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ABSTRACT:
Mapping reads onto genomes is an indispensable step in sequencing data analysis.

A widely used method to speed up mapping is to index a genome by a hash table,
in which genomic positions of k-mers are stored in the table. The hash table size
increases exponentially with the k-mer length and thus the traditional hash function
is not appropriate for a k-mer as long as a read. We present a hashing mechanism
by two functions named score1 and score2 which can hash sequences with the length
of reads. The size of hash table is directly proportional to the genome size, which is
absolutely lower than that of hash table built by the conventional hash function. We
evaluate our hashing system by developing a read mapper and running the mapper
on E. coli genome with some simulated data sets. The results show that the high
percentage of simulated reads can be mapped to correct locations on the genome.
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1. Introduction

The information directing the behavior of cells is encoded in genomes. Accordingly, genomic information from
bacteria to humans is an important component of biological research. The genome sequence has to be determined
to analyze the genome of an organism. There are different sequencing technologies in which the DNA of an
organism is broken up into millions of small fragments that are then sequenced as reads. In the past decade,
with the introduction of next-generation sequencing (NGS) technologies, the volume of generated short reads has
increased sharply while the cost has decreased. To obtain a genome sequence, NGS reads have to be assembled by
a computer program. There are two approaches for genome assembly: de novo and reference-base assembly. In the
first method, the reads are merged together without any knowledge of the original genome. In the second one, the
reads are put together by aligning to a reference genome.

Several algorithms have been developed for reference-based assembly which can be divided into two main cat-
egories: FM-index and hash-based. At FM-index mappers including Bowtie [4], Bowtie2 [3] and BWA [6] the
construction of index is memory-efficient but time-consuming. On the other hands, hash-based mappers such as
RMAP [8], SHRiMP [7], BFAST [2], Hobbes [1], Mozaik [5] and FEM [10] make hash tables quickly but storing the
tables are memory-demanding. Hash-based mappers create a hash table with substrings of length k called k-mers
extracted from the reference genome as keys and their positions on the reference as values. Then, some k-mers of
each read are looked up in the hash table to find candidate locations of the read on the reference (hits). Afterward,
each read is aligned to its hits by an alignment algorithm such as Smith-Waterman [9] in order to obtain its origins.
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The length of k-mer is very critical, because the larger k implies the smaller number of hits for each read and
thus decreases the number of required alignments. In other words, if k equals the length of reads then there is no
need to align reads to the reference genome. Most of the hash-based mappers are not able to consider k equals to
the read size since these mappers usually use a simple hash function transforming a DNA sequence of length k to
a binary sequence of length 2k bits, where each nucleotide is represented by two bits. Thus for k > 16, the hash
table becomes extremely large.

In this paper, we would like to design a hash function on L-mers, in which L is the length of reads to find
genomic positions of a read in one step. Therefore we present a double hashing system which encodes a DNA
sequence to a small integer value with two hash functions paradigm collisions resolution such that storing the hash
table on RAM is memory-efficient.

2. Methods

Each fragment of DNA such as r is denoted by r = r1 . . . rk where ri ∈ {A,C,G, T}. The length of r is denoted by
|r|. Typically, the sequence r can be mapped to a number based on function h:

h(r) =

|r|−1∑
i=0

f(ri) · 4i, (1)

where f(A) = 0, f(C) = 1, f(G) = 2 and f(T ) = 3. Note that for each two sequences r and r′ if r 6= r′, then
h(r) 6= h(r′). Since h is a one-to-one function, it can be used as a hash function with no collision. To make an index
from a genome sequence by the function h, a hash table with the size of 4|r| is required. Thus, making index by the
function h is not appropriate for hashing genome sequences with read lengths of ranging from 21 to 150 (base-pair)
bp because the hash table grows exponentially with |r| and consequently becomes very large for |r| > 16. To make
a memory-efficient hash table, we define the following function:

g(r) =

|r|∑
i=1

f ′(ri) · ip, (2)

where f ′ is a function that encodes each nucleotide to a natural number and p is a constant greater than zero. By
identifying appropriate function f ′ and value of p, the function g can be employed as a hash function. To do so,
we consider a sequence s containing identical nucleotides in which |s| = |r|. Let the value of f ′ on the mentioned

nucleotide be the largest one denoted as z (i. e. g(s) =
∑|s|

i=1 z · ip). The value of g(s) is the maximum value of
function g. We find the largest values of z and p which satisfy the following inequality:

z ·
|r|∑
i=1

ip < m, (3)

where m is an arbitrary value. Function f ′ is defined by identifying values of f ′(x) for each x ∈ {A,C,G, T}.
In this regard, value of z is assigned to f ′(T ) and three different numbers less than f ′(T ) value are assigned to
the remaining domain such that f ′(A) < f ′(C) < f ′(G). Since we limit the maximum value of function g to m,
it is possible to find two sequences r and r′ such that r 6= r′ and g(r) = g(r′). Thus, g as a hash function has
some collisions. To solve this, we generate two numbers for each sequence r. In other words, we consider two hash
functions called score1 and score2 based on the function g, with two different functions as f ′. We define function
f ′ for score1 as follows:

f ′(A) = n1, f ′(C) = n2, f ′(G) = n3 and f ′(T ) = n4,

where

ni1≤i≤4 =


b i

4
× zc b i

4
× zc mod 2 6= 0,

b i
4
× zc − 1 o.w.

(4)

To define function score2, we change the definition of f ′ such that current values of f ′ are replaced by a permutation
of them as follows:

f ′(A) = n3, f ′(C) = n1, f ′(G) = n4 and f ′(T ) = n2.

Lemma 2.1. Assume that two numbers between 1 and n are selected uniformly at random. The probability of

equality between the two numbers is
1

n2
.
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According to Lemma 2.1, applying the functions score1 and score2 can dramatically reduce the collision rate in
the hash table.

In order to test the hash functions, we design a prototype read mapper, SBA (Score Based Alignment) which
maps a set of reads on a genome sequence. Firstly, the reference genome is indexed by SBA. For this purpose, the
reference is scanned by an overlapping window with the length of L (read length). For each L-mer, S1 and S2 are
computed using functions score1 and score2, respectively. Then, S2 value and position of L-mer on the genome are
stored in the bucket with the index number of S1 value. Secondly, reads are mapped on the reference by searching
the hash table. In this way, S1 and S2 are calculated and looked up at the hash table for each read. Consequently,
the locations of reads aligned exactly on the reference are determined.

3. Datasets

To evaluate the hash function, we useEscherichia coli str. K12 substr. MG1655 [GenBank:NC 000913] genome
sequence with the length of 4,639,675 bp. We simulate some read sets for E. coli genome of lengths 21bp, 45bp and
101bp with coverage depth 20x as follows. The datasets ReadSet1 21, ReadSet1 45 and ReadSet1 101 are generated
with no errors. To simulate datasets ReadSet2 21, ReadSet2 45 and ReadSet2 101, a genome sequence is derived
from E. coli with the rate of 0.1% single nucleotide variants, then read sets are simulated for the mutated genome.
The datasets ReadSet3 21, ReadSet3 45 and ReadSet3 101 are simulated with sequencing errors. All datasets are
generated by DWGSIM simulator using the Illumina platform.

4. Result

Values of p and z in Eq. (3) are calculated by setting m and |r| with an index size and a read length, respectively.
For the genome size of E. coli as value of m and three different read lengths, p and z values are shown in Table 1.
For each case of Table 1, we identify function f ′ as mentioned in section 2 to obtain the hash function score1. Then,
the genome sequence of E. coli is indexed by score1. Fig. 1 illustrates the collision distributions of the function
score1 applied to the index of E. coli genome for three different read lengths. The result indicates that the function
score1 on a genome sequence with any read length has a collision problem. The total numbers of t-way collisions
(i.e. t fragments that hash to the same value) for read lengths 21 bp, 45 bp and 101 bp are 1805261, 1255376 and
636958 respectively. Thus the shortest read length (21 bp) has the most total collisions and 2-way collisions. In
addition, the number of t-way collisions for it declines sharply. Consequently the shorter read length results the
more collision number.

Table 1: The values of p and z in Eq. (3) for three read lengths

|r| p z

21 4 5
45 3 4
101 2 13

Table 2: Collision rates of hashing mechanism with functions score1 and score2 are computed for read sets of
various lengths (rows) with different index size (m) values (columns).

|r| m = |G| m = 2|G|

21 2× 10−6 1× 10−6

45 1× 10−5 2× 10−7

101 5× 10−5 1× 10−6

To resolve the collision problem of the hash function score1, we employ functions score1 and score2 for indexing a
genome as noted in section 2. As shown in Table 2, the collision rates drop sharply by considering two hash functions
score1 and score2 for indexing E. coli genome. Furthermore, by considering the index size of 2|G|, the number of
collisions becomes negligible (Fig. 2). It’s worth mentioning that hashing system with functions score1 and score2
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constructs hash tables with the size of O(|G|), where |G| is the genome size (222) while conventional hash function
(Eq. (1)) makes hash tables with sizes 421, 445 and 4101 for read sets with read length 21 bp, 45 bp and 101 bp,
respectively.

To assess our hashing system in read mapping, we index E. coli genome by hash functions score1 and score2
with two different index sizes: the genome length (|G|) and twice the genome length (2|G|). Then for each simulated
dataset in section 3, SBA mapper is performed on each index separately. As shown in Table 3, for each dataset, the
percentage of mapped reads is the same for the indices with sizes |G| and 2|G| while the number of reads mapped
incorrectly on the genome varies slightly between the two cases. In fact, for the datasets ReadSet1 21, ReadSet1 45
and ReadSet1 101 which have no errors, all reads are mapped on correct locations whereas for the datasets with
errors, more than 80% of reads are mapped to the genome of which very few reads (< 0.001% )are mapped to
incorrect locations. In addition, the number of incorrect mapped reads for the indices with the size of 2|G| is less
than that of the indices with the size of |G| except for the read sets with read length of 21 bp. It seems that because
the collision rate of the hash table with the size of |G| with read length of 21 bp is very low, increasing the size of
index doesn’t have any effects on improvement of incorrect mapping rate.

Figure 1: The genome sequence of E. coli is indexed by score1 with read lengths of 21 bp, 45 bp and 101 bp. Then
the number of collisions are computed. Horizontal axis indicates the number of fragments with the same hash value
of score1.

Our assessment demonstrates that employing hash functions score1 and score2 for indexing a genome with the
index size of |G| is appropriate for mapping reads on the genome because nearly all reads are mapped to the correct
locations.

5. Conclusion

Our goal is to index a genome by applying k-mers with the length of a read. To achieve this purpose, we propose a
hashing system by two functions which makes a hash table with a low collision rate. To assess our hash functions
on the simulated data, we design SBA mapper. The result suggests that for datasets with varying read length, SBA
mapper can map approximately all reads on their correct genomic locations. In fact, an application of proposed
hashing system and specially SBA mapper is exactly mapping Illumina short reads on a genome, where it is required
reads to be mapped without any mismatches or gaps. In this case, SBA mapper can reduce number of candidate
locations for mapping and yield decreasing in searching time.
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Figure 2: The genome sequence of E. coli is indexed by functions score1 and score2 for two index sizes with read
lengths of 21 bp, 45 bp and 101 bp. |G| is the genome length of E. coli. Then the number of collisions are computed.

Table 3: Simulated dataset analysis

dataset mapped
reads (%)

mapped
reads

incorrect
mapped
reads

mapped
reads

incorrect
mapped
reads

index size = |G| index size = 2|G|

Readset1 21 100 4418738 0 4418738 0
Readset2 21 97.92 4326950 5 4237759 4
Readset3 21 95.9 4237761 49 4237760 48

Readset1 45 100 2062076 0 2062076 0
Readset2 45 95.61 1971561 4 1971557 0
Readset3 45 91.34 1883565 16 1883558 9

Readset1 101 100 918746 0 918746 0
Readset2 101 90.41 830725 14 830711 0
Readset3 101 81.64 750121 38 750088 5
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