
AUT Journal of Mathematics and Computing

AUT J. Math. Com., 2(1) (2021) 1-9

DOI: 10.22060/ajmc.2020.18413.1031

Original Article

On the rank of the holomorphic solutions of PDE associated to directed graphs

Hamid Damadi*a, Farhad Rahmatia

aDepartment of Mathematics and Computer Science, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran

ABSTRACT: Let G be a directed graph with m vertices and n edges, I(B) the
binomial ideal associated to the incidence matrix B of the graph G, and IL the lattice
ideal associated to the columns of the matrix B. Also let Bi be a submatrix of B
after removing the ith column. In this paper it is determined that which minimal
prime ideals of I(Bi) are Andean or toral. Then we study the rank of the space of
solutions of binomial D-module associated to I(Bi) as A-graded ideal, where A is
a matrix that, ABi = 0. Afterwards, we define a miniaml cellular cycle and prove
that for computing this rank it is enough to consider these components of G. We
introduce some bounds for the number of the vertices of the convex hull generated
by the columns of the matrix A. Finally an algorthim is introduced by which we can
compute the volume of the convex hull corresponded to a cycles with k diagonals, so
by Theorem 2.1 the rank of D

HA(I(Bi),β) can be computed.
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1. Introduction

The main object of study in this article is the binomial D-module, introduced in [3]. In the late 1980s, Gelfand,
Graev and Zelevinsky introduced a class of systems of linear partial differential equations closely related to toric
varieties [8]. These systems, called GKZ systems, or A-hypergeometric systems, are constructed from a d×n integer
matrix A of rank d and a complex parameter vector β ∈ Cd, and are denoted by HA(β).

Convention 1.1. Throughout the paper the matrices A and B have the following properties:

1. A = (aij) ∈ Zd×n denotes an integer d× n matrix of rank d whose columns a1, . . . ,an all lie in a single open
linear half-space of Rd; equivalently, the cone generated by the columns of A is pointed (contains no lines), and
all of the ai’s are nonzero. We also assume that ZA = Zd; that is, the columns of A span Zd as a lattice.

2. Let B = (bjk) ∈ Zn×m be an integer matrix of full rank m ≤ n. Assume that every nonzero element of the
column-span of B over the integers Z is mixed, meaning that it has at least one positive and one negative entry;
in particular, the columns of B are mixed. We write b1, . . . , bn for the rows of B. Having chosen B, we set
d = n−m and pick a matrix A ∈ Zd×n whose columns span Zd as a lattice, such that AB = 0.

Definition 1.2. Let A ∈ Zd×n, so ZA ⊆ Zd is a subgroup. A ring R is A-graded if R is a direct sum of
homogeneous components

R = ⊕α∈ZARα; RαRβ ⊆ Rα+β .

An ideal in an A-graded ring is A-graded if it is generated by homogeneous elements.
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Definition 1.3 (Definition 1.3 [3]). For each i ∈ {1, . . . , d}, the ith Euler operator is;

Ei = ai1x1∂1 + · · ·+ ainxn∂n,

where ∂i is ∂
∂xi

. Given a vector β ∈ Cd, we write E − β for the sequence E1 − β1, . . . , Ed − βd. For an A-graded

binomial ideal I ⊆ C[∂], we denote by HA(I,β), the left ideal I+ < E − β > in the Weyl algebra D. The binomial
D-module associated to I is D

HA(I,β) .

Given A as in Convention 1.1 , these are the left D-ideals HA(IA,β), also denoted by HA(β), where

IA =< ∂u − ∂v : A.u = A.v >⊆ C[∂1, . . . , ∂n].

The A-hypergeometric systems have many applications; for example, they arise naturally in the moduli theory of
Calabi-Yau complete intersections in toric varieties, and (therefore) they play an important role in applications of
mirror symmetry in mathematical physics [3].

Definition 1.4 (Definition 1.8 [3]). Fix integer matrices B and A as in Convention1.1, and let I(B) be the
lattice basis ideal corresponding to this matrix, that is, the ideal in C[∂] generated by the binomials∏

bjk>0

∂
bjk
xj −

∏
bjk<0

∂
−bjk
xj , for 1 ≤ k ≤ m.

The binomial Horn system with parameter β is the left ideal H(B,β) = HA(I(B),β) in the Weyl algebra D = Dn.

If L ⊆ Zn is a sublattice, then the lattice ideal of L is

IL =< ∂u
+

− ∂u
−

: u = u+ − u− ∈ L > .

Here and henceforth, u+ has ith coordinate ui if ui ≥ 0 and 0 otherwise. The vector u− ∈ Nq is defined by
u+ − u− = u, or, equivalently, u− = (−u)+. More general than IL are the ideals

Iρ =< ∂u
+

− ∂u
−

: u = u+ − u− ∈ L >

for any partial character ρ : L −→ C∗ of Zn, which includes the data of both its domain lattice L ⊆ Zn and the map
to C∗. The ideal Iρ is prime if and only if L is a saturated sublattice of Zn, meaning that L equals its saturation

sat(L) = (QL) ∩ Zn,

where QL = Q ⊗Z L is the rational vector space spanned by L in Qn. Every binomial prime ideal in C[∂] has the
form

Iρ,J = Iρ+ < ∂j : j 6∈ J >

for some saturated partial character ρ (i.e., whose domain is a saturated sublattice) and subset J ⊆ {1, . . . , n} such
that the binomial generators of Iρ only involve variables ∂j , j ∈ J .

Lemma 1.5. (Lemma 3.4 [3]) Fix a partial character ρ : L→ C∗ for a saturated sublattice L ⊆ ZJ ⊆ Zn. Let Cρ,J
be an A-graded binomial Iρ,J -primary ideal. Then L ⊆ ZJ ∩ kerZ(A) = kerZ(AJ), the Krull dimension satisfies
dim(C[∂]/Iρ,J) ≥ rank(AJ), and the following are equivalent.

• The Hilbert function ZA −→ N defined by α −→ dimC(C[∂]/Cρ,J)α is bounded above.

• The homomorphism ZJ/L→ ZAJ ⊆ Zd is injective.

• L = kerZ(AJ).

• dim(C[∂]/Iρ,J) = rank(AJ).

When these conditions are satisfied, the module C[∂]/Cρ,J and the lattice L are called toral, the ideal Iρ,J is called
a toral prime, and Cρ,J is called a toral (primary) component. When these conditions are not satisfied, substitute
Andean for “toral” above.

In 2010 Dickenstein, Matusevich, and Miller presented and proved the following theorem [3]:
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Theorem 1.6. (Theorem 6.10 [3]) If ZAndean(I) 6= Cd, then HA(I,β) has minimal rank at β if and only if −β
lies outside of the jump arrangement Zjump(I), and this minimal rank is

rank(
D

HA(I,β)
) =

∑
Iρ,J toral of dim d

µρ,J .volAJ .

Where µρ,J be multiplicity of Iρ,J in I (or equivalently, in the primary component Cρ,J of I) and vol(AJ) the volume
of the convex hull of AJ and the origin, normalized so that a lattice simplex in the group ZAJ generated by the
columns of AJ has volume 1.

In order to obtain the necessary preliminaries for stating and proving the Proposition 2.8 and Theorem 2.1, we
review some concepts as follow.
Let P be a lattice polytope of dimension d, i.e. a convex polytope in Rd whose vertices are elements of Zd and
whose affine span has dimension d, and P o denote the interior of P . Given a positive integer n, the numerical
functions i(P, n) and ī(P, n) are defined as follow:

i(P, n) = |nP
⋂

Zd|, ī(P, n) = |n(P o)
⋂

Zd|.

Here nP = {nα : α ∈ P} and |X| is the cardinality of a finite set X. Ehrhart in [7] stated the following properties:

1. i(P, n) is a polynomial in n of degree d (and thus in particular i(P, n) can be defined for every integer n);

2. i(P, 0) = 1;

3. ī(P, n) = (−1)di(P,−n) for every integer n ≥ 0.

Let

EhrP(x) =
∑
n≥0

i(P, n)xn =

∑d
j=0 h

?
jx
j

(1− x)d+1
,

denote the rational generating function for this polynomial, called the Ehrhart series of P .

Definition 1.7. For two polytopes P ⊆ RdP and Q ⊆ RdQ of dimension dP and dQ, define the free sum to be

P ⊕Q = conv{(0P ×Q)
⋃

(P × 0Q)} ⊆ RdP+dQ .

Definition 1.8. Let P be a lattice polytope in RdP . The following set is called dual of P ;

P∆ = {x ∈ RdP : x.p ≤ 1 for all p ∈ P}.

A lattice polytope whose dual is lattice polytope, called reflexive polytope.

Batyrev and Hibi in [1] and [10] respectively, proved the following lemma;

Lemma 1.9. P is reflexive if and only if P is a lattice polytope with 0 ∈ P o that satisfies one of the following
(equivalent) conditions:

1. P∆ is a lattice polytope.

2. ī(P, n + 1) = i(P, n) for all n ∈ N, i.e. all lattice points in RdP sit on the boundary of some non-negative
integral dilate of P .

3. h?i = h?dp−i for all i, where h?i is the ith coefficient in the numerator of the Ehrhart series for P .

Proposition 1.10. (Corollary 3.6. [9]) Let P be a d-dimensional reflexive polytope. Then

vol(P ) =
1

d!

c∑
b=0

(−1)b+c
(

(
d

c− b ) + (−1)d−1(
d

c+ b+ 1
)

)
i(P, b),

where c := [d2 ].

Braun in [2] proved the following theorem;

Theorem 1.11. If P is a dP -dimensional reflexive polytope in RdP and Q is a dQ-dimensional lattice polytope in
RdQ with 0 ∈ Qo, then

Ehr((P ⊕Q)(x)) = (1− x)EhrP (x)EhrQ(x).
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Definition 1.12. Let P be a lattice polytope. A vertex of P is called primitive, if no lattice point lies strictly
between the origin and the vertex.

Convention 1.13. The polytope corresponded to the matrix A, is denoted by P (A).

Proposition 1.14. Let P be a lattice polytope with 0 in its interior. P is reflexive if and only if each vertex is a
primitive lattice point.

Proof. It is straightforward corollary of Lemma 1.9. �

In this paper we consider a directed graph G whose vertices have both input and output edges, and let B be its
incidence matrix, that is

bij =

 −1 ej exits from vi
1 ej inters to vi
0 otherwise

and I(B) is defined as follow;

I(B) =< ∂u
+
i − ∂u

−
i |ui = u+

i − u−i , 1 ≤ i ≤ m,u
′
is are the columns of B > .

Suppose that Bi is a submatrix of B after removing the ith column. Assume that L is a lattice which generated
by the column vectors of the matrix B. It is shown that IL is a toral minimal prime of I(Bi) and the others are
Andean. Afterwards, we define a minimal cellular cycle and prove that for calculating the rank of H(Bi,β), it is
enough to consider the minimal cellular cycle components of graph G. We introduce some bounds for the number
of the vertices of the convex hull generated by the columns of the matrix A. Finally an algorthim is introduced by
which we can compute the volume of the convex hull corresponded to a cycles with k diagonals, so by Theorem 2.1
the rank of D

HA(I(Bi),β) can be computed.

2. Main Results

By noting to Theorem 1.6 and using Lemma 2.4 and Lemma 2.5, for generic parameters, we have:

rank(
D

HA(I(Bi),β)
) = vol(A).

Hence by the following Theorem, for computing rank( D
HA(I(Bi),β) ), we consider the minimal cellular cycles, G1, . . . , Gt,

calculate the volumes of corresponded convex hulls, and finally multiply all of them to compute the volume of A.

Theorem 2.1. Let G be a directed graph with m vertices and n edges. Suppose that G1, . . . , Gt are the minimal
cellular cycles of G\{vi}. Also let AG1

, . . . ,AGt be, respectively, the matrices corresponded to the minimal cellular
cycles. For generic parameters, we have:

rank(
D

HA(I(Bi),β)
) =

t∏
i=1

vol(AGi).

In the following, we will mention some necessary facts to prove this Theorem.

Lemma 2.2. The lattice L is saturated.

Proof. Since for all i ∈ {1, . . . ,m},

−ui = u1 + · · ·+ ui−1 + ui+1 + · · ·+ um,

without loss of generality, set L =< u1, . . . ,um−1 >. Let b ∈ Z and Y = (y1, . . . , yn) ∈ Zn such that bY ∈ L, that
is:

∃c1, . . . , cm−1 ∈ Z; bY = c1u1 + · · ·+ cm−1um−1.

Without loss of generality suppose in the first column of B, the first entry is 1 and the last one is -1, then by1 = c1.
Again without loss of generality suppose in the second column, the first entry is -1 and the second one is 1, we have:

by2 = c2 − c1 = c2 − by1 =⇒ c2 = by2.

Continuing this way, conclude that all of ci’s are multiplied by b, so

Y =
c1
b

u1 + · · ·+ cm−1

b
um−1 ∈ L.

Then L is a saturated lattice. �
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Lemma 2.3. There exists a d× n matrix A of rank d such that for all i, 1 ≤ i ≤ m, ABi = 0.

Proof. Since the lattice generated by the columns of B is the same as the lattices generated by the columns of
each Bi, 1 ≤ i ≤ m, without loss of generality, we put:

L =< u1, . . . ,um−1 > .

By Lemma 2.2, L is a saturated lattice, so IL is a prime binomial ideal, hence there is some d× n matrix A that,
L = kerZA. So for all i, 1 ≤ i ≤ m, ABi = 0. Now because Bi is full rank and d = n−m+ 1, the matrix A is full
rank too. �

The matrix A induces a Zd-grading of the polynomial ring C[∂1, . . . , ∂n] = C[∂], called a A-grading, by setting
deg(∂i) = ai, where ai’s are the columns of the matrix A. Let I be a binomial ideal of C[∂] that is generated
by binomials ∂u − λ∂v, where u, v ∈ Zn and λ ∈ C; such an ideal is A-graded precisely when it is generated by
binomials ∂u− λ∂v each of which satisfies either Au = Av or λ = 0. Since ABi = 0, I(Bi) is a A-graded binomial
ideal.
For the rest of the article, we let that for any graph G, A is the matrix which we obtain in the Lemma 2.3. Also
for simplicity we assume that the entries of A are chosen from {0,−1, 1}.

Lemma 2.4. IL is a toral minimal prime ideal of A-graded ideal I(Bi).

Proof. We know that dimIL = d. By Corollary(2.1)[11], IL is a minimal prime of I(Bi). Also by the previous
Lemma, rankA = d. Since L is a saturated lattice and for IL = Iρ,J , J = {1, . . . , n}, by Lemma(3.4)[3], IL is toral.
�

Let Iρ,J = Iρ+ < ∂j : j 6∈ J > be the minimal prime of I(Bi), after row and column permutations, we have;(
N BJ

M 0

)
.

where M is a mixed submatrix of Bi of size q× p for some 0 ≤ q ≤ p ≤ m [3]. The matrix M has to satisfy another
condition which is called irreducibility ([11], Definition 2.2 and Theorem 2.5). If I(B) is a complete intersection,
then only square matrices M will appear in the block decompositions, by a result of Fischer and Shapiro [7].

Lemma 2.5. Let P ∈ MinI(Bi), P 6= IL. Then P is Andean.

Proof. Assume that decomposition of matrix Bi for Iρ,J = P 6= IL, has the following form;

Bi =

(
N BJ

M 0

)
.

Since I(Bi) is a complete intersection ideal, M is a square matrix. Let Iρ,J be a toral minimal prime and AJ

denotes the submatrix of A whose columns are indexed by J . Since rank(kerZAJ) = d, the matrix M is an
invertible matrix. The matrix M corresponds to a directed cycle, then M is not full rank, hence it isn’t invertible.
This is a contradiction, so Iρ,J = P is Andean. �

Lemma 2.6. D
HA(I(Bi),β) for generic parameters are holonomic.

Proof. Let Iρ,J be Andean. Also assume that the decomposition of Bi has the following form;

Bi =

(
N BJ

M 0

)
.

We have detM = 0, so CAJ 6= Cd. Therefore ZAndean(I(Bi)) 6= Cd, since ZAndean(I(Bi)) is a union of finitely
many integer translates of the subspaces CAJ ⊆ Cn for which there is an Andean associated prime Iρ,J [3]. Hence
by Theorem(6.10)[3], the claim is proved. �

The vertices v1, . . . , vt are called cellular cycle only if for all i, 1 ≤ i ≤ t, N(vi) ⊆ {v1, . . . , vt}, where N(vi) is the
neighborhood of the vertex vi. We call the cellular cycle v1, . . . , vt minimal cellular cycle, if there isn’t a vertex
vi such that, v1, . . . , vi−1, vi+1, . . . , vt remains cellular cycle. we say that the graph G is partitioned to minimal
cellular cycles if all minimal cellular cycles connect to each other by a vertex or a path.

Lemma 2.7. The graph G can be partitioned to minimal cellular cycles.
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Proof. Let G1 and G2 be two cycles of G. If G1 and G2 are connected to each other by more than one path or one
vertex, where every two paths between G1 and G2 have not common vertex, G1 ∪ G2 include a cycle larger than
G1 and G2. In the same pattern, we review all cycles of G. We union all cycles which are connected to each other
by two paths or more (every two paths between them have not common vertex), then the subgraphs Q1, . . . , Qt are
formed. It is obvious that, ∀i, j, i 6= j, 1 ≤ i, j ≤ t, Qi and Qj are connected to each other by a vertex or a path.
Hence Q1, . . . , Qt are the minimal cellular partitions of G. �

Proposition 2.8. There are k ∈ Z and w ∈ Zd such that P (kA + w) is a reflexive polytope.

Proof. The entries of the columns of the matrix A are chosen from {−1, 1, 0}. First, let all entries of the columns
of the matrix A be zero or one. We must show that there is some k ∈ Z such that all vertices of the polytope
P (kA+J) are primitive, where J = (−1, . . . ,−1) ∈ Zd. Suppose that (1, . . . , 1) ∈ Zd is a column of A, by choosing
k = 2, the claim is proved. Otherwise all columns of the matrix have zero in their entries; in this case, let k >> 0
such that the origin is in interior of P (kA + J). Now since every vertex of P (kA + J) has -1 in their entries, all of
them are primitive.
Now let the entries of the columns of A be −1, 1 and 0. In this case, considering the position of placement of the
polytope, like the previous case, we can choose suitable k ∈ Z and w ∈ Zd such that P (kA + w) is a reflexive
polytope. �

Proof of Theorem 2.1. LetG be a directed graph, G1, . . . , Gt the minimal cellular cycles ofG\{vi}, and BG1 , . . . ,BGt

be, respectively, their incidence matrices. Also let AG1 , . . . ,AGt be the matrices mentioned in Lemma 2.3, that;

AGiBGi = 0, ∀i, 1 ≤ i ≤ t.

By an appropriate labeling we have:

Bi =



BG1
0 0 · · · 0

0 BG2 0 · · · 0
0 0 BG3 . . . 0
0 0 0 . . . 0
...

...
... . . .

...
0 0 0 . . . BGt


and

A =



AG1 0 0 · · · 0
0 AG2 0 · · · 0
0 0 AG3

. . . 0
0 0 0 . . . 0
...

...
... . . .

...
0 0 0 . . . AGt


.

Note that the matrix A may have some zero columns, which don’t affect on volume of the matrix, so without loss
of generality, we suppose that A has no zero columns.
Assume that by Convention 1.13, P (AG1

), . . . , P (AGt) are the convex hulls of AG1
, . . . ,AGt respectively. P (A) is

the free sum of P (AG1
), . . . , P (AGt). By induction, it is enough to consider t = 2. By Proposition2.8, there are

k1, k2 ∈ Z and w1,w2 ∈ Zd that P (k1A + w1) and P (k2A + w2) are reflexive polytopes. Put:

P (A?
G1

) = P (k1A + w1)

,
P (A?

G2
) = P (k2A + w2)

and
P (A?) = P (A?

G1
)⊕ P (A?

G2
).

By Theorem2.11;
EhrP (A?) = (1− x)EhrP (A?

G1
)EhrP (A?

G2
).

That is
vol(A?) = vol(A?

G1
)vol(A?

G2
).

We know that;
vol(P +α) = volP and vol(cP ) = cdimP volP, where α ∈ Zd, c ∈ Z.

6
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So
vol(A) = vol(AG1)vol(AG2).

�

Proposition 2.9. Let G be a cycle. If −β 6∈ Zjump(I(Bi)), then rank( D
HA(I(Bi),β) ) = 1.

Proof. Because d = 1, the entries of the 1× n matrix A are just 1. So vol(A) = 1. �

Proposition 2.10. Let G be a cycle with one diagonal, then rank( D
HA(I(Bi),β) ) = 2.

Proof. Let G be a cycle with one diagonal and m vertices. Without loss of generality, assume that the diagonal
exits from (m−2)th vertex and enters to mth vertex. Consider the matrix Bi, without loss of generality, put i = m.
We have:

b11 = 1, bi1 = 0, 2 ≤ i ≤ m− 1.

By adding the second row to the first row, we have:

b13 = b23 = −1, b33 = 1.

Now add the third row to first and second rows. By continuing this process, in reduced form of Bm, we have:

bin−1 = −1, 1 ≤ i ≤ m− 1,

bjn = −1, 1 ≤ j ≤ m− 2.

Then the matrix A will have the following form:

A =

(
1 1 · · · 1 1 0
1 1 · · · 0 0 1

)
.

Since the vectors (1, 0), (0, 1) and (1, 1) contained in the set of the columns of A,

rank(
D

HA(I(Bi),β)
) = vol(A) = 2.

�

Theorem 2.11. Let G be a cycle with k diagonals that k ≥ 2. Then the convex hull generated by the columns of
the matrix A has at least 2k + 2 and at most 3k + 1 vertices.

Proof. Let G has m vertices and B be it’s incidence matrix. Without loss of generality, we choose the vertex vi
which has the most degree. There is a labeling that Bi and it’s reduction form have the following forms:

Bi =

(
Mm−1×m−1

Nk+1×m−1

)
and

Bred
i =

(
Im−1×m−1

Ck+1×m−1

)
.

The matrix N has at most 2k nonzero entries distributed in at least k and at most 2k − 1 rows. So the matrix C
has at least k and at most 2k− 1 nontrivial nonequal rows. Hence the convex hull generated by the columns of the
matrix A has at least 2k + 2 and at most 3k + 1 vertices. �

Corollary 2.12. Let G be a cycle with 2 diagonals, then;

3 ≤ vol(A) ≤ 5.

Proof. We know that for forming a cube, we need 8 vertices, but by Theorem 2.11 the convex hull generated by
the columns of A has at least 6 and at most 7 vertices. Then;

3 ≤ vol(A) ≤ 5.

�
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Example 2.1. Let G, H and K be the following graphs, respectively;

•1
e1

  
e6

��

•5

e5

>>

•2

e2
��

•4
e4

OO

•3e3oo

e7

WW •1 e1 // •2

e2

��

•5
e6

oo

•3

e4

OO

e5

??

•4e3oo e8 // •6

e7

OO •1 e1 //

e5

��

•2

e2

��
•4

e4

OO

e6

??

•3e3oo

Also let the matrices A, C and D be the corresponded matrices to the graphs G,H and K, respectively. One can
compute:

vol(A) = 3, vol(C) = 4 and vol(D) = 5.

Finally considering Proposition 1.10, We can compute the volume of a convex hull corresponded to a cycle with
d− 1 diagonals by the following algorithm.

Algorithm 2.13. Input: d, {a1, . . . ,an} ⊆ Zd. ai’s are the columns of the matrix A.
Output: vol(P (A)).

1. c = [d2 ]

2. Choose a suitable integer k, such that P (kA + w) be a reflexive polytope.

3. Put bi = kai −w and E = {b1, . . . , bn}.
4. Consider all b1,s =

∑ λi
k bi ∈ Zd such that

∑
λi = k.

5. Now let E = {b1, . . . , bt1}
6. If n = 1 Finish. Otherwise go on.

7. Put q = 2.

8. Consider all bqs =
∑ λi

q bi ∈ Zd such that
∑
λi = q.

9. Eq = {bq1, . . . , bqtq}.
10. If n = q Finish. Otherwise put q + 1→ q and go 7.

11. vol(P (A)) =

∑c
b=0(−1)c−b

(
d

c− b )+(−1)d−1(
d

c+ b+ 1
)

ti
kd

.
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merical Mathematics, Vol. 35, Birkhäuser Verlag, Basel-Stuttgart, 1977.

[6] D. Eisenbud and B. Sturmfels, Binomial ideals, Duke Math. J., 84 (1996), pp. 1–45.

[7] K. G. Fischer and J. Shapiro, Mixed matrices and binomial ideals, J. Pure Appl. Algebra, 113 (1996),
pp. 39–54.

[8] I. M. Gel’fand, M. I. Graev, and A. V. Zelevinskĭı, Holonomic systems of equations and series of
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