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A simple greedy approximation algorithm for the unit disk cover problem
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ABSTRACT: Given a set P of n points in the plane, the unit disk cover problem,
which is known as an NP-hard problem, seeks to find the minimum number of unit
disks that can cover all points of P. We present a new 4-approximation algorithm
with running time O(n log n) for this problem. Our proposed algorithm uses a simple
approach and is easy to understand and implement.
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1. Introduction

The unit disk cover (UDC) problem seeks to find a set of unit disks with a minimal cardinality, so that it covers a
set of points given by P in the plane. The UDC problem is known as an NP-hard problem [1]. This problem occurs
in applications such as facility location, motion planning, and image processing [1, 2]. One of the first methods
to solve the UDC problem was to use the shifting strategy, which for a large arbitrary parameter ` > 1, was able
to approximate this problem. For points in Rd and any integer ` > 1, it is possible to compute the UDC with

the factor (1 + 1
` )d and time O((d`)O(d)n(O(d`)d)) [2] or with factor 2(1 + 1

` )d−1 and time O((d`)O(d)nO(dd)) [3] in
the Euclidean space. Gonzalez [3] presented an 8-approximation algorithm which runs in O(n logS) time, where
S 6 n is the number of disks in the optimal solution. An approximation algorithm with running time O(n3 log n)
is also presented in [4], but no attempt has been made to obtain the exact amount of its approximation factor. By
imposing disks center on a grid, a 3(1 + 1

` )2-approximation algorithm for each ` > 1 with O(Kn) time is presented
in [5], in which K is a function of ` and the size of the approximation grid. A 2.8334-approximation algorithm
with running time O(n(log n log log n)2) is also presented in [6], which is partly difficult to implement. Beside this,
it has a high constant factor at running time [8]. By dividing inputs into vertical strips, Liu and Lu [7] provided
a 25

6 -approximation algorithm with running time O(n log n) for this problem. Finally, Biniaz et al. [8] proposed

an approximation algorithm with approximation factor 4 and running time O(n log2 n) for the UDC problem, and
they also showed that by using the plane sweep technique; its running time can be improved to O(n log n) time.
A list of all available approximation algorithms for the UDC problem, as well as their approximation factor and
running time, are shown in Table 1.

2. Main results

In this paper, we present a new 4-approximation algorithm for the UDC problem. It should be noted that
our proposed algorithm is completely different in computational techniques from [6], and [8]. Moreover, it uses a
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Table 1: A summary on existing approximation algorithms for the UDC problem in the plane.

Reference Approximation factor Running Time Year

[2] (1 + 1
`
)2 O(`4(2n)4`

2+1) 1985

[3] 2(1 + 1
`
) O(`2n6`

√
2+1) 1991

[3] 8 O(n log S) 1991

[4] O(1) O(n3 logn) 1995

[5] 3(1 + 1
`
)2 O(Kn) 2001

[6] 2.8334 O(n(logn log logn)2) 2007

[7] 25
6

O(n logn) 2014

[8] 4 O(n logn) 2017
Ours 4 O(n logn) 2018

simpler approach for solving this problem. The remainder of our paper is organized as follows: in subsection 2.1,
we first describe a simple 4-approximation algorithm with running time O(n2) for the UDC problem. Our analyses
on the approximation factor and the running time of the proposed algorithm is presented in subsection 2.2. We
then improve the running time of our algorithm to O(n log n) in subsection 2.3. Finally, our paper is concluded in
section 3.

2.1. The proposed algorithm

In this subsection, we propose a new approximation algorithm for solving the UDC problem. The main idea
of the algorithm is to round the demand points of P to a grid, and then to use an iterative greedy approach for
finding the maximum covering disk in each iteration of the algorithm. First, the algorithm rounds points of P
to the central-points of a grid with side length

√
2. Let D = {d1, d2, . . . , dm} be the set of rounding points after

rounding to the grid that we call it Potential Circles Set (PCS). Then, for each point of the PCS, that is generated
by rounding to a grid, we shift it to four directions Up-Left (UL), Up-Right (UR), Down-Left (DL), and Down-Right
(DR) by unit size. We do this process for each point di. For example, UL(di) = (di−

√
2/2, di +

√
2/2) shifts point

di to Up-Left direction by unit size. By rounding to a grid with side length
√

2, we can find a PCS of unit disks that
covers all demand points. We increase the PCS domain for having more option to select by shifting rounded points
in initial set D to four directions. For each point di of the new PCS, we count the number of demand points inside
the unit circle Cdi with center point di. Then, in an iterative process, we find a point of the PCS with maximum
coverage and remove demand points inside it. Finally, we repeat this process for points in the remaining demand
points until all points are covered. We can now give this simple approach in the following algorithm:

Algorithm 1: APPROXIMATE UNIT DISK COVER
Input : a point set P of n demand points in the plane.

Output: a solution for the UDC problem.

1: Round points of P to central-points of a grid with side length
√

2;

2: Let D = {d1, d2, . . . , dm} be the set of rounding points;

3: for i := 1 to m do

4: D ← D ∪ {UL(di), UR(di), DL(di), DR(di)};
5: end for

6: while (P 6= φ)

7: Compute list ϕ = {ϕ1, ϕ2, . . . , ϕ|D|}, where ϕi is the number of

8: demand points inside the unit circle Cdi with center point di;

9: j ← index of a point dj ∈ D, where ϕj is the maximum of the list ϕ;

10: Ĉ ← Ĉ ∪ {dj};
11: D ← D − {dj};
12: P ← P− all points inside Cdj ;

13: end while

14: Output Ĉ;

2.2. Analysis

In this subsection, we present some analyses on the approximation factor and running time of the proposed

algorithm.

Theorem 1. The proposed algorithm provides an approximation solution which is within a factor of 4 of the

optimal for the UDC problem.
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Figure 1: (a) Rounding points to the central-points (◦) of a grid with side length
√

2. (b) Shifting central-points to four directions by
unit size. (c) The PCS set which is used by Algorithm 1.
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Figure 2: (a) Algorithm 1 has to use five disks for covering all points. (b) An optimal solution with two disks which can cover all points.

Proof. Let Ĉ be the produced solution by Algorithm 1, and Copt be the optimal solution for a point set. To simplify,

assume that the set of points is inside a square Q with the side length 2
√

2, as shown in Figure 1 (a). After rounding

these points to the central-points on a grid with side length
√

2, four points d1, d2, d3 and d4 will be obtained which

are shown with small circle points (◦) in Figure 1 (a). Then, D = {d1, d2, d3, d4} is the first Potential Circle Set

(PCS) for the point set P. Subsequently, by shifting these points into four directions with unit size, the number of

points of the set PCS expands to 13 points (see Figure 1 (b)). Note that the proposed algorithm is a deterministic

algorithm and it iteratively chooses a disk with maximum coverage in the remaining point set, until all points

are covered. Therefore, in the following examples, it should be noted that the algorithm selects disks in order of

maximum coverage, respectively. Moreover, a disk is used by Algorithm 1, if points inside it can not be covered by

any disk with more coverage of the PCS set.

It is obvious that every set of points inside the square Q can be covered by one to five disks of the PCS set

in Figure 1 (c). Now, in order to show how is the relationship between the set of disks which is selected by the

algorithm, and the set of disks in an optimal solution for points inside a square Q, we first consider the following

two observations.

Observation 1. For a set of points inside the square Q, it is not possible to cover a set of points that the

proposed algorithm covers with five adjacent disks in the optimal solution with one disk.
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(a)

(b)

Figure 3: (a) Algorithm 1 has to use four disks to cover all points. (b) An optimal solution that can cover all points with one disk.

For this purpose, consider the set of points presented in Figure 2. In fact, this example shows a case where five

disks can be adjacent as well as an extreme case that the proposed algorithm has to use five disks to cover them.

But it can be clearly seen that the optimal solution for this point set needs at least two disks to cover this point

set in the square Q, because the distance between two points p and q, and the distance between two points r and s

are more than 2. And so, they cannot be covered with a unit disk with the radius of one. It should be noted that

if two points p and r, or two points q and s go near to each other, then, the number of disks required by Algorithm

1 to cover them is reduced to four or three disks, respectively.

Observation 2. There are some point sets so that, while the proposed algorithm needs four adjacent disks to

cover the points, an optimal solution can cover these points with one disk.

The given examples in Figure 3, represent this observation. Therefore, two observations 1 and 2 show that in

the worst case for a set of points in Q (a square with side length 2
√

2), that is covered by Algorithm 1 with four

adjacent disks, it is possible to cover occasionally this point set with one disk. So, let |Ĉ| be the number of disks in

a solution Ĉ produced by Algorithm 1, and |Copt| be the number of disks in an optimal solution Copt, then, for a set

of points in a square Q, we have: |Ĉ| 6 4 · |Copt|.
Now check if this ratio is also held in the general case. To this end, we examine below different situations. First,

assume that there are two adjacent squares Q and Q′, so that in each of them there are sets of points. In Figure 4,

we illustrate two examples where the proposed algorithm covers points in both squares with six or five disks (see

Figure 4 (a)). In this case, an optimal solution can cover these point sets by two disks (see Figure 4 (b)). Note that

in both examples of Figure 4, we consider the most extreme cases that the algorithm has to use six or five disks for

covering all points.

However, the example of Figure 5 shows two adjacent squares Q and Q′ such that after running the proposed

algorithm, square Q requires three disks and square Q′ requires one disk to cover their interior points. In addition,

an optimal solution can cover all points inside these two squares with one disk. Therefore, this example shows that

the ratio |Ĉ| 6 4 · |Copt| can also occur for two adjacent squares.
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Figure 4: (a) Algorithm 1 has to use six or five disks to cover all points inside two square Q and Q′. (b) An optimal solution which
covers all points with two disks.

(a) (b)

Q QQ0 Q0

Figure 5: (a) Algorithm 1 has to use four disks to cover all points inside two square Q and Q′. (b) An optimal solution which covers
all points with a disk.
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(a) (b)

Figure 6: (a) Algorithm 1 has to use nine or seven disks to cover all points. (b) Optimal solutions with three and two disks which can
cover all points.

Now, let us check the points inside four adjacent squares. Let us consider two worst case examples as shown

in Figure 6 (a), when a set of points is gathered in the corner of the four squares. Then, the proposed algorithm

needs nine or seven disks to cover these point sets, while the optimal solutions use two or three disks, respectively

(see Figure 6 (b)), and so, there is a worst case ratio of |Ĉ| 6 7
2 · |Copt| for four adjacent disks. Overall, these above

extreme examples show that for each set of points, the ratio |Ĉ| 6 4 · |Copt| is established, between the solution

obtained by the proposed algorithm and the optimal solution. Therefore, this completes the proof.

Theorem 2. The running time of the proposed algorithm is O(n2).

Proof. Rounding the set of n points to a grid takes O(n) time. After rounding to the grid, we have m = |D| unit

disk, which cover the point set, and by shifting the points of D into four directions, its size increases to a constant

d = |D| 6 5m. What remains to check is the runtime of the while loop. There is a set P of n points, and a set

PCS of size d = |D|. We know that in each iteration of the while loop a disk which covers the maximum number

of points is found and points inside it left out from the set P. Let |Pi| be the number of points of P that remains

at the beginning of the ith iteration. On the other hand, finding a disk with maximum coverage in the ith iteration

takes (d− (i− 1))|Pi| time. If the while loop takes t iterations, we have:

T (n) = T (|P2|) + d|P1|,
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= T (|P3|) + (d− 1)|P2|+ d|P1|,

...

= (d− t)|Pt|+ · · ·+ (d− 1)|P2|+ d|P1|,

6 d|Pt|+ · · ·+ d|P2|+ d|P1|,

We know that in the worst case d = O(n), and |Pi| < |Pi−1|, and |Pi| < n, for i > 1. Moreover, we know that

|P1| = n, and |P1|+
∑t
i=2 |Pi| 6 cn, where c is a small constant. So, we have:

T (n) 6 d(|Pt|+ · · ·+ |P2|+ |P1|),

6 n(|Pt|+ · · ·+ |P1|) 6 cn2 ∈ O(n2). (2.1)

and the theorem is resulted.

2.3. Improving the running time

In this subsection, we improve the running time of our proposed algorithm in the previous subsection by using

some more complex data structures. One of the factors increasing the running time of Algorithm 1 is the phase

of calculating the number of points in the disks of the PCS set, which takes O(n) time for each disk because we

have to check all of the n points. Therefore, the main challenge is to reduce the running time of this part of the

algorithm. Our solution to this is to restrict the search to a square with center point di and side length 2 around

each point di ∈ D (see Figure 7). Clearly, in this case, the running time of calculating the number of points in the

unit disk is limited to the number of points in the square, which is less time-consuming than the search in all points.

What helps us with solving this problem is using range trees. Thus, we use an improved version of the range trees

which uses the fractional cascading. This version of the range tree is known as a layered range tree. The layered

range tree is a data structure that has the following properties.

Theorem 3. ( [9]) Suppose, P be a set of n points in the dimension d, for d > 2. A layered range tree for P uses

O(n logd−1 n) storage and can be constructed in O(n logd−1 n) time. With this range tree, one can report points of

P inside a rectangular query range in O(logd−1 n+ k) time, where k is the number of reported points.

Now, suppose that for the PCS set D, corresponding to each disk di ∈ D, we put a square Qi with side length

2, where its center is in point di. If we assume that the number of points inside square, Qi is represented by ki. In

this case, using Theorem 3, in O(n log n) time a layered range tree can be created on the point set P, and for each

rectangular domain Qi, the number of points inside it can be reported in O(log n+ki) time, where ki is the number

of reported points. Then, the running time of computing the number of points inside a unit disk with center point

di, is limited to the number of points inside the square Qi, and it can be computed in O(log n + ki) time. But,

after computing the number of points in each disk in the list D by using the layered range tree, we need to find a

disk dm with maximum points, as well as left out points inside it from the point set P. Suppose, corresponding to

the list D = {d1, d2, · · · , dm′} of the PCS set, we compute a list ϕ = {ϕ1, ϕ2, . . . , ϕ|D|} for the number of points

in each disk by using the layered range tree, such that ϕi is the number of points inside the disk di in the present.

In order to easily find the disk with the maximum number of points in the list ϕ in each step of the algorithm, we

use the max-heap tree data structure and store elements of the set ϕ in it. On the other hand, we know that a

max-heap tree for n elements can be created in O(n) time, and actions such as insertion and deletion can be done

in time O(log n) on it. In this case, it is easy to have the maximum value of the set ϕ at the root of the max-heap

tree in each step of the algorithm in constant time. However, by removing the points inside the disk dm with the

maximum number of points from the point set P, we may have to update the number of points inside the adjacent

disks to the disk dm with the distance less than 2, which can be done by using the max-heap tree in O(log n) time.

Therefore, the following result can be found.
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di
2

Qi

Figure 7: Using the layered range tree structure, leads to searching the points inside the disk di to points within the rectangular range
Qi, instead of searching the entire points in the plane.

Theorem 4. For a set P of n points on the plane, the proposed algorithm can provide a 4-approximation for the

UDC problem in O(n log n) time.

Proof. As mentioned above, rounding the points to the central-points of a grid takes O(n) time. We construct a

layered range tree on P at time O(n log n). Let D = {d1, d2, · · · , dm′} be the PCS set which is the set of rounding

points after shifting to four directions with unit size. Then, for each square Qi, by side length 2 and center point di,

the number of points inside it can be found by using the layered range tree structure in O(log n+ ki) time, where

ki represents the number of reported points. So, the number of points inside the unit disk with center di, can be

computed in O(log n + ki) time. Consider list ϕ = {ϕ1, ϕ2, . . . , ϕ|D|}, where ϕi is the number of points inside the

disk di ∈ D. Creating a max-heap tree on set ϕ takes O(n) time. A disk with the maximum number of points can

also be found in O(1) time by using the max-heap tree. Then, in the ith iteration of the algorithm, for the disk dm

with the maximum number of points, we left out the points inside it from P. Moreover, using the max-heap tree,

we can update the number of points in the adjacent disks of disk dm, which may have common points with disk

dm. This operation in the max-heap tree can be done in O(log |Di|) time, when |Di| is the size of the PCS, D, in

the ith iteration of the algorithm. Overall, the running time of the algorithm involves the computation of a layered

range tree, the creating of a max-heap tree, and the running time associated with the first iteration of the while

loop:

T1(n) = O(n log n) +O(n) + [

|D|∑
i=1

(O(log n+ ki) +O(1))], (2.2)

in addition to the running time of the other iterations of the while loop includes finding maximum covering disk

using max-heap tree and updating the elements of the max-heap tree, which is:

T2(n) =

t∑
i=2

(O(1) +O(log |Di|)). (2.3)
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Since, the size of D in the worst case is |D| = O(n), and
∑|D|
i=1O(ki) = O(n). So, for relation (2), we have:

T1(n) 6 O(n log n). Similarly, since |Di| < O(n), for i > 1. So, for relation (3), we have: T2(n) 6 O(|D| log |D|) 6
O(n log n). Therefore, the overall running time of the algorithm is: T (n) = T1(n) + T2(n) 6 O(n log n), and this

completes the proof.

3. Conclusion

We considered the UDC problem in the plane, which is known as an NP-hard problem. We proposed a simple

4-approximation algorithm with running time O(n log n) for this problem. This is not too hard to show that this

approach can be extended to a constant factor approximation algorithm for covering a set of points by balls in the

three dimensions, by using the layered range tree with running time O(n log2 n).
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