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In this study, we investigated the e�ects of salinity on elemental sulfur-driven

autotrophic denitrification (SAD) e�ciency, and microbial communities. The

results revealed thatwhen the salinitywas≤6 g/L, the nitrate removal e�ciency in

SAD increasedwith the increasing salinity reaching 95.53% at 6 g/L salinity. Above

this salt concentration, the performance of SAD gradually decreased, and the

nitrate removal e�ciency decreased to 33.63% at 25 g/L salinity. Approximately

5 mg/L of the hazardous nitrite was detectable at 15 g/L salinity, but decreased at

25 g/L salinity, accompanied by the generation of ammonium. When the salinity

was ≥15 g/L, the abundance of the salt-tolerant microorganisms, Thiobacillus

and Sulfurimonas, increased, while that of other microbial species decreased.

This study provides support for the practical application of elemental sulfur-

driven autotrophic denitrification in saline nitrate wastewater.

KEYWORDS

sulfur autotrophic denitrification, salinity, nitrite accumulation, ammonium

accumulation, microbial communities

1 Introduction

As anthropological activity increases, an increasing amount of nitrogen-containing

wastewater is discharged into the environment, causing eutrophication, which threatens

ecosystems, physical health, and ultimately human survival (Jiang et al., 2020; Xu

et al., 2022). Nitrate-containing wastewater can cause the quality of water bodies to

deteriorate thereby increasing the risk of methemoglobinemia, non-Hodgkin lymphoma,

and heart disease in humans (Nuhogl et al., 2002). Consequently, treating nitrate-

containing wastewater to meet the emission standards of different industries is essential.

In recent years, biological denitrification technology has been identified as an efficient and

cost effective method for removing nitrate-nitrogen (NO−
3 -N) from water bodies (Li S.

et al., 2020). Biological denitrification technology includes heterotrophic and autotrophic

denitrification in accordance with differences in denitrifying microbial carbon sources

(Ren et al., 2021). Heterotrophic denitrification (HD) technology has the advantage of
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a rapid reaction rate and high denitrification efficiency. However,

additional carbon is required during the HD process, and a lot

of sludge and CO2 are produced, which limits the achievement

of carbon reduction and neutrality goals (Pang and Wang,

2021). Conversely, autotrophic denitrification, particularly sulfur

autotrophic denitrification (SAD), does not require additional

carbon sources. In addition, low amounts of sludge and CO2 are

produced during this process. Therefore, SAD gradually became

a promising nitrate-reducing wastewater treatment method (Tian

and Yu, 2020).

Salinity has various effects on SAD, which are driven

by different reductants. Usually, most nitrate-containing

wastewaters such as contaminated groundwater (Zhang et al.,

2023), aquaculture wastewater (Ching and Redzwan, 2017),

and agricultural production wastewater (Lefebvre and Moletta,

2006) contain high salt concentrations (0–50 g/L). Salinity affects

microbial activity, thus influencing the NO−
3 -N removal efficiency

(Navada et al., 2020; Li et al., 2023). Zhu et al. (2023) found that a

salinity of 80 g/L significantly inhibited the growth of Sulfurimonas

and Thiobacillus, thereby decreasing the effectiveness of using

bacteria for NO−
3 -N removal in the SAD system, with thiosulfate

as the reductant. Li et al. (2023) found that anammox and shortcut

sulfur autotrophic denitrification (SSADN, with sulfide as the

reductant) activity increases with increasing salinity when the

salinity was <2%. When the salinity reached 5%, the nitrogen

removal efficiency of this system decreased significantly, and the

microbial structure and abundance changed noticeably. Shen

et al. (2023) explored the effects of salinity on double short-cut

sulfur autotrophic denitrification (DSSADN, using sulfide as the

reductant). A salinity of 1.5% strongly stimulated NO−
3 -N removal

by microorganisms, but once the salinity reached 3% it had an

inhibiting effect.

In addition, different types of influent have significant

differences in the treatment of pollutants in saline wastewater.

Current reactor inlet water types are divided into the sequential

batch reactor (SBR) and continuous flow reactor (CFR). SBR

has good biomass sedimentation and effective resistance to water

and pollutant impacts (Yan et al., 2022), and has been widely

used to treat NO−
3 -N in saline wastewater (Wang et al., 2020;

Zhang et al., 2022). However, compared to the CFR, the SBR has

the disadvantage of a complex design, unstable effluent, and the

need for regular maintenance (Corsino et al., 2016). For large-

scale treatment plants requiring a large amount of continuous

wastewater, the CFR operation has higher treatment efficiency

and better treatment consistency than the SBR. Zhu et al. (2022)

compared the ability of the SBR and the CFR to treat high-salinity

wastewater, and the results showed that the CFR exhibited better

pollutant removal performance than the SBR. Compared to other

reductants in the SAD process, the elemental sulfur-driven SAD

process has exhibited low toxicity, low cost, stability, and it is

widely used in practical wastewater treatment plants that rely on a

continuous inflow (Li Y. et al., 2020; Zhou et al., 2021). Nonetheless,

little attention has been paid to the influence of salinity on the SAD

process driven by S0 continuous flow bioreactors.

In this study, elemental sulfur was used as the reductant in

a SAD reactor. NaCl was added to study the effect of salinity

on nitrogen transformation. The relationship between salinity and

microbial community structure was also analyzed. The results

provide a reference for the application of SAD in high-nitrate

high-salinity wastewater.

2 Materials and methods

2.1 Test equipment and operating process

The experimental setup consisted of a cylindrical Plexiglas

denitrification bioreactor (outer diameter: 8.6 cm; inner diameter:

7.6 cm; total height: 100 cm; and volume: 4 L) (Figure 1). The

reactor was filled with elemental sulfur and limestone particles in

a 1:1 volume ratio, and the fillers were 2–3mm in size. Elemental

sulfur served as the reductant (electron donor) in the denitrification

process, while limestone regulated the reactor’s pH balance. The

reactor was continuously fed with water, and wastewater was

pumped into the device through a peristaltic pump from the

bottom of the reactor. After the reaction was complete, the effluent

flowed out near the top of the reactor. The up-flow water intake

created anaerobic conditions for microorganismal growth, which

helped gases to the escape of gases and ensured interaction

between the microorganisms and wastewater. The reactor was

wrapped in tinfoil to avoid photosynthetic bacterial propagation.

The inoculated sludge (MLSS) was obtained from the anaerobic

section-activated sludge of a sewage treatment plant in Nanning,

Guangxi, China, with a ∼3,000mg MLSS/L concentration. The

sludge inoculation ratio was 20%.

2.2 Artificial configuration of synthetic
wastewater

The wastewater contained synthetic NO3-N derived from

stepwise addition of 30 ± 2 mg/L of NaNO3 to the influent.

Additionally, 210 ± 2 mg/L of HCO−
3 was added to the influent

to provide an inorganic source of carbon. When the SAD reactor

operated stably, the volumetric load of nitrogen was controlled so

that it remained unchanged, and the salinity of the wastewater was

gradually increased from 0 to 25% (Tan et al., 2019; Zhang et al.,

2021). The SAD reaction was maintained continuously throughout

the experimental process. The hydraulic retention time (HRT)

of the reactor was 4 h. Micronutrients were added to maintain

microbial growth (1 mL/L), and the nutrient fluid (1 L) contained:

0.12 g ZnSO4-7H2O, 0.12 g MnCl2-4H2O, 0.15 g H3BO3, 0.03 g

CuSO4-5H2O, 0.15 g CoCl2-6H2O, 0.06 g Na2MoO4-2H2O, and

10 g EDTA (Chauhan et al., 2022). The pH was adjusted to 7.2–7.3

using sodium hydroxide and hydrochloric acid. All dosages were

configured to the required concentration. To prevent temperature

changes from affecting the system’s denitrification, the reactor

operated stably at room temperature (25± 1◦C).

2.3 Water quality determination

The reactor effluent was collected every 24 h, and water samples

were stored at −20◦C. After centrifugation, the supernatant of
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FIGURE 1

Schematic diagram of the S0-driven SAD reactor.

the water samples were taken for water quality analysis based

on the guidelines provided by Eaton (2002) to determine the

following water quality indicators. TN concentrations were

determined using the alkaline potassium persulfate digestion–UV

spectro-photometric method; NO−
3 -N using the hydrochloric

acid photometry method; nitrite nitrogen (NO−
2 -N) using the

N-(1naphthalene)-dia-minoethane spectrophotometry method;

ammonium nitrogen (NH+
4 -N) using the indophenol blue method;

and sulfate (SO2−
4 ) using the barium chromate photometric

method; the inlet and outlet water pH was measured with a

benchtop pH meter (S220 Micro, Mettler Toledo, Columbus,

OH, USA); and salinity was measured using a salinometer

(SSM-500, China).

The NO−
3 -N and TN removal efficiencies were calculated using

the Equation 1:

RV = (S1 − S2)/S1×100% (1)

where RV is the removal efficiency (%), and S1 and S2
are the initial and final concentrations, respectively. Microsoft

Excel 2020 and Origin 2021 were used for statistical and

graphical analyses.

2.4 EPS extraction and analysis

Biofilm-attached packing samples were collected from the

reactors on days 15, 30, 45, 60, and 75 to determine the extracellular

polymer (EPS). Biofilms were collected using a previously described

sampling method (Hao et al., 2022). EPS was extracted from

the biofilm using a heating method (Li and Yang, 2007). The

amount was calculated as follows: EPS = protein (PN) content

+ polysaccharide (PS) content. The PS and PN contents were

determined using the phenol–sulfuric acid and Lowry methods,

respectively (Shi et al., 2020).

2.5 Scanning electron microscope
observations

Biofilm-attached packing samples were collected from the

reactors on days 15, 30, 45, 60, and 75 and then fixed by adding

a 2.5% glutaraldehyde solution (Petcharat and Benjakul, 2018). The

processed samples were rinsed three times with phosphate buffer

(pH 7.0), followed by stepwise dehydration in ethanol (30–50–70–

80–90–95%) for 15min each. Finally, they were rinsed twice for

20min with 100% ethanol. After vacuum freeze-drying, gold was

sprayed on the samples and they were viewed using a biological

scanning electron microscope (SEM; Hitachi SU8010, Hitachi Ltd.,

Tokyo, Japan) (Huang et al., 2022).

2.6 Microbial community analysis

Biofilm samples were collected on days 15, 30, 45, 60,

and 75, respectively, and stored at −80◦C for 16S rRNA

determination. Genomic DNA was extracted from the biological

samples using a DNA extraction kit (E.Z.N.A.
R©

Soil DNA

Kit, Omega Bio-tek, Norcross, GA, USA). Meiji Biomedical

Technology Co. (Shanghai, China) performed the polymerase

chain reaction amplification of the16S rRNA gene, Illumina MiSeq

sequencing, and data analytics. The amplification primers were

bacterial 338F (5′-ACTCCTACGGGAGGCAGCAG-3′) and 806R

(5′-GGACTACHVGGGTWTCTAAT-3′) for the V3–V4 regions

(Xu et al., 2016). The specific analyses were conducted online on

the website Majorbio I-Sanger platform (www.i-Sanger.com).
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3 Results and discussion

3.1 Startup of the SAD system

At the beginning of the reactor start-up, the effluent

concentrations of NO−
3 -N decreased gradually. After 20 days of

reactor operation, the NO−
3 -N removal efficiency increased to 90%,

and noNO−
2 -Nwas detected (Figure 2). These results indicated that

the reactor had successfully started (Shen et al., 2023; Zhu et al.,

2023). Previous research has demonstrated that SO2−
4 production

confirms the presence and degree of SAD (Chen et al., 2018;

Li et al., 2022). According to Equation (2), for every 1 mg/L of

NO−
3 -N consumed, 7.83 mg/L of SO2−

4 is produced (Capua et al.,

2019). Using the calculations, the theoretical SO2−
4 yield should

be 214 mg/L when 27.3 mg/L of NO−
3 -N is removed in the SAD

system. The observed effluent concentration of SO2−
4 was 219 mg/L

(Figure 3A). This result demonstrated that NO−
3 -N removal in the

system was mainly via sulfur autotrophic denitrification. Owing to

the addition of limestone to neutralize the H+ produced in the SAD

process (Guo et al., 2022), the pH value of the effluent decreased

slightly but stabilized at approximately pH 6.7 (Figure 3B). The

reactions were as follows.

S0 + 0.88NO−
3 + 0.34H2O+ 0.38HCO−

3 + 0.02CO2 + 0.08NH+
4

→ 0.08C5H7O2N+ 0.82H+ + 0.44N2 + SO2−
4 (2)

After the reactor was stabilized, the NO−
3 -N removal efficiency

remained >90%, corresponding to a TN removal efficiency of

90.5%. This left almost undetectable NO−
2 -N and NH+

4 -N in the

effluent (Figure 4). This illustrated that the microorganisms in the

SAD system could efficiently remove NO−
3 -N through to almost

complete denitrification (Wang S. et al., 2021; Guo et al., 2022).

3.2 E�ect of salinity on nitrogen and sulfur
transformations in SAD system

As the salinity increased from 0 to 6 g/L, the NO−
3 -N conversion

capability increased continuously (Figure 4). The NO−
3 -N and TN

removal efficiencies increased to 95.5 and 95.3%, respectively.

Moreover, the effluent NO−
2 -N and NH+

4 -N concentrations also

remained undetectable. This phenomenon indicated that the low

salinity (2 and 6 g/L) stimulation could enhance NO−
3 -N removal.

Ding et al. (2023) also reported that 7 g/L salinity could increase the

NO−
3 -N removal efficiency (from 54.1 ± 12.5% to 74.4 ± 11.53%)

in wetlands. This might be because appropriate amounts of salt can

promote the enzymatic reactions of the microorganism, maintain

their membrane balance, and regulate their cellular osmotic

pressure (Bassin et al., 2017). The effluent pH was maintained at

∼6.6–6.8, and the effluent SO2−
4 concentration increased gradually

as the NO−
3 -N removal efficiency increased (Figure 3).

When the salinity increased to 15 g/L, the concentration of

NO−
3 -N in the effluent of the system began to increase gradually

and stabilized at 5.5 mg/L (Figure 4). The NO−
3 -N removal

efficiency initially declined to 66.8% and then increased to 81.7%

after the reactor had been running for 15 days. The effluent SO2−
4

concentration dropped to 150 mg/L, then increased to ∼175 mg/L

(Figure 3A). The effluent pH maintained at ∼6.6–6.8 (Figure 3B).

Therefore, a salinity of 15 g/L would not have an inhibitory

effect on functional microorganisms in the SAD system. The

reactor would recover once these microorganisms adapted to the

high-salt environment (Zhu et al., 2023). The effluent NO−
2 -N

concentration increased to 10mg/L then decreased and remained at

4 mg/L during this process (Figure 4). Similarly, Shen et al. (2023)

found that gradually increasing salinity to 1.5% promoted NO−
2 -

N accumulation in the SAD system, probably because the nitrite

reductase was sensitive to the increase in salinity. When the salinity

continued to increase to 25 g/L, the concentration of NO−
3 -N in

the effluent continually increased to∼20 mg/L. The corresponding

NO−
3 -N and TN removal efficiencies decreased to 33.6 and 28.3%,

respectively (Figure 4). The effluent SO2−
4 concentration dropped

to 53 mg/L (Figure 3A). This indicated that a salinity of 25

g/L would significantly inhibit the function of microorganisms

in the SAD system. The NO−
2 -N concentration in the effluent

dropped to 0.1 mg/L, and the NH+
4 -N concentration increased to

1 mg/L (Figure 4). This might be because the high salinity stress

stimulates dissimilatory nitrate reduction to ammonium (DNRA)

(Giblin et al., 2010). The effluent pH therefore increased to 6.8–7.0

(Figure 3B).

3.3 Microbial community changes under
di�erent salinities

To further explore the influence of salinity on the performance

of the SAD system, SEM and microbial community analysis were

performed on the filler samples collected at the reactor startup (0

g/L salinity), 2, 6, 15, and 25 g/L salinity levels, respectively.

Figures 5a–e shows the structures and microbial morphologies

of the filler samples at the different salinities. At 0 g/L salinity, short

bacilli and cocci dominated the bacterial morphology (Figure 5a),

and their size and morphology were consistent with those of

thiobacillus azotizans, reported in an earlier study (Guo et al., 2022).

When the salinity increased to 2 and 6 g/L, the numbers of short

bacilli and spherical bacteria on the filler increased significantly

and were attached to the entire surface of the filler (Figures 5b, c).

This result indicated that low salinity could stimulate the growth of

microorganisms in the system, and promote the removal efficiency

of NO−
3 -N (Figure 4). However, at salinities of 15 and 25 g/L,

the number of microorganisms attached to the filler decreased

significantly and were dominated by short bacilli (Figures 5d, e).

Similarly, the Chao index increased in low-salinity wastewater (2

and 6 g/L), but significantly decreased in high-salinity wastewater

(15 and 25 g/L) compared with non-saline water (Table 1).

This indicates that appropriate salinity increases the bacterial

community richness in sewage. In contrast, high salinity can

kill salt-intolerant microorganisms, thereby reducing community

richness (Zhu et al., 2023). The Shannon index decreased and the

Simpson index increased as the salinity increased (Table 1). This

indicated that some microorganisms in the SAD system could not

adapt to the high-salinity environment; however, some salt-tolerant

microorganisms continued to increase (He et al., 2020).

The dominant phyla in the salt-free SAD system were

Proteobacteria (58.2%), Campilobacterota (20.0%), Bacteroidota
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FIGURE 2

Startup of S0-driven autotrophic denitrification reactor.

(10.1%), and Verrucomicrobiota (6.5%) (Figure 6). The relative

abundances of Bacteroidota and Verrucomicrobiota decreased

significantly with the increase in salinity. However, the abundances

of Proteobacteria increased in 0–15 g/L salinity, and then decreased

at 25 g/L salinity, indicating initial significant stimulation and

subsequent inhibition owing to salt stress (Ding et al., 2023; Shen

et al., 2023). In contrast, the abundances of Campilobacterota

decreased gradually with the increasing salinity but increased at

25 g/L salinity, indicating that some of the microorganisms in this

phyla are salt-tolerant, and they adapt to salinity stress over time

(Ohore et al., 2022).

At the genus level, the SOB-related genera Thiobacillus

(21.1%), Sulfurimonas (16.4%), and Thiomonas (10.5%), which

are commonly present in the SAD system (Blázquez et al.,

2019; Polizzi et al., 2022; Yuan et al., 2022; Shen et al., 2023),

were detected (Figure 7). Thiobacillus was dominant because the

SAD system was driven by sulfur (S0) (Polizzi et al., 2022),

and its abundance increased significantly from 21.1 to 71.1%

when the salinity increased from 0 to 15 g/L. However, high

salinity (25 g/L) inhibited the growth of Thiobacillus with a

slight reduction in its abundance. Sulfurimonas could barely

grow efficiently with sufficient S2− (Polizzi et al., 2022), and was

therefore less abundant than the genus Thiobacillus in the S0-

driven SAD system. Moreover, the abundance of Sulfurimonas

decreased gradually with increasing salinity but increased at 25

g/L salinity, which was similar to the variation trend of the

abundance of Proteobacteria (Figure 6). Sulfurimonas belongs

to Proteobacteria, and is widely distributed in global deep-sea

hydrothermal environments (Wang S. S. et al., 2021). Therefore,

the genus Sulfurimonas in the phylum Proteobacteria might be

a salt-tolerance microorganism in the SAD system. Thiomonas

was highly abundant in 0 and 15 g/L salinity (10.5 and 10.2%,

respectively) but decreased to 0.81% in 25 g/L salinity (Figure 7),

indicating that it was intolerant to high-salinity environments.

In addition, the abundance of other autotrophic denitrifying

bacteria, such as Ferritropicum and Cloacibacterium, had the

ability to remove NO−
3 -N from the system (Li Y. et al., 2020;

Chauhan et al., 2022) also changed with the increase of salinity.

The abundance of Ferritropicum increased from 0.31 to 4.47%

when the salinity increased from 0–6 g/L, but decreased when the

salinity was ≥15 g/L. Song et al. (2020) also found that low salinity

(20‰) can promote the growth of Ferritropicum. Furthermore,

the abundance of Cloacibacterium remained unchanged when

the salinity increased from 0 to 6 g/L but decreased significantly

when the salinity reached 15 and 25 g/L. Moreover, a few

heterotrophic bacteria unclassified_f_Rhodocyclaceae (4.53%),

unclassified_f_Xanthomonadaceae (5.01%), Cloacibacterium

(3.56%), and Simplicispira (0.31%) were detected in the SAD

system (Figure 7), and have been identified as denitrifying

bacteria in prior studies (Fitzgerald et al., 2015; Si et al., 2021;

Liang et al., 2022; Zhang et al., 2023). The abundance of these

three genera in the SAD system when the salinity was ≤6 g/L

was higher than that when the salinity was ≥15 g/L. These

results indicated that the heterotrophic bacteria in the SAD

system were salt-intolerant. Unclassified_f_Rhodocyclaceae and

unclassified_f_Xanthomonadaceae are dominant bacterial species
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FIGURE 3

Variation of sulfate concentration (A), pH and salinity (B) in S0-driven SAD system at di�erent salinity.

that use NO−
2 -N as an electron acceptor and can be used to reduce

NO−
2 -N, with a higher affinity for NO−

2 -N (Hou et al., 2022).

When the salinity exceeds 15 g/L, the significant decrease in their

abundance may be the reason for the inability to reduce NO−
2 -N,

which resulted in a large NO−
2 -N accumulation (Figure 4). Low

salt conditions stimulated the growth of some autotrophic and

heterotrophic bacteria, resulting in the coexistence of these

bacteria in the system. The co-participation of autotrophic and

heterotrophic bacteria at low salinity (≤6 g/L) promotes the

NO−
3 -N removal efficiency.

When the salinity was ≥15 g/L, Thiobacillus and Sulfurimonas

that closely related to the DNRA process (Robertson et al., 2016;

Lai et al., 2020) occupied a dominant position in SAD (Figure 4).

Usually, a correlation between the ammonium flux and salinity
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FIGURE 4

E�ect of salinity on nitrogen transformation in S0-driven SAD system.

FIGURE 5

Scanning electron microscope (SEM) images of the filter samples. Salinity of (a) 0 g/L, (b) 2 g/L (c) 6 g/L (d) 15 g/L, and (e) 25 g/L.

strengthens with increasing salinity, but high salinity leads to an

inhibition of the denitrification process and enhancement of the

DNRA process (Giblin et al., 2010). In this study, high salinity (25

g/L) inhibited denitrification in the SAD system, but Thiobacillus

and Sulfurimonas could reduce NO−
3 -N to NH+

4 -N via the DNRA

pathway, resulting in the accumulation of NH+
4 -N (Figure 4).
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TABLE 1 Bacterial community diversity and richness of filter samples.

Sample Ace Chao Coverage Shannon Simpson

I 468.518 462.264 0.998 4.287 0.093

II 456.281 475.031 0.998 3.951 0.124

III 450.447 468.501 0.998 3.529 0.283

IV 360.575 351.088 0.998 2.634 0.472

V 264.529 251.667 0.998 2.235 0.823

FIGURE 6

Microbial community changes at phylum level in S0-driven SAD system at di�erent salinity.

3.4 E�ects of salinity on the EPS content
and composition

EPS is a self-protective layer of microorganisms, helping

to maintain bacterial growth and reactor stability when

environmental pressure changes (Han et al., 2020). In this

study, we found that Thiobacillus and Sulfurimonas were the main

salt-tolerant microorganisms in the SAD system. Therefore, the

EPS was further analyzed to explore why these two genera could

tolerate high salinity.

The results showed that the EPS content gradually

increased with increasing salinity (Figure 8), consistent with

the phenomenon observed by Song et al. (2016). PN is usually

considered a hydrophobic substance crucial for resisting external

osmotic pressures and improving sludge performance (Han et al.,

2018). Previous studies found that microorganisms in the system

secrete more PN under salinity stress (Lin et al., 2022; Sun et al.,

2022). This is because the amino and carboxyl groups in PN

increase the hydrophobicity of the cell surface, which helps to

maintain the structure and stability of the biofilm (Wang et al.,

2013; He et al., 2019). In this study, the PN content increased from

35.5 to 79.3 mg/g SS, and the PS content from 18.6 to 30.8 mg/g SS

with the contentious increase in salinity (Figure 8). Furthermore,

the PN/PS ratio consistency increased from 1.91 in non-saline

to 2.57 at 25.0 g/L salinity conditions, suggesting that the PN

content exceeded the PS content. Therefore, possibly the dominant

strains in the SAD system resisted the high salinity stress by

releasing PN.

4 Conclusions

Salinities of 2 and 6 g/L promoted the NO−
3 -N removal

efficiency of the elemental sulfur-driven SAD system, which

increased from 91.1 to 94.8% and 95.5%, respectively. However,

when the salinity increased to 15 and 25 g/L, the NO−
3 -

N removal efficiency decreased significantly to 81.7 and

33.7%, respectively. This was accompanied by accumulation

of nitrite and ammonium. Thiobacillus and Sulfurimonas

play important roles when the system is in a high salt

environment and they release EPS, particularly PN, to resist

the salinity.
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FIGURE 7

Microbial community changes at genus level in S0-driven SAD system at di�erent salinity.

FIGURE 8

Variation of extracellular polymeric substances content in S0-driven SAD system at di�erent salinity.
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