)∈E, a∈outE\inS , P

a?−−→P ′, F a!−−→F ′}

∪ {False | a ∈ outE \ inS , P
a?−−→P ′, F a!6−−→}

∪ {(P, S′, F) | (P, S, F) ∈ E, a ∈ outE ∩ inS , S
a?−−→S′}

ψ(Q) = {(E, a, δ(ψa(E)) |E ∈ Q, a ∈ outE}

Solve({(P1, S1, F1), . . . , (Pm, Sm, Fm)}})
� explored states

1 Q← {{(P1, S1, F1), . . . , (Pm, Sm, Fm)}}
2 X ← ∅ � explored error states
3 T ← ∅ � explored transitions
4 do Q′ ← Q

� Take Must transitions
� perform steps forwards (fixpoint)

5 do T ′ ← T
6 T ← T ∪ φ(Q)
7 Q← Q ∪ {E′ | (_,_, E′) ∈ T} \X
8 while T 6= T ′

� prune all error states backwards (fixpoint)
9 X ← X ∪ {E ∈ Q |False ∈ E}

10 do X ′← X
11 X←X∪{E |(E, a,E′)∈T,E′∈X,a∈ inE}
12 while X 6= X ′

13 Q← Q \X

� Take May transitions (fixpoint)
14 do T ′ ← T
15 T ← T ∪ ψ(Q)
16 Q← Q ∪ {(_,_, E′) |False /∈ E′}
17 while T ′ 6= T

18 while Q 6= Q′

19 T ← {(E, a,E′) ∈ T |E ∈ Q,E′ ∈ Q}
20 return Q,T

35

In the following we will use DetA to denote a determinized version
of interface automaton A. Determinization of interface automata can be
achieved by using the classical algorithm for determinizing NFAs.

In the following we use Prune to mean the process of removing in-
compatible states from two composed interface automata. It is defined
exactly as the || composition operator in [2], such that the result is empty
exactly when the two interface automata are incompatible.

Lemma 39. If two interface automata A1, A2 are compatible, then their
determinizations DetA1, DetA2 are compatible.

Proof of Lemma 39. The lemma can be rewritten as:

Prune(A1⊗A2) is non-empty =⇒ Prune(DetA1
⊗DetA2

) is non-empty

We will prove the contrapositive of this.

Prune(DetA1
⊗DetA2

) is empty =⇒ Prune(A1⊗A2) is empty

If Prune(DetA1
⊗DetA2

) is empty then it means that there exists a
trace σ ∈ TrDetA1

⊗DetA2
consisting of internally controllably transitions

(outA1⊗A2 ∪ intA1⊗A2) such that after executing it from the initial state
of DetA1 ⊗DetA2 a state (s1, s2) is reached, which is illegal. We assume
without loss of generality that DetA1 in s1 produces an output a and that
DetA2 in s2 is unable to receive a and thus deadlocks. We know that there
exists a trace σ′ such that σ = σ′ �extA1⊗A2, σ1 = σ′ �extA1 ∈ TrDetA1

and
σ2 = σ′ �extA2 ∈ TrDetA2

. The traces σ1 and σ2 are also traces of A1

and A2 respectively, but in A1 and A2 they may lead to several state
due to non-determinism. Because determinization can increase the pos-
sible transitions from a state, and never decrease them, there will be at
least one state reachable by σ1 in A1 in which it can produce a and at
least one state reachable by σ2 in A2 in which it deadlocks on the input
a. This pair of states, which together form an illegal state in A1 ⊗ A2 is
reachable from the initial state of A1⊗A2 through internally controllable
transitions (outA1⊗A2 ∪ intA1⊗A2).

Lemma 40. If A is deterministic and unzip(A) = (E, S) then

TrE ∩ TrS = TrA (22)
and σ ∈ TrE \ TrS =⇒ σ 6∈ TrA (23)
and σ ∈ TrS \ TrE =⇒ σ 6∈ TrA (24)
and TrE ⊇ TrA (25)
and TrS ⊇ TrA (26)

36

Proof of Lemma 40. In order to prove (22) we look at the transition re-
lations of E and S as defined on page 17. These transition relations
are extended versions of the transition relation of A. The two transition
relations are extend on two non-overlapping sets, namely inE and inS.
Thus no new traces are added to the set TrE ∩ TrS because a new trace
of either TrE or TrS will have to include a symbol on which the other
transition relation does not differ from the transition relation of A. All
the other points follow easily from (22).

Proof of Theorem 24. The theorem can be rewritten as:

Prune(A1⊗A2) is non-empty =⇒
if (E1, S1) = unzip(A1) ∧ (E2, S2) = unzip(A2)

then ∃E such that S1 |= E|S2 6 E1 ∧ S2 |= E|S1 6 E2

We choose E to be the mute environment. We now claim that E satisfies
S1 |= E|S2 6 E1 ∧ S2 |= E|S1 6 E2.

This is proven by contradiction, assuming that the conclusion does not
hold. Based on symmetry, we will only look at one case of negation of our
final conclusion: S1 6|= E|S2 6 E1. We will prove that if S1 6|= E|S2 6 E1

then Prune(A1⊗A2) will have to be empty. Given lemma 39 we can assume
that A1 and A2 are deterministic.

Take the shortest trace σa witnessing that S1 6|= E|S2 6 E1. This
gives that σa ∈ S1, σa ∈ E|S2 and σa /∈ E1. We also have that σ ∈ S1,
σ ∈ E|S2 and σ ∈ E1. Also a ∈ outE1 since E1 is input enabled. Given
that A1 is deterministic we can conclude by lemma 40 that TrE1∩TrS1 =
TrA1 and thus we know that σ ∈ TrA1 . We can also conclude that
σa /∈ TrA1 since σa /∈ TrE1.

Since we have that σa ∈ E|S2 we know that there must exist a trace
σ′ ∈ TrS2 such that σ = σ′ �extS1 . The only extra symbols that might
be in σ′ are outputs from S2 not directed towards S1. This can be
concluded because S2 is composed with the mute environment E. Thus
σ′ consists of symbols that are either inputs from S1 to S2, internal
transitions of S2 or outputs of S2 to S1. All of these symbols are internally
controllable actions of A1 ⊗ A2. Because we have that σ ∈ A1 and that
the extra symbols in σ′ are inputs not coming from A1 we can conclude
that σ′ ∈ A2. Given this we have that σ′ will lead A1⊗A2 via internally
controllable actions to a state in which A2 is ready to output a but in
which A1 is blocking on a as an input.

Thus we have proved that Prune(A1⊗A2) must be empty because an
illegal state can be reached from the initial state by internally controllable

37

transitions.

Proof of Theorem 25. Prove a simplified contrapositive instead: if the
initial state of zip(E1,S1) × zip(E2,S2) contains illegal states then
S2 6|= M |S1 6 E2 or S1 6|= M |S2 6 E1. If the mute automaton M does
not satisfy the equations, then it must be that no other E can solve
them, and the two interfaces are incompatible in our framework.

Take A1 = zip(E1,S1), A2 = zip(E2,S2) and observe that (s0
1, s

0
2) =

startA1×A2 is incompatible. This means that there exists a trace σ ∈
(intA1|A2 ∪ outA1|A2)

∗ such that (s0
1, s

0
2)

σ−→(d1, d2) and (d1, d2) is an in-
compatible state. So there exist σ1, σ2 such that s0

1
σ1−−→d1 and s0

2
σ2−−→d2.

Also σ1 = σ �extA1 and σ2 = σ �extA2 . Since (d1, d2) is an error state there
must exist an action a ∈ intA1|A2 such that either d1

a!−→ and d2
a?6−−→ or

d2
a!−→ and d1

a?6−−→. In the first case (the second case is entirely symmetric)
we get: σ1a ∈ TrS1∩TrE1 and σ2 ∈ TrS2∩TrE2 . Due to input-enabledness
σ2a ∈ TrS2 so it must be that σ2a /∈ TrE2 (as E2 is deterministic). We
will argue that σ2a witnesses the following:

S2 6|= M |S1 6 E2

We already know that σ2a ∈ TrS2 and σ2a /∈ TrE2 it remains to argue
that σ2a ∈ TrM |S1

, which we will argue by using σa as a witness:

1. First σa�extM ∈ TrM because any symbol in σa is from outS1|S2 ∪
intS1|S2

. The latter of the two sets is disjoint from extM , so all its
elements are filtered out from σa � extM . The former set is equal
to inM . So all actions of σa � extM are inputs of M so necessarily
σa�extM is a trace of M due to input enabledness.

2. Then σa�extS1 ∈ TrS1 , as σa�extS1 = σ1a ∈ TrS1 .

3. Finally σa ∈ (extM ∪ extS1), as this is a set that includes all actions
that are in the configuration.

Theorem 25 only holds for deterministic systems. A counter example
consists of two interfaces that are compatible, but their zippings give
raise to incompatible interface automata.

38

b!

b!

a!

a b

E1

a? b?

b a

S1

b?

a?

b?

A1

a b

a? b?

a b

E2

b a

b! a!

S2

b a

b! a!

A2

Above E1, S1, E2, S2 are I/O automata, while A1, A2 are interface
automata. Also we have that zip(E1,S1) = A1 and zip(E2,S2) = A2. It is
clear that A1 and A2 are incompatible. The error state is reached if A1

non-deterministically chooses the right branch.
We want to argue that (E1, S1) is compatible with (E2, S2). Since

these two components constitute a closed system, any environment E
for them (if it existed) would have an empty transition relation and TrE

contains only the empty trace. Let us argue that such E actually satisfies
the requirements:

1. Since TrE = {ε} we have that TrE|S1
= TrS1 . Then TrS2 ∩ TrS1 =

TrS2 ⊆ TrE2.

2. Similarly TrE|S2
= TrS2 , TrS1 ∩ TrS2 = TrS2 ⊆ TrE1 .

So the single state empty environment E is a legal environment for
(E1, S1)|(E2, S2), meaning that the two are compatible and the coun-
terexample is valid.

39

ST0 |= � | SC0 6 ET0
SC0 |= � | ST0 6 EC0

ST1 |= � | SC1 6 ET1
SC1 |= � | ST1 6 EC1

ST5 |= � | SC1 6 ET5
SC1 |= � | ST5 6 EC1

ST0 |= � | SC0 6 ET0
SC0 |= � | ST0 6 EC0
ST1 |= � | SC1 6 ET1
SC1 |= � | ST1 6 EC1

ST2 |= � | SC1 6 ET2
SC1 |= � | ST2 6 EC1

TRUE

trnsmt?

trnsmt?

ack!
trnsmt?

Figure 7: Resulting modal transition system for Comp2 .

40

Recent BRICS Report Series Publications

RS-06-11 Kim G. Larsen, Ulrik Nyman, and Andrzej Wasowski. An In-
terface Theory for Input/Output Automata. June 2006. 40 pp.
Appears in Misra, Nipkow and Sekerinski, editors, Formal
Methods: 14th International Symposium, FM ’06 Proceedings,
LNCS 4085, 2006, pages 82–97.

RS-06-10 Christian Kirkegaard and Anders Møller. Static Analysis for
Java Servlets and JSP. June 2006. 23 pp. Full version of paper
presented at SAS ’06.

RS-06-9 Claus Brabrand, Robert Giegerich, and Anders Møller.Ana-
lyzing Ambiguity of Context-Free Grammars. April 2006. 19 pp.

RS-06-8 Christian Kirkegaard and Anders Møller. Static Analysis for
Java Servlets and JSP. April 2006. 22 pp.

RS-06-7 Petr Jaňcar and Jiř ı́ Srba. Undecidability Results for Bisimilar-
ity on Prefix Rewrite Systems. April 2006. 20 pp. Presented at
FoSSaCS 2006, LNCS 3921:277–291.

RS-06-6 Luca Aceto, Willem Jan Fokkink, Anna Inǵolfsdóttir, and Bas
Luttik. A Finite Equational Base for CCS with Left Merge and
Communication Merge. March 2006. 22 pp.

RS-06-5 Kristian Støvring. Extending the Extensional Lambda Calculus
with Surjective Pairing is Conservative. March 2006. 18 pp.
To appear in Logical Methods in Computer Science. Supersedes
RS-05-35.

RS-06-4 Olivier Danvy and Kevin Millikin. A Rational Deconstruction
of Landin’s J Operator. February 2006. ii+26 pp. To appear in
the post-reviewed proceedings of the 17th International Work-
shop on theImplementation and Application of Functional Lan-
guages(IFL’05), Dublin, Ireland, September 2005.

RS-06-3 Małgorzata Biernacka and Olivier Danvy. A Concrete Frame-
work for Environment Machines. February 2006. ii+29 pp. To
appear in the ACM Transactions on Computational Logic. Su-
persedes BRICS RS-05-15.

RS-06-2 Mikkel Baun Kjærgaard and Jonathan Bunde-Pedersen. A
Formal Model for Context-Awareness. February 2006. 26 pp.

RS-06-1 Luca Aceto, Taolue Chen, Willem Jan Fokkink, and Anna
Ingólfsdóttir. On the Axiomatizability of Priority. January 2006.
25 pp.

