

Aalborg Universitet

Modal I/O Automata for Interface and Product Line Theories

Larsen, Kim Guldstrand; Nyman, Ulrik Mathias; Wasowski, Andrzej

Published in:
Programming Languages and Systems

Publication date:
2007

Document Version
Publisher's PDF, also known as Version of record

Link to publication from Aalborg University

Citation for published version (APA):
Larsen, K. G., Nyman, U., & Wasowski, A. (2007). Modal I/O Automata for Interface and Product Line Theories.
In R. De Nicola (Ed.), Programming Languages and Systems: 16th European Symposium on Programming,
ESOP 2007Held as Part of the Joint European Conferences on Theory and Practice of Software, ETAPS
2007Braga, Portugal, March/April 2007, Proceedings (pp. 64-79). IEEE Computer Society Press. (Lecture
Notes in Computer Science; No. 4421).

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 ? Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 ? You may not further distribute the material or use it for any profit-making activity or commercial gain
 ? You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: April 29, 2017

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by VBN

https://core.ac.uk/display/60357499?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://vbn.aau.dk/en/publications/modal-io-automata-for-interface-and-product-line-theories(84c5fa80-c57e-11db-86ee-000ea68e967b).html

Modal I/O Automata
for Interface and Product Line Theories

Kim G. Larsen1, Ulrik Nyman1, and Andrzej W¡sowski2,1

1 Department of Computer Science, Aalborg University
2 Computational Logic and Algorithms Group, IT University of Copenhagen

{kgl,ulrik,wasowski}@cs.aau.dk

Abstract. Alfaro and Henzinger use alternating simulation in a two player game as a
re�nement for interface automata [1]. We show that interface automata correspond to
a subset of modal transition systems of Larsen and Thomsen [2], on which alternating
simulation coincides with modal re�nement. As a consequence a more expressive inter-
face theory may be built, by a simple generalization from interface automata to modal
automata. We de�ne modal I/O automata, an extension of interface automata with
modality. Our interface theory that follows can express liveness properties, disallowing
trivial implementations of interfaces, a problem that exists for theories build around sim-
ulation preorders. In order to further exemplify the usefulness of modal I/O automata,
we construct a behavioral variability theory for product line development.

1 Introduction
An interface theory [1, 3�7] is a type-system-like theory for component languages,
where types (interfaces) describe components (implementations) with composi-
tion being the only operator available. A type error proves that either a com-
ponent does not conform to its interface, or that two composed components are
incompatible. Since the overall structure of these type systems is so simple, it
is often accepted not to give typing rules explicitly when describing interface
theories (for example [1, 3�6]), focusing instead on the essential ingredients of
conformance, compatibility and composition.

Regular, non-component types are only applied to existing objects in pro-
gram code. In contrast for interface theories it makes sense to discuss interfaces
as speci�cations of application's architecture in isolation from actual source code.
An interface abstracts the component in terms of the assumptions made by the
component and the guarantees that it provides. One reasons about possible con-
nections between component implementations (compositions) by using proper-
ties of composition of interfaces; most importantly independent implementability
(that any implementations conforming to compatible interfaces are compatible)
and generality properties (that the composition of interfaces produces an interface
with the weakest assumptions and strongest guarantees).

We consider behavioral interface theories suitable for speci�cation of com-
munication protocols between components (web services or embedded systems).
Such theories typically require a contravariant treatment of inputs and outputs
to ensure deadlock-free implementations: inputs guaranteed by the speci�cation

are always o�ered by the implementation and that the implementation never
produces more outputs than the speci�cation. This observation led de Alfaro,
Henzinger and colleagues [1, 3, 4] to a conclusion that game theoretical models
of interaction are most suitable as building blocks for behavioral interface theo-
ries. While we do appreciate the values of the game theoretical formulations, we
disagree with some claims in the above cited work and argue that game formu-
lations are insu�cient in themselves: there is a genuine value in combining the
game theoretical approach with more traditional formulations based on transition
systems, or more precisely on modal transition systems.

The two worlds of game models and modal transition systems convey largely
orthogonal information about the moves of a system. Game models specify who
has control over transitions, while modal transition systems focus on require-
ments, modality : which moves are allowed and which are required. In this paper
we try to relate the two worlds, explain their weaknesses and their qualities.
Eventually we combine them into a uni�ed interface theory.

Game theoretical notions of conformance are often based on alternating sim-
ulation [8]. We show that alternating simulation in a two player setting, as used
in interface automata [1, 9], is just a special case of modal transition systems re-
�nement developed by Larsen and Thomsen [2] in the late eighties. This suggests
that the real value of the game theoretic approach to component theories does
not lie in the use of alternating simulation, but in the use of control information
in the composition synthesis algorithms.

Not surprisingly then, modal transition systems themselves cannot be used
to build an interface theory, without adding control information. We build a
new interface theory around modal I/O automata, which combine features of
both game theoretic models and modal transition systems. Thanks to this new
combination, our interfaces are now able to express liveness properties, which was
impossible in existing interface theories (after this work has been completed we
have learned about [10], which achieves a similar e�ect in a di�erent setting).

In order to further demonstrate the usefulness of our modal I/O automata,
we construct a product line [11�13] theory. In simple words a product line is a set
of similar products built by combining assets from a common platform available
in the development process. The di�erences between the products are referred to
as variability. Our theory is a behavioral formalism for describing the variability
of components. The theory supports deciding whether given requirements can
be satis�ed by choosing concrete instances from the set of available assets. This
theory, though very small, is to the best of our knowledge one of the very few
attempts at describing software product lines in a behavioral fashion, and unlike
the previous work [14], which takes a top-down approach to describing product
families, it facilitates a bottom up construction of products, which is how prod-
uct line development is more typically understood in the software engineering
community. This contribution is not meant to be comprehensive, highly devel-
oped and well set in the tradition of the product line development. It should be

2 3

3

2

send! ok? fail?

send!

ok?

4

send! ok? fail?

Fig. 1. The Client interface (left) and a trivial implementation of it (right).

understood as a simple example that emphasizes the semantic di�erence between
modeling components in component based development and modeling assets for
product family development. We do hope to extend this theory soon and report
about it separately in detail.

The paper proceeds as follows. In the next section we shall explain the main
results of the paper in nontechnical terms. Our main results concentrate in sec-
tions 3, 5 and 6. In Section 3 we draw a correspondence between the alternating
simulation and observational modal re�nement. In Section 4 modal I/O automata
are de�ned, which are then used to construct an interface theory in Section 5 and
a product line theory in Section 6. Sections 5 and 6 are largely independent,
though they share a lot of intuitions. We conclude in Section 7.

2 Interface Automata vs Modal Automata: An Example
Consider an example interface automaton for a Client component (Fig. 1 (left),
originally presented in [1]). This simple model describes a component that occa-
sionally may want to send a package, and once it has made the request it is ready
to receive an acknowledgment. The signature of the interface also mentions a fail
input, but the component is never able to receive it. This means that Client is
only capable of interacting with network links that never fail.

In interface automata, due to a game theoretic semantics, all outputs are
controlled by the component itself (called the Output player), while all inputs
to such components are controlled by the environment player (called the Input
player). An implementation conforms to the interface i� whenever some input
is o�ered by the interface, then it is also o�ered by the implementation, and
whenever an implementation produces any output, this output is also present in
the interface (conformance formalized as alternating simulation [8]).

Such a notion of conformance implies that compatibility can be passed from
interfaces to components: if there is no winning strategy for the input player
that leads to a deadlock in the interface automaton, then there won't be such
a strategy for the same player that interacts directly with any implementation.
Similarly if there is no strategy for the output player that leads to an output that
cannot be accepted by the environment, then there is also no such strategy for
any of the implementations.

14 15 16 17 18

19

202122

2 2 2 2

22

2 3

2

2

3

23

trnsmt! log! up?

send? ok! fail!

send? trnsmt! nack? trnsmt!
ack?

ack?ok!

nack?fail!
log! down?

linkStatus!

up?

linkStatus! ack? nack? down?

14 15 16 17 18

19

202122

3 2 2 2

22

3

2

2

3

23

trnsmt! log! up?

send; trnsmt! nack? trnsmt!
ack?

ack?ok;

nack?
log! down?

linkStatus!

up?

linkStatus! ack? nack? down?

Fig. 2. DataLink layer with nontrivial modalities (left). Composition DataLink ⊗Client (right). State
22 is an error state, where DataLink can produce the fail action, not accepted by Client .

Unfortunately this notion of conformance, though very much safety oriented,
does not enforce that the implementations take on any useful activities at all.
Consider for example the diagram on the right side of Fig. 1. It presents a model
of an implementation that does not perform any actions ever. In other words
this is a network application that does not use the network at all. Still this new
model conforms to its interface on the left, as in its initial state it does not add
any illegal outputs and it o�ers all the inputs that were o�ered by the interface.

If we turn this into the terminology used in modal transition systems it means
that all the inputs are required, which is indicated by the 2 (must) modality on
the corresponding transition, and the outputs are allowed, which is indicated by
the 3 (may) modality on the transitions. In a modal transition systems perspec-
tive, conformance is based on modal re�nement [2]. This re�nement requires that
whenever an implementation makes a step, then it must be possible to mimic it
by an allowed transition of the speci�cation; whenever the speci�cation makes a
required step it must be possible to match it with some required step of the cor-
responding state in the implementation. With the assignment of may to output
transitions and must to input transitions this sounds nearly like the alternating
simulation described above. In Section 3 we prove that indeed the two relations
coincide if we require that the may transition relation is input-enabled.

Consequently modality gives strictly more modeling power than alternating
re�nement. Various modalities can be assigned to actions regardless of whom
controls them. Instead of allowing all possible extensions on inputs, as in interface
automata, the designer is able to control what extensions are allowed. For example
we can change the Client model of Fig. 1 to have a must modality (2) on the send!
transition, which will have the e�ect that now all the implementations must be
able to proceed producing an output. This would rule out trivial implementations
as the one presented on the right side of Fig. 1.

The game theoretic formulation of conformance gives a certain interpretation
to inputs and outputs. Namely that inputs are incoming requests for service
(for example remote procedure calls), while outputs are outgoing requests for

14 15 16 17 18

19

20

3 2 2 2

22

3

2

2

3

trnsmt! log! up?

send; trnsmt! nack? trnsmt!
ack?

ack?ok;

nack?

linkStatus!

up?

linkStatus! ack? nack? down?

14 15 16 17 18

19

2021

3 2 2 2

22

3

2

2

3

2

trnsmt! log! up?

send; trnsmt! nack? trnsmt!
ack?

ack?ok;

nack?
down?

linkStatus!

up?

linkStatus! ack? nack? down?

Fig. 3. Composed interfaces LinkLayer |Client and variability models LinkLayer ·Client

service (also remote procedure calls, albeit in the other direction). With such
an interpretation it becomes clear that removing services from the promised list
should be illegal, while removing calls to external services is perfectly �ne. This is
exactly what alternating simulation achieves. What it misses is a more complex
structure of communication.

In asynchronous systems some messages indeed convey calls for service, how-
ever many other return feedback from the services (return a value). When a given
output models returning a value from a component, then clearly it should never
be removed, as then the whole component becomes useless. Fig. 2 illustrates an-
other interface modeling a data link layer, which exploits the interplay between
control and modality. The must modality is placed on transmt! transitions, as
the data link layer would be useless if the implementation was permitted not to
forward packets down the stack. Similarly the transition sending back the error
message cannot legally be removed. At the same time the call for linkStatus! is a
may transition as some implementations are allowed not to consult the hardware
link explicitly to detect errors. Finally not all implementations are forced to be
able to work with links that fail twice in a row, which is modeled by the second
nack! transition being a may transition.

Now consider how the two interfaces of Fig. 1 (left) and Fig. 2 (left) should be
composed. The composition resembles a product computation (taken separately
for the may transition relation and the must transition relation). As a result
we obtain the interface presented on the right side of Fig. 2. Because the client
component was so weak, the ultimate interface shows a system that possibly may
never do anything. However if Client will send some packets, these packets will
certainly be processed by the composition, unless the hardware link is broken. In
such a case it might be that the implementation will produce a fail!message which
will cause a deadlock with the current version of the Client (this can happen when
the composition is in state 22). Since we cannot modify the composed system we
instead synthesize a new interface which restricts the use of the composition in
order to guarantee error freeness. States of the composition that can experience
deadlocks are called error states. We follow Alfaro and Henzinger in removing
error states, and transitively all states from which error states can be reached

by following internally controllable transitions of the component (outputs and
internal actions). This leads to the interface on Fig. 3 (left), expressing the fact
that this component works well as long as the physical link never goes down.

The pruning mechanism described above would not be possible without the in-
formation describing which transitions are internally controllable being explicitly
present in the model. It does not seem possible to compute the safe fragment of
the product automaton, by just investigating the modalities of transitions. While
we have said that modal re�nement is strictly more expressive than alternating
simulation, the control information of interface automata has its unique qualities
too: it enables valuable synthesis algorithms not otherwise possible.

Let us now revisit the model of Fig. 2 (left) giving it a di�erent interpretation
than previously. Instead of perceiving it as an abstraction of a component, we
should now see it as a description of a set of components. A modal automaton
describes in fact a whole, often in�nite, set of possible implementation automata3.
One can think of them as all possible con�gurations of the model. This feature of
modal automata suggests the possibility of using them as a behavioral formalism
in describing variability in product lines.

A product line is a collection of products that are similar in that they o�er
overlapping functionality, and in that they are built from assets selected from
a common platform. In here we want to describe both assets and the whole
product line by modal I/O automata. If each of the assets is modeled as a modal
I/O automaton we can model the capabilities of the family by composing these
descriptions. However this time we would not be interested in a composition that
guarantees compatible behavior of any selection of assets. It is normally expected
that not all the assets in a product line platform are mutually compatible. Some
of them will deadlock (for example a failing link layer and our Client component).
The requirement for composing the variability descriptions is not to synthesize an
interface that guarantees correctness of composition of all possible combination
of assets, but to precisely describes what the correct combinations are: i.e. what
are the deadlock free behaviors respecting the modalities that can be constructed
with the available automata.

It turns out that a composition like that exists and it resembles the pruning
of the product automaton for interface automata. The only di�erence is that now
error states are the states where the error must be possible to realize (so one
party must be required to produce an output that the other party must not be
allowed to receive) and that we prune all the states from which reaching an error
state is unavoidable (in our interface theory we have pruned states from which
reaching errors might be possible).

The result of composing Client and LinkLayer using the variability model
semantics is presented on the right side of Figure 3. This result contains a slightly
3 This is also true for interface automata, though to a much lesser extent. Due to the lack of modality
the set of implementations for an interface automaton is much simpler than it can be for a modal
automaton.

bigger model than the interface automaton composition on the left. It states that
there exists a pair of assets (implementations of Client and LinkLayer) such that
it is able to accept a link down message without an error message. The transition
with the down message was removed in the interface compositions as, for some
pairs of implementations, it would lead to a deadlock.

Can a given speci�cation be implemented by choosing components from avail-
able assets? Is the result of the composition the most general possible, containing
all possible legal products? Can we �nd what the con�guration of these elements
should be? We address some of these questions in section 6, with an intention of
elaborating more in upcoming work.

3 Alternating Simulation vs Modal Re�nement

Let us begin with de�ning modal automata, a version of modal transition sys-
tems [2] extended with signatures. A modal automaton has two transition rela-
tions indicating respectively allowed (may) and required (must) behavior.

De�nition 1 (Modal Automaton). A modal automaton S is a six tuple: S =
(statesS, startS, extS, intS,−→3,−→2) where statesS is a �nite set of states, startS
∈ statesS is the initial state, extS and intS are disjoint sets of external and internal
actions and actS = extS ∪ intS, −→3S ⊆ statesS × actS × statesS is the may
transition relation describing allowed behavior, and −→2S ⊆ statesS × actS ×
statesS is the must transition relation describing required behavior.

Throughout the paper we sometimes use the symbols �!�, �?� and �;� after an
action. This is done in order to increase the readers intuition of whether the action
is respectively an output, input or internal action. No symbol is used when the
action can be of more than one type. These symbols could be left out completely
as it is the identity of the action that is signi�cant.

In the following we write s τ−→∗
2s′ meaning that there exists a sequence of

internalmust actions leading from s to s′. The same is de�ned formay transitions.
A modal automaton is syntactically consistent if everything that is required is

also allowed, such that−→2 ⊆ −→3. In the following we only consider syntactically
consistent modal automata. A modal automaton is an implementation if the two
transition relations coincide.

A modal automaton describes a set of possible implementations. Simplistically
when re�ning a modal automaton speci�cation into an implementation one can
remove a may transition, that does not have a corresponding must transitions or
strengthen it into a must transition. In general this re�nement is not syntactic,
but behavioral, so it is not the syntactic transitions that are re�ned but the
actual steps taken by the transition system. The same transition can be re�ned
di�erently each time it is taken.

De�nition 2 (Modal Re�nement). For a pair of modal automata S and T
with the same signature, a binary relation R ⊆ statesS × statesT is a modal
re�nement if whenever sRt and a ∈ actS it holds that

if t a−−→2t′ then ∃s′.s a−−→2s′ and (s′, t′) ∈ R.
if s a−−→3s′ then ∃t′.t a−−→3t′ and (s′, t′) ∈ R.

Modal re�nement ≤mis de�ned as the largest such relation. We say that a modal
automaton S modally re�nes a modal automaton T , written S ≤m T , i� there
exists a modal re�nement containing (startS, startT).

Observational modal re�nement is a weaker re�nement in which the two modal
automata can take internal transitions, that cannot be directly observed by the
other automaton. In absence of internal actions the observational re�nement co-
incides with the non-observational one.
De�nition 3 (Observational Modal Re�nement). For a pair of modal au-
tomata S and T with the same signature, a binary relation R ⊆ statesS × statesT
is an observational modal re�nement if whenever sRt and a ∈ actS it holds that

if t a−−→2t′ and a ∈ extT then ∃s′. s a−−→2s′ ∧ (s′, t′) ∈ R.
if s a−−→3s′ and a ∈ extS then ∃t′.t τ−→∗

3t′.∃t′′. t′ a−−→3t′′ ∧ (s′, t′′) ∈ R.
if s a−−→3s′ and a ∈ intS then ∃t′.t τ−→∗

3t′.(s′, t′) ∈ R
Observational modal re�nement ≤∗mis de�ned as the largest such relation. We say
that a modal automaton S observationally re�nes a modal automaton T if there
exists an observational modal re�nement containing (startS, startT).

Interface Automata [1] can be considered a subset of modal automata in which
the external actions extS are partitioned into inputs inS and outputs outS.

De�nition 4 (Interface Automaton). An interface automaton P is a tuple
P = (statesP , startP , inP , intP , outP ,−→P) where statesP is a �nite set of states,
startP ∈ statesP is the initial state, inP , outP and intP are three pairwise dis-
joint sets of input, output and hidden (internal) actions respectively, and −→P ⊆
statesP × actP × statesP is the set of transitions where actP = inP ∪ outP ∪ intP .

We require that the transition relation is input-deterministic such that for all
s, s′, s′′ ∈ statesP and all input actions a ∈ inP if s a?−−→s′ and s a?−−→s′′ then s′ = s′′.

Similarly as for Modal Automata we de�ne s τ−→∗s′ for Interface Automata
to mean that there exists a sequence of internal transitions leading from s to
s′. We de�ne alternating simulation for interface automata as commonly used in
software speci�cation [9], which is slightly less general than the original [1]:

De�nition 5 (Alternating Simulation). For a pair of interface automata S
and T with the same signature, a binary relation R ⊆ statesS × statesT is an
alternating simulation if whenever sRt and a ∈ actS it holds that:

if t a?−−→t′ and a ∈ inT then ∃s′.s a?−−→s′ and (s′, t′) ∈ R
if s a!−→s′ and a ∈ outS then ∃t′.t τ−→∗t′.∃t′′.t′ a−→t′′ and (s, t′′) ∈ R

if s a;−→s′ and a ∈ intS then ∃t′.t τ−→∗t′ and (s′, t′) ∈ R
Alternating simulation ≤ais de�ned as the largest such relation. We say that S
simulates T , written S ≤a T , if there exists an alternating simulation containing
(startS, startT).

In order to compare interface automata with modal automata, we construct
a translation function T mapping from the former to the latter. The result of
the translation always ful�lls the conditions listed below. It is easy to see that
for modal automata that ful�ll these conditions a reversed mapping can be con-
structed, too.
1. The may transition relation is input enabled, meaning that for each state

s ∈ statesS and each input action a ∈ inS there exists a state s′ and a may
transition s a?−−→3s′

2. The constructed modal automaton is syntactically consistent: −→2 ⊆ −→3

3. Must transitions are only labeled by inputs: −→2S ⊆ statesS × inS × statesS
Let smayall be a fresh state that allows all behavior but does not require any be-
havior. If U denotes the universe of all inputs, such that for all interface automata
P , inP ∈ U , then we de�ne the translation function as follows:
T (statesP , startP , inP , outP , intP ,−→P) = (statesS, startS, extS, intS,−→3,−→2)

where statesS = statesP ∪ {smayall}, startS = startP , extS = U ∪ outP , intS = intP
and s1

a−−→3
S s2 if s1

a−→Ps2 and a ∈ outP ∪ intP
and s3

a−−→2
S s4 and s3

a−−→3
S s4 if s3

a−→Ps4 and a ∈ inP

and s3
a−−→3

S smayall if ∀s′ ∈ statesP (s3, a, s′) /∈ −→P and a ∈ U ,
and smayall is a fresh state such that ∀a ∈ actS.smayall

a−−→3
S smayall.

Theorem 6. Alternating simulation and observational modal re�nement coin-
cide for interface automata in the following sense:

for any two interface automata S, T : S ≤a T i� T (S) ≤∗m T (T) (1)
Theorem 6 suggests that the usefulness of game theoretical models for component
theories does not lie in its conformance relation. The crux is the use of control
information in synthesis algorithms, when paths to error states are pruned. If this
is the case we can construct an interface theory based on modal re�nement and
modal automata augmented with control information. Since modal re�nement is
richer and we can use a generalization of the synthesis algorithm used for interface
automata, we will obtain a more expressive interface theory.

The fact that alternating simulation coincides with the observational version
of modal re�nement is expected, because De�nition 5 embeds a closure on inter-
nal transitions. In fact in the absence of internal actions alternating simulation
coincides with the regular modal re�nement, as described in De�nition 2, which
is easy to prove. In order to simplify the developments we use the regular modal
re�nement (≤m) from now on, even though most of our theorems can reasonably
be considered for the observational re�nement (≤∗m), too.

4 Modal I/O Automata
Let us now de�ne modal I/O automata, an extension of modal automata with
control information, that will be the main ingredients of our interface theory and
the product line theory coming in the next sections.

De�nition 7. A modal I/O automaton S is a tuple S = (statesS, startS, inS, outS,
intS,−→3,−→2), where statesS is a set of states, startS ∈ statesS is an initial
state, inS, outS and intS are pairwise disjoint sets of inputs, outputs and internal
actions respectively (actS = inS∪outS∪intS), −→3S ⊆ statesS×actS×statesS is a
may-transition relation, and −→2S ⊆ statesS×actS× statesS is a must-transition
relation. Like previously we only consider syntactically consistent modal I/O au-
tomata here, so −→2 ⊆ −→3.

The composition for modal I/O automata combines both the modal aspects
and the communications aspects. Two modal I/O automata S1,S2 are composeable
i� their actions only overlap on complementary types: (inS1 ∪ intS1) ∩ (inS2 ∪
intS2) = ∅ and (outS1 ∪ intS1) ∩ (outS2 ∪ intS2) = ∅. The composition S1 ⊗ S2

gives rise to a modal I/O automaton S such that statesS = statesS1 × statesS2 ,
startS = (startS1 , startS2), inS = (inS1 \ outS2) ∪ (inS2 \ outS1), outS = (outS1 \
inS2) ∪ (outS2 \ inS1), intS = intS1 ∪ intS2 ∪ (inS1 ∩ outS2) ∪ (outS1 ∩ inS2). The
transition relations are given by the following rules (see Fig. 2 for an example):

s1
a!−→γs

′
1 s2

a?−−→γs
′
2

s1 ⊗ s2
a−→γs

′
1 ⊗ s′2

γ ∈ {2, 3}
s1

a?−−→γs
′
1 s2

a!−→γs
′
2

s1 ⊗ s2
a−→γs

′
1 ⊗ s′2

γ ∈ {2, 3}

s1
a−→γs

′
1 a /∈ actS2

s1 ⊗ s2
a−→γs

′
1 ⊗ s2

γ ∈ {2, 3}
s2

a−→γs
′
2 a /∈ actS1

s1 ⊗ s2
a−→γs1 ⊗ s′2

γ ∈ {2, 3}

For technical reasons (e�ciency and simplicity) we always assume that un-
reachable states are removed after computing a composition (both here and in
later sections). The following theorem is a simple corollary from the general fact
that the modal re�nement is a precongruence [15, 16]:

Theorem 8. Modal re�nement is a precongruence with respect to the above com-
position operator: for any four modal I/O automata T1, T2, S1, S2 such that
T1 ≤m S1 and T2 ≤m S2 it holds that T1 ⊗ T2 ≤m S1 ⊗ S2.

The composition operator (⊗) de�ned above corresponds to a usual compo-
sition of software (hardware) components. Whenever we use it below we mean
an unrestricted connection of components, which does not preclude deadlocks or
other kinds of errors. We shall soon introduce two seemingly similar composition
operators, (|) and (·) having a very di�erent use. In fact they are algorithms syn-
thesizing speci�cations of how a result of simple composition (⊗) should be used
in order to guarantee the absence of certain errors.

5 A Modal Interface Theory
Interface theories support component based development. The aim is to specify
component interfaces and from these interfaces to derive the interfaces of com-
posite components. The novel aspect of the interface theory presented here is that
the components can specify both required and allowed behavior, consequently it
is suitable for expressing liveness properties.

In our speci�c interface theory an interface is given by a modal I/O automaton.
A given interface speci�es a set of potential implementations (concrete implemen-
tations have identical transition relations −→3 = −→2). The goal of our interface
theory is to be able to use interface descriptions to describe legal implementa-
tions of components in a component based system. The implementation relation,
the relation that speci�es which implementations conform to a given interface
description is modal re�nement ≤m. From the interface descriptions of two com-
ponents it should be possible to derive the interface of the combined component.
This is done without knowing more about the implementations, than the fact
that they conform to their individual interface speci�cation.

The result of composing two interfaces is a subset of the result of composing
two modal I/O automata, in which all possible internally controllable paths lead-
ing to error states are removed. An error state is a state in which one component
can output something that the other component might be unable to receive:

err i
S1,S2

= {(s1, s2) ∈ statesS1⊗S2 | there exists a ∈ intS1⊗S2 and states s′1, s′2
such that (s1

a!−−→3
S1 s′1 and s2 6 a?−−→2

S2) or (s2
a!−−→3

S2 s′2 and s1 6 a?−−→2
S1)} (2)

State 22 on Fig. 2 is an error state, witnessed by the fail action.
We are now ready to de�ne the set of states of the composition:

statesS1|S2 =
∞⋂

n=0

prunen
i (statesS1⊗S2\err i

S1,S2
) , (3)

where prunei(S) = {s ∈ S | ∀s′ ∀a ∈ intS1⊗S2 . s
a−−→3s′ implies s′ ∈ S}, which is a

monotonic function that removes, from the set of states S, all those states that
in one internally controllable step may reach a state that is not in S.

See Figure 3 (left) for an example of how pruning works. State 22 has been
removed as an error state, then state 21 was pruned as an error state can be
reached from it by the internally controllable transition log!. Then all transitions
involving states 21 and 22 were removed. State 20 remains in the result as the
must transition labeled down is externally controllable.
De�nition 9 (Composition). The composition of two interfaces S1 and S2

is de�ned if S1 and S2 are composable modal I/O automata and startS1⊗S2 ∈
statesS1|S2 (see above). The composition results in a modal I/O automaton S1|S2

such that S1|S2 = (statesS1|S2 , startS1⊗S2 , inS1⊗S2 , outS1⊗S2 , intS1⊗S2 ,−→3
S1⊗S2 ∩

(statesS1|S2×actS1⊗S2×statesS1|S2),−→2
S1⊗S2 ∩(statesS1|S2×actS1⊗S2×statesS1|S2)).

Two interfaces are compatible if the set of states resulting from composition,
statesS1|S2 , contains the initial state (startS1 , startS2).

A desirable property of an interface theory is that components can be im-
plemented independently of each other once the speci�cations are known. The
following theorem formally states that this theory satis�es the property.
Theorem 10 (Independent Implementability). For any two compatible in-
terfaces S1, S2 and for any two implementations I1, I2, I1 ≤m S1 and I2 ≤m S2,
it holds that I1 ⊗ I2 ≤m S1|S2.
This has three implications. First, I1⊗ I2 would deliver all the required behavior
promised by S1|S2 as long as it interacts with an environment obeying S1|S2.
Second, I1 ⊗ I2 will not do anything that S1|S2 would not allow in such an
environment. Third, since S1|S2 does not contain error states then I1 ⊗ I2 will
not deadlock.
Theorem 11 (Deadlock Freeness Preservation). For any two compatible
interfaces S1, S2, any two implementations I1, I2, so I1 ≤m S1 and I2 ≤m S2,
and any interface T compatible with S1|S2, if T ⊗ (S1|S2) has no reachable error
states then T ⊗ (I1 ⊗ I2) has no reachable error states.

Finally the composition operator (|) is commutative and associative up to
graph isomorphism.

6 A Product Line Theory
In product line development one typically maintains a family of existing assets
that are composed in a bottom-up fashion in order to build a product. Here we
assume that existing assets are su�cient to build the product and no genuinely
new programming is required. Assets are organized in small subfamilies, that can
be thought of as con�gurable components. Choosing an asset from a subfamily is
a con�guration process. We model subfamilies as modal I/O automata, and call
them variability models, to distinguish them from interfaces. The con�guration
process amounts to �nding a suitable modal re�nement of a variability model.

There is a need for a mechanism for composing variability models, to enable
reasoning about the products that can be constructed using available assets.
As in the interface theory we are interested in computing the legal uses for the
composition of two models, without reaching error states. However we weaken the
requirement this time: we do not require that all possible pairs of implementations
give an error free composition, but only that there exists a pair of implementations
that can avoid errors under a suitable use.

Two variability models are composable if their input, output and hidden ac-
tions do not overlap (the general rule for modal I/O automata). Two composable
families can be composed, resulting in a description of a higher level component
family. The signature of this variability model is found in the same way as for

modal I/O automata. The requirement for the description of this more abstract
family is that a speci�cation that re�nes its description can be realized by choos-
ing some concrete implementations from both lower level families involved. So
that in e�ect one can con�gure the �nal product by con�guring the abstract
composed variability model, being sure that the selected con�guration can be
re�ned to con�gurations of each of the smaller components, available in the col-
lection of assets. We give a su�cient condition for a re�nement of a variability
model to be decomposable.

The ultimate composition closely resembles the composition (|) for interface
automata: it uses the regular modal I/O automata composition (⊗) �rst and then
removes error states. However now only internally controllable required transitions
are pruned, while in the interface theory we had also removed states reachable
by allowed executions of the same kind. The very existence of allowed internally
controlled execution to an error state was considered dangerous in the interface
theory�it is not in the product line theory. This is because we are not interested
in eliminating errors by all means, but only in making sure that there exist error-
free realizations of the speci�cation. For two syntactically composable variability
models we de�ne the set of error states, err v

S1,S2
, to be:

err v
S1,S2

= {(s1, s2) ∈ statesS1⊗S2 | there exists a ∈ intS1⊗S2 and states s′1, s
′
2

such that (s1
a!−−→2s′1 and s2 6 a?−−→3) or (s1 6 a?−−→3 and s2

a!−−→2s′2)} (4)
In Figure 2 (right) state 22 is still an error state, though for a di�erent reason

than previously: in state 22 the LinkLayer must be able to produce fail, but the
Client is not allowed to receive it. If a product of two variability models contains
an error state it means that there exist con�gurations of composed assets that
cannot safely work together. However, in the same spirit as in the interface the-
ory, we can compute the set of legal uses that guarantee that there exist pairs
of compatible con�gurations to interact with them. We remove from the product
S1 ⊗ S2 all the states that according to the variability speci�cation must be able
to reach an error state. If there is no states left then the two variability models
are incompatible. Otherwise we arrive at a speci�cation of states and transitions
among the compatible states that constraint possible legal implementations ob-
tained from these two families. Formally:

statesS1·S2 =
∞⋂

n=0

prunen
v(statesS1⊗S2\err v

S1,S2
) , (5)

where prunev(S) = {s ∈ S | ∀s′.∀a ∈ intS1⊗S2 ∪ outS1⊗S2 . s
a−−→2s′ and s′ ∈ S}.

We compute the two transition relations for the composition, by projecting the
transition relations of the parallel composition S1⊗S2 onto the new set of states:

−→3
S1·S2 = −→3

S1⊗S2 ∩ (statesS1·S2 × actS1⊗S2 × statesS1·S2) (6)
−→2

S1·S2 = −→2
S1⊗S2 ∩ (statesS1·S2 × actS1⊗S2 × statesS1·S2) . (7)

Finally we can state the complete result of the composition: a modal I/O au-
tomaton S1 ·S2 such that S1 · S2 = (statesS1·S2 , (startS1 , startS2), inS1⊗S2 , outS1⊗S2 ,
intS1⊗S2 ,−→3

S1·S2 ,−→2
S1·S2) and all the components are de�ned above.

De�nition 12. Two variability models are compatible if they are composable and
their composition is nonempty.

It turns out that observationally consistent re�nements of compositions of
variability models are realizable with existing assets. We de�ne observational
consistency for states of a single automaton. Let t A−−→2

∗t′ mean that t′ is reachable
from t via a possible empty sequence of required transitions labeled by possibly
di�erent actions from a set A.
De�nition 13. Let T be a modal automaton and let A ⊆ actT be a set of actions.
A relation C ⊆ statesT × statesT is an observational consistency relation with
respect to A if for any pair of states (t1, t2) ∈ C the following two properties hold:
1. ∀t′1. if t1

A−−→2
∗t′1 then ∀a /∈ A.∀t′′1. t′1 a−−→2t′′1 implies ∃t′2. t2 a−−→3t′2∧(t′′1, t

′
2) ∈ C.

2. ∀t′2. if t2
A−−→2

∗t′2 then ∀a /∈ A.∀t′′2. t′2 a−−→2t′′2 implies ∃t′1. t1 a−−→3t′1∧(t′1, t
′′
2) ∈ C.

Two states are observationally consistent if there exists an observational consis-
tency relation relating them. A set of states is said to be observationally consistent
with respect to A if all possible pairs of states from the set are observationally
consistent with respect to A. An automaton T is observationally consistent with
respect to A i� the set {startT} is an observationally consistent set.

The following theorem states the existence of decomposition formally:
Theorem 14 (Decomposability). Let T1, T2 be deterministic composable vari-
ability models, and S be a con�guration (a deterministic variability model itself)
such that S ≤m T1 · T2, and T1, S are observationally consistent with respect to
actT1 \ actT2 and T2, S are observationally consistent with respect to actT2 \ actT1.
Then there exist S1 and S2 such that S1 ≤m T1 and S2 ≤m T2 and S1 ⊗ S2 ≤m S.

A version of the theorem, not requiring observational consistency, does not
hold, which can be demonstrated with a counter-example, not included here.

An important corollary is that the decomposition can be carried over down to
precise con�gurations: if a concrete con�guration of a product is required, then
there exist concrete con�gurations of assets to realize it. The question whether
a speci�cation is realizable with given assets is reduced to establishing observa-
tional consistency and a modal re�nement between the postulated requirement
and the variability model. Consequently the abstract variability model can be
communicated to con�guration engineers and used to con�gure �nal products.

Let us close our discussion with a statement that the (·) operator is general
enough to describe all implementations safely realizable with existing assets.
Theorem 15 (Completeness). For any two compatible variability models T1,
T2 and any two compatible concrete implementation speci�cations I1, I2, where
I1 ≤m T1 and I2 ≤m T2 it holds that I1 · I2 ≤m T1 · T2.

7 Conclusion & Future Work
We have investigated the relation between alternating simulation as used in in-
terface automata and observational modal re�nement, concluding that former is
a case of the latter. We have argued that the strength of the game theoretic ap-
proach to interface theories does not lie in alternating re�nement itself, but in the
labeling of transitions with control information; in partitioning the actions into
internally and externally controllable. We have extended modal transition sys-
tems with this information and demonstrated that in this way interface theories
tracking liveness properties, can be built. Finally we have presented a product
line theory describing variability in behavior of component families.

In the future we would like to extend the product line theory of Section 6
to a full featured theory based on observational modal re�nement and study its
properties in depth. Also it appears interesting to investigate the relation between
the general notion of alternating re�nement [8] and (modal) transition systems,
lifting the restrictions accepted in Section 3 after the interface automata model.

References
1. Alfaro, L., Henzinger, T.A.: Interface automata. In: Proceedings of the Ninth Annual Symposium

on Foundations of Software Engineering (FSE), Vienna, Austria, ACM Press (2001) 109�120
2. Larsen, K.G., Thomsen, B.: A modal process logic. In: LICS, IEEE Computer Society (1988)
3. Chakabarti, A., de Alfaro, L., Henzinger, T.A., Stoelinga, M.I.A.: Resource interfaces. In Alur,

R., Lee, I., eds.: EMSOFT 03: 3rd Intl. Workshop on Embedded Software. LNCS, Springer (2003)
4. Alfaro, L., Henzinger, T., Stoelinga, M.I.A.: Timed interfaces. In Sangiovanni-Vincentelli, A.,

Sifakis, J., eds.: EMSOFT 02: 2nd Intl. Workshop on Embedded Software. LNCS, Springer (2002)
5. Larsen, K.G., Nyman, U., W¡sowski, A.: Interface input/output automata. In Misra, J., Nip-

kow, T., Sekerinski, E., eds.: 14th International Symposium on Formal Methods (FM) Hamilton,
Canada, August 21�27, 2006 Proceedings. Volume 4085 of LNCS., Springer (2006) 82�97

6. �erná, I., Va°eková, P., Zimmerová, B.: Component substitutability via equivalencies of component-
interaction automata. In: FACS'06. (2006) 115�130 To be published in ENTCS.

7. Hermanns, H., Rehof, J., Stoelinga, M.I.A., eds.: Workshop Procedings FIT 2005: Foundations of
Interface Technologies. ENTCS, Elsevier Science Publishers (2005)

8. Alur, R., Henzinger, T.A., Kupferman, O., Vardi, M.: Alternating re�nement relations. In San-
giorgi, D., de Simone, R., eds.: Proceedings of the Ninth International Conference on Concurrency
Theory (CONCUR'98). Volume 1466 of LNCS., Springer (1998) 163�178

9. Alfaro, L., Henzinger, T.A.: Interface-based design. In: In Engineering Theories of Software
Intensive Systems, Marktoberdorf Summer School, Kluwer Academic Publishers (2004)

10. Carrez, C., Fantechi, A., Najm, E.: Assembling components with behavioral contracts. Annales
del Télécommunications 60 (2005)

11. Parnas, D.L.: On the design and development of program families. IEEE Transactions on Software
Engineering Vol. SE-2 (1976) 1�9

12. Czarnecki, K., Eisenecker, U.W.: Generative Programming: Methods, Tools, and Applications.
Addison-Wesley (2000)

13. Pohl, K., Böckle, G., van der Linden, F.: Software Product Line Engineering�Foundations, Prin-
ciples, and Techniques. Springer (2005)

14. Larsen, K.G., Larsen, U., W¡sowski, A.: Color-blind speci�cations for transformations of reactive
synchronous programs. In Cerioli, M., ed.: FASE, Edinburgh, April 2005. LNCS, Springer (2005)

15. Boudol, G., Larsen, K.G.: Graphical versus logical speci�cations. In Arnold, A., ed.: CAAP.
Volume 431 of Lecture Notes in Computer Science., Springer (1990) 57�71

16. Larsen, K.G.: Modal speci�cations. In Sifakis, J., ed.: Automatic Veri�cation Methods for Finite
State Systems. Volume 407 of Lecture Notes in Computer Science., Springer (1989) 232�246

A Proofs
This appendix contains proofs of theorems and lemmas, along with some coun-
terexamples for negative claims or one-way implications. The appendix is not an
integral part of the paper, and reading it is not required in order to assess the
value of the results.

A.1 Appendix for Section 3
This section uses formulations of Alternating Simulation and Observational Modal
Re�nement with ε-closure(s) instead of s τ−→∗.

Proof (of Theorem 6). The proof will be divided into two directions. First we will
prove that

∀S, T ∈ IA. S ≤a T =⇒ T (S) ≤∗m T (T).

We will prove this by showing that alternating simulation is a subset of ob-
servational modal re�nement on the translation of IA: ≤a ⊆ ≤∗m. This will be
shown by showing that the following relation is a modal re�nement.

R = {(s, t)|∃ŝ, t̂.s = T (ŝ) ∧ t = T (t̂) ∧ ŝ ≤a t̂} ∪ {(s, smayall)|s ∈ statesS}

This is shown in three di�erent cases, one for each of the rules that de�ne
observational modal re�nement.

1. Must transition, external action: Take t.t a−−→2t′ ∧ a ∈ extT . We can con-
clude from the de�nition of translation that this case only exists for a ∈ inT .
By R we have that ∃t̂.t̂ a?−−→t̂′. From the de�nition of Alternating Simulation
we have that ∃ŝ.ŝ a?−−→ŝ′∧ (s′, t′) ∈ R. By translation we have that s a−−→2s′ and
this implies that (s′, t′) ∈ R.

2. May transition, external action: Take s.s a−−→3s′∧a ∈ outS∪ inS it means,
by R, that ∃ŝ.ŝ a−→ŝ′

2.1 a ∈ outS∧ ŝ a!−→ŝ′, by ŝ ≤a t̂ and the de�nition of alternating simulation we
have that t̂ a!−→t̂′ ∧ ŝ′ ≤a t̂′. By translation we have t a−−→3t′ this all implies
that (s′, t′) ∈ R.

2.2 a ∈ inS∧ ŝ a?−−→ŝ′∧ t̂ a?−−→t̂′, by ŝ ≤a t̂, the de�nition of alternating simulation
and the fact that IA are input deterministic we have that ŝ a?−−→ŝ′ ∧ ŝ′ ≤a t̂′

and this implies that (s′, t′) ∈ R.
2.3 a ∈ inS ∧ ŝ a?−−→ŝ′ ∧ t̂ 6 a?−−→, by translation we have t a?−−→3smayall and by

de�nition of R we have that (s, smayall) ∈ R
3. May transition, internal action: Take s.s a−−→3s′ ∧ a ∈ intS it means, by

R and translation, that ŝ a;−→ŝ′ ∧ s = T (ŝ). By the de�nition of alternating
simulation we have that ∃t̂′.t̂ τ−→∗t̂′ ∧ ŝ′ ≤a t̂′. By translation we have that
∃t′.t τ−→∗

3t′.t′ = T (t̂′). This all implies (s′, t′) ∈ R.

We will now prove the other direction:

∀S, T ∈ IA. S ≤a T ⇐= T (S) ≤∗m T (T).

We will prove this by showing that observational modal re�nement, on the
translation of IA, is a subset of alternating : ≤∗m ⊆ ≤a. This will be shown by
showing that the following relation is an alternating simulation.

Q = {(ŝ, t̂)|∃s, t.s = T (ŝ) ∧ t = T (t̂) ∧ s ≤∗m t}
This will be split into three cases, one for each of the rules in the de�nition

of Alternating Simulation.

1. Take t̂ a?−−→t̂′ by Q and translation we have that a ∈ inT ∧ t a−−→2t′. We have by
s ≤∗m t and the de�nition of Observational Modal Re�nement that ∃s′.s a−−→2s′∧
s′ ≤m t′ and by translation we have that ŝ a−→ŝ′ where s′ = T (ŝ′) which implies
that (ŝ′, t̂′) ∈ Q.

2. Take ŝ a!−→ŝ′, by Q and translation we have that a ∈ outS.s a−−→3s′. We have by
s ≤∗m t and the de�nition of Observational Modal Re�nement that ∃t′.t τ−→∗

3t′.
∃t′′. t′ a−−→3t′′ and s′ ≤∗m t′′. By translation we have that this will give rise to a
sequence of internal transitions followed by an a transition such that we know
that ∃t̂′.t̂ τ−→∗t̂′.t̂′ a!−→t̂′′ ∧ ŝ′ ≤a t̂′′ This all implies that (ŝ′, t̂′′) ∈ Q.

3. Take ŝ a;−→ŝ′. By Q and by translation we have that a ∈ intS ∧ s a−−→3s′ We
have by s ≤∗m t and the de�nition of Observational Modal Re�nement that
∃t′.t τ−→∗

3t′ ∧ s′ ≤∗m t′. By translation we know that this sequence of zero or
more internal transitions will give rise to an identical sequence of internal
transitions such that ∃t̂′.t̂ τ−→∗t̂′ and ŝ′ ≤a t̂′. This all implies that (ŝ′, t̂′) ∈ Q

ut

A.2 Appendix for Section 4

Lemma 16. For any two composeable and syntactically consistent modal I/O
automata S1, S2 their parallel composition S1⊗S2 is also syntactically consistent.

A.3 Appendix for Section 5

Proof (of Theorem 10). This theorem is proven by showing that the relation R
is a modal re�nement:

R = {(i, s) ∈ statesI1⊗I2×statesS1|S2|i = (i1, i2)∧s = (s1, s2)∧i1 ≤m s1∧i2 ≤m s2}

The proof is divided into two cases, one for each of the rules in the de�nition
of modal re�nement.

1. s a−−→2s′. This means that (s1, s2)
a−−→2(s′1, s

′
2) .

We want to show that ∃i′.i a−−→2i′ ∧ (i′, s′) ∈ R. This will be divided into �ve
sub cases depending on how (s1, s2)

a−−→2(s′1, s
′
2) is achieved. Several of these

cases are symmetric versions of each other.
1.1 s1

a!−−→2s′1 ∧ a ∈ intS1|S2 . We know that s2
a?−−→2s′2 must exists, else the

output transition would have been pruned. We know i1 ≤m s1 ∧ i2 ≤m s2

which gives us i1
a!−−→2i′1 ∧ i2

a?−−→2i′2. So take i = (i′1, i
′
2), by de�nition of

I1 ⊗ I2 we have that i a−−→2i′ and this implies that (i′, s′) ∈ R.
1.2 This case is completely symmetric, where it is s2 that outputs.
1.3 s1

a!−−→2s′1 ∧ a ∈ outS ∧ a ∈ extS1|S2 by i1 ≤m s1 we have that i1
a!−−→2i′1 ∧

i′1 ≤m s′1. Also in this case we have, by composability, that s′2 = s2∧ i′2 = i2
and (i1, i2)

a!−−→2(i′1, i2). For i′ = (i′1, i2) ∧ s′ = (s′1, s2) this all implies that
(i′, s′) ∈ R.

1.4 s1
a?−−→2s′1∧a ∈ inS∧a ∈ extS1|S2 . This case is symmetric with the previous

case.
1.5 s1

a;−−→2s′1∧a ∈ intS∧a ∈ intS1|S2 . This case is symmetric with the previous
case. All three cases also have symmetric cases where the transition in
question is part of S2.

2. i a−−→3i′ this means that (i1, i2)
a−−→3(i′1, i

′
2).

We want to show that ∃s′.s a−−→3s′ ∧ (i′, s′) ∈ R. This will be divided into �ve
sub cases depending on how (i1, i2)

a−−→3(i′1, i
′
2) is achieved. Several of these

cases are symmetric versions of each other.
2.1 i1

a!−−→3i′1∧i2
a?−−→3i′2. By R and the de�nition of≤mwe have that s1

a!−−→3s′1∧
s2

a!−−→3s′2 ∧ i′1 ≤m s′1 ∧ i′2 ≤m s′2 which gives us that ((i′1, i
′
2), (s

′
1, s

′
2)) ∈ R.

2.2 This case is completely symmetric, where it is i2 that outputs.
2.3 i1

a!−−→3i′1 ∧ a ∈ outI ∧ a ∈ extI1⊗I2 by i1 ≤m s1 we have that s1
a!−−→3s′1 ∧

i′1 ≤m s′1. Also in this case we have, by composability, that s′2 = s2∧ i′2 = i2
and (s1, s2)

a!−−→3(s′1, s2). For i′ = (i′1, i2)∧ s′ = (s′1, s2) this all implies that
(i′, s′) ∈ R.

2.4 i1
a?−−→3i′1∧a ∈ inI ∧a ∈ extI1⊗I2 . This case is symmetric with the previous

case.
2.5 i1

a;−−→3i′1∧a ∈ intI∧a ∈ intI1⊗I2 . This case is symmetric with the previous
case. All three cases also have symmetric cases where the transition in
question is part of I2.

ut
Proof (of Theorem 11).

The proof proceeds as a contrapositive proof in which we show that if an error
state was reachable in T ⊗ (I1 ⊗ I2) then an error state would also be reachable
in T ⊗ (S1|S2). There are two ways in which an error state could be reachable in
T ⊗ (I1 ⊗ I2).

1. err i
T,(I1⊗I2) ∩ reachable(T ⊗ (I1 ⊗ I2))is non empty.

2. Π2(reachable(T ⊗ (I1 ⊗ I2))) ∩ err i
I1,I2

is non empty.

Contrapositive proof:

1. Assume that (t, i) ∈ err i
T,(I1⊗I2) and that (t, i) is reachable. No we want to

show that ∃(t, s) ∈ err i
T,(S1|S2) and that (t, s) is reachable.

Because t is reachable and I1 ⊗ I2 ≤m S1|S2 (Theorem 10) we know that
∃s ∈ statesS1|S2 and i ≤m s ∧ s is reachable by may transitions in S1|S2.
1.1 t a!−−→3t′ ∧ i 6 a?−−→2 ∧ a ∈ intT⊗(I1⊗I2) but then s 6 a?−−→2. We now need

to argue that (t, s) is reachable by may transitions. This follows from
I1 ⊗ I2 ≤m S1|S2 (Theorem 10). Because of consistency we only consider
may transitions.
Executions of T and I1⊗I2 is a sequence of may transitions of T and I1⊗I2.
All the may transitions of I1 ⊗ I2 can be matched by may transitions of
S1|S2

1.2 i a!−−→3i′ ∧ t 6 a?−−→2 ∧ a ∈ intT⊗(I1⊗I2). The argument is identical to the
previous case.

2. Assume that i1
a!−−→3i′1 ∧ i2 6 a?−−→2 and ∃t.(t, i1, i2) is reachable. This implies

that s1
a!−−→3s′1 ∧ s2 6 a?−−→2. So we can conclude that an error state would be

reachable in T ⊗ (S1|S2) in this case.

Lemma 17. For any two composeable and syntactically consistent modal inter-
face automata S1, S2 their parallel composition S1|S2 is also syntactically consis-
tent.

Theorem 18 (Associativity). ∀S1, S2, S3. pairwise compatible S1|(S2|S3) is iso-
morphic with (S1|S2)|S3.

A.4 Appendix for Section 6
Lemma 19. For any two composeable and syntactically consistent modal vari-
ability models S1, S2 their parallel composition S1 · S2 is also syntactically con-
sistent.

De�nition 20 (A-closure). For a set of actions A we de�ne an A-closure of
a pair of states (s, t1) ∈ statesS × statesT1 as a subset Σ of statesS × statesT1

consisting of (s, t1) itself and all pairs (s′, t′1) in which s′ can be reached from s
by following a sequence of steps from −→2

S labeled solely by actions in A and t′1
can be reached from t1 by following an identical sequence (sequence with the same
labels) of steps from −→2

T1. Closures for pairs of states of S and T2 are de�ned
analogously.

De�nition 21 (A-closure). We lift de�nition 20 to sets of pairs of states, such
that the result is simply the union of the A-closures of all pairs.

Let t A−−→2
∗t′ mean that t′ is reachable from t via a possible empty sequence of

required transitions labeled by actions from a set A (possibly di�erent actions).
We will de�ne observational consistency for states of a single automata.

De�nition 22. Let T be a modal automaton and let A ⊆ actT be a set of actions.
A relation C ⊆ statesT × statesT is an observational consistency relation with
respect to A if for any pair of states (t1, t2) ∈ C the following two properties hold:

1. ∀t′1. if t1
A−−→2

∗t′1 then ∀a /∈ A.∀t′′1. t′1 a−−→2t′′1 implies ∃t′2. t2 a−−→3t′2∧(t′′1, t
′
2) ∈ C.

2. ∀t′2. if t2
A−−→2

∗t′2 then ∀a /∈ A.∀t′′2. t′2 a−−→2t′′2 implies ∃t′1. t1 a−−→3t′1∧(t′1, t
′′
2) ∈ C.

Two states are observationally consistent if there exists an observational consis-
tency relation relating them. A set of states is said to be observationally consistent
with respect to A if all possible pairs of states from the set are observationally con-
sistent with respect to A.

An automaton T is observationally consistent with respect to A i� the set
{startT} is an observationally consistent set.

Lemma 23. Consistency is transitive in the following sense: for a consistency
relation C if (t1, t2) ∈ C and (t2, t3) ∈ C then (t1, t3) ∈ C.

Lemma 24. Let S, T1, T2 be modal I/O automata and S ≤m T1 · T2. If s ∈
statesS and t2 ∈ statesT2 are observationally consistent states wrt to actT2 \ actT1

then projections of (actT2\actT1)�closure(s, t2) on the �rst and second4 component
give observationally consistent sets of states with respect to the same set of actions
actT2 \ actT1.

Similarly if s ∈ statesS and t1 ∈ statesT1 are observationally consistent states
wrt to actT1 \actT2 then projections of (actT1\actT2)�closure(s, t1) on the �rst and
second component give observationally consistent sets of states with respect to the
same set of actions actT1 \ actT2.

These claims generalize also to sets of consistent states.

Proof (of Thm. 14). We shall construct S1 and S2 exhibiting the requirements of
the theorem. The signatures of S1 and S2 are identical to those of T1 and T2:

intSi
= intTi

, outSi
= outTi

, intSi
= intTi

. (8)

Since S ≤m T1 · T2 there exists the least relation R ⊆ statesS × (statesT1 ×
statesT2), which is a modal re�nement of T1 · T2 by S. Let

statesS1 = {(Σ1, t1) | t1 ∈ statesT1 and Σ1 ⊆ {(s, t2) | (s, (t1, t2)) ∈ R}} (9)
statesS2 = {(Σ2, t2) | t2 ∈ statesT2 and Σ2 ⊆ {(s, t1) | (s, (t1, t2)) ∈ R}} (10)

4 For the current version of the proof we only need to claim consistency when projected on the �rst
component.

and

startS1 = (Σ0
1 , startT1), where Σ0

1 =(actT2\actT1)�closure(startS, startT2) (11)
startS2 = (Σ0

2 , startT2), where Σ0
2 =(actT1\actT2)�closure(startS, startT1) (12)

We create only one transition relation for each of S1 and S2 (or more precisely
both will have two, but identical transition relations). Intuitively this transition
relation for S1 will contain all steps allowed by T1 and required by S. Formally
it is given by the following rules:

a ∈ actS1\actS2 t1
a−−→3

T1t′1 ∃(s, t2)∈Σ1. s
a−−→2

S

Σ ′
1 = {(s′, t2) | ∃(s, t2)∈Σ1. s

a−−→3
Ss′}

(Σ1, t1)
a−−→3

S1((actT2\actT1)�closure(Σ ′
1), t

′
1)

(13)

a ∈ actS1∩actS2 t1
a−−→3

T1t′1 ∃(s, t2)∈Σ1. s
a−−→2

S

Σ ′
1 = {(s′, t′2) | ∃(s, t2)∈Σ1. s

a−−→3
Ss′ ∧ t2

a−−→3
T2t′2}

(Σ1, t1)
a−−→3

S1((actT2\actT1)�closure(Σ ′
1), t

′
1)

(14)

a ∈ actS1∩actS2 t1
a−−→2

T1t′1 ∀(s, t2)∈Σ1. s 6 a−−→2
S

(Σ1, t1)
a−−→3

S1(∅, t′1)
(15)

a ∈ actS1\actS2 t1
a−−→2

T1t′1

(∅, t1) a−−→3
S1(∅, t′1)

(16)

We take the must transition relation −→2
S1 to be identical with −→3

S1 . Note
that e�ectively S1 follows all must transition relations of S in its sort, except
that whenever T1 requires an input that is not followed by S (as T2 is not able to
synchronize on this input), we redirect the transition relation to a region where all
must transitions of T1 are mapped. We do that as minimum addition to maintain
re�nement of T1 by S1, on the functionality not explored by S.

We refrain from showing the rules for S2 here�they can be easily constructed
by analogy, as the problem is entirely symmetric.

It is clear that the constructed systems S1 and S2 are deterministic�the
closure operation is deterministic and we apply to a unique maximal set for each
action in each particular source state.

Lemma 25. The rules for transitions of S1 ensures that if the originating state
belongs to statesS1 then the target state will also belong to statesS1.

An entirely symmetric lemma can be made for S2.

Proof. (Lemma 25) First we need to argue that the initial state startS1 ∈ statesS1 .
Firstly startT1 ∈ statesT1 which satis�es the �rst part of the requirement for states
in statesS1 . Now we need to show that (actT2 \actT1)�closure(startS, startT2) ⊆
{(s, t2) | (s, (t1, t2)) ∈ R}. The state from which the closure is calculated namely,
({(startS, startT2)}, startT1), is part of statesS1 because (startS1 , (startT1 , startT2)) ∈
R. All the transitions that are taken in the calculation of the closure are on ac-
tions not involving T1 and are taken simultaneously by S and T2, which ensures
that all pairs of states Σ ′

1 that are reached will still ful�ll the requirement for
being in statesS1 .

The rest of the proof consists of four cases, one for each rule. We need to
argue for transitions generated by each of the four rules that the target state will
be in statesS1 , given that the source state is. Transitions generated by rule (13)
ensure this because the states that are in Σ ′

1 have taken one transition that is on
a non shared action of T1. This transition is taken simultaneously by T1 and S.
Finally the closure also preserves the property, by the same argument as before.
The argument for rule (14) is similar, the only di�erence being that the �rst
transition is on a shared action and is taken by S, T1 and T2. Rule (15) and (16)
are di�erent. Here the argument is that ∅ is a subset of {(s, t2) | (s, (t1, t2)) ∈ R}.

We want to show that 1◦ S1 ≤m T1, 2◦ S2 ≤m T2 and 3◦ S1 ⊗ S2 ≤m S.

1◦ Show that

R1 = {((Σ1, t1), t1) |Σ1 ∈ statesS1 and t1 ∈ statesT1} (17)

is a modal re�nement of T1 by S1.
Consider an arbitrary pair of states ((Σ1, t1), t1) ∈ R1 and a transition t1

a−−→2
T1t′1.

We want to show that there exists a state (Σ ′
1, t

′
1) and a transition such that

(Σ1, t1)
a−−→2

S1(Σ ′
1, t

′
1) and ((Σ ′

1, t
′
1), t

′
1) ∈ R1

1.1◦ If Σ1 = ∅ then take Σ ′
1 to be ∅ and the corresponding transition exists

due to rule (16) or rule (15). In the case of rule (15) the premise that
∀(s, t2) ∈ Σ1 is trivially true.

1.2◦ Let a be an action of T1 that is not shared with T2, or similarly a ∈
actS1 \ actS2 . We want to apply rule (13) and want to show that the
premises are ful�lled. The �rst two premises are ful�lled by the case that
we are looking at. The third premise is ful�lled by the following argu-
ment. Because t′1 is making a step we have that (t1, t2)

a−−→2
T1·T2(t′1, t2). By

the de�nition of statesS1 and R1 we have that (s, (t1, t2)) ∈ R for ev-
ery pair (s, t1) ∈ Σ1. Because R is a modal re�nement of T by S we
have that s a−−→2

Ss′ and (s′, (t′1, t2)) ∈ R for every pair (s, t1) ∈ Σ1. The
third premise will trivially hold and we can even conclude that Σ ′

1 will be
nonempty. Now we can apply rule (13) and we can conclude that indeed
(Σ1, t1)

a−−→3
S1(((actT2\actT1)�closure(Σ ′

1), t
′
1). From this we can conclude

that a similar must transition exists because the two transition relations are

identical. Finally we can conclude that (((actT2\actT1)�closure(Σ ′
1), t

′
1) ∈ R1

because the generated transitions stay within statesS1 and t′1 ∈ statesT1 .
1.3◦ Let a be an action of T1 that is shared with T2, or similarly a ∈ actS1∩actS2 .

We want to apply rule (14) and (15), in two di�erent sub cases, and want
to show that the premises are ful�lled. The �rst two premises of both rules
are ful�lled by the case that we are looking at. The third premise of rule
(14) and (15) are each others opposites, such that the one is true when the
other is false and vise versa. Looking at the case where ∃(s, t2) ∈ Σ1.s

a−−→2
S,

which is exactly the third premise of rule (14), then we can conclude that
the last premise for rule (14) is true by the following argument. Because
S is consistent we know that there is a transition s a−−→3

S. Because R is a
modal re�nement of T by S and we can conclude that the only way that
this transition can exist is if a similar transition t2

a−−→3
T2t′2 exists such that

(t1, t2)
a−−→3

T1·T2 . The fourth premise of rule (14) is trivially true, but we
can now conclude that Σ ′

1 is nonempty. Now we can apply rule (14) and
we can conclude that indeed (Σ1, t1)

a−−→3
S1(((actT2\actT1)�closure(Σ ′

1), t
′
1).

From this we can conclude that a similar must transition exists because
the two transition relations are identical. Finally we can conclude that
(((actT2 \ actT1)�closure(Σ ′

1), t
′
1) ∈ R1 because the generated transitions

stay within statesS1 and t′1 ∈ statesT1 .
Now turning to the other sub case where ∀(s, t2) ∈ Σ1 s 6 a−−→2

S. In this
case there are no must transitions in S requiring the behavior but S1

will have the behavior because T1 requires it. From this we can conclude
that (∅, t1) a−−→3

S1(∅, t′1) and that a similar must transition exists because
the two transition relations are identical. Finally we can conclude that
(((actT2\actT1)�closure(∅), t′1) ∈ R1 because the generated transitions stay
within statesS1 and t′1 ∈ statesT1 .

This �nishes one direction of the proof. Lets now consider a may transition
(Σ1, t1)

a−−→3
S1(Σ ′

1, t
′
1). We need to show that a transition t1

a−−→3
T1t′1 exists such

that ((Σ ′
1, t

′
1) ∈ R1)

1.4◦ This transition could have been generated by one of the four rules (13)-
(16). In two of the cases we can directly conclude that a transition t1

a−−→3
T1t′1

exists. In the other two cases we can conclude that this transition exists
because the rules require a similar must transition and T1 is syntacticly
consistent. Now it follows directly from Lemma 25 that (Σ ′

1, t
′
1) ∈ R1

2◦ The proof that S2 ≤m T2 is entirely symmetric to the proof that S1 ≤m T1.

3◦ Show that S1 ⊗ S2 ≤m S. We do that by arguing that

R2 = {(((Σ1, t1), (Σ2, t2)), s) |
((actT1\actT2)�closure(s, t1) ⊆ Σ2 and
((actT2\actT1)�closure(s, t2) ⊆ Σ1 and

Π1(Σ1) is observationally consistent wrt actT2\actT1 and
Π1(Σ2) is observationally consistent wrt actT1\actT2} (18)

is a modal re�nement of S by S1 ⊗ S2. First we should argue that

((startS1 , startS2), startS) ∈ R2 . (19)

Obviously

(actT2\actT1)�closure(startS, startT2) ⊆ Σ0
1 and (20)

(actT1\actT2)�closure(startS, startT1) ⊆ Σ0
2 (21)

(actually equalities hold). Observational consistency of projections of Σ0
1 and

Σ0
2 follows from consistency of S, T1, T2 and Lemma 24.

We shall discuss that the may transition relation preserves the re�nement.
Take any (((Σ1, t1), (Σ2, t2)), s) ∈ R2 and a transition step

((Σ1, t1), (Σ2, t2))
a−−→3

S1⊗S2((Σ ′
1, t

′
1), (Σ

′
2, t

′
2)) (22)

We want to �nd a state s′ such that s a−−→3
Ss′ and ((Σ ′

1, t
′
1), (Σ

′
2, t

′
2)), s

′) ∈ R2.
Note that due to the way R2 is constructed we know that neither Σ1 nor Σ2

are empty. The transition step of the composition must then be created by
both components taking a shared action (and both following rule (14)) or by
one component taking a non-shared action, by rule (13), and the other not
changing state.
Observe that rule (16), can never give rise to such a transition as it would
require Σ1 or Σ2 to be empty, which we have just ruled out.

3.1◦ Let a ∈ actS1 ∩ actS2 . We want to �rst argue that both components take
steps generated by rule (14) and not rule (15). The latter would require
that either t1 or t2 enjoys a must transition ti

a−−→2
Tit′i. If both transitions

existed, they would imply that also s a−−→2
Ss′ (since (s, (t1, t2)) ∈ R, S

is deterministic), which would contradict the joint premises of the rules.
So only one of the two must transitions can exist. But then the other
component is taking a transition generated by rule (14) implying that
s a−−→2

Ss′, contradicting premises of rule (15) (for both components). In
other words rule (15) could not have been used, so for some sets Σ ′′

1 , Σ ′′
2 :

(Σ1, t1)
a−−→3

S1((actT2\actT1)�closure(Σ ′′
1), t′1) (23)

(Σ2, t2)
a−−→3

S2((actT1\actT2)�closure(Σ ′′
2), t′2) (24)

From that we derive that rule (14) must have been used to create both of
these transitions, which implies that there exists (s1, p2) ∈ Σ1 such that
s1

a−−→2
Ss′1 for some state s′1. Since Π1(Σ1) is an observationally consistent

set with respect to actT2 \ actT1 then there exists a state s′ such that
s a−−→3

Ss′ and (s′1, s
′) is an observationally consistent pair of states. Since S

is deterministic the same argument can be used for all elements in Π1(Σ
′′
1)5,

which with help of Lemmas 23 and 24 leads us to a conclusion that the
�rst component of (actT2\actT1)�closure(Σ ′′

1) is observationally consistent
wrt (actT2\actT1).
Since rule (14), or more precisely its counterpart for S2, must have been
used to construct transition (24) we can also conclude that t2

a−−→3
T2t′2. So

by premises of rule (14) instantiated for transition (23) we conclude that
(s′, t′2) ∈ Σ ′′

1 and hence is in the closure.
Symmetric arguments can be used to argue that the �rst component of
the closure of Σ ′′

2 is observationally consistent wrt actT1 \ actT2 , and that
(s′, t′1) ∈ Σ ′′

2 and hence also in its closure, which �nishes the proof of this
case.

3.2◦ Let a ∈ actS1 \ actS2 . Then we know that:

(Σ1, t1)
a−−→3

S1(Σ ′
1, t

′
1) and Σ ′

2 = Σ2 and t′2 = t2 . (25)

It easy to conclude that the step of T1 has been generated by rule (13) and
not rule (16) (we have already argued against this case above: Σ1 6= ∅).
The fact that (Σ1, t1) is able to make an a step by rule (13) implies that
some state of s paired with some state of T2 in Σ1 requires such a step.
By observational consistency of Π1(Σ1) we have that necessarily s a−−→3

Ss′

for some s′. Moreover (s′, t2) ∈ Σ ′
1 (by rule (13)) and (s′, t′1) ∈ Σ2 since

(s′, t′1) ∈ (actT1 \ actT2)�closure(s, t1) = Σ2. Since Σ2 does not change,
there is no need to argue for its consistency. Consistency of Π1(Σ

′
1) follows

from the fact that a transition is taken, which cannot move outside the
consistent set (a hidden must transition).

3.3◦ The case when s takes a transition over a non-shared action of S2 is entirely
symmetric.

Observe that implicitly (by analyzing all interaction possibilities) we have
ruled out a possibility of a deadlock between S1 and S2.

Let us now turn towards the must transition relations. Assume that for some
action a and state s′ we have that s a−−→2

Ss′.
3.4◦ Let a ∈ actT1∩actT2 . Since (s, (t1, t2)) ∈ R and S is syntactically consistent,

we get that (t1, t2)
a−−→3

T1·T2(t′1, t
′
2) for some t′1, t′2 and further that t1

a−−→3
T1t′1

5 In the nondeterministic case we would probably have to extend the de�nition of observational
consistency with a universal quanti�er, instead of the existential, which it is using now.

and t2
a−−→3

T2t′2. But these imply by rule (14) that (Σ1, t1)
a−−→3

S1(Σ ′
1, t

′
1),

where (actT2\actT1)�closure(s′, t′2) ⊆ Σ ′
1 and similarly (Σ2, t2)

a−−→3
S2(Σ ′

2, t
′
2),

where (actT1\actT2)�closure(s′, t′1) ⊆ Σ ′
2.

We have chosen that the must transition relations of both S1 and S2 are
identical with their respective may transition relations, so we can conclude
that ((Σ1, t1), (Σ2, t2))

a−−→2
S1⊗S2((Σ ′

1, t
′
1), (Σ

′
2, t

′
2)).

Observational consistency of the �rst components of Σ ′
1 and Σ ′

2 can be
argued as in earlier cases (existence of a single must transition of s guar-
antees that none of s transitions labeled in a and sourced in states of Σi

can leave outside the set of consistent states).
3.5◦ Let a ∈ actT1\actT2 . Since (s, (t1, t2)) ∈ R and S is syntactically consistent,

we get that (t1, t2)
a−−→3

T1·T2(t′1, t2) and further that t1
a−−→3

T1t′1. But this im-
plies by rule (13) that (Σ1, t1)

a−−→3
S1(Σ ′

1, t
′
1), where (actT2\actT1)�closure(s′, t2) ⊆

Σ ′
1. Also (actT1 \actT2)�closure(s′, t′1) ⊆ Σ2 since the transition performed

by this pair is within the original closure (actT1\actT2)�closure(s, t1), which
was a subset of Σ2.
As we have chosen that must transition relation of S1 is identical with its
may transition relation, we can conclude that:

((Σ1, t1), (Σ2, t2))
a−−→2

S1⊗S2((Σ ′
1, t

′
1), (Σ2, t2)) . (26)

Finally Σ ′
1 is observationally consistent as s only takes a hidden transition

here (with respect to the set of ignored actions), which �nishes the proof
for this case.

3.6◦ The case where S2 takes an independent step is symmetric. ut
Observe that the above theorem can be used to generate decompositions of

simulations and bisumulations (which are special cases of modal re�nement).

Proof (Thm. 15). Show that

R3 = {((i1, i2), (t1, t2)) ∈ statesI1·I2 × statesT1·T2 | i1 ≤m t1 ∧ i2 ≤m t2} (27)

is a modal re�nement of T1 · T2 by I1 · I2.
1◦ Consider (i1, i2)

a−−→3(i′1, i
′
2). We have to consider four cases: 1.1◦ a ∈ extI1·I2 ,

i1
a−−→3i′1 and i2 = i′2. As i1 ≤m t1 there must exist a t′1 such that t1

a−−→3t′1 and
i′1 ≤m t′1, so ((i′1, i2), (t

′
1, t2)) ∈ R3. By de�nition of the composition operator

(·) we get that (t1, t2)
a−−→3(t′1, t2): the only possibility for it could not hold is

when (t′1, t2) has been pruned in T1 · T2, so there exists a sequence of internally
controllable must transitions leading from (t′1, t2) to an error state (t′′1, t

′′
2) where

t′′k
a!−−→3t′′′k and t′′3−k 6 a?−−→3, where k ∈ 1, 2. But then a corresponding sequence

would exist in I1 · I2, meaning that (i1, i2)
a−−→3(i′1, i2) was not possible to begin

with (also pruned). Finally it is easy to see ((s′1, s
′
2), (t

′
1, t

′
2)) ∈ R3.

1.2◦ a ∈ extI1·I2 , i2
a−−→3i′2 and i1 = i′1 is symmetric.

1.3◦ a ∈ intI1·I2 , i1
a!−−→3i′1 and i2

a?−−→3i′2. Then by i1 ≤m t1 and i2 ≤m
t2 we conclude that there exists t′1, t′2 such that t1

a!−−→3t′1 and t2
a?−−→3t′2 and

i′1 ≤m t′1 and i′2 ≤m t′2. By de�nition of the composition operator (·) we get that
(t1, t2)

a−−→3(t′1, t
′
2): the only possibility for it could not hold is when (t′1, t

′
2) has

been pruned in T1 · T2, so there exists a sequence of internally controllable must
transitions leading from (t′1, t

′
2) to an error state (t′′1, t

′′
2) where t′′k

a!−−→3t′′′k and
t′′3−k 6 a?−−→3, where k ∈ 1, 2. But then a corresponding sequence would exist in
I1 · I2, meaning that (i1, i2)

a−−→3(i′1, i
′
2) was not possible to begin with. Finally it

is easy to see ((s′1, s
′
2), (t

′
1, t

′
2)) ∈ R3.

1.4◦ a ∈ intI1·I2 , i2
a!−−→3i′2 and i1

a?−−→3i′1. The argument follows as in 1.3◦.
2◦ Consider (t1, t2)

a−−→2(t′1, t
′
2). We have four subcases again out of which 2

are interesting.
2.1◦ a ∈ extT1·T2 and t1

a−−→2t′1 and t2 = t′2. Then by i1 ≤m t1 there exist i′1
such that i1

a−−→2i′1 and i′1 ≤m t′1. By similar argument as above (i1, i2)
a−−→2(i′1, i2)

(because if (i′1, i2) was pruned then so was (i1, i2), for which we assumed that it
was not) and (i′1, i

′
2), (t

′
1, t

′
2) ∈ R3.

2.2◦ a ∈ extT1·T2 and t2
a−−→2t′2 and t1 = t′1. Argument as above.

2.3◦ a ∈ intT1·T2 and t1
a!−−→2t′1 and t2

a?−−→2t′2. Then by i1 ≤m t1 and i2 ≤m
t2 there exist i′1 and i′2 such that i1

a−−→2i′1 and i2
a−−→2i′2 and i′1 ≤m t′1 and

i′2 ≤m t′2. By a similar argument involving the de�nition of (·) as above we get
(i1, i2)

a−−→2(i′1, i
′
2) (as if (i′1, i

′
2) then so would (i1, i2) which was assumed not to

be pruned). So ((i′1, i
′
2), (t

′
1, t

′
2)) ∈ R3, which �nishes the proof. ut

